Matrix Multiplication with OpenCL

22.11.2017 | Wolfram Schenck | Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Bielefeld, Germany
Learning goals:
- Gain insights how memory access patterns and the usage of local memory influence performance on different types of devices
- Learn to apply explicit vectorization and other performance tuning techniques within the OpenCL framework

Simple matrix multiplication
- Memory layout
- Explicit vectorization

Matrix multiplication with local memory
- Performance tuning
- Performance evaluation
Matrix Multiplication
Matrix Multiplication Basics

- Matrix mult.: $C = A \times B$
- Matrix sizes:
 - Size of A: $m_A \times n_A$
 - $(\# \text{ of rows } \times \# \text{ of columns})$
 - $(\text{height } \times \text{width})$
 - Size of B: $m_B \times n_B$
 - Size of C: $m_C \times n_C$
- Precondition: $n_A = m_B$
- In result: $m_C = m_A$, $n_C = n_B$
- Formula:
 $$c_{i,j} = \sum_{e=0}^{n_A-1} a_{i,e} b_{e,j}$$

Fig.: NVIDIA
2D Arrays: Address/Index Computation
(row-major, with stride)

Formulas:

\[
\text{offset} = y \times \text{stride} + x
\]
\[
x = \text{offset} \mod \text{stride}
\]
\[
y = \text{offset} / \text{stride}
\]

(using integer arithmetics, indices start with 0)
Simple C struct to hold matrix data:

```c
// basic matrix data type
struct simpleMatrix {
    unsigned int width;
    unsigned int height;
    unsigned int stride;
    size_t bufferSize;
    real_t* ptr;
};
```

Matrix multiplication on the host:

```c
// no-frills CPU implementation of matrix multiplication
void multCPU( simpleMatrix &C, const simpleMatrix &A, 
              const simpleMatrix &B )
{
    for( int y=0; y < C.height; y++ ) {
        for( int x=0; x < C.width; x++ ) {
            real_t CVal = 0.0;
            for( int e=0; e < A.width; e++ ) {
                CVal += A.ptr[y*A.stride+e] * B.ptr[e*B.stride+x];
            }
            C.ptr[y*C.stride+x] = CVal;
        }
    }
    return;
}
```
Performance of “Naive” Host Code

CPU No-Frills Implementation (XEON E5-2650) [DEEP]

\[R_{\text{peak,SP}} \approx 300 \text{ GFlops} \]
(per core: 37.5 GFlops)
Exercise 1: Tasks

- Write your own matrix multiplication kernel: Every work-item shall compute a single element of C!
- Compare the result with the “gold standard” (computation on the host)!
- Do some benchmarking host vs. device on the system of your choice! (use for now a work-group size of 16x16)
Exercise 1: Hints

- Copy project files from train060 account
- Adjust library and include paths in Makefile according to the machine you are using (just comment in and out)
- Helper files (no editing necessary):
 matmul_helpers.[CH]
 opencl_helpers.[CH]
- Host code to edit and modify (search for TODOs):
 matmul_opencl.C
- Device code to edit and modify (search for TODOs):
 matmul.cl
- Start by building the binary (invoke make) and by running it with the help option:
 ./MatMul -h
OpenCL kernel code:

```c
__kernel __attribute__((reqd_work_group_size(BLOCK_SIZE,BLOCK_SIZE,1))))
__attribute__((vec_type_hint(real_t))))

__kernel void matMulKernel(
    int Aheight, int Awidth,
    int Bheight, int Bwidth,
    int Astride, int Bstride, int Cstride,
    __global real_t* Aelements,
    __global real_t* Belements,
    __global real_t* Celements )
{
    // Get global indices of work-item
    int global_row = get_global_id(1);
    int global_col = get_global_id(0);

    // Check if we are within valid area of matrix C
    if( global_row < Aheight && global_col < Bwidth ) {
        // Compute single element of C
        real_t Cvalue = 0;
        for (int e = 0; e < Awidth; ++e)
            Cvalue += Aelements[global_row * Astride + e] * Belements[e * Bstride + global_col];
        // Write result into C matrix
        Celements[global_row * Cstride + global_col] = Cvalue;
    }
}
```

