
JUPYTERLAB - SUPERCOMPUTING IN YOUR BROWSER
Training course "Introduction to the usage and programming of supercomputer resources in Jülich"

2023-11-21 I JENS H. GÖBBERT (J.GOEBBERT@FZ-JUELICH.DE)

TIM KREUZER (T.KREUZER@FZ-JUELICH.DE)

ALICE GROSCH (A.GROSCH@FZ-JUELICH.DE

MOTIVATION
your thinking, your reasoning, your insides, your ideas

“It is all about using and building a machinery interface

between computational researchers and data, supercomputers, laptops, cloud

and your thinking, your reasoning, your insides, your ideas about a problem.”
Fernando Perez, Berkely Institute for Data Science

Founder of Project Jupyter

https://jupyter.org

JUPYTER NOTEBOOK

Markdown Cells

Code Cells

Output

Output

creating reproducible computational narratives

▪ In 2007, Fernando Pérez and Brian Granger announced

„Ipython: a system for interactive scientific computing“ [1]

▪ In 2014, Fernando Pérez announced

a spin-off project from IPython called Project Jupyter.

o IPython continued to exist as a Python shell and a kernel for Jupyter,

while the Jupyter notebook moved under the Jupyter name.

▪ In 2015, GitHub and the Jupyter Project announced

native rendering of Jupyter notebooks file format (.ipynb files) on the GitHub

▪ In 2017, the first JupyterCon was organized by O‘Reilly in New York City.

Fernando Pérez opened the conference with an inspiring talk. [2]

▪ In 2018, JupyterLab was announced

as the next-generation web-based interface for Project Jupyter.

▪ In 2019, JupyterLab 1.0 …

In 2020, JupyterLab 2.0 …

In 2021, JupyterLab 3.0 …

In 2023, JupyterLab 4.0 expected in March 2023.

[1] Pérez F, Granger BE (2007) Ipython: a system for interactive scientific computing. Comput Sci Eng 9(3):21–29
[2] Pérez F, Project Jupyter: From interactive Python to open science -> https://www.youtube.com/watch?v=xuNj5paMuow

4

https://www.benfrederickson.com/ranking-programming-languages-by-github-users/
https://github.com/benfred/github-analysis

Counting how many Monthly Active Users (MAU)

on GitHub are using Jupyter Notebooks

MOTIVATION
Rise of Jupyter´s popularity

2018 2019 2020 2021 2022 2023

Initial Basis

JupyterLab modules

Authentication via Unity/IdM

Authorization via UNICORE

Orchestration Docker Swarm

Synchronization of User-DBs

Basic Data Protection Regulation

Fulfill Safety Requirements

Usage

Inplace Dokumentation

R, Julia, C++, Octave, Ruby

JupyterLabs on OpenStack

Dashboard Development

JupyterLab Usability

Kernel for Vis, DL

Testing & Benchmarking

Features

Remote Desktop Integration

Optional 2-Factor Auth.

Use for Workshops

Specialized Functionalities

Enhanced Data Access

Extended Logging

Cross-Side Demonstration

Redesign

Switch to Kubernetes

Redesign Management

Switch to JupyterLab 3

GPFS through UFTP

Support for User Extensions

Easybuild Modularization

HISTORY OF JUPYTERLAB AT JSC

5

JLab Beta JLab 1 JLab 2 JLab 3 JLab3+X

Customization

Project/Community JHubs

Upgrade JHub Entrance-UI

Comp. Resource Permissions

Maintenance Improvements

Upgrade of Load Balancer

Modularization of Backend

External Clouds & HPC

2018 2019 2020 2021 2022 2023

Initial Basis

JupyterLab modules

Authentication via Unity/IdM

Authorization via UNICORE

Orchestration Docker Swarm

Synchronization of User-DBs

Basic Data Protection Regulation

Fulfill Safety Requirements

Usage

Inplace Dokumentation

R, Julia, C++, Octave, Ruby

JupyterLabs on OpenStack

Dashboard Development

JupyterLab Usability

Kernel for Vis, DL

Testing & Benchmarking

Features

Remote Desktop Integration

Optional 2-Factor Auth.

