Es rappelt im Kristall!

Jülicher Physiker entschlüsseln einen Faktor für effiziente Thermoelektrizität

[19. September 2007]

Jülich, 19. September 2007 - Rappelnde Atompaare verringern die Wärmeleitfähigkeit kristalliner Materialien besonders gut, fanden Physiker des Forschungszentrums Jülich heraus. Schwere, in Kristallen frei schwingende, hantelförmige Gebilde könnten eine Schlüsselfunktion einnehmen bei der Entwicklung von Materialien mit geringer Wärmeleitfähigkeit und gleichzeitig hoher elektrischer Leitfähigkeit. Damit ließe sich der Wirkungsgrad thermoelektrischer Generatoren steigern, die aus Temperaturdifferenzen Strom herstellen. Bisher ungenutzte Abwärme könnte so zunehmend wirtschaftlich interessant werden. Die Ergebnisse werden in der kommenden Ausgabe der renommierten wissenschaftlichen Fachzeitschrift "Physical Review Letters" veröffentlicht und sind bereits vorab online einsehbar.

"Unsere Erkenntnisse öffnen ganz neue Wege auf der Suche nach immer effizienteren thermoelektrischen Materialien", freuen sich Dr. Werner Schweika und Dr. Raphaël Hermann vom Jülicher Institut für Festkörperforschung. Das Ziel ist klar: Abwärme, die heute noch ungenutzt verloren geht, etwa in Müllverbrennungsanlagen, Kraftfahrzeugen oder Blockheizkraftwerken, so vollständig wie möglich zur Energierückgewinnung zu nutzen, um gleichzeitig zum Klimaschutz beizutragen.

Thermoelektrische Materialen erzeugen eine elektrische Spannung, wenn sie einem Temperaturgefälle ausgesetzt sind. Dieses Phänomen wird in thermoelektrischen Generatoren genutzt, um elektrische Energie zu produzieren. Noch ist der Wirkungsgrad der Materialien bei der Umwandlung in Strom recht schlecht und liegt bei maximal 8 Prozent. Zum Vergleich: Kohlekraftwerke haben einen Wirkungsgrad von bis zu 45 Prozent. Das begrenzt den Einsatz der Generatoren bisher auf spezielle Anwendungen, etwa in der Raumfahrt. Um einen besseren Wirkungsgrad zu erzielen, sind Materialen nötig, die elektrischen Strom gut leiten, Wärme dagegen schlecht. Die Herausforderung besteht darin, dass gute Stromleiter in der Regel ebenso gute Wärmeleiter sind. Solche Materialien zeichnen sich auf atomarer Ebene durch eine regelmäßige Gitterstruktur aus. Elektrizität breitet sich darin in Form von Elektronenströmen aus, Wärme in Form vonGitterschwingungen, die sich wellen-förmig durch das Material bewegen. Unregelmäßigkeiten in der Gitterstruktur, etwa fehlende Atome, können zwar die Wärmeleitfähigkeit verringern, beeinträchtigen aber auch die elektrische Leitfähigkeit.

Schweika und Hermann haben nun entschlüsselt, wie der atomare Bauplan eines altbekannten guten thermoelektrischen Materials die Kombination der scheinbar unvereinbaren Eigenschaften ermöglicht. Die Jülicher Forscher haben mit Hilfe von Neutronenstreuexperimenten und Wärmekapazitätsmessungen die Ursache für die geringe Wärmeleitfähigkeit einer Zinkantimon-Legierung untersucht. Dabei stießen sie auf eine bisher unbekannte Form so genannter dynamischer Unordnung, die die Ausbreitung von Wärme in diesem Halbmetall behindert: Zinkantimon hat eine regelmäßige Kristallstruktur, in der atomare Hanteln mit relativ großem Gewicht lose eingebettet sind. Wenn Wärmewellen durch das Material wandern, werden auch die Hanteln in Schwingung versetzt. Auf die Wärmewellen hat das einen ähnlich störenden Effekt wie Wellenbrecher vor einer Küste auf das Meerwasser. Der Clou: Die elektrischeLeitfähigkeit wird nicht behindert.