Kernel function qualifiers: Hints for OpenCL compiler
Performance Comparison between Devices
Simple Matrix Multiplication (SP)

Comparison between Devices [SP] [SQUARE] [comp]

- **AMD S10000**: $R_{\text{peak,SP}} \approx 2900$ GFlops
- **Xeon Phi**: $R_{\text{peak,SP}} \approx 2000$ GFlops
- **Xeon E5-2650 (2x)**: $R_{\text{peak,SP}} \approx 600$ GFlops
- **NVIDIA K40**: $R_{\text{peak,SP}} \approx 5000$ GFlops
Performance Comparison between Devices
Simple Matrix Multiplication (DP)

Comparison between Devices [DP] [SQUARE] [comp]

- AMD S10000 (GPU) [DP, non-tiled (B=16)]
- XEON PHI (MIC) [DP, non-tiled (B=16)]
- XEON E5-2650 (CPU/INTEL-OCL) [DP, non-tiled (B=16)]
- NVIDIA K40 (GPU) [DP, non-tiled (B=16)]

AMD S10000: $R_{\text{peak,DP}} \approx 730$ GFlops
Xeon Phi: $R_{\text{peak,DP}} \approx 1000$ GFlops
Xeon E5-2650 (2x): $R_{\text{peak,DP}} \approx 300$ GFlops
NVIDIA K40: $R_{\text{peak,DP}} \approx 1660$ GFlops
Memory Access Patterns
Varying the Memory Layout

Standard
Varying the Memory Layout
Transposing A

\[A^t \]

\[B \]

\[C \]
Varying the Memory Layout

Transposing B

\[A \times B^t = C \]

A

B^t

C

A.width

B^t.width

B^t.height

A.height

C.width

C.height
Exercise 2: Tasks and Hints

- Implement both kernel variations (A transposed and B transposed)!
- Compare the result with the “gold standard” (computation on the host)!
- Do some benchmarking of the different kernel variations on the system of your choice!

- Host code to edit and modify (search for TODOs):
 matmul_opencl.C
- Device code to edit and modify (search for TODOs):
 matmul.cl
OpenCL kernel code:

```c
__kernel void matMulKernel_TRA(
    int Aheight, int Awidth,
    int Bheight, int Bwidth,
    int Astride, int Bstride, int Cstride,
    __global real_t* Aelements,
    __global real_t* Belements,
    __global real_t* Celements )
{
    // Get global indices of work-item
    int global_row = get_global_id(1);   // Global row index
    int global_col = get_global_id(0);   // Global column index

    // Check if we are within valid area of matrix C
    if( global_row < Awidth && global_col < Bwidth ) {
        // Compute single element of C
        real_t Cvalue = 0;
        for (int e = 0; e < Aheight; ++e)
            Cvalue += Aelements[e * Astride + global_row] * Belements[e * Bstride + global_col];

        // Write result into C matrix
        Celements[global_row * Cstride + global_col] = Cvalue;
    }   // End of check if
}
```
OpenCL kernel code:

```c
__kernel void matMulKernel_TRB(
    int Aheight, int Awidth,
    int Bheight, int Bwidth,
    int Astride, int Bstride, int Cstride,
    __global real_t* Aelements,
    __global real_t* Belements,
    __global real_t* Celements )
{
    // Get global indices of work-item
    int global_row = get_global_id(1);
    int global_col = get_global_id(0);

    // Check if we are within valid area of matrix C
    if( global_row < Aheight && global_col < Bheight ) {
        // Compute single element of C
        real_t Cvalue = 0;
        for (int e = 0; e < Awidth; ++e)
            Cvalue += Aelements[global_row * Astride + e]
                        * Belements[global_col * Bstride + e];
        // Write result into C matrix
        Celements[global_row * Cstride + global_col] = Cvalue;
    }
}
```
Results on the CPU
(Exercise 2)