Use for Workshops

Specialized Functionalities

Enhanced Data Access

Extended Logging

Cross-Side Demonstration

Redesign

Switch to Kubernetes

Redesign Management

Switch to JupyterLab 3

GPFS through UFTP

Support for User Extensions

Easybuild Modularization

HISTORY OF JUPYTERLAB AT JSC

6

JLab Beta JLab 1 JLab 2 JLab 3 JLab3+X

Customization

Project/Community JHubs

Upgrade JHub Entrance-UI

Comp. Resource Permissions

Maintenance Improvements

Upgrade of Load Balancer

Modularization of Backend

TERMINOLOGY

TERMINOLOGY
What is JupyterLab

JupyterLab

▪ Interactive working environment in the web browser

▪ For the creation of reproducible computer-aided narratives

▪ Very popular with researchers from all fields

▪ Jupyter = Julia + Python + R

Multi-purpose working environment

▪ Language agnostic

▪ Supports execution environments (“kernels”)

▪ For dozens of languages: Python, R, Julia, C++, ...

▪ Extensible software design („extensions“)

▪ many server/client plug-ins available

▪ Eg. in-browser-terminal and file-browsing

Document-Centered Computing (“notebooks”)

▪ Combines code execution,
rich text, math, plots and rich media.

▪ All-in-one document called Jupyter Notebook

https://jupyterlab.readthedocs.io

TERMINOLOGY
What is a Jupyter Notebook?

Jupyter Notebook

A notebook document (file extension .ipynb)

is a document that can be rendered in a web browser

▪ It is a file, which stores your work in JSON format

▪ Based on a set of open standards for interactive computing

▪ Allows development of custom applications with embedded

interactive computing.

▪ Can be extended by third parties

▪ Directly convertible to PDF, HTML, LateX ...

▪ Supported by many applications

such as GitHub, GitLab, etc..

https://jupyter-notebook.readthedocs.io/
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks

TERMINOLOGY
What is a Jupyter Kernel?

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

▪ run code in different programming languages and

environments.

▪ can be connected to a notebook (one at a time).

▪ communicates via ZeroMQ with the JupyterLab.

▪ Multiple preinstalled Jupyter Kernels can be found on our

clusters

▪ Python, R, Julia, Bash, C++, Ruby, JavaScript

▪ Specialized kernels for visualization, quantum-computing

▪ You can easily create your own kernel which for example

runs your specialized virtual Python environment. https://jupyter-notebook.readthedocs.io/
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://zeromq.org

TERMINOLOGY
What is a JupyterLab Extension?

JupyterLab Extension

JupyterLab extensions can customize or enhance

any part of JupyterLab.

JupyterLab Extensions

▪ provide new file viewers, editors, themes

▪ provide renderers for rich outputs in notebooks

▪ add items to the menu or command palette

▪ add keyboard shortcuts

▪ add settings in the settings system.

▪ Extensions can even provide an API for other extensions

to use and can depend on other extensions.

The whole JupyterLab itself is simply a collection of extensions

that are no more powerful or privileged than any custom

extension. https://jupyterlab.readthedocs.io/en/stable/user/extensions.html
https://github.com/topics/jupyterlab-extension

TERMINOLOGY
Bringing all together

Jupyter

(Notebook)

Server

Jupyter

Kernel

ssh
Terminal

ssh - tunnel
JupyterLab

browser hpc cluster

JupyterLab

Client

Extension

JupyterLab

JupyterLab

Server

Extension

ØMQ

INSTALLATION

JUPYTERLAB - WHEREVER YOU PREFER
Local, Remote, Browser-only

Local installation:

▪ JupyterLab installed using conda, mamba, pip, pipenv or docker.

➔ https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

JUPYTERLAB - WHEREVER YOU PREFER
Local, Remote, Browser-only

Local installation:

▪ JupyterLab installed using conda, mamba, pip, pipenv or docker.

➔ https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

▪ JupyterLab installed as normal desktop application = JupyterLab Desktop

➔ https://github.com/jupyterlab/jupyterlab-desktop/releases

JupyterLab Desktop is the cross-platform desktop application for JupyterLab.

It is probably the quickest and easiest way to get started with Jupyter notebooks

on your personal computer, with the flexibility for advanced use cases.

(Windows, macOS, Debian/Ubuntu, RedHat/Fedora)

https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html
https://github.com/jupyterlab/jupyterlab-desktop/releases
https://github.com/jupyterlab/jupyterlab

JUPYTERLAB - WHEREVER YOU PREFER
Local, Remote, Browser-only

Local installation:

▪ JupyterLab installed using conda, mamba, pip, pipenv or docker.

➔ https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

▪ JupyterLab installed as normal desktop application = JupyterLab Desktop

➔ https://github.com/jupyterlab/jupyterlab-desktop/releases

Remote (cluster) installation:

▪ JupyterLab installed on a remote server and accessed through the browser

▪ in $HOME (e.g. using pip or miniconda)

▪ system-wide (e.g. with Easybuild, Spark) by the admins.

https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html
https://github.com/jupyterlab/jupyterlab-desktop/releases

JUPYTERLAB - WHEREVER YOU PREFER
Local, Remote, Browser-only

Local installation:

▪ JupyterLab installed using conda, mamba, pip, pipenv or docker.

