Suche

zur Hauptseite

Navigation und Service


Supercomputer entschlüsselt Strukturen in DVD-Materialien

Erstmals Modell des schnellen Phasenwechsels in Speichermaterial entwickelt

Jülich, 9. Januar 2011 – Filme und Musik auf einer DVD zu speichern, gehört zu unserem digitalen Alltag. Trotzdem sind die physikalischen Grundlagen der Datenspeicherung auf den runden Scheiben noch nicht restlos aufgeklärt. Im renommierten Fachmagazin Nature Materials werfen Forscher aus Jülich, Finnland und Japan nun einen Blick auf den Phasenwechsel während des Schreibprozesses einer DVD. Die Erkenntnisse könnten helfen, leistungsfähigere Speichermaterialien zu entwickeln. (DOI: 10.1038/NMAT2931)

Die informationstragende Schicht einer DVD besteht aus einer polykristallinen Legierung aus mehreren chemischen Elementen. Die digitale Information wird darin in Form von Bits gespeichert, die jedes kaum 100 Nanometer groß sind. Die Legierung kann hier eine ungeordnete, amorphe oder eine geordnete, kristalline Struktur annehmen. Der Übergang zwischen den beiden Phasen dauert nur einige Nanosekunden und lässt sich durch einen Laserstrahl auslösen. Die gängigen Legierungen für Speichermedien wie DVD-RAM oder Blu-ray Disc enthalten Germanium (Ge), Antimon (Sb) und Tellur (Te). Sie werden nach den Anfangsbuchstaben der Elementsymbole GST genannt. Für das Speichermedium DVD-RW wird in der Regel die Legierung AIST verwendet, die in kleinen Mengen Silber (Ag) und Indium (In) sowie ebenfalls Antimon (Sb) und Tellur (Te) enthält.

„Obwohl beide Legierungsfamilien Antimon und Tellur enthalten und scheinbar ähnlich sind, hat der Übergang zwischen den Phasen wesentliche Unterschiede“, erklärt Dr. Robert Jones vom Forschungszentrum Jülich, der in einem internationalen Team an dem Problem arbeitet. Neben den experimentellen Daten und Röntgenspektren vom japanischen Synchrotron SPring-8 nutzten die Forscher intensiv Simulationen am Jülicher Supercomputer JUGENE. Mit der Kombination der beiden Methoden ist es nun erstmals gelungen, die Strukturen der beiden Phasen von AIST zu bestimmen und ein Modell für den schnellen Phasenübergang zu entwickeln.

In AIST-Legierungen verläuft der Phasenübergang von außen nach innen. Das Bit wächst vom Rand, wo es an die kristalline Umgebung grenzt, nach innen zu. In der Zeitschrift Nature Materials erklären die Forscher dies nun über ihr „Bindungsaustauschmodell“. Dabei ist die lokale Umordnung des amorphen Bits durch eine kleine Bewegung des Antimon-Atoms ausschlaggebend (siehe Grafik). In einer Folge von vielen kleinen Schritten richtet sich Atom für Atom und damit das Gitter neu aus und kristallisiert, ohne dass Hohlräume und große Bewegungen notwendig sind. Letztlich haben die Antimon-Atome, angeregt durch den Laserstrahl, im Wesentlichen nur die Stärke der Bindung zu zwei benachbarten Atomen ausgetauscht, daher der Name „Bindungsaustauschmodell“.

Bereits in früheren Arbeiten (DOI: 10.1103/PhysRevB.80.020201) hat das Forscherteam die Vorgänge in GST nachvollzogen. Beim Phasenübergang in GST-Legierungen kristallisiert das amorphe Bit durch Keimbildung, das heißt, dass sich im Innern spontan Kristalle bilden, die schnell wachsen, bis das Bit ausgefüllt ist. Der schnelle Übergang lässt sich dadurch erklären, dass amorphe und kristalline Phasen aus den gleichen Strukturen bestehen, nämlich den sogenannten „ABAB“-Ringen. Diese viereckigen Ringe aus zwei Germanium- oder Antimon- und zwei Tellur-Atomen können sich in den vorhandenen Hohlräumen bewegen und umordnen, ohne dass viele atomare Bindungen brechen.

Die Berechnung des amorphen AIST ist die größte, die je in dem Forschungsbereich gemacht wurde. Rund 640 Atome wurden über den vergleichsweise langen Zeitraum von mehreren Hundert Pikosekunden simuliert, um die notwendige Genauigkeit zu erreichen. Etwa 4000 Prozessoren des Jülicher Supercomputers JUGENE waren über vier Monate ausgelastet, um die richtigen Modellbedingungen zu bestimmen. Neben der reinen Rechenleistung sind aber vor allem fundierte Kenntnisse sowohl im wissenschaftlichen Rechnen als auch in der Modellierung von Festkörpern notwendig. „Das Forschungszentrum Jülich ist wohl einer der wenigen Orte, wo diese drei Aspekte zusammentreffen“, freut sich Jones.

Das tiefere, theoretische Verständnis der Vorgänge beim Beschreiben einer DVD kann helfen, bessere phasenwechselnde Materialien gezielt zu entwickeln, die Speichermedien mit größerer Kapazität, längerer Datenhaltbarkeit oder geringerer Zugriffszeit ermöglichen.

Modell der Kristallisierung der Legierung AIST in einer DVDModell der Kristallisierung der Legierung AIST in einer DVD: Oben links: Ein Laserstrahl (Pfeil hv) stößt die Bewegung des zentralen Antimon-Atoms (links) an, das daraufhin seine Bindung zu zwei Nachbarn austauscht. Oben rechts: Die grüne Vektorsumme der drei kurzen roten Bindungen ändert sich. Unten: Eine Reihe solcher Prozesse führt von der amorphen (links) zur kristallinen Form (rechts). Bild: Forschungszentrum Jülich
Copyright: Forschungszentrum Jülich

Mehr Informationen zur Jülicher Festkörperforschung:
Institut für Festkörperforschung

Homepage von Nature Materials:
Nature Materials

Weitere Meldung zum Thema

Ansprechpartner

Dr. Robert Jones
Tel.: +49 2461 61-4202
r.jones@fz-juelich.de

Pressekontakt

Kosta Schinarakis
Tel.: +49 2461 61­4771
k.schinarakis@fz-juelich.de


Servicemenü

Homepage