XEON E5-2650 (CPU) without Local Memory [SP] [SQUARE] [comp]

- **XEON E5-2650 (CPU/INTEL-OCL) [SP, non-tiled (B=16)]**
- **XEON E5-2650 (CPU/INTEL-OCL) [SP, non-tiled (B=16), At]**
- **XEON E5-2650 (CPU/INTEL-OCL) [SP, non-tiled (B=16), Bt]**
Memory Access on the CPU

A.width

B

C.height

B.width

Positive cache effects through data locality

Temporal reuse of cache (cache-blocking)

Work-items coalesced on a SIMD unit

A

B

C

A.height

C.width

A.width

C.height
Transposing A on the CPU

Work-items coalesced on a SIMD unit

NO temporal reuse of cache
Transposing B on the CPU

Temporal reuse of cache for A and B

Work-items coalesced on a SIMD unit
Results on the Nvidia GPU (Exercise 2)

NVIDIA K40 (GPU) without Local Memory [SP] [SQUARE] [comp]
Memory Access on the GPU

Coalesced memory access from warp (very good; exploit spatial data locality!)

Temporal cache reuse (usually not helpful on GPUs)

“Warp” (32 threads on an Nvidia GPU, only 8 shown here)

Work-group of size 4x4
Transposing A on the GPU

Coalesced memory access from warp

“Warp” (32 threads on an Nvidia GPU, only 8 shown here)
Transposing B on the GPU

BAD: Temporal reuse instead of spatial locality!

“Warp” (32 threads on an Nvidia GPU, only 8 shown here)
Results on the AMD GPU
(Exercise 2)

AMD S10000 (GPU) without Local Memory [SP] [SQUARE] [comp]

Number of floating point operations (mul+add) vs. GFLOPS

- **Black** line: AMD S10000 (GPU) [SP, non-tiled (B=16)]
- **Green** line: AMD S10000 (GPU) [SP, non-tiled (B=16), At]
- **Blue** line: AMD S10000 (GPU) [SP, non-tiled (B=16), Bt]
Results on Xeon Phi
(Exercise 2)

XEON PHI (MIC) without Local Memory [SP] [SQUARE] [comp]

Number of floating point operations (mul+add)

GFlops

- XEON PHI (MIC) [SP, non-tiled (B=16)]
- XEON PHI (MIC) [SP, non-tiled (B=16), At]
- XEON PHI (MIC) [SP, non-tiled (B=16), Bt]
Summary: Memory Access

- CPUs love temporal reuse of cache contents 😍
- GPUs love (mostly) spatial data locality (coalesced memory access from all work-items within a warp/wavefront)
- MICs behave similar to GPUs in this study (surprisingly!)
Manual Vectorization
(esp. for CPUs)
Manual Vectorization

- Use OpenCL vector data types in compute kernel
Retrieve vector data type from memory: Using spatial data locality both in A and B (implies vectorized multiplication!)

Approach on Basis of Transposed B Matrix

Ouch!

Single work-item
Approach on Basis of Transposed B Matrix (Arrays with stride)

Retrieve vector data type from memory: Using spatial data locality both in A and B (implies vectorized multiplication!)
Manual Vectorization (cont.)

- Use OpenCL vector data types in compute kernel
- The stride of A and B^t has to be a multiple of the vector length (called `alignmentDesired` in the matrix multiplication host program)
Exercise 3: Tasks and Hints

- Implement a kernel variation for a transposed B matrix with vectorized access to the elements of A and B!
- Compare the result with the “gold standard”!
- Do some benchmarking!

