Mathematical Libraries and Application Software on JURECA, Booster, and JUWELS JSC Training Course

May 2019 | I.Gutheil, D.Alvarez | JSC

Outline

- Navigating modules
- Compiling for the Booster
- Sequential Libraries
- Parallel Libraries and Application Systems:
 - Threaded Libraries
 - MPI parallel Libraries
 - Application Software
- Software for Materials Science
- Software for Computational Engineering
- Further Information

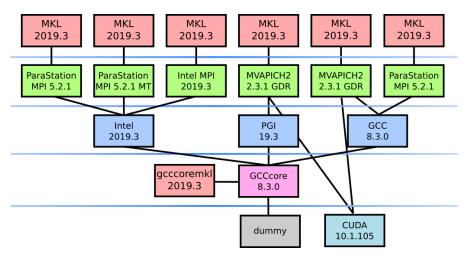


Figure: Current toolchain tree in JURECA and JUWELS

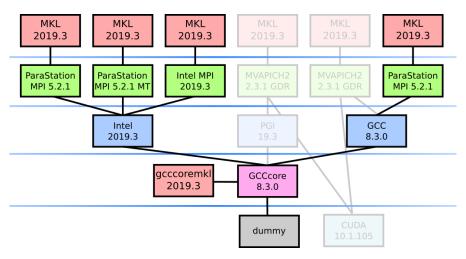


Figure: Current toolchain tree in Booster

Hierarchical modules

- GCCcore/.8.3.0 is preloaded, which enables a lot of base software
- For HPC software you have to load a compiler, to expand the module tree
 ml Intel
- Then you load an MPI version
 ml ParaStationMPI
 Default version is 5.2.2-1 (ie: MPI_THREAD_MULTIPLE is not supported, to get it you need 5.2.2-1-mt)
- Then you can load any other packages, for example ml QuantumESPRESSO/6.4.1

- After loading compiler and MPI ml avail shows the software available with that combination
- ml avail name and ml help name will show you details about the name package
- Many libraries are available for more than one combination/toolchain
- Write e-mail to sc@fz-juelich.de if you want special versions or new software
 - No guarantee the software will be installed
- \$EBROOTNAME is the root directory where the library is installed

- ml spider name shows whether a library is available in the current stage and in which versions
- ml spider name/version shows which environment you have to load before you can load that version

Many packages are hidden. To see them use
 ml --show-hidden spider name

- For R, Python and Perl we use bundles
 - You might be looking for a software package that is part of a bigger module
- Use ml key software ml key numpy will suggest SciPy-Stack
- You can use then ml spider to find out how to load the module

Stages

- The whole software stack in JURECA, the Booster, and JUWELS is updated every 6 months
 - Right when there is an allocation for new projects
- Old stages are still accessible
- To check availability in other stages first type JURECA:

```
ml use /usr/local/software/jureca/OtherStages
```

Booster:

ml use /usr/local/software/jurecabooster/OtherStages

JUWELS:

ml use /gpfs/software/juwels/otherstages

Compiling for the Booster (I)

- Cross-compilation on login nodes not recommended but technically possible
- ml Architecture/KNL
 - This should be the first module you load
 - Then you have the booster software stack available.
 - This doesn't work on the cluster compute nodes!

 Remember, cross-compiling is not recommended unless you know what you are doing

Compiling for the Booster (II)

Recommended way to compile for the Booster

- Start an interactive session, by salloc --partition=develbooster
- After the allocation is successful start a remote shell from within the salloc session and connect it to a pseudo terminal using srun --cpu_bind=none --nodes=1 --pty /bin/bash -i Architecture is switched to KNL automatically then

In batch scripts add
 module load Architecture/KNL
 before all other module commands

Sequential Libraries and Packages (I)

Remember that with intel compilers if you want to link Fortran subroutines with the C linker you need to add -lifcore -lifport

Vendor specific Libraries

 MKL Intel® Math Kernel Library versions as mentioned in general informations, 2019.3.199 on JURECA, Booster, and JUWELS

For more information see

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SystemDependentLibraries/MKL.html?nn=1035570

Sequential Libraries and Packages (II)

Public domain Libraries

- LAPACK (Linear Algebra PACKage)
- ARPACK (Arnoldi PACKage)
- GSL (Gnu Scientific Library)
- GMP (Gnu Multiple Precision Arithmetic Library)