➔ https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

▪ JupyterLab installed as normal desktop application = JupyterLab Desktop

➔ https://github.com/jupyterlab/jupyterlab-desktop/releases

Remote (cluster) installation:

▪ JupyterLab installed on a remote server and accessed through the browser

▪ in $HOME (e.g. using pip or miniconda)

▪ system-wide (e.g. with Easybuild, Spark) by the admins.

Browser-only installation (limited feature set):

▪ JupyterLab local with server + client in your browser = JupyterLite

Includes a browser-ready Python environment named Pyodide.

➔ https://jupyter.org/try-jupyter/lab

https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html
https://github.com/jupyterlab/jupyterlab-desktop/releases
https://jupyter.org/try-jupyter/lab

START & LOGIN

Jupyter

(Notebook)

Server

Jupyter

Kernel

ssh
Terminal

ssh - tunnel
JupyterLab

browser hpc cluster

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

JupyterLab

Client

Extension

JupyterLab

JupyterLab

Server

Extension

Jupyter

(Notebook)

Server

Jupyter

Kernel

hpc cluster

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

browser

JupyterLab

Client

Extension

ØMQ

ØMQ

JUPYTER-JSC WEBSERVICE
Start your JupyterLab (the easy way)

PRE-ACCESS TODOS

1) Register & Login

✓ https://judoor.fz-juelich.de

2) Join a project

✓ Wait to get joined by the project PI

3) Sign usage agreement

✓ Wait for creation of HPC accounts

4) Check Connected Services:

✓ jupyter-jsc

2211

https://judoor.fz-juelich.de/

https://jupyter-jsc.fz-juelich.de

JUPYTER-JSC WEBSERVICE

JUPYTER-JSC WEBSERVICE

Jupyter-JSC first time login

▪ Requirements:

▪ Registered at judoor.fz-juelich.de
▪ (check “Connected Services” = jupyter-jsc)

▪ Project membership + signed systems usage agreement

▪ Waited ~10 minutes

1. Login at https://jupyter-jsc.fz-juelich.de

2. Sign in with your JSC account

3. Register to Jupyter-JSC

4. Accept usage agreement

5. Submit the registration

6. Wait for email and confirm your email address

1.

2. 3.

4.

5.

6.

First time login

=> https://jupyter-jsc.fz-juelich.de

Control Panel

JUPYTER-JSC WEBSERVICE

D. Statusbar

▪ Shows, (hover to get more details)

▪ Number of active users in the last 24h

▪ Number of running JupyterLabs

▪ Click to see system status page

A. New JupyterLab

B. Configuration Dialog

• Lab Config: set Name, Version, System, Account, Project, Partition

• Resources: if running on a compute node

• Kernels and Extensions: Optional addons

C. Actions

▪ Start/Open/Stop a JupyterLab

▪ Change/Delete configuration

A.

C.

D.

E. Logout

▪ Logout will ask what you want to do with the running

JupyterLabs – be careful what you answer!

B.

JupyterLab Configuration

JUPYTER-JSC WEBSERVICE

Jupyter-JSC – Configuration

Available options depend on

▪ user account settings visible in judoor.fz-juelich.de

▪ system specific usage agreement on JuDoor is signed (!!!)

▪ currently available systems in all of your projects

Basic options

▪ Version:

multiple versions of JupyterLab are installed

▪ System:

JUWELS, JURECA, JUSUF, DEEP, HDFML, HDF-Cloud

▪ Account:

In general users only have a single account

▪ Project:

project which have access to the selected system

▪ Partition:

partition which are accessible by the project

(this includes the decision for LoginNode and ComputeNode)

Extra options

▪ Partition == compute Resources

▪ Kernel and Extensions non-default JupyterKernel, Extensions, Proxies

JupyterLab Configuration

JUPYTER-JSC WEBSERVICE

Jupyter-JSC – Configuration

Available options depend on

▪ user account settings visible in judoor.fz-juelich.de

▪ system specific usage agreement on JuDoor is signed (!!!)

