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5.1 Introduction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5.1: Length- and time scales covered by research with neutrons giving examples for 
 applications and neutron techniques [1]. 
 
Research with neutrons covers an extraordinary range of length- and time scales as depicted 
in figure 5.1. The very extremes of length scales - below 10-12 m - are the domain of nuclear 
and particle physics, where e. g. measurements of the charge or electric dipole moment of the 
neutron provide stringent tests of the standard model of particle physics without the need of 
huge and costly accelerators. On the other extreme, neutrons also provide information on 
length- and time scales relevant for astronomical dimensions, e. g. the decay series of radioac-
tive isotopes produced by neutron bombardment give information on the creation of elements 
in the early universe. In this course, however, we are only concerned with neutrons as a probe 
for condensed matter research and therefore restrict ourselves to a discussion of neutron scat-
tering. Still, the various neutron scattering techniques cover an area in phase space from pi-
cometers pm up to meters and femtoseconds fs up to hours, a range, which probably no other 
probe can cover to such an extend.  
 
Different specialized neutron scattering techniques are required to obtain structural informa-
tion on different length scales:  
 

• With wide angle neutron diffractometry, magnetization densities can be determined 
within single atoms on a length scale of ca. 10 pm1. The position of atoms can be de-
termined on a similar length scale, while distances between atoms lie in the 0.1 nm 
range2.  

                                                 
1 In this sense, neutrons are not only nanometer nm, but even picometer pm probes! 
2 In what follows, we use as “natural atomic unit” the Ångstrøm, with 1 Å=0.1 nm. 
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• The sizes of large macromolecules, magnetic domains or biological cells lie in the 
range of nm to µm or even mm. For such studies of large scale structures, one applies 
reflectometry or small angle scattering techniques.  

• Most materials relevant for engineering or geo-science occur neither in form of single 
crystals, nor in form of fine powders.  Instead they have a grainy structure, often with 
preferred orientation of the grains. This so called texture determines the macroscopic 
strength of the material along different directions. Texture diffractometry as a special-
ized technique allows one to determine this grainy structure on length scales of up to 
mm. 

• Finally, for even larger structures, one uses imaging techniques, such as neutron radi-
ography or tomography, which give a 2dimensional projection or full 3-dimensional 
view into the interior of a sample due to the attenuation of the neutron beam, the phase 
shift or other contrast mechanisms. 

 
In a similar way, different specialized neutron scattering techniques are required to obtain 
information on the system’s dynamics on different time scales:  
 

• Neutron Compton scattering, where a high energy neutron in the eV energy range 
makes a deep inelastic collision with a nucleus in so-called impulse approximation, 
gives us the momentum distribution of the atoms within the solid. Interaction times are 
in the femtosecond fs time range.  

• In magnetic metals, there exist single particle magnetic excitations, so-called Stoner 
excitations, which can be observed with inelastic scattering of high energy neutrons 
using the so-called time-of-flight spectroscopy or the triple axis spectroscopy tech-
nique. Typically, these processes range from fs to several hundred fs.  

• Lattice vibrations (phonons) or spin waves in magnetic systems (magnons) have fre-
quencies in the picosecond ps time range. Again these excitations can be observed 
with time-of-flight or triple axis spectroscopy.  

• Slower processes in condensed matter are the tunneling of atoms, for example in mo-
lecular crystals or the slow dynamics of macromolecules. Characteristic time scales 
for these processes lie in the nanosecond ns time range. They can be observed with 
specialized techniques such as backscattering spectroscopy or spin-echo spectroscopy.  

• Even slower processes occur in condensed matter on an ever increasing range of 
length scales. One example is the growth of domains in magnetic systems, where do-
main walls are pinned by impurities. These processes may occur with typical time 
constants of microseconds µs. Periodic processes on such time scales can be observed 
with stroboscopic neutron scattering techniques.  

• Finally, kinematic neutron scattering or imaging techniques, where data is taken in 
consecutive time slots, allow one to observe processes from the millisecond ms to the 
hour h range.  

