Terabyte-scale image analysis with HPC-enabled Deep Learning for building a map of the human brain

JSC MSA: GPU SEMINAR

16.06.2020 | CHRISTIAN SCHIFFER (TEAM BIG DATA ANALYTICS, INM-1, FORSCHUNGSZENTRUM JÜLICH)
Outline

- Human Brain Mapping
- Deep Learning on HPC
 - Frameworks
 - Distributed Deep Learning
- Deep Learning on “Big Data”
Building a Human Brain Atlas for Cytoarchitecture

- Three-dimensional model of the human brain
- Data from multiple modalities in common space
- One aspect: **Cytoarchitectonic areas**
- **Cytoarchitectonic mapping** to delineate cortical areas in high-resolution histological sections

JuBrain Probabilistic Atlas
http://www.jubrain.fz-juelich.de
Histological Human Brain Sections

- Cut brain in ~7400 20µm thick sections
- Stain cell bodies and scan in light microscope at 1µm resolution

Average annotations in common reference space to obtain probabilistic maps.
Histological Human Brain Sections

- Cut brain in ~7400 20µm thick sections
- Stain cell bodies and scan in light microscope at 1µm resolution
Histological Human Brain Sections

- Cut brain in ~7400 20µm thick sections
- Stain cell bodies and scan in light microscope at 1µm resolution
- Delineate brain areas in every 60th section of 10 different brains
- Average annotations in common reference space to obtain probabilistic maps

JuBrain Probabilistic Atlas
http://www.jubrain.fz-juelich.de
Observer Independent Method

- Distinguished by variations of cell distribution in cortical laminae and with respect to columnar organization

- Schleicher et al., 1999: Observer independent method for parcellation

- Time and labor intensive, does not scale with high throughput imaging

- Idea: Use Deep Learning to speed up and support mapping process

Basic principle of Deep Learning

Deep Neural Network

Input → Deep Neural Network (parameters θ) → Output

Correct output → Loss function → Error (between output and correct output)

Gradient based optimization (update θ to reduce errors)
Basic principle of Deep Learning

Deep Neural Network

Input \rightarrow Deep Neural Network with parameters θ \rightarrow Output \rightarrow Correct output \rightarrow Loss function \rightarrow Error between output and correct output

Gradient based optimization
(update θ to reduce errors)
Dataset for automatic cytoarchitecture classification

INM-1 brain collection

- Collection of donor brains
- Data sizes for different scanning protocols
 - every 15th section: \(\sim 3.5 \text{ TB} \)
 - every section: \(\sim 50 \text{ TB} \)
 - every section w. z-scanning (30 layers): \(\sim 1.5 \text{ PB} \)
- \(\sim 400 \) sections with partial brain area annotations

Challenges

- Complex and ambiguous cell patterns
- Inter-individual differences between brains
- High variability due to staining, sectioning artifacts, changing angle between sectioning plane and brain surface (\textit{oblique cuts})
Technical Challenges

- Training on whole images (~10 GB) is impossible, we train on large high-resolution **image patches**
 - **ImageNet**: 224x224 pixels
 - **Ours**: ~2000x2000 pixels (4x4 mm²)

- Dataset does not fit into **memory** and has to be **read demand**

- Pre-processing of large images (e.g. data augmentation) is computationally expensive

- **GPU memory** is limited, few patches fit on a single GPU
HPC to the rescue!

- Data is stored close to the JSC HPC systems → **Fast I/O**

- I/O and pre-processing can be parallelized across many CPUs → **Fast training sample creation**

- Training can be parallelized across many GPUs → **Fast training pipeline**

- Large scale experiments of hyperparameter exploration can be parallelized across many nodes → **Fast iterative development loop**
HPC enabled training workflow

- Python 3
- Pytorch/TensorFlow
- mpi4py
- h5py
- OpenCV
- numpy
- SciPy
Workflow performance on JURECA and JUWELS
Deep Learning Frameworks

- Model neural network as **computation graph**
 - Nodes are **operations** (e.g. matrix multiply)
 - Edges are **tensors**
 - Enables **automatic differentiation**
 - Static or dynamic construction
- Many operations can be efficiently executed on GPUs, for example
 - Matrix multiplication (Fully-connected layer)
 - Convolution
- Focused on Deep Learning, but applicable to **many other applications**

Source: Understand TensorFlow by mimicking its API from scratch
Common libraries used by Deep Learning Frameworks

- **CUDA**
- **cuDNN** (NVIDIA CUDA Deep Neural Network library)
- **NCCL** (NVIDIA Collective Communication Library)
Popular Deep Learning Frameworks

Popular
- TensorFlow 1.x/2.x (Google)
- (tf.)keras (created François Chollet, now at Google)
- pytorch (Facebook)
- MxNet+GluonCV+GluonNLP+GluonTS (Apache)
- CNTK (Microsoft)

