Hands-on / Demo: Building and running NPB-MZ-MPI / BT

Markus Geimer
Jülich Supercomputing Centre
What is NPB-MZ-MPI / BT?

- A benchmark from the NAS parallel benchmarks suite
- MPI + OpenMP version
- Implementation in Fortran 77
- Solves multiple, independent systems of block tridiagonal (BT) equations
- Represents workloads similar to many flow solver codes (3D Navier-Stokes equations)
- Probably not much unexploited optimization potential
Properties of NPB-MZ-MPI / BT

- The solution is done for multiple zones (MZ), in a repeated time-step loop
 - After each time-step, the zones have to exchange boundary values
 - Fine-grained parallelism within a zone
 - Coarse-grained parallelism between zones
 - Zones are not all equally sized and need to be distributed in a balanced way

- A larger problem size adds more zones

- Exploits multi-level parallelism
 - Hybrid (MPI + OpenMP) implementation

- Suitable testing application for a wide range of tools and analysis types!
Performance analysis steps

- 0.0 Reference execution for validation
 - 1.0 Program instrumentation
 - 1.1 Summary measurement collection
 - 2.0 Summary experiment scoring
 - 2.1 Summary measurement collection with filtering
 - 2.2 Filtered summary analysis report examination
 - 3.0 Event trace collection
 - 3.1 Event trace examination & analysis
First step: Set up the environment

- To set up your environment, load the corresponding modules

```bash
module load Intel
module load IntelMPI
```

- This will use Intel compilers and Intel MPI
Second step: Build the benchmark

- Extract tutorial sources in your work directory
  ```
  cd $WORK
  mkdir <id>
  cd <id>
  tar xvzf ~train021/Tools/perftools/NPB3.3-MZ-MPI.tar.gz
  ```

- Enter source directory
  ```
  cd NPB-3.3-MZ-MPI
  ls -F
  BT-MZ/ Makefile README.install SP-MZ/ config/ sys/
  LU-MZ/ README README.tutorial common/ jobscript/
  ```

- Check build configuration
  ```
  less config/make.def
  ```
Second step: Build the benchmark (cont.)

% make bt-mz NPROCS=8 CLASS=C
make[1]: Entering directory `BT-MZ'
make[2]: Entering directory `sys'
icc -o setparams setparams.c -lm
make[2]: Leaving directory `sys'
../sys/setparams bt-mz 8 C
make[2]: Entering directory `..'/BT-MZ'
mpiifort -c -O3 -qopenmp bt.f
 [...] mpiifort -c -O3 -qopenmp mpi_setup.f
cd ../common; mpiifort -c -O3 -qopenmp print_results.f
cd ../common; mpiifort -c -O3 -qopenmp timers.f
mpiifort -O3 -qopenmp -o ../bin/bt-mz_C.8 bt.o
 initialize.o exact_solution.o exact_rhs.o set_constants.o adi.o
 rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o solve_subs.o
 z_solve.o add.o error.o verify.o mpi_setup.o ../common/print_results.o
 ../common/timers.o
make[2]: Leaving directory `BT-MZ'
Built executable ../bin/bt-mz_C.8
make[1]: Leaving directory `BT-MZ'

- Specify the benchmark configuration
 - benchmark name: bt-mz, lu-mz, sp-mz
 - the number of MPI processes: NPROCS=8
 - the benchmark class (S, W, A, B, C, D, E): CLASS=C
Third step: Run the application

- Change to bin/ directory and copy job script from ../jobscript/jureca
  ```
  cd bin
  cp ../jobscript/jureca/reference.sbatch .
  ```

- Check the jobscript
  ```
  less reference.sbatch
  ```

- Submit the job
  ```
  sbatch reference.sbatch
  ```
NPB-MZ-MPI / BT reference execution

```
% less mzmpibt.o<job_id>
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 16 x 16
Iterations: 200 dt: 0.000100
Number of active processes: 8
Total number of threads: 48 (6.0 threads/process)

Time step 1
Time step 20
[...]
Time step 180
Time step 200
Verification Successful

BT-MZ Benchmark Completed.
Time in seconds = 15.97
```

Hint: save the benchmark output (or note the run time) to be able to refer to it later
Done!

You have successfully built and run the benchmark.