Thesis Project Offer

Joint Research and Education Programme “Palestinian-German Science Bridge PGSB” Forschungszentrum Jülich GmbH & Palestine Academy for Science and Technology

Thesis type

- ☒ BSc ☒ MSc ☒ PhD

- Intended starting date (approx.): As soon as possible

Contact details of supervisor/responsible host at Forschungszentrum Jülich

<table>
<thead>
<tr>
<th>Title*</th>
<th>Degree</th>
<th>First name*</th>
<th>Surname*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr.</td>
<td>Dr.</td>
<td>Emmanuel</td>
<td>Kentzinger</td>
</tr>
</tbody>
</table>

- Phone*
 +49 2461 61 3139

- E-mail*
 e.kentzinger@fz-juelich.de

**Function*
Staff Scientist

Institute and homepage of institute
JCNS-2 https://www.fz-juelich.de/cns/jcns-2/EN/

University affiliation in Germany
RWTH Aachen (via Prof. Dr. Thomas Brückel)

Co-Supervisor at Palestinian university (if applicable)

<table>
<thead>
<tr>
<th>Title*</th>
<th>Degree</th>
<th>First name*</th>
<th>Surname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Phone

- E-mail

- University/institution

- Department/faculty/institute

Project description

Investigation of superconductor/ferromagnet thin film heterostructures with in-plane texture

The antagonist electron spin orders in ferromagnetism and in spin-singlet Cooper pairs mediated superconductivity hamper the application of superconductor/ferromagnet (S/F) thin film heterostructures in low power dissipation spintronics. However, at carefully engineered S/F interfaces, equal-spin-triplet Cooper pairs can be generated. This can be the case when the ferromagnet shows an in-plane magnetic texture like domains.

The proposed study aims at investigating, as a function of temperature and applied magnetic field, the depth and in-plane profiles of superconducting and ferromagnetic orders in an epitaxial thin film heterostructure of a high-Tc superconductor and a ferromagnet with in-plane texture. The chosen system will be produced by a combination of high oxygen pressure sputtering and ultra-high vacuum molecular beam epitaxy. The samples will be investigated at the laboratory (X-ray diffraction, resistivity, magnetometry, magnetic force microscopy) and using advanced neutron scattering methods at worldwide unique instruments of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching close to Munich.

Date
23.03.2020

* required field