JUQUEEN:
Blue Gene/Q - Overview

M. Stephan, J. Docter
Outline

- Blue Gene/Q hardware design
 - Processor
 - Network
 - I/O architecture
- Jülich Blue Gene/Q configuration (JUQUEEN)
- Blue Gene/Q software overview
 - Programming model
 - Blue Gene/Q software stack
- Data Storage - JUST Fileserver
Blue Gene/Q – Hardware
Blue Gene design goals

- System-on-Chip (SoC) design
 - *Processor comprises both processing cores and network*
- Optimal performance / watt ratio
- Small foot print
- Transparent high-speed reliable network
- Easy programming based on standard message passing interface (MPI)
- Extreme scalability (>1.5 mi cores)
- High reliability of all components
Blue Gene/Q

- Development: 2007-2012
- PowerPC® A2 core, 16 core/64 thread SoC, 1.6 GHz
- Memory: 16 GB/node
- Speculative execution, sophisticated L1 prefetch, transactional memory, fast thread handoff, compute + IO systems
- Biggest installed system (LLNL):
 - 96 racks
Blue Gene/Q design

3. Compute Card ("Node"):
One BQC Module (1x1x1x1x1),
16 GB DDR3 Memory

4. Node Card ("Node Board"):
32 Compute Cards (2x2x2x2x2),
Optical Modules, BQL Link Chips,
Torus

2. Module
Single Chip

5a. Midplane:
16 Node Cards (4x4x4x4x2)

5b. I/O drawer (1, 2 or 4 per rack):
* 8 I/O cards @ 16 GB,
* 8 PCIe gen2 x8 slots (IB, 10GbE)

6. Rack: 2 Midplanes (4x4x4x8x2)
1, 2 or 4 I/O Drawer

7. System:
e.g. 8 racks (8x8x8x8x2) = 1.7 PF/s
e.g. 28 racks (8x28x8x8x2) = 5.9 PF/s
e.g. 96 racks (16x12x16x16x2) = 20 PF/s
Blue Gene/Q node card

- Fiber-Optic Ribbons (36X, 12 Fibers each)
- Compute Card with One Node (32X)
- Water Hoses
- 48-Fiber Connectors
- Redundant, Hot-Pluggable Power-Supply Assemblies

Source: IBM
Blue Gene/Q compute card

Source: Top500.org
Blue Gene/Q chip tomography

16+1+1 processing units
Two memory controller
L2 cache + crossbar switch
On-chip network

Source: IBM
Blue Gene/Q chip architecture

- 16+1 core SMP @ 1.6 GHz
 - each core is 4-way hardware threaded
 - 2-way concurrent issue
- Transactional memory and thread level speculation
- Quad floating point unit on each core (QXP)
 - 204.8 GF peak node
- 563 GB/s bisection bandwidth to shared L2
- 32 MB shared L2 cache
- 42.6 GB/s DDR3 bandwidth (1.333 GHz DDR3)
 - (2 channels, each with chip kill protection)
- 10 intra-rack inter-processor links (node to node)
 - each at 2.0 GB/s (5D-Torus)
- One I/O link at 2.0 GB/s
- 16 GB memory / node
- ~60 watts max chip power consumption
Blue Gene/Q: PowerPC A2 processor core

- Simple core
 - *designed for excellent power efficiency and small footprint*
- Embedded 64bit PowerPC compliant
- 4 SMT threads typically get a high level of utilization on shared resources
 - *full register set for every thread*
- 1.6 GHz @ 0.74V
- AXU port allows unique BG/Q floating point unit
- One AXU (FPU) and one other instruction issue per cycle
- In-order execution

Source: IBM
Quad floating Point eXtension unit (QPX)

- 4 double precision pipelines (64 bit):
 - scalar FPU
 - 4-wide FPU SIMD
 - 2-wide complex arithmetic SIMD
- 32 x 4 x 256 bit registers
- Instruction extensions to PowerISA
- 8 concurrent floating point ops (FMA) + load + store
- Permute instructions to reorganize vector data
- Supports a multitude of data alignments
- Peak performance 4 FMA / cycle
 - 12.8 GFlops @ 1.6 GHz
Execution Modes in BG/Q

- **64 MPI Tasks**
 - 1 Thread / Task
 - (256 MB / Task)
 - P0, T0, Px, T0, P63, T0

- **2,4,8,16,32 MPI Tasks**
 - 32,16,8,4,2 Threads
 - P0, T0, Py, T0, Px, T0

- **1 MPI Task**
 - 1-64 Threads / Task
 - (16 GB / Task)
 - P0, T0, T1, Px, T0, Tx, T63
Blue Gene/Q Chip: the 17th core

RAS Event handling and interrupt off-load
- Reduce OS noise and jitter
- Core-to-Core interrupts when necessary

Common IO Client Interface
- Asynchronous I/O completion hand-off
- Responsive CIO application control client

