link to homepage

Institute for Advanced Simulations (IAS)

Navigation and service

Seminar by Prof. Michele Cascella

University of Oslo (Norwey)

27 Apr 2018 13:30
27 Apr 2018 14:30
Lecture room 2009, Jülich GRS building (16.15)

I will present a new model of peptide chains based on the hybrid particle field approach [1]. The intramolecular potential is built on a two-bead coarse grain mapping for each amino acid. A combined potential for the bending and the torsional degrees of freedom ensures the stabilisation of secondary structure elements in the conformational space of the polypeptide. The electrostatic dipoles associated with the peptide bonds of the main chain are reconstructed by a topological procedure following previous works [2-3]. The intermolecular interactions comprising both the solute and the explicit solvent are treated by a density functional-based mean-field potential.
Molecular dynamics simulations on a series of test systems show how the model is able to capture all the main features of polypeptides. In particular, homopolymers of different lengths yield a complex folding phase diagram, covering from the collapsed to swollen state. Moreover, simulations on models of a four-helix bundle and of an alpha+beta peptide evidence how the collapse of the hydrophobic core drives the appearance of both folded motifs and the stabilization of tertiary or quaternary assemblies. Finally, the polypeptide model is able to structurally respond to the environmental changes caused by the presence of a lipid bilayer.

[1] S. L. Bore, G. Milano, and M. Cascella J. Chem. Theory Comput 2018, 14, 1120-1130.
[2] M. Cascella et al. J. Chem. Theory Comput. 2008, 4, 1378-1385.
[3] D. Alemani et al. J. Chem. Theory Comput. 2010, 6, 315-324.









Dear visitor,

To make our website suit your needs even more and to give it a more appealing design, we would like you to answer a few short questions.

Answering these questions will take approx. 10 min.

Start now Close window

Thank you for your support!


In case you have already taken part in our survey or in case you have no time to take part now, you can simply close the window by clicking "close".

If you have any questions on the survey, please do not hesitate to contact:


Your Team at Forschungszentrum Jülich


Note: Forschungszentrum Jülich works with the market research institute SKOPOS to anonymously conduct and analyze the survey. SKOPOS complies with the statutory requirements on data protection as well as with the regulations of ADM (Arbeitskreis Deutscher Markt- und Sozialforschungsinstitute e.V.) and ESOMAR (Europäische Gesellschaft für Meinungs- und Marketingforschung). Your data will not be forwarded to third parties.