▪ currently available systems in all of your projects

Basic options

▪ Version:

multiple versions of JupyterLab are installed

▪ System:

JUWELS, JURECA, JUSUF, DEEP, HDFML, HDF-Cloud

▪ Account:

In general users only have a single account

▪ Project:

project which have access to the selected system

▪ Partition:

partition which are accessible by the project

(this includes the decision for LoginNode and ComputeNode)

Extra options

▪ Partition == compute Resources

▪ Kernel and Extensions non-default JupyterKernel, Extensions, Proxies

JUPYTERLAB EVERYWHERE

JUWELS1

ln: 20
cn: 3503

JURECA-DC2

ln: 24
cn: 2840

JUSUF3

ln: 4
cn: 205

DEEP4

ln: 8
cn: 141

HDFML
ln: 2

cn: 10

JSC-Cloud
(OpenStack)

H
P

C
 C

lu
st

er
s

shared parallel storage across all clusters
users $HOME, $PROJECT, $SCRATCH, etc.
central installations of software packages

[1] https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html
[2] https://apps.fz-juelich.de/jsc/hps/jureca/configuration.html
[3] https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/configuration.html
[4] https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/DEEP-EST/_node.html
[5] https://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/OnlineStorage/JUST/Configuration/Configuration_node.html

St
o

ra
ge

JUST5 (81 PB)

1

no. login nodes = ln
no. compute nodes = cn

JUDAC

1

2

3

JupyterLab on cloud

JupyterLab on login nodes

JupyterLab on compute nodes

22 2 2 2

3 3
3 3 3

m
o

u
n

t

JupyterLab everywhere

2

HDF-Cloud – OpenStack Cluster for running Virtual Machines

System: HDF-Cloud

JUPYTER-JSC WEBSERVICE

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

UNICORE

JupyterLab

JupyterLab

Client

Extension

Virtual Machine for JupyterLab Container

Jupyter-JSC Container

more Jupyter-JSC container

more Virtual Machines

Jupyter

Notebook

Server

Jupyter

Kernel

hpc cluster

JupyterLab

JupyterLab

Server

Extension

ØMQ

Helmholtz Data Federation (HDF)-Cloud

Any user having

▪ a JSC account (judoor.fz-juelich.de)

▪ the Connected Service “jupyter-jsc” enabled (default for HPC accounts)

can start

▪ Jupyter-JSC container images (containing JupyterLab) on the HDF-Cloud

https://www.fz-juelich.de/ias/jsc/EN/Expertise/SciCloudServices/HDFCloud/_node.html

user storage
(local to Jupyter-JSC on HDF-Cloud)

System: HDF-Cloud

JUPYTER-JSC WEBSERVICE

1.

2.

Start JupyterLab on HDF-Cloud

▪ Requirements:

▪ Registered JSC account at https://judoor.fz-juelich.de

▪ Logged in to Jupyter-JSC at https://jupyter-jsc.fz-juelich.de

▪ Named a new JupyterLab configuration

▪ Start a JupyterLab:

▪ Version == “JupyterLab 3.6”

▪ System == “HDF-Cloud”

3.

Limitations on JupyterLab on HDF-Cloud

▪ max. 4 GB memory

▪ ATTENTION:

the container automatically stops, when this limit is reached.

▪ Storage in Jupyter-JSC container

▪ is local to the HDF-Cloud

▪ HPC $HOMEs are mounted read-only

▪ only accessible from a Jupyter-JSC container

▪ HDF-Cloud has no GPUs

https://judoor.fz-juelich.de/
https://jupyter-jsc.fz-juelich.de/

HOW TO MOUNT GPFS ON HDF-CLOUD

JUWELS1

ln: 20
cn: 3503

JURECA-DC2

ln: 24
cn: 2840

JUSUF3

ln: 4
cn: 205

DEEP4

ln: 8
cn: 141

HDFML
ln: 2

cn: 10

HDF-Cloud
(OpenStack)

H
P

C
 C

lu
st

er
s

shared parallel storage across all clusters
users $HOME, $PROJECT, $SCRATCH, etc.
central installations of software packages

[1] https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html
[2] https://apps.fz-juelich.de/jsc/hps/jureca/configuration.html
[3] https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/configuration.html
[4] https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/DEEP-EST/_node.html
[5] https://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/OnlineStorage/JUST/Configuration/Configuration_node.html

St
o

ra
ge

JUST5 (81 PB)

1

no. login nodes = ln
no. compute nodes = cn

JUDAC

a IdMuftp

2
. s

e
n

d
to

ke
n

1
. g

et
to

ke
n

3
. m

o
u

n
t

https://gitlab.jsc.fz-juelich.de/jupyter4jsc/training-2023.04-jupyter4hpc/-

/blob/main/day2_hpcenv/7_cloud-hpc_challenges/1-hdf-cloud_mount-hpc-storage.ipynb

Very important to know

JUPYTER-JSC SECRETS

Secret 1: Support button

▪ Let us know, if something does not work.

We can only fix it, if we know it.

