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Motivation

(classical) Thermodynamics is well
understood, lacks details

Out-of-equilibrium physics, structure
formation?
Phase transitions?
Systems with ≈ 1023 particles
Known dynamics, but impractical to trace
all particles

Statistical Mechanics: approach by statistical methods
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Ising Model

H = −J
∑
〈i,k〉

δsi sk si ∈ {0, 1}

Many elementary magnets interacting with
a coupling constant J

Every magnet can be “up” or “down”

Solved in 1d by [Ising, 1925]
2d-regular lattices:

Exact solution by [Onsager, 1944]
Exact calculation of the density of states
finite and periodic regular lattices by
[Beale, 1996]
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Phase transition

Continuous phase transition at Curie-temperature Tc ,
classification by critical exponents
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Fundamental quantities

Probability of finding a microstate with
energy Ei for a system in a heat bath with
temperature T :

PB(Ei) ∝ e−
Ei

kBT β :=
1

kBT

(canonical) partition function:

Z =
∑

{all states}

e−βEi =
∑

i

Ω(Ei)e−βEi

Ω(Ei) . . . density of states with energyEi
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Exact enumeration

Z =
∑

{all states}

e−βEi

Estimate for the 2d Ising magnet:
lattice size: L× L = 10× 10
number of states: 2L×L ≈ 1030

fast computer: 10−9s/spin-flip · 100 spins
10−7s/configuration

≈ 1023s ≈ 1015y � 1010y age of the universe

Better method?
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Simple Sampling

while not enough statistics do
for every spin in the system do

draw a random number r ∈ [0, 1);
if r < 0.5 then

set spin 0
else

set spin 1
end

end
measure energy;

end

PB(Ei) = 1
Z e−βEi

Samples the disordered states β = 0 (T →∞)
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Simple Sampling (1011 samples)
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Simple Sampling

while true do
for every spin in the system do

draw a random number r∈ [0, 1);
if r<0.5 then

set spin 0
else

set spin 1
end

end
measure energy;

end
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Importance Sampling

Need for suitable algorithm to draw configurations according
to their Boltzmann weight PB

Set up a Markov chain

. . .
pij−→ {sj}

pjk−→ {sk}
pkl−→ . . .

Allows to calculate expectation values as mean over a finite
chain of length N

〈O〉 =
∑
{si}
O({si})PB ≈ 1

N

N∑
j=1

O({si}j)
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Metropolis Algorithm

Update scheme for every system that allows the calculation of
the energy of a state (discrete or continuous, short-range and
long-range interactions, (off-)lattice, . . . )

Proposed by [Metropolis et al., 1953]

pij =

{
1 Ej < Ei

e−β(Ej−Ei ) Ej ≥ Ei
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Metropolis Algorithm for spin models

initialize (system, initial state, geometry. . . );
while not having enough measurements do

choose a spin;
choose a new value for that spin;
draw a random number r ∈ (0, 1];
if r < pmetr

ij then
accept new state;

else
reject new state;

end
if system in equilibrium;
then

measure observables;
end

end

?
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Parallel Tempering

Problem: Application of Metropolis method extremely
inefficient for systems exhibiting a particularly complex
transition behaviour (e.g. spin glasses, proteins,. . . )

Improvements: cluster updates
Generalized methods:

multicanonical sampling
[Berg and Neuhaus, 1991]

Wang-Landau method
[Wang and Landau, 2001]

parallel tempering
[Swendsen and Wang, 1986], [Geyer, 1991],
[Hukushima and Nemoto, 1996]
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Parallel Tempering

Basic idea: after local updates, update full configuration

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9

ppt
ij

β3 β4

Metropolis criterion: valid updates with probability

ppt
ij = min(1, e∆) ∆ = (βj − βi) [Ej − Ei ]
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Parallel Implementation

Exchange inverse temperatures instead of configurations

Master-slave vs. exchange by each process

Update attempts only on (β-)adjacent systems
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First Results

Verification by Jackknifing time series
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Specific heat near the critical point of the 2d-Potts-Model, simulated using the Metropolis algorithm (left) and parallel
tempering (right) with the following parameters: q = 2, grid dimensions = 32× 32, number of energies = 217 , number
of jackknife blocks = 29
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First Results

Verification with histogram-reweighting
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Single histograms for 32 inverse temperatures (left) and density of states after Ferrenberg-Swendsen reweighting
(right); parameters: q = 2, grid dimensions = 32× 32, number of energies = 220 , number of jackknife blocks = 212
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Optimizations – β-Distribution

Choosing the inverse temperatures:
with constant spacing
with constant overlap of the histograms

−2.0 −1.8 −1.6 −1.4 −1.2 −1.0

e

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

P
β
(e

)

−2500 −2000 −1500 −1000 −500 0

E

0

100

200

300

400

500

600

700

800

lo
g
(Ω

(E
))

Beale
Parallel Tempering

Single histograms for 32 inverse temperatures (left) and density of states after Ferrenberg-Swendsen reweighting
(right); parameters: q = 2, grid dimensions = 32× 32, number of energies = 220 , number of jackknife blocks = 212
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Optimizations – β-Distribution
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Optimizations – β-Distribution
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Achievements

Development of parallel tempering Monte Carlo simulation in
C++ using MPI

H = −
∑
<i,j>

Jijδsi sj si ∈ {0 . . . q}

Hypercubic lattice with arbitrary dimensions

configuration file for simulation parameters

Surrounding Python scripts for data analysis, histogram
reweighting, plotting
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Future Plans

Refinement of the beta distribution
βmin βmax

Multiplexing
βmin βmax

Multithreading on shared memory (GPGPU)

September 27, 2010 Marco Müller 23 26



Further reading I

Beale, P. D. (1996).
Exact distribution of energies in the two-dimensional ising model.
Phys. Rev. Lett., 76(1):78–81.

Berg, B. A. and Neuhaus, T. (1991).
Multicanonical algorithms for first order phase transitions.
Physics Letters B, 267(2):249 – 253.

Geyer, C. J. (1991).
Markov chain monte carlo maximum likelihood.
Computing Science and Statistics, Proceedings of the 23rd Symposium on the Interface, pages 156–163.

Hukushima, K. and Nemoto, K. (1996).
Exchange monte carlo method and application to spin glass simulations.
Journal of the Physical Society of Japan, 65(6):1604–1608.

Ising, E. (1925).
Beitrag zur theorie des ferromagnetismus.
Zeitschrift fur Physik, 31:253–258.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
Equation of state calculations by fast computing machines.
The Journal of Chemical Physics, 21(6):1087–1092.

September 27, 2010 Marco Müller 24 26



Further reading II

Onsager, L. (1944).
Crystal statistics. i. a two-dimensional model with an order-disorder transition.
Phys. Rev., 65(3-4):117–149.

Swendsen, R. H. and Wang, J.-S. (1986).
Replica monte carlo simulation of spin-glasses.
Phys. Rev. Lett., 57(21):2607–2609.

Wang, F. and Landau, D. P. (2001).
Efficient, multiple-range random walk algorithm to calculate the density of states.
Phys. Rev. Lett., 86(10):2050–2053.

September 27, 2010 Marco Müller 25 26



Marco Müller
Email: mueller@itp.uni-leipzig.de
University of Leipzig
Institute for Theoretical Physics
Research group Computational Quantum Field Theory (CQT)
Vor dem Hospitaltore 1
D-04103 Leipzig
Tel.: +49-341-97/32420

This presentation was created for the ”Guest Student Programme 2010“ at the Jülich Supercomputing Centre.

September 27, 2010 Marco Müller 26 26


