# Optimized parallel tempering Monte Carlo

September 27, 2010 | Marco Müller



### **Overview**

#### 1 Introduction

- The Ising Model
- Fundamental Quantities in Statistical Physics

### 2 Monte Carlo Methods

- Simple sampling
- Importance sampling
- Metropolis-Algorithm
- Parallel Tempering

### 3 Results



### **Motivation**

- (classical) Thermodynamics is well understood, lacks details
  - Out-of-equilibrium physics, structure formation?
  - Phase transitions?
  - Systems with  $\approx 10^{23}$  particles
  - Known dynamics, but impractical to trace all particles
  - Statistical Mechanics: approach by statistical methods



# **Ising Model**

$$\mathcal{H} = -J \sum_{\langle i,k 
angle} \delta_{s_i s_k} \qquad s_i \in \{0,1\}$$

- Many elementary magnets interacting with a coupling constant J
- Every magnet can be "up" or "down"
- Solved in 1d by [Ising, 1925]
- 2d-regular lattices:
  - Exact solution by [Onsager, 1944]
  - Exact calculation of the density of states *finite and periodic* regular lattices by [Beale, 1996]





### Phase transition

 Continuous phase transition at Curie-temperature T<sub>c</sub>, classification by critical exponents



- Ferromagnetic: *m* is preserved after an external field was removed
- Paramagnetic: *m* = 0, an external field is reinforced



### **Fundamental quantities**

 Probability of finding a microstate with energy *E<sub>i</sub>* for a system in a heat bath with temperature *T*:

$$\mathcal{P}^{B}(E_{i}) \propto e^{-\frac{E_{i}}{k_{B}T}} \qquad \beta := \frac{1}{k_{B}T}$$

(canonical) partition function:

$$\mathcal{Z} = \sum_{\{ ext{all states}\}} e^{-eta \mathcal{E}_i} = \sum_i \Omega(\mathcal{E}_i) e^{-eta \mathcal{E}_i}$$

 $\Omega(E_i)$ ... density of states with energy  $E_i$ 



### **Exact enumeration**

$$\mathcal{Z} = \sum_{\{\text{all states}\}} e^{-\beta E_i}$$

- Estimate for the 2d Ising magnet:
  - lattice size: $L \times L = 10 \times 10$ number of states: $2^{L \times L} \approx 10^{30}$ fast computer: $10^{-9} s/spin-flip \cdot 100 spins$  $10^{-7} s/configuration$

 $pprox 10^{23}s pprox 10^{15}y \gg 10^{10}y$  age of the universe

Better method?



# Simple Sampling

while not enough statistics do for every spin in the system do draw a random number  $r \in [0, 1)$ ; if r < 0.5 then set spin 0 else set spin 1 end measure energy;

#### end

• 
$$\mathcal{P}^{B}(E_{i}) = \frac{1}{\mathcal{Z}} e^{-\beta E_{i}}$$

• Samples the disordered states  $\beta = 0$   $(T \rightarrow \infty)$ 



# Simple Sampling (10<sup>11</sup> samples)





## **Simple Sampling**

while not enough statistics do for every spin in the system do draw a random number  $r \in [0, 1)$ ; if *r*<0.5 then set spin 0 else set spin 1 end end measure energy; end



# Simple Sampling

#### while true do

for every spin in the system do
 draw a random number r∈ [0, 1);
 if r<0.5 then
 set spin 0
 else
 set spin 1
 end
end
measure energy;
...</pre>

#### end



### Importance Sampling

- Need for suitable algorithm to draw configurations according to their Boltzmann weight P<sup>B</sup>
- Set up a Markov chain

$$\dots \xrightarrow{p_{ij}} \{s_j\} \xrightarrow{p_{jk}} \{s_k\} \xrightarrow{p_{kl}} \dots$$

 Allows to calculate expectation values as mean over a finite chain of length N

$$\langle \mathcal{O} 
angle = \sum_{\{\mathbf{s}_i\}} \mathcal{O}(\{\mathbf{s}_i\}) \mathcal{P}^B pprox rac{1}{N} \sum_{j=1}^N \mathcal{O}(\{\mathbf{s}_i\}_j)$$



### **Metropolis Algorithm**

- Update scheme for every system that allows the calculation of the energy of a state (discrete or continuous, short-range and long-range interactions, (off-)lattice, ...)
- Proposed by [Metropolis et al., 1953]

$$p_{ij} = egin{cases} 1 & E_j < E_i \ e^{-eta(E_j - E_i)} & E_j \ge E_i \end{cases}$$



# Metropolis Algorithm for spin models

initialize (system, initial state, geometry...); while not having enough measurements do choose a spin; choose a new value for that spin; draw a random number  $r \in (0, 1]$ ; if  $r < p_{ij}^{metr}$  then accept new state;

#### else

reject new state;