Commercial library

NAG Fortran and C Library: JURECA Intel compiler only

Contents of Intel® MKL

- BLAS, Sparse BLAS, CBLAS
- LAPACK
- Iterative Sparse Solvers, Trust Region Solver
- Vector Math Library
- Vector Statistical Library
- Fourier Transform Functions
- Trigonometric Transform Functions

Contents of Intel® MKL

- GMP routines
- Poisson Library
- Interface for fftw

For more information see http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SystemDependentLibraries/SystemDependentLibraries/MKL.html?nn=1035570

Usage of MKL (I)

- Can be loaded with Intel compiler or GCC
- MPI has to be loaded before imkl
- FORTRAN, C, and C++ callable
- Arrays FORTRAN like, i.e. column-first (except cblas)
- Compilation and linking of program name.f calling sequential MKL routines:

```
ifort name.f -o name -lmkl_intel_lp64 -lmkl_sequential
-lmkl_core [-liomp5 -lpthread]
```

Usage of MKL (II)

To use CBLAS include mkl.h into source code

```
Compilation and linking of program name.c calling sequential MKL icc name.c -o name -lmkl_intel_lp64 -lmkl_sequential -lmkl_core [-liomp5 -lpthread -lifcore -lifport]
```

For flags to compile with other compilers (PGI, GCC) or multithreaded versions take a look at:

```
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
```


LAPACK

- Part of MKL in libmkl_core.a
- Can be loaded with Intel or GCC on JURECA, Booster, and JUWELS
- In older Stages also part of OpenBLAS with GCC (JURECA only)

Arpack

- ARPACK-NG/3.7.0
- Iterative solver for sparse eigenvalue problems
- Reverse communication interface
- FORTRAN 77
- Calls LAPACK and BLAS routines, MKL necessary

GSL – GNU Scientific Library

- module load Intel GSL/2.5 for icc version on JURECA and JUWELS
- module load GCC/8.3.0 GSL/2.5 for gcc version on JURECA and JUWELS
- Provides a wide range of mathematical routines
- Not recommended for performance reasons
- Often used by configure scripts

GMP- GNU Multiple Precision Library

version 6.1.2 on JURECA

NAG Libraries

- NAG Fortran Mark 26 and NAGC Mark 26 on JURECA only available with Intel compiler
- Please tell us if you really need it

Parallel Libraries

Threaded Parallelism I

MKL

```
is multi-threaded when linked with

-lmkl_[intel,gnu,pgi]_threaded

if OMP_NUM_THREADS is not set,

48 threads used on JURECA

68 threads on Booster

96 threads on JEWELS (80 in accelerated nodes)

Usage:
```

```
ifort name.f -o name -lmkl_intel_lp64
-lmkl_intel_thread -lmkl_core -liomp5 -lpthread
```

FFTW 3.3.8 (Fastest Fourier Transform of the West)
 MPI, OpenMP and threads version
 http://www.fftw.org

Parallel Libraries

MPI Parallelism

- ScaLAPACK (Scalable Linear Algebra PACKage)
- ELPA (Eigenvalue SoLvers for Petaflop-Applications)
- Elemental, C++ framework for parallel dense linear algebra
- FFTW (Fastest Fourier Transform of the West)
- MUMPS (Multifrontal Massively Parallel sparse direct Solver)
- ParMETIS (Parallel Graph Partitioning)
- Hypre (high performance preconditioners)

MPI Parallelism (II)

- PARPACK (Parallel ARPACK), Eigensolver
- SPRNG (Scalable Parallel Random Number Generator)
- SUNDIALS (SUite of Nonlinear and Differential/ALgebraic equation Solvers)

Parallel Systems, MPI Parallelism

PETSc, toolkit for partial differential equations

ScaLAPACK

- part of MKL,
- Parallel BLAS 1-3, PBLAS Version 2
- Dense linear system solvers
- Banded linear system solvers
- Solvers for Linear Least Squares Problem
- Singular value decomposition
- Eigenvalues and eigenvectors of dense symmetric/hermitian matrices
- http://www.netlib.org/scalapack/index.html

