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Overview

Part 1: Introduction
Part 2: Implementation and Evaluation of Integrators
Part 3: Fast Multipole Method
Part 4: Conclusion and Outlook
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Molecular Dynamics

Molecular dynamics is a form of computer simulation in which
atoms and molecules are allowed to interact for a given
period of time by approximations of known physics.
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Molecular Dynamics

1000 randomly distributed particles

random speeds

random charges

Simulation time: t n timesteps: dt · n = t
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Molecular Dynamics Simulation Loop
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Evaluation Criteria

A suitable integrator for N − body problems must meet the
following requirements:

Accuracy
Stability
Conservativity
Reversibility
Effectiveness
Symplecticity
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Classification of Integrators

First order:
Euler method, Backward Euler, Semi-implicit Euler
Second order:
Leapfrog integration, Verlet integration (position/velocity),
Crank-Nicolson method, Beeman’s algorithm, Midpoint
method, Heun’s method
Higher order:
Runge-Kutta methods, Linear multistep method
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Euler Integration

The most basic kind of explicit method

y ′(t) = f (t , y(t)) y(t0) = y0

One step of the Euler method from tn to tn+1 = tn + h is:

yn+1 = yn + h · f (tn, yn)
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Leapfrog Integration

A simple method for dynamic systems
The equations for leapfrog integration can be written:

yi+1 = yi + y ′i+1/2 · h
y ′i+1/2 = y ′i−1/2 + y ′′i · h

The equations can be manipulated into a form which
writes velocity at integer steps as:

yi+1 = yi + y ′i · h + y ′′i
h2

2

y ′i+1 = y ′i +
y ′′

i +y ′′
i+1

2 h
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Runge-Kutta Integration

The n-th order explicit Runge-Kutta scheme to advance a
set of differential equations y ′(t) = f (t , y(t)) over a step h
is:

y(h) = y0 +
n∑

j=1

wjkj

kj = h · f (ti , y0 +

j−1∑
i=1

βjiki )

αj =

j−1∑
i=1

βji

n∑
j=1

wj = 1
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Low-Storage Runge-Kutta

Second Order
qj = ajqj−1 + h · f (tj−1, yj−1)
yj = yj−1 + bjqj

Coefficients (n = 2)

b1 = β21 = α2 a1 = 0
b2 = w2 = 1

2α
−1
2 a2 = w1−b1

w2

Error Estimation
ej = (yj − yj−1)− bjqj
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Low-Storage Runge-Kutta
Discussion

α2 w1 w2 roundoff error truncation error remarks

( 1
2 )1/2 1− ( 1

2 )1/2 ( 1
2 )1/2 0.414 0.374 least roundoff error

2/3 1/4 3/4 0.417 0.333 least truncation error
1/2 0 1 n/a 0.500 classic 2nd order

[Journal of Computational Physics 35, 48-56 (1980)]
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Leapfrog Integration
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Coulomb Problem

Computational complexity of O(N2)

E = 1
2

N∑
i=1

N∑
j=1

qiqj

rij
(i 6= j)

F (rj ) = qj

N∑
i=1

qi

r3
ij

rij (i 6= j)
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Particle Pairwise Interactions

Direct Interaction O(N2)complexity
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How to Reduce Complexity?
Reducing the number of interactions

Grouped target and source particles

1 pseudo-particle - pseudo-particle interaction
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Sneak Peak: FMM

FMM Interaction Particle groups
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Multipole and Taylor-like Expansions

Multipole
expansion

ΦO(P) =
∞∑

l=0

l∑
m=−l

ωlm(q,a)
1

r l+1
˜̃P lm(cosθ)eimφ

=
∞∑

l=0

l∑
m=−l

ωlm(q,a)Mlm(r)
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Multipole and Taylor-like Expansions

ΦI(P) =
∞∑

l=0

l∑
m=−l

µlm(q, r)al P̃lm(cosα)e−imβ

=
∞∑

l=0

l∑
m=−l

µlm(q, r)Olm(a)

Taylor-like
expansion
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Expanding Particles into Multipoles

Setup Multipole Moments

Particles inside each box are expanded aroud the box center

ωlm =

Nbox∑
j=1

qjal
jPlm(cosαj )e−imφj
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Multipole2Multipole Operator (M2M)

