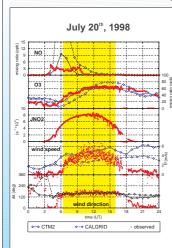
Evaluation of Comprehensive Eulerian Chemistry and Transport Models Using Ozone Production Rates Determined by Direct Radical Measurements During BERLIOZ

Heiner Geiß(1), Djuro Mihelcic(1), Andreas Volz-Thomas(1),

Michael Memmesheimer(2), Joachim Tippke(2), Bernhard Scherer(3) (1) Forschungszentrum Jülich GmbH, Institut für Chemie der Belasteten Atmosphäre, P.O. Box: 1913, 52425 Jülich (2) Institut für Geophysik und Meteorologie, Universität zu Köln, (3) Meteorologisches Institut, FU Berlin

Motivation

To test the ability of 3D transport models to simulate the contribution of chemical and meteorological processes to the local O₃ budget correctly


To quantify the relative importance of chemistry and atmospheric transport for the local O, budget

- Simulated local concentrations are in rather
- good agreement with observations

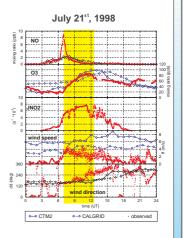
 Simulated chemical O₃ production rates show significant differences of up to a factor
- of 4 compared to observations ⊗ Highest observed production rates for O₃ are <10 ppb/h [8]
- Transport compensates under- or overprediction of chemical production of O₃
- → correct O₃ forecasts in urban plumes may be fortuitous !

Observed and simulated meteorology and concentration at Pabstthum

CTM2:

- wind speed too high at night, overestimated during daytime
- wind direction matches perfectly during MIESR observations
- O₃ overestimated before sunrise. little underestimation during MIESR observations Berlin plume at 6 UT

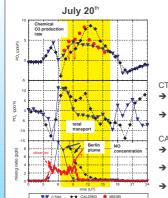
CALGRID:


- wind speed too high at night, underestimated
- during daytime wind direction matches perfectly during daytime
- · O₃ overestimated before
- sunrise, maxima too high
 Berlin plume at 6 UT

- wind speed considerable overestimated
- wind direction matches during MIESR measurements
- NO in time like observed.
- but maximum too low

 O₃ reasonable, maximum
- too high and too late

CALGRID:


- · wind speed
- overestimated wind direction matches during MIESR measurements
- · NO in time like observed. but maximum too low
- O, maximum too high and too late, time development not catched

Synoptical situation

Complex vertical structure of PBL on both days - strong wind shear within the PBL - advection of different air masses at different heights

Observed and simulated O₃ production rates at Pabstthum

MIESR measurements

$$\begin{split} P(O_3) &= k_1 \bullet \text{[NO][HO}_2] + \Sigma k_2 \bullet \text{[NO]} \bullet \text{[RO}_2]_i \\ k_1 &= 4.19 \bullet 10^{-12} \ \overline{k_2} = 4.12 \bullet 10^{-12} \ \text{(molecules m}^{-3} \text{ s}^{-1}) \end{split}$$

Models

Directly from the solution of the gas phase chemistry submodels

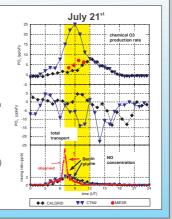
CTM2:

- → underprediction of P(O₃) during
- sunny hours

 stationary transport during
- MIESR measurements

CALGRID:

- → time development comparable
- to observations


 → time shift of P(O₃) maximum
- about 1.5 hours

 → increased O₃ advection until

CTM2

- → P(O₃) a factor of 4 higher then observed
- → strong local loss O₃ due to transport

- → slight underprediction of P(O₂)
- → time shift of P(O₃) maximum about 1.5 hours
- → little O₃ transport

Model design

model deolgii				
		CTM2	CALGRID	
D	riving meteorology	MM5 [1] 48 hour forecast	Europamodell [2] 36 hour forecast	
G	rid size	2 km	2 km	
	o. of vertical levels vithin PBL, lowest)	23 (13, 30 m)	14 (12, 20 m)	
С	hemical model	RADM2 [3]	SAPRAC90 [4]	
E	mission data base	TFS-BERLIOZ 1998 [5]	1994 Umweltbundesamt [6]	

Instrumentation

- NO, NO₂, NO₂, H₂O, O₃, CO, PAN, CH₂0, met, Parameters, J(NO₂)
- VOC (C,-C,,)
- HO,, RO,, NO, NO (det. lim. 1 ppt) with MIESR (Matrix-Isolation and Electron-Spin-Resonance, [7])
- All samples at 11m above ground

References

- - cam pagne EGS XXV General Assembly, Nice, France, 25-29 April, 200