Suche

zur Hauptseite

Navigation und Service


Batterie und Datenspeicher zugleich

Zukünftige nanoelektronische Informationsspeicher sind gleichzeitig winzige Batterien – verblüffende Erkenntnis eröffnet neue Möglichkeiten

Aachen/Jülich, 23. April 2013 – Resistive Speicherzellen (ReRAM) gelten als vielversprechende Lösung für künftige Generationen von Computerspeichern. Durch ihren Einsatz wird sich der Energieverbrauch moderner IT-Systeme drastisch verringern und die Leistungsfähigkeit gleichzeitig deutlich steigern lassen. Entgegen der gängigen Theorie sind diese neuartigen Speicherzellen keine rein passiven Bauelemente, sondern müssen als winzige kleine Batterien betrachtet werden. Dies haben Forscher der Jülich-Aachen Research Alliance (JARA) in der renommierten Fachzeitschrift Nature Communications nachgewiesen. Die entdeckte Eigenschaft birgt neue Möglichkeiten für weitere Anwendungen. Die Forschungsgruppe hat bereits eine Idee zum Patent angemeldet, wie sich mithilfe der Batteriespannung das Auslesen der Daten verbessern lässt.

Herkömmliche Datenspeicher arbeiten auf der Basis von Elektronen, die verschoben und gespeichert werden. Doch Elektronen sind – selbst für atomare Verhältnisse – extrem klein. Sie lassen sich nur mit großem Aufwand, mit relativ dicken Isolatorwänden etwa, "bändigen", sodass die Informationen nicht verloren gehen. Dies beschränkt nicht nur Speicherdichte und Geschwindigkeit, sondern kostet auch viel Energie. Aus diesem Grund wird weltweit fieberhaft an nanoelektronischen Bauelementen geforscht, die Ionen, also geladene Atome, zur Datenspeicherung nutzen. Diese sind einige Tausend Mal schwerer als Elektronen und viel besser "festzuhalten". Dadurch lassen sich die einzelnen Speicherelemente beinahe zu atomaren Dimensionen verkleinern, was die Speicherdichte enorm verbessert.

In sogenannten resistiven Speicherzellen (ReRAM) verhalten sich die Ionen auf Nanometerskala ähnlich wie in einer Batterie. Die Zellen enthalten zwei Elektroden, beispielsweise aus Silber und Platin, an denen sich die Ionen lösen und wieder niederschlagen. Dadurch verändert sich der elektrische Widerstand, was sich für die Speicherung von Daten ausnutzen lässt. Die Reduktions- und Oxidationsprozesse zeigen darüber hinaus aber noch eine andere Wirkung: Sie erzeugen eine elektrische Spannung. ReRAM–Zellen sind demnach keine rein passiven Systeme, sondern aktive elektrochemische Bauelemente. Sie müssen folglich als winzig kleine Batterien betrachtet werden, deren Eigenschaften entscheidend sind für die korrekte Modellierung und Entwicklung zukünftiger Datenspeicher.

Die Wissenschaftler vom Forschungszentrum Jülich und der RWTH Aachen haben in aufwendigen Versuchen die Batteriespannung von typischen Vertretern der ReRAM-Zellen bestimmt und mit theoretisch zu erwartenden Werten verglichen. So konnten weitere Eigenschaften (z. B. der ionische Widerstand) bestimmt werden, die vorher weder bekannt noch zugänglich waren. "Im Nachhinein ist das Vorhandensein einer Batteriespannung in ReRAM selbstverständlich. Aber während des neunmonatigen Begutachtungsprozesses des jetzt veröffentlichten Papers war sehr viel Überzeugungsarbeit zu leisten, da die Batterie-Spannung in ReRAM-Zellen drei verschiedene prinzipielle Ursachen haben kann und die Zuordnung der korrekten Ursache alles andere als trivial ist", berichtet Dr. Ilia Valov, Elektrochemiker in der Forschergruppe um Prof. Rainer Waser.