Application Agents: privileged application processing
- Messaging assist, e.g. MPI pacing thread
- Performance and trace helpers
Blue Gene/Q: Network Architecture

- 11 bi-directional chip-to-chip links
 - 2 GB/s bandwidth, about 40 ns latency
- 5-dimensional torus topology (ABCDE)
 - Dimension E limited to length 2
- Why d-dimensional torus with large d?
 - High bi-section bandwidth
 - Flexible partitioning in lower dimensions
- Deterministic / dynamic routing support
- Collective and barrier networks embedded in 5-D torus network
 - Floating point addition support in collective network
 - 11th port for auto-routing to IO fabric

Source: IBM
Blue Gene/Q 5D Torus Network

© 2009 IBM Corporation
Blue Gene/Q: Torus configuration

- BG/Q nodes form a 5D torus
 - Dimension labels: ABCDE T
 - Nodecard: 2x2x2x2 x2 (smallest partition)
 - Midplane: 4x4x4x4 x2 (512 compute nodes)
 Dimensions A-D are cabled to other midplanes
 - 5th dimension stays within the node card
 - 6th dimension is the CPU# within a node

- 28 rack configuration (JUQUEEN):
 - 7 rows, 4 columns
 - Torus size in midplanes: 2x7x2x2
 - Torus size in nodes: 8x28x8x8x2
Torus node to MPI mapping

- Block's physical network topology: 6 dimensional ABCDE T
 - local on each node; shared memory communication (fast); T=0 .. 63
 - A,B,C,D,E depend on size of block,
 e.g. $2 \times 2 \times 4 \times 4 \times 2$ for quarter midplane
- Processes need to be placed to minimize load on network links
 - take advantage of logical decomposition of work
 - take advantage of link in E direction: double bandwidth available
 - e.g. domain decomposition: find best match of physical and logical dimensions
- Three options to define mapping:
 - by permutation of physical dimensions (--mapping DCTEBA)
 - use MPIX_Cart_comm_create() (IBM extension to MPICH2)
 - by a file with a line for each process, specifying its physical position
 (--mapping <filename>)
Linktest: Blue Gene torus link bandwidth tester

- All-to-all ping-pong test (on a midplane)
- Bandwidth distribution
 - Intra-node communication
 - Communication via link E
 - Communication via link A, B, C, D
Blue Gene/Q: I/O Architecture

- **I/O Network to/from Compute rack**
 - 2 links (4GB/s in 4GB/s out) feed an I/O PCI-e port
 - Every node card has up to 4 ports (8 links)
 - Typical configurations
 - 8 ports (32GB/s/rack)
 - 16 ports (64 GB/s/rack)
 - 32 ports (128 GB/s/rack)
 - Extreme configuration 128 ports (512 GB/s/rack)

- **I/O Drawers**
 - 8 I/O nodes/drawer with 8 ports (16 links) to compute rack
 - 8 PCI-e gen2 x8 slots (32 GB/s aggregate)
 - 4 I/O drawers per compute rack
 - Optional installation of I/O drawers in external racks for extreme bandwidth configurations
JUQUEEN Configuration

28 Racks Blue Gene/Q
- 28,672 compute nodes (16 cores, 16 GB memory)
- 458,752 cores / >1.8 mi threads
- 5.88 PFlop/s peak performance
- 248 I/O nodes (10GigE) ← (1x32 + 27x8)
- 2.3 MW power consumption (10-80 kW per rack)

4 Frontend Nodes ([user login]) + 2 Service Nodes (administration)
- IBM p7 740, 8 cores (3.55 GHz), 128 GB memory
- local storage device DSC3700 (16 TB)
 - /bgsys + /dbhome (system, database, ...)
JUQUEEN Environment

BG/Q

BG Control-System

GPFS

Filesver JUST

Nexus Switches

Backup Service Node

Service Node

runjob

SSH

Load Leveler

JUQUEEN Environment

Fileserver JUST

BG/Q

BG Control-System

GPFS

Nexus Switches

Backup Service Node

Service Node

runjob

SSH

Load Leveler
JUQUEEN: Installation pictures
Blue Gene/Q – Software
Blue Gene/Q: MPI Implementation

• MPI-2.1 standard (http://www.mpi-forum.org/docs/docs.html)
• To support the Blue Gene/Q hardware, the following additions and modifications have been made to the MPICH2 software architecture:
 • A Blue Gene/Q driver has been added that implements the MPICH2 abstract device interface (ADI).
 • Optimized versions of the Cartesian functions exist (MPI_Dims_create(), MPI_Cart_create(), MPI_Cart_map())
 • MPIX functions create hardware-specific MPI extensions
Blue Gene/Q: PAMI
Parallel Active Message Interface

Application
- Converse/Charm++
- MPICH
- Global Arrays
- ARMCI
- UPC*
- Other Paradigms*

High-Level API

Low-Level API

PAMI API (C)
- pt2pt protocols
- collective protocols

Message Layer Core (C++)
- DMA Device
- Collective Device
- GI Device
- Shmem Device