Secret 2: Reload on connection loss

▪ “Server Not Running”

means, that your browser just lost connection

=> Just hit “Dismiss” !!!

(as soon as you are online again)

▪ “File Save Error for <…>”

means, that your browser just lost connection

=> Just hit “Dismiss” !!!

(as soon as you are online again)

You can always safely hit the “Reload” button of your

browser, if the connection to JupyterLab ever gets lost.

(it will just restart JupyterLab on the browser-site)

For experts only ☺

JUPYTER-JSC SECRETS

Secret 3: Jupyter-JSC logs

▪ Jupyter-Lab gets started by UNICORE on our HPC systems

▪ On startup UNICORE created the directory $SCRATCH_<project>/unicore-jobs/<random-hash>/

▪ In the terminal of a running JupyterLab, this directory is $JUPYTER_LOG_DIR

▪ In this directory you find

▪ stdout -> terminal output of jupyterlab messages

▪ stderr -> terminal output of jupyterlab error messages

▪ .start -> details how your JupyterLab got started

Secret 4: change to a different JupyterLab version

▪ In .start you can see, that

▪ $HOME/.jupyter/start_jupyter-jsc.sh

is used to prepare the environment for JupyterLab.
This script must ensure that the command jupyter is available in $PATH.

It enables you to switch to an older/newer/other version of JupyterLab,

if the default one gives you trouble or is missing features.

#!/bin/bash

module purge
module load Stages/2023
module load GCCcore/.11.3.0
module load JupyterCollection/2023.3.6

Switch to a customized JupyterLab with
$HOME/.jupyter/start_jupyter-jsc.sh

memory consuption
(keep an eye on that!)

Type of Jupyter kernel
this notebook is connected to
(click to change)

type of active
notebook cell

sidebar with core
and extentions
features

no close, but
go back to Jupyter-
JSC´s controll panel

tutorials
& examples

open
launcheropen

filebrowser

Some comments about the UI

JUPYTER-JSC WEBSERVICE

notebook cell

[*] indicates that cell was send to
Jupyter kernel for execution

[] indicates that cell has never been
executed by the connected Jupyter kernel

indicates active
notebook cell

JUPYTERLAB EXTENSIONS

JUPYTERLAB EXTENSIONS

https://jupyterlab.readthedocs.io/en/stable/user/extensions.html

List the installed JupyterLab extensions

▪ Open the Launcher

▪ Start a Terminal

▪ Run command jupyter labextension list

Extensions are installed in
JupyterLab´s Application Directory, which

▪ stores any information that JupyterLab persists

▪ including settings and built assets of extensions

▪ default location is <sys-prefix>/share/jupyter/lab

▪ can be relocated by setting $JUPYTERLAB_DIR

▪ contains the JupyterLab static assets

▪ (e.g. static/index.html)

▪ JupyterLab < 3:

any change requires a rebuild of the whole JupyterLab

to take effect!

▪ JupyterLab >= 3:

introduced prebuild extensions, which are loaded at startup time

Some general information

Hint: JupyterLab Playground

A JupyterLab extension to write and load simple

JupyterLab plugins inside JupyterLab.

https://github.com/jupyterlab/jupyterlab-plugin-playground

JUPYTERLAB EXTENSIONS

https://github.com/jupyterlab/jupyterlab-git

JupyterLab-Git

JupyterLab extension for version control using Git

Installed by default at Jupyter-JSC

https://github.com/maartenbreddels/ipyvolume

IPyVolume

3d plotting for Python in the Jupyter notebook

based on IPython widgets using WebGL

JUPYTERLAB EXTENSIONS

https://github.com/IBM/jupyterlab-s3-browser

JupyterLab-S3-browser

A JupyterLab extension for browsing S3-compatible object storage

Installed by default at Jupyter-JSC

https://jupyterlab.readthedocs.io/en/stable/user/debugger.html

JupyterLab - Visual Debugger

JupyterLab >= 3 ships with a Debugger front-end by default.

This means that notebooks, code consoles and files can now be debugged
from JupyterLab directly! For the debugger to be enabled and visible, a kernel
with support for debugging is required.

JUPYTERLAB EXTENSIONS

https://github.com/jupyter-widgets/ipyleaflet

IPyLeaflet

A Jupyter / Leaflet bridge enabling interactive maps in the Jupyter notebook.

Installed by default at Jupyter-JSC

https://github.com/jupyter-widgets/pythreejs

PyThreeJS

A Python / ThreeJS bridge utilizing the Jupyter widget infrastructure.

https://threejs.org - lightweight, 3D library with a default WebGL renderer.