- Host code to edit and modify (search for TODOs):
 matmul_opencl.C

- Device code to edit and modify (search for TODOs):
 matmul.cl

- For simplification: Develop a solution just for float as basic data type, assume a vector length of 8 (see alignmentDesired in matmul_opencl.C) (therefore float8 is the way to go, stride of the arrays is already correct for this setting).
__kernel void matMulKernel_TRB_VEC(
 int Aheight, int Awidth,
 int Bheight, int Bwidth,
 int Astride, int Bstride, int Cstride,
 __global float8* Aelements,
 __global float8* Belements,
 __global float* Celements)
{
 // Get global indices of work-item
 int global_row = get_global_id(1);
 int global_col = get_global_id(0);

 // Account for vector length of 8 in width of A and stride of A and B
 uint Awidth8 = (Awidth - 1) / 8 + 1;
 uint Astride8 = Astride / 8;
 uint Bstride8 = Bstride / 8;

 float8 Aelems, Belems, Celems;
 // Check if we are within valid area of matrix C
 if(global_row < Aheight && global_col < Bheight) {
 // Compute single element of C
 real_t Cvalue = 0;
 for (int e = 0; e < Awidth8; e++) {
 Aelems = Aelements[global_row * Astride8 + e];
 Belems = Belements[global_col * Bstride8 + e];
 Celems = Aelems * Belems;

 Cvalue += Celems.s0;
 Cvalue += Celems.s1;
 Cvalue += Celems.s2;
 Cvalue += Celems.s3;
 Cvalue += Celems.s4;
 Cvalue += Celems.s5;
 Cvalue += Celems.s6;
 Cvalue += Celems.s7;
 }
 // Write result into C matrix
 Celements[global_row * Cstride + global_col] = Cvalue;
 }
}
Results on the CPU
(Exercise 3)

XEON E5-2650 (CPU) without Local Memory [SP] [SQUARE] [comp]

- XEON E5-2650 (CPU/INTEL-OCL) [SP, non-tiled (B=16)]
- XEON E5-2650 (CPU/INTEL-OCL) [SP, non-tiled (B=16), At]
- XEON E5-2650 (CPU/INTEL-OCL) [SP, non-tiled (B=16), Bt]
- XEON E5-2650 (CPU/INTEL-OCL) [SP, non-tiled (B=16), Bt, ManVec]
Results on the Nvidia GPU
(Exercise 3)
Results on the AMD GPU
(Exercise 3)

AMD S10000 (GPU) without Local Memory [SP] [SQUARE] [comp]

![Graph showing performance vs. number of floating point operations](image)

- **Black line**: AMD S10000 (GPU) [SP, non-tiled (B=16)]
- **Green line**: AMD S10000 (GPU) [SP, non-tiled (B=16), At]
- **Blue line**: AMD S10000 (GPU) [SP, non-tiled (B=16), Bt]
- **Dashed blue line**: AMD S10000 (GPU) [SP, non-tiled (B=16), Bt, ManVec]
Results on Xeon Phi
(Exercise 3)

XEON PHI (MIC) without Local Memory [SP] [SQUARE] [comp]

- **XEON PHI (MIC) [SP, non-tiled (B=16)]**
- **XEON PHI (MIC) [SP, non-tiled (B=16), At]**
- **XEON PHI (MIC) [SP, non-tiled (B=16), Bt]**
- **XEON PHI (MIC) [SP, non-tiled (B=16), Bt, ManVec]**
Comparing CPU Platforms (AMD vs. Intel)

AMD OCL compiler handles manual vectorization very well

AMD OCL compiler without auto-vectorization

Graph:
- **X-axis:** Number of floating point operations (mul+add)
- **Y-axis:** GFlops
- **Legend:**
 - Red line: XEON E5-2650 (CPU/AMD-OCL) [DP, non-tiled (B=16)]
 - Red dashed line: XEON E5-2650 (CPU/AMD-OCL) [DP, non-tiled (B=16), Bt, ManVec]
 - Blue line: XEON E5-2650 (CPU/INTEL-OCL) [DP, non-tiled (B=16)]
 - Blue dashed line: XEON E5-2650 (CPU/INTEL-OCL) [DP, non-tiled (B=16), Bt, ManVec]
Summary: Manual Vectorization

- Significant improvement for CPU device
 - especially on AMD OpenCL platform
- Better than just using transposed B matrix on all devices
- However: Not the best solution for GPUs or MIC
Using Local Memory
Using Local Memory

