
M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft
M

itg
lie

d
 d

er
 H

e
lm

h
o

ltz
-G

e
m

e
in

sc
h

a
ft

Batch Usage on JSC

Introduction to Slurm

May 2019 | Chrysovalantis Paschoulas <c.paschoulas@fz-juelich.de> | HPS group @ JSC

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Resource Manager is the software responsible for managing the resources of a cluster,
usually controlled by a scheduler.

➔ It manages resources like tasks, nodes, CPUs, memory, network, etc.

➔ It handles the execution of the jobs on the compute nodes.

➔ It makes sure that jobs are not overlapping on the resources.

Scheduler is the software that controls user's jobs on a cluster according to policies. It
receives and handles jobs from the users and controls the resource manager. It offers
many features like:

➔ Scheduling mechanisms (backfill, fifo, etc)

➔ Partitions, queues and QoS to control jobs according to policies/limits

➔ Interfaces for defining work-flows (jobscripts) or job dependencies and commands
for managing the jobs (submit, cancel, etc)

Batch-System/Workload-Manager is the combination of a scheduler and a resource
manager. It combines all the features of these two parts in an efficient way.

Batch System Concepts

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Job scheduling according to priorities. The jobs with the highest priorities will be
scheduled next.

Backfilling scheduling algorithm. The scheduler checks the queue and may schedule jobs
with lower priorities that can fit in the gap created by freeing resources for the next
highest priority jobs.

No node-sharing. The smallest allocation for jobs is one compute node. Running jobs do
not disturb each other.

CPU-Quota modes: monthly and fixed. The projects are charged on a monthly base or get
a fixed amount until it is completely used.

Accounted CPU-Quotas/job = Number-of-nodes x Walltime x cores/node (corehours)

Contingent/CPU-Quota states for the projects (for monthly mode): normal, low-
contingent, no-contingent.

Contingent priorities: normal > lowcont > nocont. Users without contingent get some
penalties for the their jobs, but they are still allowed to submit and run jobs.

JSC Batch Model

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Slurm is the chosen Batch System (Workload Manager) that is used on JURECA. Slurm is
an open-source project developed by SchedMD. For our clusters psslurm, which is a plug-
in of psid daemon and part of the Parastation Cluster tools, is replacing slurmd on the
compute nodes. psslurm is under development by ParTec and JSC in the context of our
collaboration.

Slurm's configuration on our clusters:

➔ High-availability for the main daemons slurmctld and slurmdbd.

➔ Backfilling scheduling algorithm.

➔ No node-sharing.

➔ Job scheduling according to priorities.

➔ Accounting mechanism: slurmdbd with MySQL/MariaDB database.

➔ User and job limits configured by QoS and Partitions.

➔ No preemption configured. Running jobs cannot be preempted.

➔ Prologue and Epilogue, with pshealthcheck from Parastation.

➔ Generic resources (GRES) for different types of resources on the nodes.

Slurm Introduction (1)

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Slurm groups the compute nodes into Partitions (similar to queues from Moab). Some limits
and policies can be configured for each Partition:

➔ allowed users, groups or accounts

➔ max. nodes and max. wall-time limit per job

Other limits are enforced also by the Quality-of-Services (QoS), according to the contingent of
user's group, e.g. max. wall-time limit, max number or queued or running jobs per user, etc...

Default limits/settings are used when not given by the users, like: number of nodes, number
of tasks per node, wall-time limit, etc.

According to group's contingent user jobs are given certain QoS:

normal: group has contingent, high job priorities.

lowcont: this months contingent was used.

 penalty -> lower job priorities, max. wall-time limit and max. running jobs

nocont: all contingent of the 3 months time-frame was used.

 penalty -> lowest job priorities, lower max. wall-time limit and max. jobs

suspended: the group's project has ended; user cannot submit jobs

Slurm Introduction (2)

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Slurm Architecture

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Slurm provides the functionality to define generic resources (GRES) for each node type. These
generic resources can be used during job submissions in order to allocate nodes with specific
resources or features. Users can request GRES with the “--gres” submission option.