Bereits 2003 konnte Hermann nachweisen, dass einzelne Atome, eingefangen in kristallinen Käfigstrukturen, unabhängig von den Kristallgittern schwingen und die Wärmeleitfähigkeit verringern. Jetzt erbrachten er und seine Kollegen den Beweis, dass käfigartige Strukturen keine Voraussetzung für solche lokalisierten Schwingungen sind.

521_PREV_dumbbells_jpg

Atomare Hanteln im Zinkantimon-Kristallgitter verringern dessen Wärmeleitfähigkeit. Das erklärt die guten thermoelektrischen Eigenschaften dieser Legierung, fanden Festkörperforscher des Forschungszentrums Jülich heraus.
Blaue Kugeln: Antimonatome, rote Kugeln: Zinkatome.

Bild: Forschungszentrum Jülich

Veröffentlichungen:

  • Dumbbell rattling in thermoelectric zinc-antimony;
    W. Schweika, R. P. Hermann, M. Prager, J. Persson, V. Keppens;
    Phys. Rev. Lett. 99, No 12 (2007)
  • Einstein Oscillators in Thallium Filled Antimony Skutterudites;
    R. P. Hermann, R. Jin, W. Schweika, F. Grandjean, D. Mandrus, B. C. Sales, and G. J. Long;
    Phys. Rev. Lett. 90, 135505 (2003)

Neutronenstreuung in der Forschung:
Neutronen sind elektrisch neutrale Bausteine der Atomkerne. Sie werden in Forschungsreaktoren oder Spallationsneutronenquellen erzeugt und auf die zu untersuchenden Proben gelenkt. An den Atomen und Molekülen der Proben "prallen" sie ab; dabei können sie ihre Richtung und Geschwindigkeit ändern. Die Art dieser "Streuung" gibt Auskunft über die Anordnung und Bewegung der Atome in der Probe.

Anwendungen der Thermoelektrizität:
Die wichtigsten thermoelektrischen Phänomene wurden in der ersten Hälfte des 19. Jahrhunderts von Thomas Seebeck und Jean Peltier entdeckt. Der Seebeck-Effekt beschreibt die Entstehung einer elektrischen Spannung entlang eines Temperaturgradienten über zwei unterschiedlichen miteinander verbundenen Halbleitern, der Peltier-Effekt die Entwicklung von Wärme oder Kälte an der Verbindungsstelle zweier unterschiedlicher Halbleiter, wenn Strom hindurchfließt. Die Effekte können technisch genutzt werden, um mit thermoelektrischen Generatoren und Thermoelementen Strom zu erzeugen, Temperaturen zu messen und zu kühlen. Solche Vorrichtungen sind kompakt, leise und verschleißfrei, da sie keine beweglichen Teile enthalten. Trotz dieser Vorteile ist die Anwendung zur Energiegewinnung bisher Nischen vorbehalten, etwa der Stromversorgung von Raumschiffen auf Missionen zu den äußeren Planeten unseres Sonnensystems, wo nicht genügend Lichtfür Solar-energie vorhanden ist. Energiequelle ist in diesen Fällen das Wärmegefälle zwischen einer radioaktiven Hitzequelle im Raumschiff und der Kälte des Weltraums. Peltier-Elemente werden zur Kühlung etwa in Kühlboxen eingesetzt.
Das größte Hindernis für eine weite Verbreitung thermoelektrischer Energierückgewinnung ist der zu geringe Wirkungsgrad der bisher bekannten Materialien. Doch das Interesse an effizienten Systemen ist groß. Im Fokus sind zum Beispiel Autos. Ihr Bedarf an Elektrizität wächst stetig, und derzeitige Verbrennungsmotoren nutzen nur 25 Prozent der eingesetzten Energie für Fortbewegung und Zubehör.

Links:


Pressekontakt:

Angela Wenzik
Wissenschaftsjournalistin
Forschungszentrum Jülich, Institut für Festkörperforschung
52425 Jülich, Germany
Tel. 02461 61-6048
E-Mail: a.wenzik@fz-juelich.de

Letzte Änderung: 20.05.2022