- **Motivation:**
 - Local memory can be used as programmer-managed cache (only on GPUs)
 - Reduces number of accesses to global memory
Basic idea: Every work-group is responsible for a different submatrix within C.
Matrix Multiplication with Local Memory
Basic Algorithm

ALGORITHM

- Determine the number of submatrices along the width of \(A \) (or height of \(B \)) with size \(BLOCK_SIZE*BLOCK_SIZE \)
 \[\rightarrow mMax \text{ (rounded up)} \]
- Iterate over \(m := 0 \ldots (mMax-1) \)
 - Load submatrices of \(A \) and \(B \) with index \(m \) from global memory into local memory (every work-item is responsible for a single element of \(A \) and a single element of \(B \))
 - Compute with every work-item a partial sum of \(c_{i,j} \) from the submatrices stored in local memory (incl. handling of the border case if \(A_width\%BLOCK_SIZE \neq 0 \))

Fig.: NVIDIA
Matrix Multiplication with Local Memory

Border Cases

STOP ACCUMULATION HERE (BEFORE BLOCK_SIZE IS REACHED) !!!

Accumulation over row/column pair:
Exercise 4: Tasks and Hints

- Think about “race conditions”; at which points shall all work-items in a work-group synchronize in the algorithm on slide 48?
- Add the corresponding synchronization calls in the already existing kernel source code!
- Do some benchmarking (kernel without local memory vs. kernel with local memory; try out several work-group sizes)!

- Host code to edit and modify (search for TODOs):
 matmul_opencl.C

- Device code to edit and modify (search for TODOs):
 matmul_localMem.cl
 - Kernel function: matMulKernel_LM
 - Synchronization function to use:
 barrier(CLK_LOCAL_MEM_FENCE)
Exercise 4: Hint on Race Condition
(Example for Nvidia GPU)

8 Nvidia warps within a work-group with 256 work-items

RED: Transfer from global into local memory (each work-item responsible for part of the data)

GREEN: Computations based on total content of local memory

RED: Transfer from global into local memory…

Would you expect correct computational results…?
Exercise 4: Solution

_kernel void matMulKernel_LM(...) {
 ...
 for (int m = 0; m < mMax; ++m) {
 // Get base indices of sub-matrices Asub of A and Bsub of B
 Asub_baseIndex = Astride * BLOCK_SIZE * blockRow + BLOCK_SIZE * m;
 Bsub_baseIndex = Bstride * BLOCK_SIZE * m + BLOCK_SIZE * blockCol;

 // Load Asub and Bsub from global memory to local memory
 // Each thread loads one element of each sub-matrix
 Asub_index = Asub_baseIndex + row * Astride + col;
 if (Asub_index < A_numElems)
 As[row*BLOCK_SIZE+col] = Aelements[Asub_index];
 Bsub_index = Bsub_baseIndex + row * Bstride + col;
 if (Bsub_index < B_numElems)
 Bs[row*BLOCK_SIZE+col] = Belements[Bsub_index];

 // Synchronize to make sure the sub-matrices are loaded
 // before starting the computation
 barrier(CLK_LOCAL_MEM_FENCE);

 // Multiply row of Asub and column of Bsub together
 // (only iterate up to eMax to prevent inclusion of invalid elements from
 // Asub and Bsub)
 int eMax;
 if ((m == (mMax-1)) && (r != 0))
 eMax = r;
 else
 eMax = BLOCK_SIZE;
 for (int e = 0; e < eMax; ++e)
 Cvalue += As[row*BLOCK_SIZE+e] * Bs[e*BLOCK_SIZE+col];

 // Synchronize to make sure that the preceding
 // computation is done before loading two new
 // sub-matrices of A and B in the next iteration
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 ...
}
Results on the CPU
(Exercise 4)

AMD S10000: $R_{\text{peak,SP}} \approx 2900$ GFlops
Xeon Phi: $R_{\text{peak,SP}} \approx 2000$ GFlops
Xeon E5-2650 (2x): $R_{\text{peak,SP}} \approx 600$ GFlops
NVIDIA K40: $R_{\text{peak,SP}} \approx 5000$ GFlops
Results on the Nvidia GPU
(Exercise 4)