Older frameworks (but you still find code for them)
- theano (Montreal Institute for Learning Algorithms)
- Caffe (relies more heavily on C++)
TensorFlow 1.x

- **Computation graph is **statically** defined (define-and-run)**

- **Graph can be automatically optimized before execution**

- **Shortcomings** (addressed in TensorFlow 2.x)
 - Hard to debug
 - Heavy use of global variables and states
 - Overloaded API

```python
import tensorflow as tf

# Input nodes
a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)

# Define computation graph
add = tf.add(a, b)
mul = tf.multiply(a, b)
div = tf.divide(add, mul)

# Execute graph with concrete input
with tf.Session() as sess:
    print(sess.run(div, feed_dict={a: 15, b: 5}))
```
TensorFlow 2.x

- Computation graph is **dynamically** defined
- Computation can be structured in **functions**
 - Improved code structure
 - Functions can be compiled for improved performance
 - Compilation can be temporarily disabled for debugging
- API cleanup
 - tf.keras main API for neural nets

```python
import tensorflow as tf

# Dynamic computation graph
a = tf.convert_to_tensor(15)
b = tf.convert_to_tensor(5)
add = tf.add(a, b)
mul = tf.multiply(a, b)
div = tf.divide(add, mul)

# Compile graph using function
@tf.function()
def compute(a, b):
    add = tf.add(a, b)
mul = tf.multiply(a, b)
    return tf.divide(add, mul)

compute(15, 5)
```
(tf.)keras

- **API specification** for building and training neural networks
- Standalone implementation supports **multiple backends**
- Part of TensorFlow 2.x as **tf.keras**
- Allows training models with very few lines of code

```python
import tensorflow as tf

# Get the data
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

# Define the model
model = tf.keras.models.Sequential(
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10)
)

# Define loss function
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy()

# Compile model (set optimizer, loss function and metrics)
model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy'])

# Train the model
model.fit(x_train, y_train, epochs=5)

# Apply the model
model.evaluate(x_test, y_test, verbose=2)
```
PyTorch

- Computation graph is **dynamically** defined
- **numpy-oriented** interface ("numpy with GPUs")
- Fine-grained control through low-level API
- Optional third-party libraries to avoid boilerplate code (e.g. Lightning)

```python
import torch

# Define variables
a = torch.from_numpy(15)
b = torch.from_numpy(5)

# Move to third GPU
a = a.to("cuda:2")
b = b.to("cuda:2")

# Compute (on GPU)
add = torch.add(a, b)
mult = torch.mul(a, b)
div = torch.div(add, mult)
```
TensorFlow or PyTorch?

TensorFlow (+tf.keras)
- Allows quick and easy experimentation with standard processing pipelines and models
- Many things can be accomplished in few lines of code
- Offers various ways to deploy trained models to production (e.g. TensorFlow.js for the web or TensorFlow Lite for mobile and IoT)
- More exotic experiments can be hard to implement

PyTorch
- Development feels more “phytonic”
- Lower level API allows more fine grained control
- Non-standard experiments are often easier to implement
- Higher flexibility comes at the cost of more boilerplate code (e.g. training loop)
Distributed Deep Learning

- Distributed Deep Learning enables training across multiple GPUs on one node or across multiple nodes
- Reduces training time or allows training of larger models

Data parallelism
- Each GPU gets a replica of the model
- Each GPU processes different samples
- Gradients are averaged before updating the weights

Model parallelism (rarely used in practice)
- Split one model across multiple GPUs
- Useful for very large models which do not fit on one GPU
Data parallel training

- Well supported in all frameworks
- Most common variant: **Synchronized Gradient Descent**
- Gradient averaging can be efficiently implemented, eg. with MPI or NCCL
Distributed training in TensorFlow with Horovod

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

Define the model
model = tf.keras.Sequential([
 tf.keras.layers.Conv2D(32, [3, 3], activation='relu'),
 ...
 tf.keras.layers.Dropout(0.5),
 tf.keras.layers.Dense(10, activation='softmax')
])

opt = tf.optimizers.Adam(learning_rate=0.1)

model.compile(loss=tf.losses.SparseCategoricalCrossentropy(),
 optimizer=opt,
 metrics=['accuracy'],
 experimental_run_tf_function=False)

model.fit(x_train, y_train, epochs=5)

