Search

link to homepage

Peter Grünberg Institute / Institute of Complex Systems
(leer)

Navigation and service


Molecular Bioelectronics

One aspect of molecular bioelectronics is the development of active bio-inorganic components for the investigation and control of charge transport phenomena in and across biomolecules. Promising biological respectively bio-inorganic hetero-structures shall provide the basis for the development of conceptual electronic and sensing device. For this purpose, we are using macroelectrodes for the study of protein immobilization tailored for bioelectronic applications, crossbars for electrically addressing of scalable protein assemblies in 2D, and nanocontacts for individual molecule investigations (0D).

peptide_electrodes

Individual Biomolecules via Break Junctions

Nanoelectrodes with tunable gap size allow the electrical addressing of individual biomolecules. Our group is doing so by means of different break junction approaches to investigate charge transport in peptides and metal containing redox molecules.

More: Individual Biomolecules via Break Junctions …

Gold Crossbar

Scalable Crossbar Junctions

We investigate metal – molecule – metal junctions that are assembled by gently printing a metal top electrode onto a bottom electrode modified with functional molecules. The crossbars can be considered as scalable device that allows closing the gap between single molecule experiments and organic electronic devices with large molecules assemblies.

More: Scalable Crossbar Junctions …

2D-Macroelectrodes

2D-Macroelectrodes

2D-Macroelectrodes are used to evaluate new immobilization strategies and the functionality of novel bioelectronic devices concepts like electrochemical logic gates and redox transistors. The obtained findings can later be used for the assembling and characterization of bioelectronic / biosensing devices on micro- and nanometer scale.

More: 2D-Macroelectrodes …

Soft Lithography

Soft Lithography

Soft lithography allows the local addressing of molecules, biomolecules, nanoparticles, or even electrodes with sub 100nm resolution. We use these techniques for the assembling of bioelectronic junctions as well as the local modification of surfaces. These  chemical  templates are used for the local immobilization of nanoparticles and for the guiding of cells on device surfaces.

More: Soft Lithography …

Additional Information

Contact:

Dr. Dirk Mayer

Tel.:  +49-2461-61-4023
e-mail: dirk.mayer@fz-juelich.de


Servicemeu

Homepage