JUPYTERLAB EXTENSIONS

https://github.com/jupyter/nbdime

NBDime

Tools for diffing and merging of Jupyter notebooks.

Installed by default at Jupyter-JSC

https://github.com/matplotlib/ipympl

IPyMPL - matplotlib

Leveraging the Jupyter interactive widgets framework, ipympl enables the

interactive features of matplotlib in the Jupyter notebook and in JupyterLab.

JUPYTERLAB EXTENSIONS

https://github.com/jupyter-widgets/jupyterlab-sidecar

JupyterLab-Sidecar

A sidecar output widget for JupyterLab.

Installed by default at Jupyter-JSC

https://github.com/plotly/plotly.py

Plotly

JupyterLab extension for the interactive and browser-based graphing library Plotly.

https://plotly.com/python/

JUPYTERLAB EXTENSIONS

https://github.com/voila-dashboards/voila

Voilà

Voilà turns Jupyter notebooks into standalone web applications.

Installed by default at Jupyter-JSC

NVDashboard

NVDashboard is an open-source package for the real-time visualization of
NVIDIA GPU metrics in interactive Jupyter Lab environments.

https://github.com/rapidsai/jupyterlab-nvdashboard

https://developer.nvidia.com/blog/gpu-dashboards-in-jupyter-lab/

JUPYTERLAB EXTENSIONS

ChatGPT for Jupyter

A browser extension to provide various helper functions in Jupyter Notebooks
and Jupyter Lab, powered by ChatGPT.

https://github.com/TiesdeKok/chat-gpt-jupyter-extension

… more useful extensions

JUPYTERLAB EXTENSIONS
Installed by default at Jupyter-JSC

https://docs.jupyter-jsc.fz-juelich.de/github/FZJ-JSC/jupyter-jsc-notebooks/blob/documentation/05-News%26Updates/Announcement-2023-07_JupyterLab3.6-Upgrade.ipynb#JupyterLab-specific-Packages

JUPYTER KERNEL

JUPYTER KERNEL
How to create your own Juypter Kernel

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

▪ run code in different programming languages

and environments.

▪ can be connected to a notebook (one at a time).

▪ communicates via ZeroMQ with the JupyterLab.

▪ Multiple preinstalled Jupyter Kernels can be found on our

clusters

▪ Python, R, Julia, Bash, C++, Ruby, JavaScript

▪ Specialized kernels for visualization, quantumcomputing

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

You can easily create your own kernel which for example
runs your specialized virtual Python environment.

My Own
Virtual Environment

Python Kernel

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Notebook

Server

Jupyter

Kernel

hpc cluster

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

browser

JupyterLab

Client

Extension

ØMQ

JUPYTER KERNEL
How to create your own Juypter Kernel

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

▪ run code in different programming languages

and environments.

▪ can be connected to a notebook (one at a time).

▪ communicates via ZeroMQ with the JupyterLab.

▪ Multiple preinstalled Jupyter Kernels can be found on our

clusters

▪ Python, R, Julia, Bash, C++, Ruby, JavaScript

▪ Specialized kernels for visualization, quantum computing

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

You can easily create your own kernel which for example
runs your specialized virtual Python environment.

JUPYTER KERNEL
How to create your own Juypter Kernel

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

▪ run code in different programming languages

and environments.

▪ can be connected to a notebook (one at a time).

▪ communicates via ZeroMQ with the JupyterLab.

▪ Multiple preinstalled Jupyter Kernels can be found on our

clusters

▪ Python, R, Julia, Bash, C++, Ruby, JavaScript

▪ Specialized kernels for visualization, quantum computing

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

You can easily create your own kernel which for example
runs your specialized virtual Python environment.

My Own
Virtual Environment

Python Kernel

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

JUPYTER KERNEL
How to create your own Juypter Kernel

Jupyter Kernel

A “kernel” refers to the separate process

which executes code cells within a Jupyter notebook.

Jupyter Kernel

▪ run code in different programming languages

and environments.

▪ can be connected to a notebook (one at a time).

▪ communicates via ZeroMQ with the JupyterLab.

▪ Multiple preinstalled Jupyter Kernels can be found on our

clusters

▪ Python, R, Julia, Bash, C++, Ruby, JavaScript

▪ Specialized kernels for visualization, quantum computing

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

You can easily create your own kernel which for example
runs your specialized virtual Python environment.