On our clusters we have set 2 types of GRES:

Memory: e.g. mem96, mem128, mem256, mem512, mem1024, etc..

GPUs: gpu:[0-N]

We use GRES for 2 reasons:

Users can specify the resources they request during submission.

We keep track of those resources for accounting and statistics: GRES info are stored in Slurm
database.

Generic Resources

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

salloc is used to request interactive jobs/allocations.

sattach is used to attach standard input, output, and error plus signal capabilities to a
currently running job or job step.

sbatch is used to submit a batch script (which can be a bash, Perl or Python script).

scancel is used to cancel a pending or running job or job step.

sbcast is used to transfer a file to all nodes allocated for a job.

sgather is used to transfer a file from all allocated nodes to the currently active job. This
command can be used only inside a job script.

scontrol provides also some functionality for the users to manage jobs or query and
get some information about the system configuration.

sinfo is used to retrieve information about the partitions, reservations and node states.

smap graphically shows the state of the partitions and nodes using a curses interface. We
recommend llview as an alternative which is supported on all JSC machines.

Slurm – User Commands (1)

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

sprio can be used to query job priorities.

squeue allows to query the list of pending and running jobs.

srun is used to initiate job-steps mainly within a job or start an interactive jobs. A job can
contain multiple job steps executing sequentially or in parallel on independent or shared
nodes within the job's node allocation.

sshare is used to retrieve fair-share information for each user.

sstat allows to query status information about a running job.

sview is a graphical user interface to get state information for jobs, partitions, and
nodes.

sacct is used to retrieve accounting information about jobs and job steps in Slurm's
database.

sacctmgr allows also the users to query some information about their accounts and
other accounting information in Slurm's database.

* For more detailed info please check the online documentation and the man pages.

Slurm – User Commands (2)

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

There are 2 commands for job allocation: sbatch is used for batch jobs and salloc is used to allocate
resource for interactive jobs. The format of these commands:

sbatch [options] jobscript [args...]

salloc [options] [<command> [command args]]

List of the most important submission/allocation options:

 -A|--account Charge CPU-Quota to specified account (budget ID).

 -c|--cpus-per-task Number of logical CPUs (hardware threads) per task.

 -e|--error Path to the job's standard error.

 -i|--input Connect the jobscript’s standard input directly to a file.

 -J|--job-name Set the name of the job.

 --mail-user Define the mail address for notifications.

 --mail-type When to send mail notifications. Options: BEGIN,END,FAIL,ALL

 -N|--nodes Number of compute nodes used by the job.

 -n|--ntasks Number of tasks (MPI processes).

 --ntasks-per-node Number of tasks per compute node.

 -o|--output Path to the job's standard output.

 -p|--partition Partition to be used from the job.

 -t|--time Maximum wall-clock time of the job.

 --gres Request nodes with specific Generic Resources.

 --disable-turbomode Disable CPU turbo mode.

Slurm – Job Submission

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Slurm is using a submission filter with the following functionality*:

Deny jobs requesting multiple partitions, we allow only one.

Disable the --requeue options. We do not allow users to requeue their jobs.

Deny submission if budget account was not defined (with --account or -A).

By default add the memXXX GRESs when missing, users can always specify the memXXX GRES
if they want.

When a job is submitted in the partitions with GPUs then the submission is denied if no gpu
GRES was specified.

Deny jobs with wrong memXXX GRESs, e.g. job submitted to mem512 partition with GRES
mem128.

Examples:

Submit a job in the gpus partition requesting 4 GPUs per node:

sbatch -N 2 -p gpus -A <budgetID> --gres=gpu:4 <job-script>

Submit a job in the mem512 partition:

sbatch -N 4 -p mem512 -A <budgetID> --gres=mem512 <job-script>

Slurm - Submission filter and GRES

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

With srun the users can spawn any kind of application, process or task inside a job
allocation. srun should be used either:

1. Inside a job script submitted by sbatch (starts a job-step).

2. After calling salloc (execute programs interactively).

Command format:

srun [options...] executable [args...]

srun accepts almost all allocation options of sbatch and salloc. There are however
some other unique options:

--forward-x Enable X11 forwarding only for interactive jobs.