AMD S10000: \[R_{\text{peak,SP}} \approx 2900 \text{ GFlops} \]
Xeon Phi: \[R_{\text{peak,SP}} \approx 2000 \text{ GFlops} \]
Xeon E5-2650 (2x): \[R_{\text{peak,SP}} \approx 600 \text{ GFlops} \]
NVIDIA K40: \[R_{\text{peak,SP}} \approx 5000 \text{ GFlops} \]
Results on the AMD GPU
(Exercise 4)

AMD S10000 (GPU) [SP] [SQUARE] [comp]

- AMD S10000: $R_{\text{peak,SP}} \approx 2900$ GFlops
- Xeon Phi: $R_{\text{peak,SP}} \approx 2000$ GFlops
- Xeon E5-2650 (2x): $R_{\text{peak,SP}} \approx 600$ GFlops
- NVIDIA K40: $R_{\text{peak,SP}} \approx 5000$ GFlops
Results on Xeon Phi
(Exercise 4)

AMD S10000: $R_{\text{peak},\text{SP}} \approx 2900$ GFlops
Xeon Phi: $R_{\text{peak},\text{SP}} \approx 2000$ GFlops
Xeon E5-2650 (2x): $R_{\text{peak},\text{SP}} \approx 600$ GFlops
NVIDIA K40: $R_{\text{peak},\text{SP}} \approx 5000$ GFlops
Summary: Local Memory

- Significant improvement on all devices (even where you would not expect it…)
 - **Reason:** Strongly reduced number of reads from slow global memory (applies in principle especially to GPUs)
- For best performance necessary to choose optimal work-group size
 - Optimal work-group size depends also on the problem size!
Further Tuning Techniques
- Blue tile: Register file → Local memory
- Synchronize work-items
- Orange tile: Global memory → Register file
- Compute blue tile
- Synchronize work-items
- Move on: Orange tile becomes blue tile, new orange tile
- ...
Decreasing Work-Item Granularity

- Every work-item computes two elements within C
 - Number of loads from global memory further reduced (from Matrix A [= Md])
 - Reduced non-computational overhead
 - More computational work per iteration done

Fig.: Kirk & Hwu, ECE 498AL Lecture Slides
Results on the CPU
(Effects of Optimization for SP) [best work-group size selected]

AMD S10000: \(R_{\text{peak,SP}} \approx 2900 \text{ GFlops} \)
Xeon Phi: \(R_{\text{peak,SP}} \approx 2000 \text{ GFlops} \)
Xeon E5-2650 (2x): \(R_{\text{peak,SP}} \approx 600 \text{ GFlops} \)
NVIDIA K40: \(R_{\text{peak,SP}} \approx 5000 \text{ GFlops} \)
Results on the Nvidia GPU
(Effects of Optimization for SP) [best work-group size selected]

AMD S10000: $R_{\text{peak,SP}} \approx 2900 \text{ GFlops}$
Xeon Phi: $R_{\text{peak,SP}} \approx 2000 \text{ GFlops}$
Xeon E5-2650 (2x): $R_{\text{peak,SP}} \approx 600 \text{ GFlops}$
NVIDIA K40: $R_{\text{peak,SP}} \approx 5000 \text{ GFlops}$

NVIDIA K40 (GPU) (Optimization Effects) [SP] [SQUARE] [comp]
Results on the AMD GPU
(Effects of Optimization for SP) [best work-group size selected]

AMD S10000: $R_{\text{peak,SP}} \approx 2900\ \text{GFlops}$
Xeon Phi: $R_{\text{peak,SP}} \approx 2000\ \text{GFlops}$
Xeon E5-2650 (2x): $R_{\text{peak,SP}} \approx 600\ \text{GFlops}$
NVIDIA K40: $R_{\text{peak,SP}} \approx 5000\ \text{GFlops}$
Results on Xeon Phi
(Effects of Optimization for SP) [best work-group size selected]