My Own
Virtual Environment

Python Kernel

Building your own Jupyter kernel
is a three step process

1.Create/Pimp new virtual Python environment
venv

2.Create/Edit launch script for the Jupyter kernel
kernel.sh

3.Create/Edit Jupyter kernel configuration
kernel.json

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

JUPYTER KERNEL
Run your Jupyter kernel configuration

Run your Jupyter Kernel

1. https://jupyter-jsc.fz-juelich.de

2. Choose system where your Jupyter kernel is installed
in ~/.local/share/jupyter/kernels

3. Select your kernel in the launch pad or click the kernel name.

One of the many alternatives: Conda

Base your Jupyter Kernel on a Conda environment.

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-

/blob/master/001-Jupyter/Create_JupyterKernel_conda.ipynb

Jupyter kernel are NOT limited to Python at all!
The kernel-endpoint just needs to talk the Jupyter’s kernel protocol (in general over ZeroMQ).
E.g.
- IRkernel for R (https://github.com/IRkernel/IRkernel)

- IJulia.jl (https://github.com/JuliaLang/IJulia.jl)

https://github.com/IRkernel/IRkernel
https://github.com/JuliaLang/IJulia.jl

SLURM WRAPPED KERNELS

WITH SLURM-PROVISIONER

REMOTE JUPYTER KERNELS

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Server

Jupyter

Kernel

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

browser

JupyterLab

Client

Extension

Cloud or Login node

Compute node

Running multiple Jupyter kernels separate on the HPC system

Kernel Provisioning

Kernel Provisioning enables the ability for third parties

to manage the lifecycle of a kernel’s runtime environment.

By implementing and configuring a kernel provisioner,

third parties have the ability to provision kernels for different environments,

typically managed by resource managers like Kubernetes, Hadoop YARN, Slurm, etc.

The kernel provisioner optionally extends the current metadata stanza within the kernel.json
to include the specification of the kernel provisioner name, along with an optional config stanza

https://jupyter-client.readthedocs.io/en/stable/provisioning.html

ØMQ

Kernel

Provisioner

[..]
"metadata": {

"kernel_provisioner": {
"provisioner_name": "slurm-provisioner",
"config": {

"kernel_argv": "Python",
"project": "zam",
"partition": "batch",
"nodes": 1,
"runtime": 3600,

}
}

},

REMOTE JUPYTER KERNELS

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Server

Jupyter

Kernel

JupyterLab

SLURM

Provisioner

Extension

UNICORE

JupyterLab

browser

SLURM

Provisioner

Extension

Cloud or Login node

Compute node

Jupyter SLURM Provisioner (by Tim Kreuzer & Alice Grosch)

https://github.com/FZJ-JSC/jupyter-slurm-provisioner

https://github.com/FZJ-JSC/jupyter-slurm-provisioner-extension

ØMQ

Jupyter SLURM

Provisioner

SLURM

Slurm wrapped kernels allow you to run kernels on compute nodes

while your Jupyter Server runs on a login node.

This has the advantage that when your allocation on the compute node(s) ends, only the kernel is stopped, but your

JupyterLab server keeps running. You will only have to restart the kernel, not your entire JupyterLab instance.

https://github.com/FZJ-JSC/jupyter-slurm-provisioner

https://github.com/FZJ-JSC/jupyter-slurm-provisioner-extension

REMOTE JUPYTER KERNELS

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Server

Jupyter

Kernel

JupyterLab

SLURM

Provisioner

Extension

UNICORE

JupyterLab

browser

SLURM

Provisioner

Extension

Cloud or Login node

Compute node

Jupyter SLURM Provisioner (by Tim Kreuzer & Alice Grosch)

ØMQ

Jupyter SLURM

Provisioner

SLURM

JUPYTER SERVER PROXY

JUPYTERLAB – WEBSERVICE PROXY
Extension: jupyter-server-proxy

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Notebook

Server

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

JupyterLab

Client

Extension

WebAppJupyterLab Extension

„jupyter-server-proxy“

Allows to run arbitrary external processes

▪ alongside a Jupyter notebook, and provide authenticated web access to them.

▪ launching users into web interfaces that have nothing to do with Jupyter.

▪ access from frontend javascript to access web APIs

https://github.com/jupyterhub/jupyter-server-proxy

Turbulent mixing with variable density,

subset of 1939x600x3584 grid points, Michael Gauding, CORIA

JUPYTERLAB – WEBSERVICE PROXY
Extension: jupyter-server-proxy

Jupyter-

Hub
https

Unity-

IdM

ssh - tunnel

Jupyter

Notebook

Server

Jupyter

Kernel

JupyterLab

JupyterLab

Server

Extension

UNICORE

JupyterLab

JupyterLab

Client

Extension

ØMQ

pvserverJupyterLab Extension

„jupyter-server-proxy“

How to use JupyterLab to integrate

interactive server side visualization into a Jupyter Notebook.

pvpython

simulation

PORT TUNNELING – WEBSERVICE PROXY
Extension: jupyter-server-proxy

https://jupyter-server-proxy.readthedocs.io/en/latest/arbitrary-ports-hosts.html

Accessing Arbitrary Ports or Hosts from the Browser

If you have a web-server running on the server

listening on <port>, you can access it through the notebook at

<notebook-base>/proxy/<port>

The URL will be rewritten to remove the above prefix.