SPI
communication layer

Network Hardware (DMA, Collective Network, Global Interrupt Network)
MPIX: Blue Gene/Q specific extensions to MPI

• int MPIX_Cart_comm_create (MPI_Comm *cart_comm)
 • *This function creates a six-dimensional (6D) Cartesian communicator that mimics the exact hardware on which it is run. The A, B, C, D, and E dimensions match those of the block hardware, while the T dimension is equivalent to the ranks per node argument to runjob.*

• Changing class-route usage at runtime
 • int MPIX_Comm_update(MPI_Comm comm, int optimize)

• Determining hardware properties
 • MPIX_Init_hw(MPIX_Hardware_t *hw);
 • int MPIX_Torus_ndims(int *numdimensions)
 • int MPIX_Rank2torus(int rank, int *coords)
 • int MPIX_Torus2rank(int *coords, int *rank)
Blue Gene/Q: System Calls

- Many (but not all) common Linux syscalls work on BG/Q (see *Application Development Redbook*)
- Support glibc 2.12.2
- Real-time signals support
- Low overhead syscalls
 - Only essential registers are saved and restored
- Pluggable File Systems
 - Allows CNK to support multiple file system behavior and types
 - Different simulator platforms have different capabilities
- Shared Memory
Blue Gene/Q: File I/O

Application

fscanf

libc

read

CNK

RDMA transfer

BG/Q ASIC

Compute Node

BG/Q internal I/O link

CIOD

read

Data

ION Linux

read

Data

GPFS

TCP/IP

BG/Q ASIC

I/O Node

External 10Gig Ethernet

JUST

File Server
Data Storage
JUST Fileserver
GPFS - General Parallel File Systems

- The user can store his datasets in different file systems:
 - $HOME
 - $WORK
 - $ARCH
- It is highly recommended to access files always with the help of these variables.
Jülich Storage Server JUST for all supercomputers (Q1/2016)

- 8 PB
 - $WORK
 - $DATA

- $HOME
 - 3 x 600 TB

- $ARCH
 - 2 x 600 TB

220 GB/sec

JUQUEEN
JURECA
JUROPA3
JUDAC
Jülich Data Access
TSM Server
Filesystems – $HOME

- Multiple filesystems: /homea, /homeb, /homec
- Daily backup
- For regularly used files and applications
- Smaller files which are used for the current computation
- Quota: 10 TB space
 4 million files per group
- List quota information for group, user [and co-workers] with `q_dataquota [-l]`
Filesystems – $WORK

- Fastest file system (> 150 GB/s)
- No backup
- Files will be deleted 90 days after the last usage
 (access time is not updated on $WORK for performance reasons)
- Quota: 30 TB and
 - 3 million files per group
- List quota information with `q_dataquota [-l]`
- For large files which are used or generated during the computation
- Relevant files should be copied to $HOME or $ARCH to get backed up
Filesystems – $ARCH

- Daily backup
- All files will be migrated to tape
- NOT available on the Blue Gene compute nodes
- Large, not recently used files
- No space quota, max. 2 million files per group
- Usage of TAR or ZIP archives is highly recommended!

E.g.: Restore with 100 MB/s but up to 90s per file opening

- $1 x 200 \text{ GB} \quad \rightarrow \quad 30\text{-}40 \text{ min}$
- $1000 \times 200 \text{ MB} \quad \rightarrow \quad 25 \text{ h}$
- $100000 \times 2 \text{ MB} \quad \rightarrow \quad 104 \text{ d (3.5 month)}$
Recommendations for $ARCH

- Don’t use `touch` to trigger recall of migrated data
 \(\rightarrow\) change of timestamp will force a new backup and a new migration even if data is used read only

- Use `tar`-archives to reorganize a lot of small files to avoid long access times

  ```bash
  tar -cvf $ARCH/<archive-filename> <filelist> …
  ```
Recommendations for $ARCH

- Don’t change the path of large archive entities by renaming or insertion/deletion of subdirectories → will produce high system overhead, because all data affected by change will be recalled, backed up and newly migrated

Don’t: \texttt{mv $ARCH/project $ARCH/project_old}

Might prevent backup of really new data in the entire file system and wastes system resources like CPU time, tape storage, and tape units.
Data Transfer - Hints

- Use JUDAC@fz-juelich.de for data transfer (Linux Server)

- Too many accesses (ssh or scp) within a short amount of time will be interpreted as intrusion and leads to automatic disabling the origin system at the FZJ firewall.

- To transfer multiple files in a single session use “scp –r”, which transfers a whole directory

 Example:

 `scp –r $HOME/project <myuserid>@<mysystem>:{mydir}`
Documentation

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
Documentation – User info

Support Addresses

- sc@fz-juelich.de
 application support
 (ticket is generated)

- bg-adm@fz-juelich.de
 system administrator

Questions?