Search

link to homepage

Institute of Bio- and Geosciences

Navigation and service


Analyse of fields from the top with unmanned air vehicles (UAV's)

Available are a Zeppelin (Fieldship) and an Octocopter (Fieldcopter) for installation of different sensors


Field PlotField Plots can be analysed from the top

The 10 m sized “Fieldship” is a blimp, which acts as a carrier platform for various scientific devices. 24m³ of helium keep the airship floating and lead to a maximum payload of 5 kg. Huge batteries power two 1 kW brushless engines and deliver an endurance of more than 60 minutes. The airship was acquired in 2013 and since then had several test flights and is continuously improved including an autopilot to enable semi-autonomous operations.
With the Fieldship sensors can be flown over agricultural areas for long periods of time. The high payload, the smooth flight and low vibrations make the airship a great platform for scientific tools, complementing other small UAV platforms.

The airship is stored and operated at the Campus Klein-Altendorf next to Bonn.

Octocopter über FeldRemote controlled Fieldcopter over fields

The Fieldcopter is a multi-rotor platform, based on the Falcon-8 produced by AscTec. 8 propellers drive the Copter which is thanks to precise sensors capable of accurate maintaining of position and attitude. Thus the Fieldcopter is the perfect platform for the positioning of imaging sensors over agricultural experimental fields. In other words, the Fieldcopter is a flying tripod that places thermal- or RGB cameras over the field. By the vertical angle of view large experimental fields can be analyzed by a single image. The Fieldcopter can be equipped, dependent on the scientific task, with a RGB or Thermal camera. Additional a specially designed spectrometer can be carried into the air.

Publications:

von Bueren S.K., Burkart A., Hueni A., Rascher U., Tuohy M.P. & Yule I.J. (2015) Deploying four optical UAV-based sensors over grassland: challenges and limitations. Biogeosciences, 12, 163-175.

Burkart A., Aasen H., Alonso L., Menz G., Bareth G. & Rascher U. (2015) Angular dependency of hyperspectral measurements over wheat characterized by a novel UAV based goniometer. Remote Sensing, 7, 725-746.

Burkart A., Schickling A.; Pilar Cendrero Mateo M., Wrobel T.; Rossini M., Cogliati S., Julitta T. & Rascher, U. (2015) A method for uncertainty assessment of passive sun-induced chlorophyll fluorescence retrieval by using an infrared reference light. IEEE Sensors, doi 10.1109/JSEN.2015.2422894.


Servicemeu

Homepage