Suche

zur Hauptseite

Zelluläre Biophysik (ICS-4)
ICS Key Visual

Navigation und Service

Generation, propagation and transmission of cellular signals

Information processing in the central nervous system relies on the precise interplay of electrical and chemical signals. Action potential generation, propagation, and the initiating events causing transmitter release from the synaptic terminus are determined by the activity of a variety of ion channels. The transfer of information between neurons and target cells is achieved by chemical transmitter substances crossing the synaptic cleft. Neurotransmitter are accumulated in presynaptic vesicles whose fusion with the cell membrane results in neurotransmitter release [Ionenkanäle]. Binding of these substances to specific receptors embedded in the postsynaptic membrane can exert either electrical or biochemical signals by stimulation of ionotropic or metabotropic receptors, respectively. Activation of ionotropic receptors elicit postsynaptic changes in membrane potential that propagate along the dendrites to the neuronal soma. Transmitter-activated, metabotropic G-protein-coupled receptors [Biogene Amine] cause transient changes of intracellular second messenger concentrations which play a central role in cellular forms of plasticity.

  1. Balfanz, S., Strünker, T., Frings, S. and Baumann, A. (2005). A family of octopamine receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J. Neurochem. 93, 440-451. doi: 10.1111/j.1471-4159.2005.03034.x
  2. Schlenstedt, J., Balfanz, S., Baumann, A. and Blenau, W. (2006). Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera). J. Neurochem. 98, 1985-1998. doi: 10.1111/j.1471-4159.2006.04012.x
  3. Wachten, S., Schlenstedt, J., Gauss, R. and Baumann, A. (2006). Molecular identification and functional characterization of an adenylyl cyclase from the honeybee. J. Neurochem. 96, 1580-1590. doi: 10.1111/j.1471-4159.2006.03666.x
  4. Rotte, C., Krach, C., Balfanz, S., Baumann, A. and Blenau, W. (2009). Molecular characterization and localization of the first tyramine receptor of the American cockroach (Periplaneta americana). Neuroscience 162, 1120-1133. doi: 10.1016/j.neuroscience.2009.05.066
  5. Thamm, M., Balfanz, S., Scheiner, R., Baumann, A. and Blenau, W. (2010). Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior. Cell. Mol. Life Sci. 67, 2467-2479. doi: 10.1007/s00018-010-0350-6
  6. Troppmann, B., Balfanz, S., Baumann, A. and Blenau, W. (2010). Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor. Br. J. Pharmacol. 159, 1450-1462. doi: 10.1111/j.1476-5381.2010.00638.x
  7. Hoff, M., Balfanz, S., Ehling, P., Gensch, T. and Baumann, A. (2011). A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster. FASEB J. 25, 2484-2491. doi: 10.1096/fj.11-180703
  8. Balfanz, S., Jordan, N., Langenstück, T., Breuer, J., Bergmeier, V., and Baumann, A. (2014). Molecular, pharmacological, and signaling properties of octopamine receptors from honeybee (Apis mellifera) brain. J. Neurochem. 129, 284-296. doi: 10.1111/jnc.12619
  9. Blankenburg, S., Balfanz, S., Hayashi, Y., Shigenobu, S., Miura, T., Baumann, O., Baumann, A., and Blenau, W. (2015). Cockroach GABA(B) receptor subtypes: molecular characterization, pharmacological properties and tissue distribution. Neuropharmacology 88, 134-144. doi: 10.1016/j.neuropharm.2014.08.022
  10. Havekes, R., Bruinenberg, V.M., Tudor, J.C., Ferri, S.L., Baumann, A., Meerlo, P., and Abel, T. (2014). Transiently increasing cAMP levels selectively in hippocampal excitatory neurons during sleep deprivation prevents memory deficits caused by sleep loss. J. Neuroscience 34, 15715–15721. doi: 10.1523/jneurosci.2403-14.2014
  11. Sharma, K., Ahuja, G., Hussain, A., Balfanz, S., Baumann, A., Korsching, S.I. (2016). Elimination of a ligand gating site generates a supersensitive olfactory receptor. Scientific Reports 6, 28359. doi: 10.1038/srep28359
  12. Blenau, W., Stöppler, D., Balfanz, S., Thamm, M., Baumann, A. (2017). Dm5-HT2B: pharmacological characterization of the fifth serotonin receptor subtype of Drosophila melanogster. Front. Syst. Neurosci. 11, 28. doi: 10.3389/fnsys.2017.00028

Servicemenü

Homepage