Die neue Erkenntnis ist insbesondere auch für die theoretische Beschreibung der Speicherbauelemente von zentraler Bedeutung. Bisher wurden ReRAM-Zellen mithilfe der Theorie der sogenannten "Memristoren" – zusammengesetzt aus "Memory", Speicher, und "Resistor", Widerstand – beschrieben. Das aus den 1970er Jahren stammende, theoretische Konzept wurde 2008 vom IT-Unternehmen HP erstmals auf ReRAM-Zellen angewandt. Es zielt auf die dauerhafte Speicherung von Information durch die Veränderung des elektrischen Widerstands ab. Aus der Memristor-Theorie ergibt sich allerdings eine wichtige Einschränkung. Sie ist auf passive Bauelemente beschränkt. "Die nachgewiesene, interne Batterie-Spannung der ReRAM-Elemente verletzt eindeutig das mathematische Gedankengebäude der Memristor-Theorie. Die Theorie muss zur Beschreibung der ReRAM-Elemente aufgegeben werden - oder man muss sie zu einer ganz neuen Theorie erweitern", sagt Dr. Eike Linn, Spezialist für Schaltungskonzepte in der Autorengruppe. Damit wird auch die Entwicklung jedes mikro- und nanoelektronischen Chips auf völlig neue Grundlagen gestellt.

"Die neuen Ergebnisse werden dazu beitragen, einige zentrale Rätsel in der internationalen ReRAM-Forschung zu klären", ist Prof. Rainer Waser, stellvertretender Sprecher des 2011 neu eingerichteten Sonderforschungsbereichs SFB 917 "Nanoswitches" der RWTH Aachen, überzeugt. In den letzten Jahren wurden beispielsweise unerklärliche Langzeitdrift-Phänomene beobachtet oder systematische Parameterstreuungen, die der Fertigung zugeschrieben wurden. "Im Licht der neuen Erkenntnis wird es möglich, nun zielgerichtet das Design der ReRAM-Zellen zu optimieren und eventuell sogar Wege zu finden, die Batteriespannung der Zellen für völlig neue Anwendungen zu nutzen, die bisher jenseits aller technischen Möglichkeiten lagen", so der Leiter des Instituts für Werkstoffe der Elektrotechnik II (IWE II) an der RWTH Aachen sowie des Bereichs Elektronische Materialien am Peter Grünberg Institut (PGI-7) des Forschungszentrums Jülich. Seit Jahren arbeitet er mit Firmen wie Intel und Samsung Electronics auf dem Gebiet der ReRAM-Elemente zusammen.

Resistive Speicherzelle Aufbau einer resistiven Speicherzelle (ReRAM): Zwischen den beiden Elektroden baut sich eine elektrische Spannung auf, sodass die Speicherzellen als winzige Batterien betrachtet werden müssen. Sogenannte Filamente, die sich durch Ablagerungen im Betrieb bilden, können die Batterieeigenschaften verändern.
Quelle: Jülich-Aachen Research Alliance (JARA)

Originalpublikation:

I. Valov,E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz & R. Waser
Nanobatteries in redox-based resistive switches require extension of memristor theory
Nature Communications. 23. April 2013
DOI: 10.1038/ncomms2784
Abstract

Weitere Informationen:

Jülich-Aachen Research Alliance for Fundamentals of Future Information Technologies (JARA-FIT)

Electronic Materials Research Lab (EMRL)

Collaborative Research Centre SFB 917 Nanoswitches

Peter Grünberg Institut - Elektronische Materialien (PGI-7)

Ansprechpartner:

Prof. Rainer Waser
Peter Grünberg Institut (PGI-7), Bereich Elektronische Materialien, Forschungszentrum Jülich & Institut für Werkstoffe der Elektrotechnik II (IWE II), RWTH Aachen
Tel. 0241 8027812
waser@iwe.rwth-aachen.de

Pressekontakt:

Christian Schipke
Tel. 02461 61-3835
c.schipke@fz-juelich.de

Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de


Servicemenü

Homepage