link to homepage

Navigation and service


Ultra-fast domain wall dynamics

Mathias Kläui, Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany

14 Dec 2012 11:00


In our information-everywhere society IT is a major player for energy consumption and novel spintronic devices can play a role in the quest for GreenIT. Reducing power consumption of mobile devices by replacing volatile memory by fast non-volatile spintronic memory could also improve speed and a one-memory-fits-all approach drastically simplifies the microelectronic architecture design.

The best-known memory device is the magnetic hard drive and here conventional magnetic fields are used to excite spin dynamics and manipulate magnetization as necessary for switching of magnetic bits. While this approach is now reasonably well understood and widely employed, it is an energy-hungry process leading to large power dissipation. Furthermore it entails limitations for the speed of magnetic switching as intrinsically the spin dynamics is limited by the precession frequency corresponding to the magnetic field.

Novel low power storage-class memory devices have been proposed, where switching by alternative means, such as spin-polarized currents is used. We study the rich physics of the interaction between spin currents, photons and the magnetization, and we have used spin-polarized charge carriers and photons to excite spin dynamics and manipulate the magnetization on ultrafast timescales. We are probing the magnetization dynamics to gauge the ultimate speed limits of spin angular momentum transfer that governs device switching speeds.


Prof. Dr. Rafal Dunin-Borkowski
Phone: +49 2461 61-9297
Fax: +49 2461 61-6444