Search

link to homepage

Navigation and service


Jülich Neutron Scientists Inaugurate Unique Device in the USA

European researchers obtain access to world’s strongest neutron source

[5. November 2009]

Jülich / Oak Ridge (USA), 5 November 2009 – A unique large-scale research device from Jülich went into operation in the USA yesterday. At the strongest neutron source in the world, the spallation source SNS in Oak Ridge, Tennessee, Forschungszentrum Jülich inaugurated a so-called neutron spin echo (NSE) spectrometer. The NSE spectrometer enables detailed observations to be made of the motion of proteins and polymers. It will thus help to develop improved plastics or to understand metabolic processes in cells.

"Neutron scattering gives us unique insights into matter and is absolutely indispensable as a scientific method both for basic and also application-oriented research in materials science, medicine and biology," said Prof. Sebastian M. Schmidt, member of the Board of Directors of Forschungszentrum Jülich. "With our branch office at the SNS we are making the world’s strongest pulsed spallation source accessible to German and European scientists." Forschungszentrum Jülich is the only research institution outside North America that has sole responsibility for operating its own instrument at SNS. "This is a visible sign that Jülich's long-standing expertise in the construction and operation of neutron instruments is recognized throughout the world," Schmidt added. The experience gained in the construction, operation and utilization of the NSE spectrometer will also be incorporated into the design and implementation of the European Spallation Source (ESS), for which concreteplanning work will begin in January.

Neutrons are the electrically neutral building blocks of atomic nuclei. They are generated in research reactors or spallation sources and in special devices, so-called "diffractometers" and "spectrometers", neutrons are guided onto the samples to be investigated. These neutron beams "bounce off" the atoms and molecules of the samples and in doing so they may change their direction and speed. The nature of this "scattering" provides information about the arrangement and motion of the atoms in the sample, which cannot be visualized by complementary methods such as X-rays or electron microscopes. Jülich scientists use neutrons to investigate, for example, magnetic materials for information technology or so-called soft matter, which includes industrially important plastics as well as proteins of interest to medicine.

"This is the first time that an instrument of this type has been constructed at a neutron source such as SNS. The Jülich neutron spin echo spectrometer has the highest resolution in the world. We have developed innovative technologies especially for this purpose, such as superconducting coils with extremely homogeneous magnetic fields," said Prof. Dieter Richter from Forschungszentrum Jülich. Forschungszentrum Jülich is focusing its expertise in neutron research at the Jülich Centre for Neutron Science (JCNS) and maintains branch offices at Germany's strongest neutron source, FRM II, at Garching near Munich, as well as at the very high flux reactor in Grenoble, France, and now at the world’s strongest neutron source, SNS at Oak Ridge, USA. Richter continued: "With the NSE spectrometer at SNS we will be able to observe the slow movements inside proteins that determine their function. Furthermore, we will be able to investigate the molecular redistributions inpolymers which define their mechanical properties and their processibility."

Funding for the device costing roughly ¤ 15 million – designed and constructed by Jülich scientists – was provided by the German Federal Ministry of Education and Research and the Ministry of Innovation, Science, Research and Technology of the federal state of North Rhine-Westphalia. Yesterday, the device was officially inaugurated at the SNS as part of an international scientific workshop. The guests also included Dr. Beatrix Vierkorn-Rudolph, head of the Subsection for Large Facilities, Energy and Basic Research of the German Federal Ministry of Education and Research, and Dr. Steven Koonin, Under Secretary for Science of the US Department of Energy.

Links:


738_PREV_2009-11-05_OakRidgeEinweihung_Bild1_jpg

Inauguration of the Jülich NSE spectrometer at Oak Ridge, USA. From left to right: Dr. Ian S. Anderson, head of SNS, Dr. Jeremy Smith, scientist and future user of the Jülich spectrometer, Prof. Sebastian M. Schmidt, member of the Board of Directors of Forschungszentrum Jülich, Dr. Beatrix Vierkorn-Rudolph, head of the Subsection for Large Facilities, Energy and Basic Research of the German Federal Ministry of Education and Research, Prof. Dieter Richter, institute director at Forschungszentrum Jülich, Dr. Jost Liebich, personal assistant to the Board of Directors, Forschungszentrum Jülich, Christian Jörgens, head of the science and technology department at the German Embassy in Washington. Photo: Oak Ridge National Laboratory


738_PREV_2009-11-05_OakRidgeEinweihung_Bild2_jpg

With the Jülich neutron spin echo spectrometer it is possible to measure minimal velocity changes of neutrons hitting the sample. Photo: Oak Ridge National Laboratory


738_PREV_2009-11-05_OakRidgeEinweihung_Bild3_jpg

Handing over the keys at the beginning of April: Dr. Michael Ohl (right), head of the Jülich branch office at SNS in Oak Ridge, USA, is given the key to the beam shutter. This marks the start of a commissioning and test phase lasting several months. Photo: Oak Ridge National Laboratory


738_PREV_oakridge2009-P03406_jpg

Inauguration of the Jülich NSE spectrometer at Oak Ridge, USA. From left to right: Dr. Ian S. Anderson, Head of SNS, Christian Jörgens, Minister-Counsellor, Science and Technology, Embassy of the Federal Republic of Germany in Washington, Dr. Beatrix Vierkorn-Rudolph, head of the Subsection for Large Facilities, Energy and Basic Research of the German Federal Ministry of Education and Research, Prof. Sebastian M. Schmidt, Member of the Board of Directors of Forschungszentrum Jülich, Dr. Jost Liebich, personal assistant to the Board of Directors of Forschungszentrum Jülich, and representing the Jülich team at the NSE spectrometer: Dipl.-Ing. Tadeusz Kozielewski, head engineer at NSE, Dipl.-Ing. Christoph Tiemann, Jülich Central Technology Division, Dr. Michael Ohl, NSE project leader, and Dipl.-Ing. Guido Vehres, Institute of Solid State Research (Neutron Scattering). Photo: Oak Ridge National Laboratory


Press contact

Angela Wenzik
phone: +49 2461 61-6048
email: a.wenzik@fz-juelich.de

Kosta Schinarakis
phone: +49 2461 61-4771
email: k.schinarakis@fz-juelich.de


Servicemeu

Homepage