Quasiparticle study of the bulk TIs Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃ including spin-orbit coupling

DPG Spring Meeting
10th-15th March, 2013

Irene Aguilera, Christoph Friedrich, Gustav Bihlmayer, Stefan Blügel
Peter Grünberg Institute and Institute for Advanced Simulation
Density functional theory (DFT)

DFT and the LDA approximation:

- Most widely used *ab-initio* approach.
- Good for ground-state properties: total energies, structural properties…
- Allows calculations of big systems like surfaces or defects.

BUT…
Density functional theory (DFT)

DFT and the LDA approximation:

- Most widely used *ab-initio* approach.
- Good for ground-state properties: total energies, structural properties…
- Allows calculations of big systems like surfaces or defects.

BUT…

- Not appropriate for excited-state properties like excitation energies, optical properties, …

![Graph showing theoretical vs. experimental band gap](image)

- **Bi_2Se_3:** 0.2-0.35 eV
- **Bi_2Te_3:** 0.13-0.17 eV
- **Sb_2Te_3:** 0.17-0.28 eV
GW-SOC: Hg chalcogenides

- GW corrects LDA band gaps
- Excitation energies as measured in PE experiments.
- BUT very time-consuming, only affordable for small systems (bulk)
GW-SOC: Hg chalcogenides

- **GW** corrects LDA band gaps
- Excitation energies as measured in PE experiments.
- BUT very time-consuming, only affordable for small systems (bulk)

Theoretical value [eV] vs. experimental value [eV]

- $E_g(\Gamma)$
- $E_g(L)$
- $E_g(X)$

Spin-orbit splitting

R. Sakuma, C. Friedrich, T. Miyake, S. Blügel, and F. Aryasetiawan, PRB 84 085144 (2011)
GW-SOC: Bi$_2$Se$_3$

LDA-VBM

GW-VBM(Γ)

E - E$_F$ (eV)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ</td>
<td>Z</td>
<td>F</td>
<td>Γ</td>
<td>L</td>
</tr>
</tbody>
</table>

Gaps

- **LDA gap (I)**: 0.27 eV
- **GW gap (D)**: 0.23 eV (0.30*)
- **EXP. (D**): 0.2-0.35 eV

References

- Kioupakis et al.
 PRB 82, 245203 (2010)
- Yazyev et al.
 PRB 85, 161101(R) (2012)

Authors

GW-SOC: Bi$_2$Te$_3$

I. Aguilera, C. Friedrich, G. Bihlmayer, S. Blügel, in preparation
GW-SOC: Sb$_2$Te$_3$

LDA gap (I) 0.11 eV
GW gap (I) 0.17 eV
EXP. (I) 0.17-0.28 eV

I. Aguilera, C. Friedrich, G. Bihlmayer, S. Blügel, in preparation
GW-SOC: Sb$_2$Te$_3$

- **LDA gap (I)**: 0.11 eV
- **GW gap (I)**: 0.17 eV
- **EXP. (I)**: 0.17-0.28 eV

I. Aguilera, C. Friedrich, G. Bihlmayer, S. Blügel, *in preparation*
Topological Z_2 invariants do not change in GW.

Perturbative (pSOC) vs. full SOC

\[
GW - pSOC \rightarrow GW \text{ calculation without SOC} \\
\text{SOC calculated within LDA and added } a \text{ posteriori} \\
\text{(Approx. 4 times faster than full SOC)}
\]

\[
\text{Pert. SOC} \rightarrow LDA + GW + SOC(LDA) \\
\text{Full SOC} \rightarrow LDA + SOC + G^{SOC}W^{SOC}
\]

MOTIVATION:

- FULL-SOC calculations very time-consuming
- Two references recently published for Bi$_2$Se$_3$ and Bi$_2$Te$_3$ with GW-pSOC:

 Kioupakis, Tiago, Louie
 PRB 82, 245203 (2010)

 Yazyev, Kioupakis, Moore, Louie
 PRB 85, 161101(R) (2012)
Perturbative (pSOC) vs. full SOC

\[GW\text{-pSOC} \rightarrow GW \text{ calculation without SOC} \]
SOC calculated within LDA and added \textit{a posteriori}
(Approx. 4 times faster than full SOC)

\begin{align*}
\text{Pert. SOC} & \rightarrow \text{LDA} + GW + \text{SOC(LDA)} \\
\text{Full SOC} & \rightarrow \text{LDA+SOC} + G^{\text{SOC}} W^{\text{SOC}}
\end{align*}

MOTIVATION:

- FULL-SOC calculations very time-consuming
- Two references recently published for Bi\(_2\)Se\(_3\) and Bi\(_2\)Te\(_3\) with GW-pSOC:

 Kioupakis, Tiago, Louie
 PRB 82, 245203 (2010)

 Yazyev, Kioupakis, Moore, Louie
 PRB 85, 161101(R) (2012)

\[E - E_F \text{(eV)} \]

I. Aguilera, C. Friedrich, G. Bihlmayer, S. Blügel, \textit{in preparation}
Summary and conclusions

- **GW** calculations change significantly the dispersion of the highest VB and the lowest CB. The „M-shape“ of the VB flattens or disappears.

- The band inversion is present in **GW** even in the case of Sb₂Te₃ in which the „M-shape“ disappears completely.

- A perturbative approach to SOC does not predict the dispersion of the VB and CB correctly.
Thank you!

DFT calculations → FLEUR: www.flapw.de

GW calculations → SPEX: www.flapw.de/spex

Virtual Institute for Topological Insulators (VITI): www.vi-ti.de

This work was partially supported by the Alexander von Humboldt Foundation.