Note: Horovod also supports PyTorch and MXNet
Distributed training in PyTorch

```python
from torch import nn
from torchvision.models import resnet50
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel

data = ...

# Create a model
model = resnet50()
# Move model to first GPU
mode = model.cuda()

# Create optimizer
opt = optim.SGD(model.parameters(), lr=0.1)
loss_fn = nn.MSELoss().cuda()

# Training loop
for x, y in data:
    opt.zero_grad()
    y_ = model(x)
    loss = loss_fn(y, y_)
    loss.backward()
    opt.step()
```

```python
# Initialize distributed environment
rank = ...  # e.g. by mpi4py
size = ...
dist.init_process_group("nccl", "tcp://127.0.0.1:12345", rank, size)

data = ...

# Create a model
model = resnet50()
# Model wrapper takes care of averaging gradients
model = DistributedDataParallel(model, device_ids=[rank, ])
# Move model to correct GPU
mode = model.to(rank)

# Create optimizer
opt = optim.SGD(model.parameters(), lr=0.1)
loss_fn = nn.MSELoss().to(rank)

# Training loop
for x, y in data:
    opt.zero_grad()
    y_ = model(x)
    loss = loss_fn(y, y_)
    loss.backward()
    opt.step()
```
Deep Learning on “Big Data”

- Most Deep Learning applications rely on large datasets, but individual samples are mostly not very large
 - **Example:** ImageNet contains millions of images, but each image is not extremely large (e.g. 224x224 pixels)

- Some applications have to handle large datasets and large sample size, for example
 - medical imaging (2D and 3D data)
 - remote sensing
 - astronomy
 - ...

- **GPU memory** often becomes the limiting factor when training deep models for such applications
Trade speed for memory by gradient checkpointing

- Intermediate layer outputs are usually \textbf{kept in memory}, as they are needed for gradient computation (chain rule of calculus).

- Hidden representations of large high-dimensional data (e.g. images or 3D volumes) can take massive amounts of space.

- \textbf{Idea}: Trade speed for memory by \textbf{discarding} intermediate outputs and \textbf{recompute} them on demand during gradient computation.

Source: Make huge neural nets fit in memory
Trade speed for memory by gradient checkpointing

• Intermediate layer outputs are usually kept in memory, as they are needed for gradient computation (chain rule of calculus)

• Hidden representations of large high-dimensional data (e.g. images or 3D volumes) can take massive amounts of space

• Idea: Trade speed for memory by discarding some intermediate outputs and recompute them on demand during gradient computation

Source: Make huge neural nets fit in memory
from torch import nn

class Model(nn.Module):
 def __init__(self):
 super().__init__()
 self.conv1 = nn.Conv2d(1, 16, kernel_size=3)
 self.conv2 = nn.Conv2d(16, 32, kernel_size=3)
 self.conv3 = nn.Conv2d(32, 64, kernel_size=3)
 self.conv4 = nn.Conv2d(64, 128, kernel_size=3)

 def forward(self, x):
 x = self.conv1(x)
 x = self.conv2(x)
 x = self.conv3(x)
 x = self.conv4(x)

 return x

from torch import nn
import torch.utils.checkpoint as cp

class Model(nn.Module):
 def __init__(self):
 super().__init__()
 self.conv1 = nn.Conv2d(1, 16, kernel_size=3)
 self.conv2 = nn.Conv2d(16, 32, kernel_size=3)
 self.conv3 = nn.Conv2d(32, 64, kernel_size=3)
 self.conv4 = nn.Conv2d(64, 128, kernel_size=3)

 def _make_cp_fun(self):
 def _cp_fun(x):
 x = self.conv1(x)
 x = self.conv2(x)
 return x
 return _cp_fun

 def forward(self, x):
 x = cp.checkpoint(self._make_cp_fun(), x)
 x = self.conv3(x)
 x = self.conv4(x)

 return x
Mixed Precision Training

- Deep Learning typically uses float32 (single precision) for parameters and layer outputs

- Using float16 (half precision) speeds up computation and halves memory requirements

- **Mixed precision training**
 - Use float16 for gradients and layer outputs
 - Keep parameters in float32
 - Internally scale loss and gradients to prevent underflow

- **TensorCores** in modern NVIDIA GPUs (Volta, Turing, Ampere) specifically speed up half precision operations
from torch.cuda import amp

Creates model and optimizer in default precision
model = ...
optimizer = ...
data = ...

Creates a GradScaler once at the beginning of training.
scaler = amp.GradScaler()

for input, target in data:
 optimizer.zero_grad()

 # Runs the forward pass with autocasting.
 with amp.autocast():
 output = model(input)
 loss = loss_fn(output, target)

 # Scales loss. Calls backward() on scaled loss to create scaled gradients.
 scaler.scale(loss).backward()

 # scaler.step() first unscales the gradients of the optimizer's assigned params.
 scaler.step(optimizer)

 # Updates the scale for next iteration.
 scaler.update()
Christian Schiffer
Email: c.schiffer@fz-juelich.de
Phone: +49 2461 61-3486

Team Big Data Analytics
Institute of Neuroscience and Medicine (INM-1)