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Motivation
for simulations

In astrophysics the usual time-scales are much bigger
than in other fields of physics

Formation of a star ≈ 10 mio years
Revolution of the sun around the center of the Milky Way ≈
200 mio years
dynamical timescale of superclusters ≈ few billion years

Objects of interest (stars, starclusters, galaxies) are very
big
that makes laboratory experiments difficult
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Motivation
for simulations

Apart from observation, simulations are the only way to test
theories
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Motivation
for neighbour search

Often huge amounts of
self-gravitating matter are
simulated

e.g. starclusters can be simulated
as n bodies (only attracting
forces)
gravitation only first approximation
(radiation, magnetism)
repulsing force from
pressure-gradient for gas
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Motivation
for neighbour search

[Carina Nebula from hubblesite.org]

Often huge amounts of
self-gravitating matter are
simulated
e.g. starclusters can be simulated
as n bodies (only attracting
forces)
gravitation only first approximation
(radiation, magnetism)
repulsing force from
pressure-gradient for gas
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Motivation
for neighbour search

To simulate self-gravitating gas:
⇒ simulate gravitational force as usual

⇒ add thermodynamic forces from fluid simulation
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Motivation
for neighbour search

[Kelager, M., 2006]

fluid-codes based on a fixed
mesh would waste resources
computing empty regions

often matter is highly clustered
within the simulation box
⇒ use Smoothed Particle
Hydrodynamics (SPH)
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Motivation
for neighbour search

mesh-based fluid codes compute thermodynamic
properties (temperature, density, pressure) locally using
input from neighboring cells

In SPH, fluid properties are computed from averages over
neighboring particles
need to know the next neighbours of a particle
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The n-body problem

n bodies interacting with
each other ( n(n − 1)
interactions )

→ runtime O(n2)

bad computation time for
big systems
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The n-body problem

3 particles, 3 forces

n bodies interacting with
each other ( n(n − 1)
interactions )

→ runtime O(n2)

bad computation time for
big systems
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The n-body problem

5 particles, 20 forces

n bodies interacting with
each other ( n(n − 1)
interactions )

→ runtime O(n2)

bad computation time for
big systems
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The n-body problem

8 particles, 56 forces

n bodies interacting with
each other ( n(n − 1)
interactions )

→ runtime O(n2)

bad computation time for
big systems
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A better solution

a

b c

d e f g

h i j k l m n o
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Using a tree
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Direct summation vs. tree-code

direct: 19 tree: 13
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Parallelization of tree-codes

28.09.2010 Andreas Breslau Slide 15



Parallelization of tree-codes

28.09.2010 Andreas Breslau Slide 15



Parallelization of tree-codes

28.09.2010 Andreas Breslau Slide 15



Outline

1 Motivation
2 Short introduction to tree-codes
3 The tree-based neighbour search
4 Validation
5 Benchmarking
6 Summary and Outlook

28.09.2010 Andreas Breslau Slide 16



The search algorithm

the search algorithm was integrated in the tree-code
PEPC written by Dr. Paul Gibbon in 2003

PEPC is a tree-code following the tradition started in 1986
by Barnes and Hut
It uses a Hashed Oct-tree as described by Warren and
Salmon (1993)
the search algorithm also follows an idea of Warren and
Salmon
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The search algorithm

whi le there are p a r t i c l e s w i th less than N_nn
found next neighbours

search_ne ighbours_o f_par t i c l e_ i ( r _ i )

i f found next neighbours < N_nn
increase r _ i f o r t h i s p a r t i c l e
put p a r t i c l e on l i s t to search

neighbours again
end

end
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The search algorithm

search_ne ighbours_o f_par t i c l e_ i ( r _ i ) {

walk through t ree from roo t to leaves
1) p a r t i c l e s w i t h i n r _ i put on next

neighbour l i s t
2) ignore nodes / p a r t i c l e s ou ts ide r _ i
3) reso lve nodes wi th over lap wi th r _ i

end
}
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Tree based neighbour search
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Validation

check found neighbours manually with plots

write validation tool
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Validation
with plots
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Validation
with validation tool

PEPC

IDs, coordinates,
momentum, ...

coordinates of next
neighbours perl

script

28.09.2010 Andreas Breslau Slide 24



Validation

manual checking plots proofed that the algorithm works
correct for 2D
the validation tool proofed that it works correct for 3D
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An estimation
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An estimation
for the network and memory usage

N, Nnn, p

ρ =
N
V
, Nnn =

4
3
πr3

searchρ,
V
p

=
4
3
πR3

domain

Nfetch =
4
3
πρ
[
(R + r)3

− R3
]

=
3

√
27

NnnN2

p2
+ 27

N2
nnN
p

+ N3
nn

⇒ O(Nnn),O(N2/3),O(p−2/3)
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An estimation
for the network and memory usage

Np, Nnn, p

Nfetch =
3
√

27NnnN2
p + 27N2

nnNp + N3
nn

⇒ O(Nnn),O(N2/3
p )
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An estimation
for the network and memory usage

Nnn Np Nfetch Nfetch[%]

50 10000 6000 61
50 50000 17000 33
50 200000 40000 20
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Juropa

[http://www.fz-juelich.de/jsc/juropa/]

2208 compute nodes
Compute node: 2 Intel Xeon quad-core processors
at 2.93 GHz
Total cores: 17664

Overall peak performance: 207 Teraflops
Main memory: 24 GB per node / 51.75 TB total
Networks: Infiniband Fat Tree
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Weak scaling on Juropa
50 next neighbours, 150000 particles per process, relative
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Nnn scaling on Juropa
10 nodes, 50000 particles per process, absolute
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Strong scaling on Juropa
50 next neighbours, 12 mio particles, absolute, logscale
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N scaling on Juropa
50 next neighbours, 30 nodes, relative
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Summary

Parallel tree-based neighbour-search successfully
implemented
Validation tool implemented (further versions can easily be
tested)
Weak and strong scaling at least as good as gravitational
force computation
Overhead currently ≈ 60% total iteration time, but ...
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Optimization needed

[Xprofiler screen-shot]
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Outlook

find out, what uses so much time

domain decomposition balanced with nnsearch work load
compute nn lists only every t timesteps
neighbour search for symmetric SPH
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Thank you for your attention.

Any Questions?
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Appendix

More scaling plots
About the speaker
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Weak scaling on Juropa
50 next neighbours, 150000 particles per process, absolute
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Weak scaling on Juropa
50 next neighbours, 150000 particles per process, absolute, logscale
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nn scaling on Juropa
10 nodes, 50000 particles per process, relative
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nn scaling on Juropa
10 nodes, 50000 particles per process, absolute, logscale
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Strong scaling on Juropa
50 next neighbours, 12 mio particles, relative
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Strong scaling on Juropa
50 next neighbours, 12 mio particles, absolute
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N scaling on Juropa
50 next neighbours, 30 nodes, absolute
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N scaling on Juropa
50 next neighbours, 30 nodes, absolute, logscale
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