link to homepage

Institute for Advanced Simulation (IAS)

Navigation and service

Simulation of Laser-Plasma Interactions

Modelling the interaction of laser or particle beams with fully ionized, hot, dense matter poses a considerable computational challenge owing to the extreme relativistic intensities created by the laser, interposed with highly contrasting material properties in the vicinity of the interaction. At JSC we are pursuing the use of three-dimensional mesh-free plasma simulation (PEPC) to investigate topical issues in high energy-density plasma physics from a fresh perspective, including collective heating and ‘whole-target’ transport of fast electrons, the origin and acceleration mechanisms of MeV protons, Gigagauss magnetic field generation and the effects of surface inhomogeneity on high harmonic generation.

The fully Lagrangian, collisional kinetic approach offered by this model presents a new paradigm in computational plasma physics, complementing the more conventional and proven technique of Particle-in-Cell (BOPS, PSC) simulation.
These methods are indispensable for gaining physical insight into absorption and transport phenomena in high intensity laser interactions, providing theoretical support for a number of important applications currently pursued worldwide, such as the Fast Ignitor Fusion concept, femtosecond X-ray sources, and compact ion accelerators.

Particle Acceleration


Transport Properties of Warm Dense Matter


Additional Information

Additional Information