Mathematical Libraries and Application Software on JUQUEEN and JURECA
JSC Training Course
Outline

- General Informations
- Sequential Libraries
- Parallel Libraries and Application Systems:
 - Threaded Libraries
 - MPI parallel Libraries
 - Application Software
- Software for Materials Science
- Software for Computational Engineering
- Further Information
General Informations JUQUEEN

- All libraries as modules in `/bgsys/local/name`
- `module avail` lists names of available libraries
- `module avail name` lists available versions on `name`
- `module help name` tells how to use library
- `module load name` sets environment variables for
 `-L$(NAME_LIB)` and `-I$(NAME_INCLUDE)` to include in makefile
- Link sequence important, `.o` always before the libraries,
 sometimes double linking necessary
- Linking Fortran subroutines with the C linker needs
 `mpixlc_r name.c -L/opt/ibmcmp/xlf/bg/14.1/bglib64
 -lxlf90_r -lxlfmath -lm -lrt`
General Informations JURECA (I)

- `module spider name` shows whether a library is available in the current stage and in which versions.
- `module spider name/version` shows which environment you have to load before you can load that version.
- To check availability of other versions first say `module use /usr/local/software/jureca/OtherStages` after that `module spider name` shows all available versions of the software.
First you have to load a compiler,
\texttt{module load Intel} loads the current default intel compilers version 2017.2.174,

Then you load an MPI version
\texttt{module load ParaStationMPI} loads the single threaded version of ParaStation MPI version 5.1.9-1

\texttt{module load imkl} loads MKL 2017.2.174

\texttt{module load intel-para} still works and loads the current default intel compiler with ParaStationMPI and MKL
General Informations JURECA (III)

- after loading compiler and MPI module avail shows the software available with that environment
- module avail *name* and module help *name* also only work after loading a compiler and, if necessary MPI and imkl
- Many libraries available for more than one environment
- Write e-mail to sc@fz-juelich.de if you want special versions or new software
- `$EBROOT/NAME` is the root directory where the library is installed, for most libraries `$NAME_ROOT` is also set
- Linking Fortran subroutines with the C linker requires `-lifcore` `-lifport` in the link command
Sequential Libraries and Packages (I)

Vendor specific Libraries

JURECA

- MKL Intel® Math Kernel Library versions as mentioned in general informations, 2017.2.174 on JURECA

JUQUEEN

- ESSL (Engineering and Scientific Subroutine Library) version 5.1 in `/bgsys/local/lib`
Sequential Libraries and Packages (II)

Public domain Libraries
- LAPACK (Linear Algebra PACKage)
- ARPACK (Arnoldi PACKage)
- GSL (Gnu Scientific Library)
- GMP (Gnu Multiple Precision Arithmetic Library)

Commercial library
NAG Fortran Library: JUQUEEN and JURECA
Contents of Intel® MKL

- BLAS, Sparse BLAS, CBLAS
- LAPACK
- Iterative Sparse Solvers, Trust Region Solver
- Vector Math Library
- Vector Statistical Library
- Fourier Transform Functions
- Trigonometric Transform Functions
Contents of Intel® MKL

- GMP routines
- Poisson Library
- Interface for fftw

For more information see
Contents of ESSL Version 5.1

- BLAS level 1-3 and additional vector, matrix-vector, and matrix-matrix operations
- Sparse vector and matrix operations
- LAPACK computational routines for linear equation systems and eigensystems
- Banded linear system solvers
- Linear Least Squares
- Fast Fourier Transforms
Contents of ESSL Version 5.1 (II)

- Numerical Quadrature
- Random Number Generation
- Interpolation

For further information see
IBM Engineering and Scientific Subroutine Library for Linux on POWER V5.1:
Guide and Reference
Link to IBM documents Guide and Reference
Usage of MKL on JURECA (I)

- FORTRAN, C, and C++ callable
- Arrays FORTRAN like, i.e. column-first (except cblas)
- Compilation and linking of program name.f calling sequential MKL routines:
 ifort name.f -o name -lmkl_intel_lp64
 -lmkl_sequential -lmkl_core -liomp5 -lpthread
Usage of MKL on JURECA(II)

To use CBLAS include mkl.h into source code

Compilation and linking of program name.c calling sequential MKL

```
icc name.c -o name -lmkl_intel_lp64 -lmkl_sequential
lmkl_core -liomp5 -lpthread [-lifcore -lifport]
```
Usage of ESSL

- FORTRAN, C, and C++ callable,
- Arrays FORTRAN like, i.e. column-first
- Header file essl.h for C and C++
- Installed in /bg SYS/local/lib (not as module)
Usage of ESSL (II)

Compilation and linking of program name.f calling ESSL routines

mpixlf90_r name.f -L/bgsys/local/lib -lesslbg

Compilation and linking of program name.c calling ESSL routines

mpixlc_r name.c -I/opt/ibmmath/essl/5.1/include
-L/bgsys/local/lib -lesslbg
-L/opt/ibmcmp/xlf/bg/14.1/bglib64 -lxlf -lxlopt
-lxlf90_r -lxlfmath -lm -lrt
LAPACK (I)

