

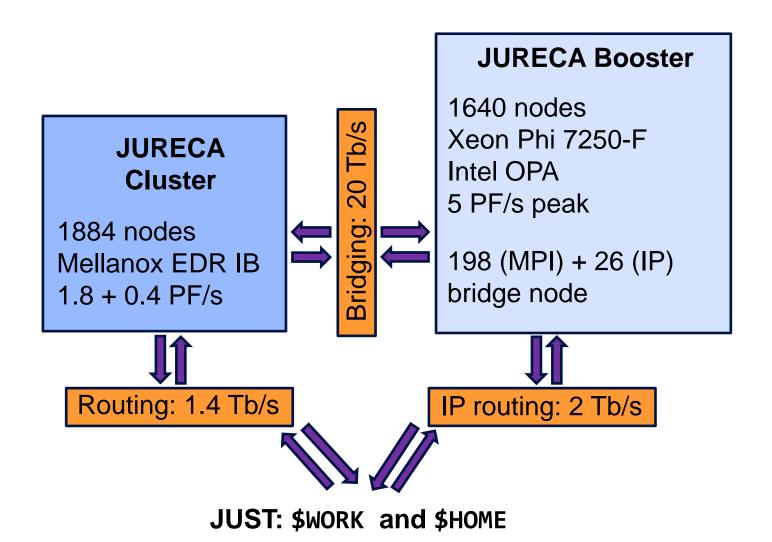
JURECA Booster Introduction

2017-11-24 | Dorian Krause

ber of the Helmholtz Association

JURECA Booster

JURECA Booster Hardware



- Extension of the JURECA (Jülich Research on Exascale Cluster Architecture)
 - Augments Cluster module with a highly-scalable component
- Designed for capability workloads
 - System integrators: Intel with Dell
- Compute time allocation
 - Primarily for scientists from Jülich and Aachen
 - Available for admissible researchers at German universities for a two-year interim period via NIC
- First implementation of a Modular Supercomputer at Petascale

mber of the Helmholtz Associa

JURECA Cluster-Booster Architecture

nber of the Helmholtz Associat

JURECA Booster Hardware

- Dell PowerEdge C6320P solution
 - Intel Xeon Phi "Knights Landing" 7250-F
 68 cores @ 1.4 GHz
 - 96 GiB main memory, 16 GiB MCDRAM
 - On-package Intel Omni-Path Architecture network interface
- 157 TiB main memory + 26 TiB MCDRAM
- Peak performance: 5 PF/s
- Intel Omni-Path Architecture network
 - 100 Gbps per link and direction
 - Full fat-tree topology
- Design for 200 GBps storage bandwidth

© Dell EMC

mber of the Helmholtz Associa

Intel Knights Landing Architecture

			1					1
	MCDRAM				MCDRAM			
3 DDR4 channels	EDC	EDC	PCle Gen 3		DMI	EDC	EDC	
								nnels
	DDR MC						DDR MC	3 DDR4 channels
								3 DDI
	EDC	EDC	misc		EDC	EDC		
	MCDRAM				MCDRAM			

- 36 tiles, 2-dim mesh
- tile = 2 cores +
 2 VPU/core +
 1 MB L2
- 4 threads per core
- AVX-512 ISA extension
- 16 GiB MCDRAM
 - High bandwidth
 - O(500) GB/s
- 6 DDR4 channels
 - O(100) GB/s

mber of the Helmholtz Associat

JURECA Booster 101

- Same login nodes and file systems as Cluster module ssh <user>@jureca.fz-juelich.de ssh <user>@jureca[01-12].fz-juelich.de
- Same file systems (\$HOME, \$WORK)
- Same system software environment as JURECA
 - CentOS 7.X
 - GNU, Intel Compiler
 - ParaStation MPI, Intel MPI
- One workload management system: Slurm/ParaStation
 - Separate partitions for Booster nodes
 - Similar to handling of e.g., GPU-equipped nodes

Application Software Environment (1/3) Upper July 100 Software Environment (1/3)

- The Booster has essentially the same software environment than JURECA
- Key differences:
 - Less software, due to its more specialized nature
 - Slightly different ISA (AVX-512): incompatible with Haswell nodes in most cases
 - Interactive sessions need extra care:
 - srun --pty --cpu_bind=none -mpi=none /bin/bash {-1|-i}
 - Test and compile partition will be provided
- To browse the Booster SW from the login nodes:
 - ml Architecture/KNL

Application Software Environment (2/3) ULIC FORSCHUNGSZEN

- Option 1: Compilation on KNL nodes
 - Get an interactive session on a Booster node, with -1 or -i
 - Will load the Booster SW environment
 - Set your flags correctly to enable AVX-512 (Intel: -xHost, GNU: -march=native)
- Option 2: Cross-compilation
 - Load the Architecture/KNL module
 - Set your flags correctly to enable AVX-512 (Intel: -xMIC-AVX512 GNU: -march=knl -mtune=knl)
 - Can fail if the build process requires to execute binaries compiled with these flags

Application Software Environment (3/3) JÜLICH FORSCHUNGSZENTRUM

- Job submission
 - Use booster partition (names will be published soon on the web page
 - Make sure you have the right environment for the job:
 - either when submitting the job (Architecture/KNL loaded)
 - or inside the job (load Architecture/KNL in the script submitted)

Booster Timeline

- General access for admissible users planned for End of November
 - Information about partitions will be published online
 - Initial support for different KNL NUMA (Quadrant, SNC-2) and MCDRAM (Flat, Cache, Hybrid50) modes planned for testing
- Initially weekly maintenances
- Support for heterogeneous Haswell and KNL jobs
 - Available at prototype-level
 - Targeting spring 2018 for release

Further Information

- JURECA (incl. Booster) motd: message of the day
 - Information about preventive and emergency maintenances
 - Information bout system configuration changes
- On-line documentation
 - http://www.fz-juelich.de/ias/jsc/jureca
- User support at FZJ
 - sc@fz-juelich.de
 - Phone: 02461 61-2828