Welcome to the Jülich Supercomputing Centre

N. Attig, D. Rohe
Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich
Schedule: Thursday, November 23

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
</table>
| 13:00 – 13:30 | Welcome and Introduction of JSC
 Norbert Attig (JSC) |
| 14:50 – 15:20 | Break |
| 15:20 – 16:00 | JURECA – Tuning for the platform – part I
 F. Robel (ParTec) |
| 16:00 – 16:30 | Using GPU accelerators on JURECA
 W. Homberg (JSC) |
| 16:30 – 17:30 | JURECA – Tuning for the platform – part II
 Heinrich Bockhorst (Intel) |
| 17:35 | Bus SB20 from Seecasino to Rurtalbahn and
 Aachen/Jülich |
Schedule: Friday, November 24 (morning)

08:45 – 10:00 HPC Software – Compiler and Tools
 M. Knobloch (JSC)

10:00 – 10:15 Break

10:15 – 10:45 HPC Software – Math Libs & Application Software
 I. Gutheil (JSC)

10:45 – 11:15 Remote Visualization – H. Zilken (JSC)

11:15 – 12:00 Uniform Resource Access at JSC
 UNICORE – B. Hagemeier (JSC)
 LLView – C. Karbach (JSC)

12:00 – 13:00 Lunch break
Schedule: Tuesday, May 23 (afternoon)

13:00 – 13:30 JURECA Booster – Intro, D. Krause (JSC)
13:30 – 14:45 JURECA Booster – Tuning and Tweaks
 Heinrich Bockhorst (Intel)
14:45 – 15:15 Break
15:15 – 16:30 Taming Wild Threads – Tips and Pitfalls in Hybrid
 Programming, Christoph Pospiech, Lenovo/IBM
16:30 End of Day 2

16:35 Bus 219 from Seecasino to Rurtalbahn
16:47 Bus SB 20 from Seecasino to Aachen/Jülich
Organisational Information

- List of participants -> after coffee break
- Slides of all talks are available after the course at
 - http://www.fz-juelich.de/jsc, English
 Expertise - Services - Documentation – Presentations
- WLAN access
 - Eduroam
 - Temporary access, forms will be handed out
- More workshops and conferences on JSC website:
 www.fz-juelich.de/ias/jsc/events
- Twitter: @fzj_jsc, @fzj_jscuser
Jülich Supercomputing Centre

Introduction

N. Attig
Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich
Jülich Supercomputing Centre

Supercomputer operation for:

- Centre – FZJ
- Region – RWTH Aachen University
- Germany – Gauss Centre for Supercomputing
 John von Neumann Institute for Computing
- Europe – PRACE, EU projects

Application support

- Unique support & research environment at JSC
- Peer review support and coordination

R&D work

- Methods and algorithms, computational science, performance analysis and tools
- Scientific Big Data Analytics with HPC
- Computer architectures, Co-Design
 Exascale Labs together with IBM, Intel, NVIDIA

Education and training
Access to Supercomputing Resources at Jülich

- Access to JURECA via
 - JARA-HPC Vergabegremium (VGG) and/or Kommission zur Vergabe von SC Ressourcen (VSR) (for FZJ and RWTH staff members only; JARA-HPC Partition)
 - John von Neumann Institute for Computing (NIC)

- Access to JUQUEEN via
 - JARA-HPC Vergabegremium (VGG) and/or Kommission zur Vergabe von SC Ressourcen (VSR) (for FZJ and RWTH staff members only; JARA-HPC Partition)
 - Gauss Centre for Supercomputing (GCS) (JUQUEEN CPU time proposals are evaluated by NIC)
 - European Research Infrastructure PRACE
 - Project Access: Biannual CfPs since June 2010
 - Call for preparatory access open, no closing dates
Gauss Centre for Supercomputing (GCS)

A German Success Story:

GCS is the leading Tier-0 HPC centre in Europe

- Alliance of the three German Tier-1 centres
- Jülich Supercomputing Centre (JSC)
- High Performance Computing Centre Stuttgart (HLRS)
- Leibniz Rechenzentrum (LRZ), Garching

Key Facts

- To date in sum more than 20 Petaflops (continuously expanding)
- 400 people for Operation, HPC-research, Services, Training
- Extensive know-how in key scientific fields
PRACE - Partnership for Advanced Computing in Europe
The European HPC e-infrastructure (ESFRI)

- 24 members, AISBL since 2010
- High Level Support Teams (HLST) at hosting member sites
- 7 supercomputers in 5 hosting countries, different architectures
- research and industrial access (open R&D) for all disciplines based on excellence in science, free of charge
- more than 60 Pflop/s
- up to 75 million node hours per year
Dual Hardware Strategy at FZJ ...

