Search

link to homepage

Institute for Advanced Simulation (IAS)

Navigation and service


Technology Readiness Level of Quantum Computing Technology (QTRL)

TThe QTRL scale is a metric for describing the maturity level of quantum computing technology. The scale consists of nine technology readiness levels (QTRLs), whereby QTRL1 labels the lowest level and QTRL9 the highest.

Quantum Technology Readiness Levels describing the maturity of Quantum Computing TechnologyQuantum Technology Readiness Levels describing the maturity of Quantum Computing Technology
Copyright:  Kristel Michielsen, Thomas Lippert – Forschungszentum Jülich. All rights reserved.

A quantum computing technology is at QTRL1 when the theoretical framework for quantum computing (annealing) is formulated. Theoretical studies of the basic properties of the quantum computing (annealing) devices move towards applied research and development. The technology reaches QTRL2 once the basic device principles have been studied and applications or technologically relevant algorithms are formulated. QTRL2 quantum computing technology is speculative, as there are little to no experimental results supporting the theoretical studies.

Fabricated imperfect physical qubits, the basic building blocks of quantum computing devices, are at QTRL3. Laboratory studies aim to validate theoretical predictions of qubit properties. Theoretical and laboratory studies are required to determine whether these basic elements of the quantum computing technology are ready to proceed further through the development process.

During QTRL4, multi-qubit systems are fabricated and classical devices for qubit manipulation are developed. Both components of the quantum computing technology are tested with one another. QTRL5 quantum computing technology comprises components integrated in a small quantum processor without error correction. Quantum computing devices labeled as QTRL5 must undergo rigorous testing including running of various algorithms for benchmarking. Components integrated in a small quantum processor with error correction are at QTRL6. Rigorous testing and running algorithms is repeated for the QTRL6 quantum computing technology.

QTRL7 quantum computing technology is a prototype quantum computer (annealer) solving small but user-relevant problems. The prototype is demonstrated in a user environment. A scalable version of a quantum computer (annealer) completed and qualified through test and demonstration is at QTRL8. Once quantum computers (annealers) exceed the computational power of classical computers for general (specific) problems the quantum computing technology can be labeled with QTRL9.


Servicemeu

Homepage

Logo

 

 

 

YOUR OPINION MATTERS!

 

Dear visitor,

To make our website suit your needs even more and to give it a more appealing design, we would like you to answer a few short questions.

Answering these questions will take approx. 10 min.

Start now Close window

Thank you for your support!

 

In case you have already taken part in our survey or in case you have no time to take part now, you can simply close the window by clicking "close".

If you have any questions on the survey, please do not hesitate to contact: webumfrage@fz-juelich.de.

 

Your Team at Forschungszentrum Jülich

 

Note: Forschungszentrum Jülich works with the market research institute SKOPOS to anonymously conduct and analyze the survey. SKOPOS complies with the statutory requirements on data protection as well as with the regulations of ADM (Arbeitskreis Deutscher Markt- und Sozialforschungsinstitute e.V.) and ESOMAR (Europäische Gesellschaft für Meinungs- und Marketingforschung). Your data will not be forwarded to third parties.