--pty Execute a task in pseudo terminal mode.

--multiprog <file> Run different programs with different arguments
 for each task specified in a text file.

Note: In order to spawn the MPI applications, the users should always use srun and not mpiexec.

Slurm – Spawning Command

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Instead of passing options to sbatch from the command-line, it is better to specify these
options using the “#SBATCH” directives inside the job scripts which must be positioned in
the very beginning of the job-script!

Here is a simple example where some system commands are executed inside the job
script. This job will have the name “TestJob”. One compute node will be allocated for 30
minutes. Output will be written in the defined files. The job will run in the default partition
batch.

Job-Script – Serial Job

#!/bin/bash

#SBATCH -J TestJob
#SBATCH -N 1
#SBATCH -o TestJob-%j.out
#SBATCH -e TestJob-%j.err
#SBATCH --time=30
#SBATCH -A <budgetID>

sleep 5

hostname

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Here is a simple example of a job script where we allocate 4 compute nodes for 1 hour.
Inside the job script, with the srun command we request to execute on 4 nodes with 2
process per node the system command hostname, requesting a walltime of 10 minutes.
In order to start a parallel job, users have to use the srun command that will spawn
processes on the allocated compute nodes of the job.

Job-Script – Tasks in Parallel

#!/bin/bash

#SBATCH -J TestJob
#SBATCH -N 4
#SBATCH -o TestJob-%j.out
#SBATCH -e TestJob-%j.err
#SBATCH --time=10
#SBATCH -A <budgetID>

srun --ntasks-per-node=2 hostname

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

In this example the job will execute an OpenMP application named “omp-prog”. The
allocation is for 1 node and by default, since there is no node-sharing, all CPUs of the
node are available for the application. The output filenames are also defined and a
walltime of 2 hours is requested. Note: It is important to define and export the variable
OMP_NUM_THREADS that will be used by the executable.

Job-Script – OpenMP Job

#!/bin/bash

#SBATCH -J TestOMP
#SBATCH -N 1
#SBATCH -o TestOMP-%j.out
#SBATCH -e TestOMP-%j.err
#SBATCH --time=02:00:00
#SBATCH -A <budgetID>

export OMP_NUM_THREADS=48

/home/user/test/omp-prog

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

In the following example, an MPI application will start 204 tasks on 3 nodes running 68
tasks per node requesting a wall-time limit of 45 minutes in booster partition. Each MPI
task will run on a separate core of the CPU. Users can change the modules also inside the
jobscript.

Job-Script – MPI Job

#!/bin/bash

#SBATCH --nodes=3
#SBATCH --ntasks=204
#SBATCH --output=mpi-out.%j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:45:00
#SBATCH --partition=booster
#SBATCH -A <budgetID>

module purge
module load Architecture/KNL
module load Intel ParaStationMPI

srun ./mpi-prog # implied --ntasks-per-node=68

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

In this example, a hybrid MPI/OpenMP job is presented. This job will allocate 5 compute
nodes for 2 hours. The job will have 30 MPI tasks in total, 6 tasks per node and 4 OpenMP
threads per task. On each node 24 cores will be used (no SMT enabled). Note: It is
important to define the environment variable “OMP_NUM_THREADS” and this must match
with the value of the option “--cpus-per-task/-c”.

Job-Script – Hybrid Job

#!/bin/bash

#SBATCH -J TestJob
#SBATCH -N 5
#SBATCH -o TestJob-%j.out
#SBATCH -e TestJob-%j.err
#SBATCH --time= 02:00:00
#SBATCH --partition=large
#SBATCH -A <budgetID>

export OMP_NUM_THREADS=4

srun -N 5 --ntasks-per-node=6 --cpus-per-task=4 ./hybrid-prog

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

The CPUs on our clusters support Simultaneous Multi-Threading(SMT). SMT is enabled by
default for Slurm. In order to use SMT, the users must either allocate more than half of
the Logical Cores on each Socket or by setting some specific CPU-Binding(Affinity)
options.

This example presents a hybrid application which will execute “hybrid-prog” on 3 nodes
using 2 MPI tasks per node and 24 OpenMP threads per task (48 CPUs per node).

