Insights from over Two Years of DMSO Use as a **Working Fluid in Condensation Particle Counters**

Sarah Kirchhoff, Oliver F. Bischof, Gerhard Steiner, Andreas Petzold, Ulrich Bundke and <u>Patrick Weber</u>

ETH Nanoparticles Conference 2025

Contact: p.weber@fz-juelich.de

Operating Principle of Condensation Particle Counters

- **D**i **M**ethyl **S**ulf **O**xide
- Found in the atmosphere and in living organisms mostly

- For the total number concentration of aerosol particles down to ≤ 10 nm
- Rely on working fluids to operate
- Most commonly used working fluids are alcohols such as Butanol

- Freezing point of 18°C
- Can swell various plastic components

Characterisations

Working Fluid:

Counted by CPC 5411

D50 Cut-Off diameter adjustable with saturator and condenser temperature changes

Particle growth suffers at lower saturator temperatures, which the C1/C0 value indicates

Miscible with water to improve freezing point to -100°C

No odour

Further Recommendations:

- Higher Laser power or lower response threshold to balance smaller particle growth
- Swelled plastic components can be exchanged with silicone or trimmed

References		Acknowledgements
a) Bischof, O. F., ISBN: 978-3-95806-629-8, 2022. b) Fung K. et al., Atmos. Chem. Phys., 22 , 2022.	Weber, P. et al., Aerosol Research, 1 , 2023. Kirchhoff S. et al., in preparation, 2025.	Financial support by the FZJ Innovation Fund and the HITEC Graduate School is gratefully acknowledged.

Member of the Helmholtz Association