Dynamical Magnetic Excitations in Nanostructures Deposited on Surfaces
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Abstract Calculate Kohn-Sham Susceptibility Adatoms
State of the art experimental methods are being developed to investigate
magnetic excitations of surfaces[1] or of nanoobjects deposited on surfaces[2]. It can be ingly si ified in practice if sep into a sum of two IM

A key quantity describing these excitations is the transverse dynamical

susceptibility, that is a computational burden, accessible from tight-binding
methods[3] but very rarely calculated from density functional theory and (7, P w)
limited to bulk systems[4].
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Using the Korringa-Kohn-Rostoker Green function method within the framework

of time dependent density functional theory, we developed a new, efficient and

computationally attractive real space method that allows to tackle magnetic

excitations in nanostructures. The behavior of adatoms and dimer is

investigated..

The first term can be computed using regular integration in the complex
energy plan. The second term could be calculated along the real axis since
itinvolves a small energy portion:
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After doing a variable change, one could redefine other two terms whose 1
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Introduction: Experimental evidence Dimers made of similar adatoms
Fe and Co adatoms on Pt(111) Mn chains on CuN Eva|uaﬁon Of Green funCﬁOnS
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(e) ) We could make an approximation in evaluating the wave functions R. One
Co corrected .\ { could linearize them. We choose, however, an energy independent wave 2000
. . function: the regular solution defined at the Fermi energy. This is a reasonable
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After repeating the same procedure for the Kohn-Sham susceptibility, one [ Mn
builds a Dyson equation: Fe dimer-|
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Sum rule for Goldstone mode i — — Conclusion
B 1| from sumrule 1) g We have shown that a simple approach, based on TD-DFT and the KKR-GF
The Kohn-Sham susceptibility is given by: I method, can be used to extract dynamics magnetic susceptibilities. The
1/ description of the electronic structure is embedded into our single particle
XU(F P iw) = —= / dzf(z)(G,ﬁ(F, Piz+ w)lme,(F’, 7 z) Green functions. The size of matrices in the Dyson equation are small
L enough to permit calculations of large nanostructures in future
S . applications. We have developed an identity that leads to a numerically
+ ImG(F. 7 2)G (P, 7 2 + w)) stable method of extracting the proper Coulomb interaction to be used inj
One can demonstrate that: h =+ - J the Dyson equation from which the full dynamical susceptibiity is obtained.
X Adatoms As an application, 3d adatoms and dimers deposited on Cu(001) surface
Z / APXU(F 7w = 0)BL, (P = 0) = m.(Fw = 0) were investigated from first-principles.
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