Job-Script – Hybrid Job with SMT

#!/bin/bash

#SBATCH --nodes=3
#SBATCH --ntasks-per-node=2
#SBATCH --cpus-per-task=24
#SBATCH --output=mpi-out.%j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:20:00
#SBATCH --partition=batch
#SBATCH -A <budgetID>

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}
srun ./hybrid-prog

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Slurm introduces the concept of job-steps. A job-step can be viewed as a smaller job or
allocation inside the current allocation. Job-steps can be started only with the srun
command.

The following example shows the usage of job-steps. With sbatch we allocate 32 compute nodes for
6 hours. Then we spawn 3 job-steps. The first step will run on 16 compute nodes for 50 minutes,
the second step on 2 nodes for 10 minutes and the third step will use all 32 allocated nodes for 5
hours.

Job-Script – Multiple Job-Steps

#!/bin/bash
#SBATCH -N 32 -t 06:00:00 -p batch -A <budgetID>

srun -N 16 -n 32 -t 00:50:00 ./mpi-prog1
srun -N 2 -n 4 -t 00:10:00 ./mpi-prog2
srun -N 32 --ntasks-per-node=2 -t 05:00:00 ./mpi-prog3

To run multiple job-steps in parallel put the srun commands in background and call wait:

#!/bin/bash
#SBATCH -N 10 -t 05:00:00 -p batch -A <budgetID>

srun -N 2 --ntasks-per-node=24 ./mpi-prog1 &
srun -N 8 --ntasks-per-node=2 ./mpi-prog2 &
wait

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Slurm supports dependency chains which are collections of batch jobs with defined
dependencies. Job dependencies can be defined using the “--dependency” or “-d”
option of sbatch. The format is:

sbatch -d <type>:<jobID> <jobscript>

Available dependency types: afterany, afternotok, afterok, ...

Below is an example of a bash script for starting a chain of jobs. The script submits a chain
of “$NO_OF_JOBS”. Each job will start only after successful completion of its predecessor.

Job Dependencies & Job-Chains

#!/bin/bash

NO_OF_JOBS=<no-of-jobs>
JOB_SCRIPT=<jobscript-name>

JOBID=$(sbatch ${JOB_SCRIPT} 2>&1 | awk '{print $(NF)}')

I=0
while [${I} -le ${NO_OF_JOBS}]; do
 JOBID=$(sbatch -d afterok:${JOBID} ${JOB_SCRIPT} 2>&1 | awk '{print
$(NF)}')
 let I=${I}+1
done

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Slurm supports job-arrays which can be defined using the option “-a” or “--array” of
sbatch command. To address a job-array, Slurm provides a base array ID and an array
index for each job. The syntax for specifying an array-job is: --array=<range of
indices>

Slurm exports also 2 env. variables that can be used in the job scripts:

SLURM_ARRAY_JOB_ID : base array job ID

SLURM_ARRAY_TASK_ID : array index

Some additional options are available to specify the std-in/-out/-err file names in the job
scripts: “%A” will be replaced by SLURM_ARRAY_JOB_ID and “%a” will be replaced by
SLURM_ARRAY_TASK_ID.

Job Arrays

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --output=prog-%A_%a.out
#SBATCH --error=prog-%A_%a.err
#SBATCH --time=02:00:00
#SBATCH --array=1-20
#SBATCH -A <budgetID>

srun -N 1 --ntasks-per-node=1 ./prog input_${SLURM_ARRAY_TASK_ID}.txt

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Since version 17.11 Slurm supports heterogeneous jobs which are jobs using different kind
of resources with their own submission options. Some of the main features:

Internally, the Job Packs are co-scheduled jobs.

It allows parallel (MPI) applications to be spawned on heterogeneous resources using
multiple binaries (in the same MPI_COMM_WORLD!!!).

More flexible allocations: like resources from different partitions for a job/worklfow
and different submission options (tasks/node, cpus/task, etc).

Scheduling is affected:

Jobs are scheduled only when the resources required by all jobs in the pack are
available at the same time.

Only the backfill scheduler will allocate resources.