- IBM Power 4+ JUMP
 - 9 TFlops/s

- IBM Power 6 JUMP
 - 9 TFlops/s

- IBM Blue Gene/L JUBL
 - 45 TFlops/s

- IBM Blue Gene/P JUGENE
 - 1 PFlops/s

- IBM Blue Gene/Q JUQUEEN
 - 5.9 PFlops/s

- JURECA
 - 2.2 PFlop/s

- JURECA Booster
 - 5 PFlop/s

- JUROP A
 - 200 TFlops/s

- HPC-FF
 - 100 TFlops/s

- File Server
 - GPFS Lustre

- Hierarchical Storage Server

- General-Purpose Cluster

- Highly Scalable System
... and Evolution to Modular Supercomputer Architecture

- **GPU Module**
- **Cluster Module**
- **Many-core Booster**
- **Data Analytics Module**
- **Memory Module**
 - Neuro-morphic Device
 - Quantum Device

Storage Module:
- Disk
- Disk
- Disk
- Disk
JUQUEEN: Jülich’s Scalable Petaflop System

IBM Blue Gene/Q JUQUEEN

- IBM PowerPC® A2 1.6 GHz, 16 cores per node
- 28 racks, 458,752 cores
- 5,9 Petaflop/s peak
 5,0 Petaflop/s Linpack
- 448 TByte main memory
- connected to a Global Parallel File System (GPFS) with O(10) PByte online disk and O(50) PByte offline tape capacity
- 5D network
- Production start: Nov 5, 2012
JURECA: Jülich Research on Exascale Cluster Architectures

JURECA Cluster

- 2 Intel Haswell 12-core processors, 2.5 GHz, SMT, 128 GB main memory
- 1,884 compute nodes or 45,216 cores, thereof 75 nodes with 2 K80 NVIDIA graphics cards each and 12 nodes with 512 GB main memory and 2 K40 NVIDIA graphics cards each for visualisation
- 2.245 Petaflop/s peak (with K80 graphics cards) 1.425 Petaflop/s Linpack from CPUs (out of 1,693 Petaflop/s peak)
- 281 TByte memory
- Mellanox Infiniband EDR
- Connected to the GPFS file system on JUST
JURECA (II)

JURECA Booster

- Intel Xeon Knights Landing
- 1,640 compute nodes with 68 cores each
- 96 GiB memory per node
 plus 16 GiB MCDRAM high-bandwidth memory per node
- Shared login infrastructure with the cluster module
- Intel Omni-Path Architecture high-speed network
 with non-blocking fat tree topology
- 100+ GiB per second storage connection to JUST
- 5 Petaflop per second peak performance

JURECA Cluster & Booster: #29 worldwide (3.78 Petaflop/s Linpack)
Stakeholder‘s Compute Time Shares

80% of the available time is being granted!

FZJ obligations
FZJ projects
JARA-HPC (regional)
NIC (Germany)
GCS/NIC (Germany)
PRACE (Europe)
Research Field Usage 05/2017-04/2018

Leadership-Class System

- **JUQUEEN**
 - ca. 80 Projects
 - **Astrophysics**
 - **Biophysics**
 - **Chemistry**
 - **Earth & Environment**

General-Purpose Supercomputer

- **JURECA**
 - ca. 160 Projects
 - **Plasma Physics**
 - **Soft Matter**
 - **Fluid Dynamics**
 - **Elementary Particle Physics**
 - **Computer Science**
 - **Condensed Matter**
 - **Materials Science**

Granting periods

- 11/2017 – 10/2018
- 05/2017 – 04/2018
National and European User Groups

- Proposals for computer time accepted from Germany and Europe
- Peer review by international referees
- CPU time is granted by independent Scientific Councils
JUQUEEN Usage
JURECA Usage

Launch of JURECA, phase 1, 260 nodes: Jul 13, 2015
phase 2, 1,884 nodes: Nov 02, 2015
Support and Research Landscape at JSC

- Research Groups
- Communities
- Simulation Labs
- Cross-Sectional Teams
- Data Life Cycle Labs
- Exascale co-Design
- Facilities
Summary

- The Jülich Supercomputing Centre provides
 - Tier-0/1 HPC resources
 - high-end primary and domain-specific user support
 - …

...to German and European research groups working in the computational sciences and in engineering

- JSC expects to see
 - breakthrough science
 - parallel applications, using a substantial number of processors simultaneously
End of Presentation