- Part of MKL on JURECA in libmkl_core.a
- Part of OpenBLAS/0.2.19-LAPACK-3.7.0 on JURECA if GCC is loaded
- Public domain version 3.6.0 and 3.7.0 on JUQUEEN
- Must be used together with ESSL (or ESSLsmp)
- Some routines already in ESSL
- Attention, some calling sequences are different!
- Experimental LAPACK header file available for C-usage of lapack on JUQUEEN
- Experimental C-LAPACK, liblapacke.a (3.6.0 and 3.7.0) on JUQUEEN
LAPACK (II)

Compilation and linking of FORTRAN program name.f calling LAPACK routines

JURECA: (see usage of MKL),

JUQUEEN:

module load lapack/3.7.0[_g][_simd]
mpixlf90_r name.f -Wl,-allow-multiple-definition
-llapack -lessl[smp]bg

ESSL must be linked after LAPACK to resolve references, linking essl[smp] also before lapack takes lapack routines from essl
Arpack

- ARPACK, ARnoldi PACKage, Version 2.1 and arpack-ng/3.5.0 on JUQUEEN
- arpack-ng/3.4.0 on JURECA
- Iterative solver for sparse eigenvalue problems
- Reverse communication interface
- FORTRAN 77
- Calls LAPACK and BLAS routines
GSL – GNU Scientific Library

- Version 2.1 on JUQUEEN (xlc), 2.3 JURECA (gcc and icc)
- Provides a wide range of mathematical routines
- Not recommended for performance reasons
- Often used by configure scripts
- `module load gsl/2.1.strict[opt][g] JUQUEEN`
- `module load intel-para GSL/2.3`
 for icc version on JURECA
- `module load GCC ParaStationMPI/5.1.9-1 GSL/2.3`
 for gcc version on JURECA
NAG Libraries

- NAG Fortran Mark 22 on JUQUEEN: as module more than 1600 user-callable routines
- Mark 26 on JURECA only available with Intel compiler
- Please tell us if you really need it
MKL (JURECA)
is multi-threaded or at least thread-save
if OMP_NUM_THREADS not set, 48 threads used on JURECA
Usage:
ifort name.f -o name -lmkl_intel_lp64
-ilmkl_intel_thread -lmkl_core -liomp5 -lpthread
Parallel Libraries
Threaded Parallelism II

- ESSLsmp 5.1 (JUQUEEN)
 Usage: Fortran:
 `mpixlf90_r name.f -L/bgsys/local/lib -lesslsmpbg`
 C:
 `mpixlc_r name.c -L/bgsys/local/lib -lesslsmpbg`
 `-L/opt/ibmcmp/xlsmp/3.1/bglib64 -l xlsmp`
 `-I/opt/ibmmath/essl/5.1/include`
 `-L/opt/ibmcmp/xlf/bg/14.1/bglib64 -lxlf90_r -lxl`
 `-lxlfmath -lxlopt -lm -lrt -ldl`

- FFTW 3.3 (Fastest Fourier Transform of the West)
 Sequential, threaded, and OpenMP version on JUQUEEN
 3.3.6 on JURECA Intel compiler and GCC
 http://www.fftw.org
Parallel Libraries

MPI Parallelism

- ScaLAPACK (Scalable Linear Algebra PACKage)
- ELPA (Eigenvalue Solvers for Petaflop-Applications)
- Elemental, C++ framework for parallel dense linear algebra
- FFTW (Fastest Fourier Transform of the West)
- MUMPS (MUltifrontal Massively Parallel sparse direct Solver)
- ParMETIS (Parallel Graph Partitioning)
- hypre (high performance preconditioners)
MPI Parallelism (II)

- PARPACK (Parallel ARPACK), Eigensolver
- SPRNG (Scalable Parallel Random Number Generator)
- SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equation Solvers)

Parallel Systems, MPI Parallelism

- PETSc, toolkit for partial differential equations
ScaLAPACK

JURECA: part of MKL with Intel compiler, ScaLAPACK/2.0.2-OpenBLAS-0.2.19-LAPACK-3.7.0 with GCC

JUQUEEN: ScaLAPACK Release 2.0.2, contains already BLACS

- FORTRAN, also C-Interface, scalapack.h incomplete
- LAPACK has to be linked, too, $LAPACK_DIR$ set when loading scalapack

- http://www.netlib.org/scalapack/index.html
Contents of ScaLAPACK

- Parallel BLAS 1-3, PBLAS Version 2
- Dense linear system solvers
- Banded linear system solvers
- Solvers for Linear Least Squares Problem
- Singular value decomposition
- Eigenvalues and eigenvectors of dense symmetric/hermitian matrices
Usage on JURECA

