Navigation und Service

Neue Biotinte für den Druck gewebeähnlicher Strukturen

Jülich / Würzburg, 19. Oktober 2017 – Wissenschaftler der Universität Würzburg haben ein neues Thermogel synthetisiert, das sich als biologische Tinte für den 3D-Druck gewebeähnlicher Strukturen für die regenerative Medizin eignet. Untersuchungen mit Hilfe von Neutronenstreuung an einem Gerät des Forschungszentrums Jülich legen nahe, dass das Material – ein Gemisch aus einem Polymer und lebenden Zellen, das bei Raumtemperatur flüssig ist – im gelierten Zustand ein ungewöhnliches schwammartiges Netzwerk ausbildet.

Im Labor gezüchtete Gewebe sind ein Hoffnungsträger für Menschen mit Gewebeschädigungen. Sie könnten einmal Knorpelmasse, Nervenbahnen, Hautpartien oder ganze Organe ersetzen, die durch Krankheiten oder Unfälle verletzt wurden. Für die Erzeugung gewebeähnlicher Strukturen im Labor setzen Forscher auf 3D-Druckverfahren und so genannte "Biotinte". Sie besteht aus einer Mischung biokompatibler Polymere und lebender Zellen.

Wissenschaftler der Julius-Maximilians-Universität Würzburg (JMU) haben nun ein neues Thermogel synthetisiert, das alle Anforderungen an Biotinten für die regenerative Medizin erfüllt: Es geliert bei Erwärmung ähnlich wie Gelatine beim Erkalten, besitzt justierbare physikalische und biologische Eigenschaften und ist in ausreichender und gleichbleibender Qualität herstellbar.

"Die Reproduzierbarkeit unserer Forschungsergebnisse liegt uns sehr am Herzen und wir denken, dass die robuste und doch variable Synthese eine große Stärke dieses neuen Biomaterials sein könnte“, erklärt Prof. Robert Luxenhofer von der Uni Würzburg.

Von anderen Thermogelen hebt es sich durch eine besondere mechanische Stärke ab. Zudem unterscheidet sich die Struktur des Gels von anderen bekannten Biotinten: Es bildet ein so genanntes "bikontinuierliches" schwammartiges Netzwerk aus, im Gegensatz zum häufig auftretenden Netzwerk aus dicht gepackten Kugeln. Dies legen Untersuchungen mit Hilfe von Neutronenstreuung nah, die die Forscher an einem Gerät des Forschungszentrums Jülich durchführten. "Die Neutronenkleinwinkelstreuapparatur KWS-1, die wir an der Jülicher Außenstelle am Heinz Meier-Leibnitz Zentrum in Garching betreiben, ist besonders geeignet um Strukturen im Bereich einiger Nanometer zu untersuchen. Das ist speziell bei solchen Hydrogelen wichtig, da hier das makroskopische Verhalten oft durch diese Nanostruktur mitbestimmt wird", erläutert Dr. Sebastian Jaksch vom Jülich Centre for Neutron Science, der die Neutronenuntersuchungen durchführte und ausgewertet hat. "Für eine zukünftige Anwendung ist unser Material auch deshalb spannend, weil es durchgängige Kanäle besitzt, die für das Zellwachstum förderlich sind."

Der Polymeranteil der neuen Biotinte besteht aus zwei sich abwechselnden Polymerbausteinen, von denen einer bei Erwärmung geliert und der andere wasserliebend ist. Als biologische Komponente mischten die Forscher so genannte "Fibroblasten" bei, noch nicht voll differenzierte Zellen, aus denen verschiedene Bindegewebszelltypen entstehen können. Das flüssige Polymer-Zell-Gemisch wird zunächst durch Erwärmung in einen Gelzustand gebracht und dann mit 3D-Druckern in die gewünschte Form gebracht. Diese Prozedur überstehen die Zellen hervorragend, zeigten die Forscher. Sie betonen, dass die genaue chemische Zusammensetzung ihres Thermogels leicht variiert werden kann und das System dadurch hervorragend sowohl für die weitere Grundlagenforschung als auch für Anwendungen geeignet ist.

Die Neutronenkleinwinkelstreuapparatur KWS-1 an der Jülicher Außenstelle am Heinz Meier-Leibnitz Zentrum in GarchingDie Neutronenkleinwinkelstreuapparatur KWS-1 an der Jülicher Außenstelle am Heinz Meier-Leibnitz Zentrum in Garching eignet sich hervorragend zur Untersuchung von Nanostrukturen.
Copyright: TU München / W. Schürman

Originalveröffentlichung: A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink;
Thomas Lorson, Sebastian Jaksch, Michael M. Lübtow, Tomasz Jüngst, Jürgen Groll, Tessa Lühmann, Robert Luxenhofer;
Biomacromolecules, 2017, 18 (7), pp 2161–2171,
DOI: 10.1021/acs.biomac.7b00481

Weitere Informationen:

Jüllich Centre for Neutron Science (JCNS)

Heinz Maier-Leibnitz Zentrum (MLZ)

Neutronenkleinwinkelstreuapparatur KWS-1

Universität Würzburg

Ansprechpartner:

Dr. Sebastian Jaksch
Forschungszentrum Jülich, Jülich Centre for Neutron Science
Tel: 089 289 11-673
E-Mail: s.jaksch@fz-juelich.de

Prof. Dr. Robert Luxenhofer
Universität Würzburg, Lehrstuhl für Chemische Technologie der Materialsynthese
Tel: 0931 31-89930
E-Mail: robert.luxenhofer@uni-wuerzburg.de

Pressekontakt:

Angela Wenzik, Wissenschaftsjournalistin
Forschungszentrum Jülich
Tel: 02461 61-6048
E-Mail: a.wenzik@fz-juelich.de

Logo

 

 

 

IHRE MEINUNG IST UNS WICHTIG!

 

Liebe Besucherin, lieber Besucher,

um unsere Website-Inhalte zukünftig noch besser an Ihre Bedürfnissen anzupassen und die Website damit noch attraktiver zu gestalten, möchten wir Ihnen heute ein paar kurze Fragen stellen.

Die Beantwortung der Fragen dauert ca. 10 Minuten.

Jetzt teilnehmen Nicht teilnehmen

Vielen Dank für Ihre Unterstützung!

 

Haben Sie im Moment keine Zeit oder haben Sie bereits an unserer Online-Befragung teilgenommen, dann können Sie das Fenster "hier" einfach schließen.

Wenden Sie sich bei Fragen rund um die Befragung gerne an:webumfrage@fz-juelich.de.

 

Ihr Team des Forschungszentrums Jülich

 

Hinweis: Zur anonymen Auswertung Ihrer Daten hat das Forschungszentrum Jülich das Markforschungsinstitut SKOPOS mit der Durchführung und Auswertung der Befragung beauftragt. SKOPOS handelt in übereinstimmung mit den gesetzlichen Bestimmungen zum Datenschutz und den Richtlinien des ADM (Arbeitskreis Deutscher Markt- und Sozialforschungsinstitute e.V.) und der ESOMAR (Europäische Gesellschaft für Meinungs- und Marketingforschung). Ihre Daten werden nicht an Dritte weitergegeben.