 
In this chapter, we will overview the various techniques used in neutron scattering and pro-
vide some examples for their application. We will start by repeating the properties of the dif-
ferent correlation functions, in order to be able to judge what kind of information we can ob-
tain from a certain neutron scattering experiment. We will introduce neutron scattering tech-
niques used to obtain information on “where the atoms are” (diffractometry) and “what the 
atoms do” (spectroscopy). We will finish by reviewing the range of applicability of various 
neutron scattering methods and compare them to other experimental techniques.  
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5.2 Scattering and correlation functions 
 
In the chapter on “Correlation Functions” it has been shown that the neutron scattering cross 
section for nuclear scattering can be expressed in the following form (for simplicity, we re-
strict ourselves to a mono-atomic system):  
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The cross section is proportional to the number N of atoms. It contains a kinematical factor 
k’/k, i. e. the magnitude of the final wave vector versus the magnitude of the incident wave 
vector, which results from the phase-space density. The scattering cross section contains two 
summands: one is the coherent scattering cross section, which depends on the magnitude 
square of the average scattering length density 2| |b  and the other one is the incoherent scatter-

ing, which depends on the variance of the scattering length ( )2 2| | | |b b− . The cross section 

(5.1) has a very convenient form: it separates the interaction strength between probe (the neu-
trons) and sample from the properties of the system studied. The latter is given by the so-
called scattering functions ( , )cohS Q ω  and ( , )incS Q ω , which are completely independent of 
the probe and a pure property of the system under investigation [2]. The coherent scattering 
function ( , )cohS Q ω  (also called dynamical structure factor or scattering law) is a Fourier 
transform in space and time of the pair correlation function:  
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Here the pair correlation function ( , )G r t  depends on the time dependent positions of the at-
oms in the sample:  
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(0)ir  denotes the position of atom i at time 0, while ( )jr t  denotes the position of another 
atom j at time t. The angle brackets denote the thermodynamic ensemble average, the integral 
extends over the entire sample volume and the sum runs over all atom pairs in the sample. 
Instead of correlating the positions of two point-like scatterers at different times, one can re-
write the pair correlation function in terms of the particle density as given in the second line 
of (5.3). Coherent scattering arises from the superposition of the amplitudes of waves scat-
tered from one particle at time 0 and a second particle at time t, averaged over the entire sam-
ple volume and the thermodynamic state of the sample. In contrast, incoherent scattering 
arises from the superposition of waves scattered from the same particle at different times. 
Therefore the incoherent scattering function ( , )incS Q ω  is given in the following form:  
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which is the Fourier transform in space and time of the self correlation function ( , )SG r t :  
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We next define the intermediate scattering function ( , )S Q t  as the purely spatial Fourier 
transform of the correlation function (here we have dropped the index “coh” and “inc”, re-
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spectively, as the intermediate scattering function can be defined for coherent as well as for 
incoherent scattering in the same way):  
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For reasons, which will become apparent below, we have separated in the second line the in-
termediate scattering function for infinite time 
   ( , ) lim ( , )

t
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from the time development at intermediate times. Given this form of the intermediate scatter-
ing function ( , )S Q t , we can now calculate the scattering function as the temporal Fourier 
transform of the intermediate scattering function:  
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In this way, the scattering function has been separated into one term for frequency 0, i. e. van-
ishing energy transfer 0E ωΔ = =h  and one term for non-vanishing energy transfer. The first 
term is the purely elastic scattering, which is given by the correlation function at infinite 
times. Correlation at infinite times is obtained for particles at rest. A prominent example is the 
Bragg scattering from a crystalline material, which is purely elastic, while the scattering from 
liquids is purely inelastic, since the atoms in liquids are moving around freely and thus the 
correlation function vanishes in the limit of infinite time differences.  
 
Often times the energy of the scattered neutron is not discriminated in the detector. In such 
experiments, where the detector is set at a given scattering angle, but does not resolve the en-
ergies of the scattered neutrons, we measure an integral cross section for a fixed direction 
ˆ ' 'k of k :  
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Momentum and energy conservation are expressed by the following kinematic equations of 
scattering: 
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Due to these kinematic conditions, the scattering vector Q will vary with the energy of the 
scattered neutron E' or the energy transfer ωh  as the integral in (5.9) is performed. The so-
called quasi-static approximation neglects this variation and uses the scattering vector Q0 for 
elastic scattering ( 0)ω =h  in (5.9). This approximation is valid only if the energy transfer is 
small compared to the initial energy. This means that the movements of the atoms are negligi-
ble during the propagation of the radiation wave front from one atom to the other. In this case, 
the above integral can be approximated as follows:  
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which shows that the integral scattering in quasi-static approximation depends on the instan-
taneous spatial correlation function only, i. e. it measures a snapshot of the arrangement of 
atoms within the sample. This technique is e. g. very important for the determination of short-
range order in liquids, where no elastic scattering occurs (see above).  
 