Limits of all job components considered before trying to start any component.

Standard format for JobIDs of heterogeneous jobs:

<PackJobID>+<PackJobOffset>

New Slurm env vars are exported with suffix “PACK_GROUP_#”, e.g.:

SLURM_JOB_ID_PACK_GROUP_<offset>, SLURM_JOB_NODELIST_PACK_GROUP_<offset>.
etc..

Heterogeneous Jobs - Job Packs (1)

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Submission commands:

Multiple independent job specifications identified in command line using the “:” separator, e.g.:

salloc -N 2 -p gpus : -N 16 -p batch

The job specifications are sent to slurmctld daemon as a list in a single RPC.

The entire request is validated and accepted or rejected.

Job scripts:

Use “#SBATCH packjob” between the other “#SBATCH” options in jobscript to separate job
packs and their groups of resources.

With srun and the “:” format you can spawn jobsteps using heterogeneous resources. With the
srun’s option “--pack-group” you can define which pack-group (=job in the pack) of
resources will be used for the jobsteps, an example of a jobscript:

Heterogeneous Jobs - Job Packs (2)

#!/bin/bash
#SBATCH -N 32 --ntasks-per-node=8 -p batch
#SBATCH packjob
#SBATCH -N 1 --ntasks-per-node=1 -p batch
#SBATCH packjob
#SBATCH -N 16 –gres=gpu:4 –ntasks-per-node=4 -p gpus

srun --pack-group=1 exec1 : --pack-group=0 exec1 : --pack-group=2 exec2

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Interactive jobs:

Heterogeneous Jobs - Job Packs (3)

$ salloc -N2 -p batch : -N2 --gres=gpu:4 -p gpus -t 01:00:00

$ srun --pack-group=1 -N2 –gres=gpu:4 -t 00:05:00 cuda_exec
$ srun ...

In queue:
$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 55271+0 batch bash paschoul PD 0:00 2 (BeginTime)
 55271+1 booster bash paschoul PD 0:00 2 (BeginTime)

Manage/address heterogeneous jobs using the “+”:

$ scontrol show job 55271 → Show all jobs in the pack.
$ scontrol show job 55271+0 → Show first job in pack.
$ scontrol show job 55271+1 → Show second job in pack.

Accounting:

$ sacct -j 55271
 JobID JobName Partition Account AllocCPUS State ExitCode
------------ ---------- ---------- ---------- ---------- ---------- --------
55271+0 bash cluster zam 64 RUNNING 0:0
55271+0.0 hostname zam 2 COMPLETED 0:0
55271+0.1 hostname zam 2 COMPLETED 0:0
...

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Interactive sessions can be allocated using the salloc command. The following command
will allocate 2 nodes for 30 minutes:

salloc --nodes=2 -t 00:30:00

After a successful allocation, salloc will start a shell on the login node where the
submission happened. After the allocation the users can execute srun in order to spawn
interactively their applications on the compute nodes. For example:

srun -N 4 --ntasks-per-node=2 -t 00:10:00 ./mpi-prog

The interactive session is terminated by exiting the shell. It is possible to obtain a remote
shell on the compute nodes, after salloc, by running srun with the pseudo-terminal “--
pty” option and a shell as argument:

srun --cpu_bind=none -N 2 --pty /bin/bash

It is also possible to start an interactive job and get a remote shell on the compute nodes
with srun (not recommended without salloc):

srun --cpu_bind=none -N 1 -n 1 -t 01:00:00 --pty /bin/bash -i

Interactive Jobs

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Updated status of the systems:

 See „Message of the day“ at login.

Get recent status updates by subscribing to the system high-messages:

http://juelich.de/jsc/CompServ/services/high_msg.htmlhttp://juelich.de/jsc/CompServ/services/high_msg.html

Check the online documentation of each system.

User support at FZJ:

Email: sc@fz-juelich.de

Phone: +49 2461 61-2828

Further Information

M
itg

lie
d

 d
er

 H
e

lm
h

o
ltz

-G
e

m
e

in
sc

h
a

ft

Questions?

	Slide 1
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 11
	Slide 14
	Slide 15
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 38