Usage of ScaLAPACK

Linking a program name.f calling routines from ScaLAPACK, default version, Intel compiler:

```
{\tt mpif77\ name.f\ -lmkl\_scalapack\_lp64}
```

- -lmkl_blacs_intelmpi_lp64 -lmkl_intel_lp64
- -lmkl_intel_thread[-lmkl_sequential]
- -lmkl_core -liomp5 -lpthread

ELPA

Eigenvalue SoLvers for Petaflop-Applications

ELPA uses ScaLAPACK, must be linked together with scalapack

- FORTRAN 95, same data-distribution as ScaLAPACK
- http://elpa.rzg.mpg.de/elpa-english?set_language=en
- JURECA pure MPI and hybrid version 2018.11.001
- Version with GPU acceleration on JURECA and JUWELS
- Booster and JUWELS special version with AVX512 kernels for ELPA2
- Version for GPU usage on JURECA and JUWELS

Elemental

- C++ framework, two-dimensional data distribution element by element
- http://libelemental.org/about/
- **0.87.7**
- Only with Intel compilers available

MUMPS

MUltifrontal Massively Parallel sparse direct Solver

- Solution of linear systems with symmetric positive definite matrices, general symmetric matrices, general unsymmetric matrices
- Real or Complex
- Parallel factorization and solve phase, iterative refinement and backward error analysis
- F90 with MPI and OpenMP since 5.1.1
- current version 5.1.2
- http://graal.ens-lyon.fr/MUMPS/

ParMETIS

Parallel Graph Partinioning and Fill-reducing Matrix Ordering developed in Karypis Lab at the University of Minnesota 4.0.3 on JURECA and JUWELS

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview Version with double precision real values available

Hypre

High performance preconditioners Version 2.15.1 on JURECA and JUWELS, also version with bigint, http://www.llnl.gov/CASC/hypre/software.html

FFTW

3.3.8 on JURECA and JUWELS, (Intel and GCC modules)

PARPACK

- PARPACK MPI-Version, part of ARPACK-NG/3.7.0
- Must be linked with LAPACK and BLAS
- Reverse communication interface, user has to supply parallel matrix-vector multiplication

```
https://github.com/opencollab/arpack-ng
http://www.caam.rice.edu/~kristyn/parpack_home.html
```


SPRNG

The Scalable Parallel Random Number not yet on Booster
Generators Library for ASCI Monte Carlo Computations version 5.0-14042019:
various random number generators in one library
Version 1.0 seperate library for each random number generator http://sprng.cs.fsu.edu/

Sundials (CVODE)

Package for the solution of ordinary differential equations, Version 4.1.0

https://computation.llnl.gov/casc/sundials/main.html

PETSc

- Portable, Extensible Toolkit for Scientific Computation
- Numerical solution of partial differential equations
- version 3.11.1
- with several other packages included
- complex version and version with 8-Byte integer
- debug versions in Devel Stages only
- http://www.mcs.anl.gov/petsc/
- ml spider petsc

Software for Materials Science

Package	JURECA	JUWELS	Booster
Abinit	yes	yes	no
ADF	yes	no	no
Amber	yes	yes	no
CP2K	yes	yes	no
CPMD	yes	no	no
GPAW	yes	yes	no
Gromacs	yes	yes	no
LAMMPS	yes	yes	no
Molpro	yes	no	no
NAMD	yes	yes	yes
NWChem	yes	no	no
QuantumEspresso	yes	yes	no
TURBOMOLE	yes	no	no

Software for Computational Engineering

- JURECA and JUWELS
- CFD Package OpenFOAM

Version 4.1 in Stages/2017b and some older versions in older stages

Version 5.0 in Stages/2018a and OpenFOAM-Extend 3.1 and 3.2, only in older stages

- Commercial FEM Software
 - ANSYS, LS-DYNA , COMSOL are technically maintained on JURECA only
 - Licenses must be provided by the User!

Further information and JSC-people

```
http://www.fz-juelich.de/ias/jsc/jureca
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/
Software/_node.html
```

Mailto

Supercomputer support:

sc@fz-juelich.de

I. Gutheil: Parallel mathematical Libraries

i.gutheil@fz-juelich.de

D. Alvarez: Software Manager

d.alvarez@fz-juelich.de

B. Körfgen: Physics and Engineering software

b.koerfgen@fz-juelich.de

Further information Slide 34