Our discussion on correlation functions can be summarized in a schematic diagrammatic 
form, see figure 5.2.  
 
         thermal movement 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.2: Schematic diagrams depicting the various scattering processes: a) coherent scat-

tering is connected with the pair correlation function in space-and time; b) inco-
herent scattering is connected with the self-correlation function; c) magnetic scat-
tering is connected with the spin pair correlation function;  d) elastic and inelastic 
scattering from a crystal measures average positions and movements of the atoms, 
respectively, e) inelastic scattering in quasistatic approximation sees a snapshot of 
the sample.  

 
Figure 5.2 shows that coherent scattering is related to the pair correlation between different 
atoms at different times (5.2a), while incoherent scattering relates to the one particle self cor-
relation function at different times (5.2b). In analogy to nuclear scattering, magnetic scattering 
depends on the correlation function between magnetic moments of the atoms. If the magnetic 
moment is due to spin only, it measures the spin pair correlation function. Since the magnetic 
moment is a vector quantity, this correlation function strongly depends on the neutron polari-
zation. For this reason, in magnetic scattering we often perform a polarization analysis as dis-
cussed in the corresponding chapter. Figure 5.2d depicts elastic and inelastic scattering from 
atoms on a regular lattice. Elastic scattering depends on the infinite time correlation and thus 
gives us information on the time averaged structure. Excursions of the atoms from their time 
averaged positions due to the thermal movement will give rise to inelastic scattering, which 
allows one e. g. to determine the spectrum of lattice vibrations, see chapter on “inelastic neu-
tron scattering”. Finally, an experiment without energy analysis in quasi-static approximation 
will give us the instantaneous correlations between the atoms, see figure 5.2e. This schematic 
picture shows a snapshot of the atoms on a regular lattice.  Their positions differ from the 
time averaged positions due to thermal movement.  
 

σ
σ'

t

σ
σ'

t

tt

tt

inelastic

elastic

inelastic

elastic

a)
d)

b)

e)

c)

 

 5.5



5.3 The generic scattering experiment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.3: Schematic diagram of a generic scattering experiment; the primary spectrometer 

in front of the sample serves to select an incident wave vector distribution by 
means of collimation and monochromatization; the secondary spectrometer after 
the sample selects a final wave vector; the number of neutrons for a given distribu-
tion of incident wave vector k and final wave vector k’

 is counted in the detector.  

 

collimationcollimation monomono--
chromatizationchromatization

 
A generic scattering experiment is depicted schematically in figure 5.3. The incident beam is 
prepared by collimators, which define the direction of the beam and monochromators, which 
define the energy of the incident neutrons. Together these optical elements select an incident 
wave vector k. In reality, since these neutron-optical elements are never perfect, a certain dis-
tribution of incident wave vectors around an average wave vector is selected in the primary 
spectrometer. In an analogous manner, a final wave vector - or better a distribution of final 
wave vectors - is being selected from all scattered waves after the sample by the secondary 
spectrometer. Finally the scattered neutrons are being counted in the detector. Since our neu-
tron-optical elements are never perfect, the measured intensity in the detector is not simply 
proportional to the scattering function ( , )S Q ω  (or more precisely, the cross section), but it is 
proportional to the convolution of the scattering function (or cross section) with the experi-
mental resolution function R:  
   3

0 00 0
( , ) ( , ) ( , )I Q S Q R Q Q d Qdω ω ω ω− −∫∫� ω  (5.12) 

Here, the resolution function R appears due to the limited ability of any experimental setup to 
define an incident or final wave vector k or k’, respectively. R therefore depends purely on the 
instrumental parameters and not on the scattering system under investigation. The art of any 
neutron scattering experiment is to adjust the instrument - and with it the resolution function - 
to the problem under investigation. If the resolution of the instrument is too tight, the intensity 
in the detector becomes too small and counting statistics will limit the precision of the meas-
urement. If, however, the resolution is too relaxed, the intensity will be smeared out and will 
not allow one to determine the scattering function properly.  
 