AMD S10000: $R_{\text{peak,SP}} \approx 2900$ GFlops
Xeon Phi: $R_{\text{peak,SP}} \approx 2000$ GFlops
Xeon E5-2650 (2x): $R_{\text{peak,SP}} \approx 600$ GFlops
NVIDIA K40: $R_{\text{peak,SP}} \approx 5000$ GFlops
Results on the CPU
(Effects of Optimization for DP) [best work-group size selected]

XEON E5-2650 (CPU) (Optimization Effects) [DP] [SQUARE] [comp]

AMD S10000: $R_{\text{peak,DP}} \approx 730 \text{ GFlops}$
Xeon Phi: $R_{\text{peak,DP}} \approx 1000 \text{ GFlops}$
Xeon E5-2650 (2x): $R_{\text{peak,DP}} \approx 300 \text{ GFlops}$
NVIDIA K40: $R_{\text{peak,DP}} \approx 1660 \text{ GFlops}$
Results on the Nvidia GPU
(Effects of Optimization for DP) [best work-group size selected]

AMD S10000: \(R_{\text{peak,DP}} \approx 730 \text{ GFlops} \)
Xeon Phi: \(R_{\text{peak,DP}} \approx 1000 \text{ GFlops} \)
Xeon E5-2650 (2x): \(R_{\text{peak,DP}} \approx 300 \text{ GFlops} \)
NVIDIA K40: \(R_{\text{peak,DP}} \approx 1660 \text{ GFlops} \)
Results on the AMD GPU
(Effects of Optimization for DP) [best work-group size selected]

AMD S10000 (GPU) (Optimization Effects) [DP] [SQUARE] [comp]

AMD S10000: $R_{\text{peak,DP}} \approx 730 \text{ GFlops}$
Xeon Phi: $R_{\text{peak,DP}} \approx 1000 \text{ GFlops}$
Xeon E5-2650 (2x): $R_{\text{peak,DP}} \approx 300 \text{ GFlops}$
NVIDIA K40: $R_{\text{peak,DP}} \approx 1660 \text{ GFlops}$
Results on Xeon Phi
(Effects of Optimization for DP) [best work-group size selected]

AMD S10000: $R_{\text{peak,DP}} \approx 730$ GFlops

Xeon Phi: $R_{\text{peak,DP}} \approx 1000$ GFlops

Xeon E5-2650 (2x): $R_{\text{peak,DP}} \approx 300$ GFlops

NVIDIA K40: $R_{\text{peak,DP}} \approx 1660$ GFlops

XEON PHI (MIC) (Optimization Effects) [DP] [SQUARE] [comp]

![Graph showing performance comparison](image)

- **XEON PHI (MIC) [DP, non-tiled (B=16)]**
- **XEON PHI (MIC) [DP, non-tiled (B=16), AT]**
- **XEON PHI (MIC) [DP, tiled (B=16)]**
- **XEON PHI (MIC) [DP, tiled (B=16), Prefetch]**
- **XEON PHI (MIC) [DP, tiled (B=16), WideTiles]**
- **XEON PHI (MIC) [DP, tiled (B=16), WideTiles, Prefetch]**
Summary: Advanced Tuning

- Increasing computational workload per work-item usually improves performance
 - **BUT:** Always use a large enough number of work-items on GPUs to allow for latency hiding
- Prefetching often very useful technique on GPUs (less so on CPUs and MICs)
- Best results (not accounting for data transfer between device and host):
 - 25% of theoretical peak perf. on AMD GPU for SP
 - 40% of theoretical peak perf. on AMD GPU for DP
Overall Summary
We have learned…

- how the memory layout can influence performance in different ways on CPUs and GPUs
- how manual vectorization can give an additional performance boost to CPUs
- how local memory can be used to increase performance
- how to choose the optimal work-group size
- how to take care of synchronization between work-items
- how to apply more advanced tuning techniques

...that it is never fully predictable from theory which mixture of tuning measures will give the best result on the device of your choice!