Linking a program name.f calling routines from ScaLAPACK, default version, Intel compiler:

```bash
mpif77 name.f -lmkl_scalapack_lp64
-lmkl_blacs_intelmpi_lp64 -lmkl_intel_lp64
-lmkl_intel_thread [-lmkl_sequential]
-lmkl_core -liomp5 -lpthread
```
Compilation and linking of a program name.f calling ScaLAPACK routines:
module load scalapack/2.0.2[_g][_simd]
mpixlf90_r name.f -L$SCALAPACK_LIB -lscalapack -L$LAPACK_LIB -llapack -L/bgsys/local/lib -lessl[smp]bg
ELPA Eigenvalue Solvers for Petaflop-Applications

ELPA uses ScALAPACK, must be linked together with scalapack

- FORTRAN 95, same data-distribution as ScALAPACK
- JUQUEEN pure MPI and hybrid version 2015.11.001 and 2016.05.003
- JURECA pure MPI and hybrid version 2016.05.004
Elemental

- C++ framework, two-dimensional data distribution element by element
- http://libelemental.org/about/
- 0.87.7 on JURECA, hybrid version
- 0.85 on JUQUEEN only available with CLANG compiler, pure MPI version
MUMPS: Multifrontal Massively Parallel sparse direct Solver

- Solution of linear systems with symmetric positive definite matrices, general symmetric matrices, general unsymmetric matrices
- Real or Complex
- Parallel factorization and solve phase, iterative refinement and backward error analysis
- F90 with MPI and OpenMP since 5.1.1
- Version 5.0.0 and 5.1.1 on JUQUEEN, version 5.1.1 on JURECA
- http://graal.ens-lyon.fr/MUMPS/
ParMETIS

Parallel Graph Partitioning and Fill-reducing Matrix Ordering
developed in Karypis Lab at the University of Minnesota
Version 3.2.0 and 4.0.3 on JUQUEEN, 4.0.3 on JURECA
http: //glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

Hypre

High performance preconditioners
Version 2.11.2 on JURECA, also version with bigint,
2.9.0b, 2.10.1, and 2.11.1 also version with bigint, on JUQUEEN,
bigint cannot be used together with essl
FFTW

- Version 2.1.5, this old version contains an old MPI-parallel version of FFTW on JUQUEEN (module avail fftw2)
- Version 3.3.2 and 3.3.3 on JUQUEEN, 3.3.6 on JURECA, (Intel and GCC modules) all with MPI parallel version
 On JUQUEEN ask module avail fftw3
PARPACK

- ARPACK Version 2.1 and arpack-ng/3.5.0 JUQUEEN
- arpack-ng/3.4.0 on JURECA
- PARPACK MPI-Version
- Must be linked with LAPACK and BLAS
- Reverse communication interface, user has to supply parallel matrix-vector multiplication

https://github.com/opencollab/arpack-ng
http://www.caam.rice.edu/~kristyn/parpack_home.html
SPRNG

The Scalable Parallel Random Number Generators Library for ASCI Monte Carlo Computations
Version 2.0 [JUQUEEN] and 5.0 [JURECA]:
various random number generators in one library
Version 1.0 seperate library for each random number generator,
on JUQUEEN and JURECA
http://sprng.cs.fsu.edu/

Sundials (CVODE)

Package for the solution of ordinary differential equations,
Version 2.6.2 on JUQUEEN and 2.7.0 JURECA
https://computation.llnl.gov/casc/sundials/main.html
PETSc

- Portable, Extensible Toolkit for Scientific Computation
- Numerical solution of partial differential equations
- version 3.7.3 on JUQUEEN and 3.7.6 on JURECA
- with several other packages included on both systems
- complex version and version with 8-Byte integer
- http://www.mcs.anl.gov/petsc/
- JUQUEEN:
 - module avail petsc
 - module help petsc/[whatever version you want]
- JURECA:
 - module spider petsc
Software for Materials Science

<table>
<thead>
<tr>
<th>Package</th>
<th>JUQUEEN</th>
<th>JURECA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abinit</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>ADF</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Amber</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>CP2K</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>CPMD</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Gromacs</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>LAMMPS</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Molpro</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>NAMD</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>NWChem</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>QuantumEspresso</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>TURBOMOLE</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Software for Computational Engineering

- CFD Package **OpenFOAM** is installed on
 - **JUQUEEN** Versions 2.1.1
 - **JURECA** Versions 2.0.1, 2.2.2, 2.3.1, 2.4.0, 3.0.0, and OpenFOAM-Extend 3.1 and 3.2, only in older stages up to now

- Commercial **FEM Software**
 - **ANSYS, LS-DYNA**, **COMSOL** are technically maintained on **JURECA**
 - **Licenses** must be provided by the **User**!
Further information and JSC-people

http://www.fz-juelich.de/ias/jsc/jureca
http://www.fz-juelich.de/ias/jsc/juqueen
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/_node.html

Mailto
Supercomputer support:
sc@fz-juelich.de
I. Gutheil: Parallel mathematical Libraries
i.gutheil@fz-juelich.de
B. Körfgen: Physics and Engineering software
b.koerfgen@fz-juelich.de