Vertical Operator

Shifts multipole expansions from level L to L− 1 up the tree

ωlm(a + b) =
l∑

j=0

j∑
k=−j

Ol−j,m−k (b)ωjk (a)
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Multipole2Local Operator (M2L)

Horizontal Operator

Transforms remote multipole expansions into local Taylor-like
expansions on level L

µlm(Ri − a) =
∞∑
j=0

j∑
k=−j

Ml+j,m+k (Ri )ωjk (a)
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Local2Local Operator (L2L)

Vertical Operator

Shifts taylor-like expansions from level L− 1 to L down the tree

µlm(r − b) =

p∑
j=l

j∑
k=−j

Oj−l,k−m(b)µjk (r)
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Interaction Sets
Near Field (NF ) and Far Field (FF )

Interactions for box A on level L
The red box contains a multipole expansion of box A
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Interaction Sets
Near Field (NF ) and Far Field (FF )

Interactions for box A on level L
Near field interactions are computed only on the lowest level
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Interaction Sets
Near Field (NF ) and Far Field (FF )

Interactions for box A on level L
Far field interactions are computed via multipoles

September 27, 2010 Valentina Banciu Advisers: Oliver Bücker Ivo Kabadshow Slide 29



FMM Pass 1
Form and shift Multipole expansions

Sort particles into lowest level boxes
Form multipole expansion on the lowest level
Shift multipole expansion up the tree
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FMM Pass 2
Transform distant multipole expansions

For each level:
Find parent box
Choose ws-neighbour parent boxes
Find corresponding child boxes
Find ws-separated child boxes
Use M2L operator to perform interaction
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FMM Pass 3
Shift Taylor-like expansions

Find child boxes
Shift Taylor-like coefficients down the tree, using L2L
operator
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FMM Pass 4
Calculate far field energy, forces and potentials

All interactions are now present at the lowest level
Compute far field interactions on the lowest level
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FMM Pass 5
Calculate near field energy, forces and potentials

Particles in the near field are limited M = const
Compute near field interactions on the lowest level
Add up far field and near field interactions
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Total Coulomb Energy

Far Field Part

EFF =
∑
ibox

L∑
l=0

l∑
m=−l

ωlmµlm

Near Field Part: Inbox

ENF1 =
∑
ibox

Nibox−1∑
i=1

Nibox∑
j=i+1

qiqj

rij

Near Field Part: Nearest Neighbours

ENF2 =
∑
ibox

∑
jbox

Nibox∑
i=1

Njbox∑
j=1

qiqj

rij

Total Coulomb Energy

Ec
tot = EFF + ENF1 + ENF2
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FMM Parameter I
Number of Poles P

Infinite Expansion

1
d = 1

|r−a| =
∞∑

l=0

l∑
m=−l

...

Finite Expansion

1
d = 1

|r−a| ≈
p∑

l=0

l∑
m=−l

...
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FMM Parameter II
Depth d of the FMM Tree

Tree depth d , Level L = d + 1

Simulation box divided into 8d subboxes
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FMM Parameter II
Depth d of the FMM Tree

Tree depth d , Level L = d + 1

Simulation box divided into 8d subboxes
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Discussion 1

[J. Chem. Phys. 101 (8), 15 October 1994]

Dependance on particle number of errors in potential per
particle calculated by the FMM
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Discussion 2

[J. Chem. Phys. 101 (8), 15 October 1994]

Timings showing the way in which the computational
complexity of the FMM depends on the numbers of poles, p
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FMM Parameter III
Separation criterion ws

Separation Criterion ws

Near field contains (2 · ws + 1)3 boxes
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FMM Parameter III
Separation criterion ws
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FMM Parameter III
Separation criterion ws

Separation Criterion ws

Near field contains (2 · ws + 1)3 boxes
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Discussion 3

[J. Chem. Phys. 101 (8), 15 October 1994]

The error in the potential per particle as a function of the
level, p
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Conclusion

We have implemented and evaluated different order
integrators
We have implemented a Low-Storage Runge-Kutta
scheme which only requires half storage
We have discussed the FMM operators
We have shown the FMM passes
We have analysed the dependancy between FMM
parameters
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Thank you for your attention
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Valentina Banciu
Faculty of Physics, University Of Bucharest
405 Atomistilor Str., Magurele, Romania
vbanciu@live.com

Some images used in this talk are intelectual property of other
authors and may not be distributed or reused without their explicit
approval.
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