#### end

if system in equilibrium;

#### then

measure observables;

#### end

end





- Problem: Application of Metropolis method extremely inefficient for systems exhibiting a particularly complex transition behaviour (e.g. spin glasses, proteins,...)
- Improvements: cluster updates
- Generalized methods:
  - multicanonical sampling
    - [Berg and Neuhaus, 1991]
  - Wang-Landau method
    - [Wang and Landau, 2001]
  - parallel tempering
    - [Swendsen and Wang, 1986], [Geyer, 1991], [Hukushima and Nemoto, 1996]



Basic idea: after local updates, update full configuration



Basic idea: after local updates, update full configuration



Metropolis criterion: valid updates with probability

$$p_{ij}^{pt} = \min(1, e^{\Delta}) \qquad \Delta = (\beta_j - \beta_i) [E_j - E_i]$$



Basic idea: after local updates, update full configuration



Metropolis criterion: valid updates with probability

$$p_{ij}^{pt} = \min(1, e^{\Delta}) \qquad \Delta = (\beta_j - \beta_i) [E_j - E_i]$$



### **Parallel Implementation**

- Exchange inverse temperatures instead of configurations
- Master-slave vs. exchange by each process
- Update attempts only on (β-)adjacent systems





# **First Results**

Verification by Jackknifing time series



Specific heat near the critical point of the 2d-Potts-Model, simulated using the Metropolis algorithm (left) and parallel tempering (right) with the following parameters: q = 2, grid dimensions =  $32 \times 32$ , number of energies =  $2^{17}$ , number of jackknife blocks =  $2^9$ 



# **First Results**

Verification with histogram-reweighting



Single histograms for 32 inverse temperatures (left) and density of states after Ferrenberg-Swendsen reweighting (right); parameters: q = 2, grid dimensions =  $32 \times 32$ , number of energies =  $2^{20}$ , number of jackknife blocks =  $2^{12}$ 



# **Optimizations** – $\beta$ **-Distribution**

- Choosing the inverse temperatures:
  - with constant spacing
  - with constant overlap of the histograms



Single histograms for 32 inverse temperatures (left) and density of states after Ferrenberg-Swendsen reweighting (right); parameters: q = 2, grid dimensions =  $32 \times 32$ , number of energies =  $2^{20}$ , number of jackknife blocks =  $2^{12}$ 



# **Optimizations** – $\beta$ **-Distribution**





# **Optimizations** – $\beta$ **-Distribution**





### Achievements

 Development of parallel tempering Monte Carlo simulation in C++ using MPI

• 
$$\mathcal{H} = -\sum_{\langle i,j \rangle} J_{ij} \delta_{s_i s_j}$$
  $s_i \in \{0 \dots q\}$ 

- Hypercubic lattice with arbitrary dimensions
- configuration file for simulation parameters
- Surrounding Python scripts for data analysis, histogram reweighting, plotting



### **Future Plans**





Multiplexing



Multithreading on shared memory (GPGPU)



# **Further reading I**



#### Beale, P. D. (1996).

Exact distribution of energies in the two-dimensional ising model. *Phys. Rev. Lett.*, 76(1):78–81.



#### Berg, B. A. and Neuhaus, T. (1991).

Multicanonical algorithms for first order phase transitions. *Physics Letters B*, 267(2):249 – 253.



#### Geyer, C. J. (1991).

Markov chain monte carlo maximum likelihood. Computing Science and Statistics, Proceedings of the 23rd Symposium on the Interface, pages 156–163.



#### Hukushima, K. and Nemoto, K. (1996).

Exchange monte carlo method and application to spin glass simulations. *Journal of the Physical Society of Japan*, 65(6):1604–1608.



#### Ising, E. (1925).

Beitrag zur theorie des ferromagnetismus. *Zeitschrift fur Physik*, 31:253–258.



Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. *The Journal of Chemical Physics*, 21(6):1087–1092.



# **Further reading II**



#### Onsager, L. (1944).

Crystal statistics. i. a two-dimensional model with an order-disorder transition. *Phys. Rev.*, 65(3-4):117–149.



#### Swendsen, R. H. and Wang, J.-S. (1986).

Replica monte carlo simulation of spin-glasses. *Phys. Rev. Lett.*, 57(21):2607–2609.



#### Wang, F. and Landau, D. P. (2001).

Efficient, multiple-range random walk algorithm to calculate the density of states. *Phys. Rev. Lett.*, 86(10):2050–2053.



Marco Müller Email: mueller@itp.uni-leipzig.de University of Leipzig Institute for Theoretical Physics Research group Computational Quantum Field Theory (CQT) Vor dem Hospitaltore 1 D-04103 Leipzig Tel:: +49-341-97/32420

This presentation was created for the "Guest Student Programme 2010" at the Jülich Supercomputing Centre.