You can disable URL rewriting by using

<notebook-base>/proxy/absolute/<port>

so your server will receive the full URL in the request.

This works for all ports listening on the local machine.

Example:
https://jupyter-jsc.fz-juelich.de/user/j.goebbert@fz-juelich.de/juwels_login/proxy/<port>
https://jupyter-jsc.fz-juelich.de/user/j.goebbert@fz-juelich.de/juwels_login/proxy/<host>:<port>

Upcoming: Support proxying to a server process via a Unix socket (#337)

JUPYTER SERVER PROXY

EXAMPLES

JUPYTERLAB – REMOTE DESKTOP
Run your X11-Applications in the browser

Jupyter-JSC gives you easy access to a remote desktop

1. https://jupyter-jsc.fz-juelich.de

2. Click on “Xpra”

Xpra - X Persistent Remote Applications

is a tool which runs X clients on a remote host and directs their

display to the local machine.

▪ Runs in a browser

▪ allows dis-/reconnection without disrupting the forwarded

application

▪ https://xpra.org

The remote desktop will run on the same node as your

JupyterLab does (this includes compute nodes).

It gets killed, when you stop your JupyterLab session.

Hint:

▪ CTRL + C -> CTRL + Insert

▪ CTRL + V -> SHIFT + Insert

JUPYTERLAB – REMOTE DESKTOP
Run your X11-Applications in the browser

JupyterLab

Jupyter-XpraHTML5-

Proxy

JupyterLab

Xpra HTML5-Client
XServer

(dummy driver)

encrypted Xpra stream

passwd

Xpra

HTML5S

L

• Xpra-HTML5 by JupyterLab

o Access through JupyterLab-URL

by configurable https proxy

o Auto-generated one-time

password & encryption key is

communicated through https-

proxy

https <-> ssh-tunnel

Xpra-HTML5

JavaScript-Client

https://github.com/FZJ-JSC/jupyter-xprahtml5-proxy

S: socket, read-/writeable to user only

L: local port, choosen randomly

JUPYTERLAB – MATLAB
Web-based GUI for MATLAB

MATLAB – Web-based GUI

Based on an existing connection to the HPC system, MATLAB

can be accessed in the browser.

• From here- you can connect directly to the cluster [2]

• Integrates MATLAB the HPC resources into the workflow

(partool) [3].

[1] https://www.fz-juelich.de/en/ias/jsc/services/user-support/software-tools/matlab

[2] https://de.mathworks.com/help/parallel-computing/remoteclusteraccess.html

[3] https://de.mathworks.com/products/parallel-computing.html

JUPYTERLAB – NEST DESKTOP
Web-based GUI for Neuroscientists using NEST

NEST-Desktop

NEST Desktop is a web-based GUI application for NEST

Simulator, an advanced simulation tool for the computational

neuroscience.

[1] https://nest-desktop.readthedocs.io

[2] https://www.nest-simulator.org

Jupyter-JSC gives you easy access to a NEST-Desktop

With Jupyter-JSC using Jupyter-Server-Proxy

authenticated & authorized users get secure access to the WebUI

of NEST-Desktop running NEST-simulations on HPC.

Plugin for Jupyter-Server-Proxy: jupyter-xprahtml5-proxy
https://github.com/jhgoebbert/jupyter-nestdesktop-proxy

CONCLUSION

JupyterLab …

… is a web-based platform for interactive computing and data analysis

that is well-suited to the needs of research software engineers.

… provides researchers with a comprehensive environment for working with

code, text, multimedia, and data, making it an ideal tool for a wide range of research tasks.

… is designed to be flexible and customizable,

and can be modified to suit the specific needs and workflows of individual researchers.

… supports the creation of reproducible research through its support for Jupyter notebooks.

… supports collaboration and sharing of research work

through its support for sharing notebooks, dashboards, and other elements of a research project.

… provides a wide range of extensions and plugins

that can be used to integrate other tools and services into the environment.

… is an open-source project, which means that researchers

have access to the source code and can contribute to its development.

Why Jupyter is so popular among Data Scientists

Page 62

QUESTIONS?

More details:

https://gitlab.jsc.fz-juelich.de/jupyter4jsc/training-2023.04-jupyter4hpc