The simplest way to collimate an incident beam is to put two slits with given openings in a 
certain distance in the beam path and thus define the angular spread of the incident beam. For 
monochromatization of a neutron beam, usually one of two different methods is applied:  
 

• One can use the wave property of the neutron and diffract the neutron beam from a 
single crystal. According to Braggs' law in2 sd θ λ= , a certain wave length λ is being 
selected for a given lattice d-spacing under a scattering angle 2θ.  
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• One can use the particle property of the neutron and use the neutron time-of-flight to 
determine its velocity and thus its kinetic energy. How this is being done technically 
will be discussed in subsequent chapters.  

 
Following our discussion of the correlation functions, we will now distinguish two principally 
different types of neutron scattering instruments:  
 

• Diffractometers: these are scattering instruments, which either perform no energy 
analysis at all, or which measure only the truly elastic scattering. As discussed in 
chapter 5.2, the truly elastic scattering allows one to determine the time averaged 
structure. The prominent example is Bragg scattering from single crystals. If, however, 
no energy analysis is performed, one usually makes sure that one works in quasistatic 
approximation to facilitate the interpretation of the scattered intensity distribution. 
Quasistatic approximation corresponds to a snapshot of the scatterers in the sample 
and is important for example to determine short-range order in a liquid. Be it elastic 
scattering or integral scattering in quasistatic approximation, a diffraction experiment 
allows one to determine the position of the scatterers only. The movement of the scat-
terers is not accessible with such a diffraction experiment. Similarly, in a diffraction 
experiment for magnetic scattering, the arrangement of magnetic moments within the 
sample, i. e. its magnetic structure, can be determined, while the spin dynamics is not 
accessible in a diffraction experiment3. 

• Spectrometers: a neutron spectrometer is dedicated to measure inelastic scattering, i. e. 

to determine the change of the neutrons’ kinetic energy 
2 2

2
kE
m

=
h  during the scatter-

ing process. Such an experiment requires the analysis of the energy of the scattered 
neutrons, in contrast to a conventional diffractometer. Now the intensity measured in 
the detector depends on momentum- and energy- transfer and is proportional to the 
convolution of the double differential scattering cross section (5.1) with the resolution 
function of the instrument (5.12). Therefore a neutron spectrometer gives us informa-
tion on the scattering functions (coherent or incoherent) and thus on the truly time de-
pendent pair- or self correlation functions. This is why spectrometers are used to de-
termine the dynamics of a system after its structure has been determined in a previous 
diffraction experiment4.  

                                                 
3 In fact there is a way to access also spin- or lattice- dynamics in a diffraction experiment: lattice vibrations will 
give rise to diffuse scattering around Bragg peaks, so-called thermal diffuse scattering, which can be modelled 
and thus the spectrum of excitations can be determined in an indirect, but not model-free direct way.  
4 Of course, spectrometers could also be used to determine the structure, but usually their resolution is not at all 
adapted to this purpose.   
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5.4 Diffractometers 
 
5.4.1 Wide angle diffraction versus small angle scattering 
 
According to (5.10), the momentum transfer during a scattering experiment is given by 

'Q k= −h h hk . Remembering that 2k π
λ

= , the magnitude of the scattering vector Q can be 

expressed in terms of wavelength λ and scattering angle 2θ as:  

   4 sinQ π θ
λ

=  (5.13) 

As we have seen in chapter 5.2, the scattering cross section is related to the Fourier transform 
of the spatial correlation function and therefore a reciprocal relation exists between charac-
teristic real space distances d and the magnitude of the scattering vector Q, for which intensity 
maxima appear: 

   2~Q
d
π

Δ  (5.14) 

Bragg scattering from crystals provides an example for this equation (compare chapter:  “A 
neutron primer”): the distance between maxima of the Laue function is determined by 

2Q d πΔ ⋅ =

~ 2Q d

, where d is the corresponding real space periodicity.  Reflectometry provides 
another example (see below): the Q-distance between Kiessig fringes is given by the relation 

πΔ ⋅  (compare (5.19)), where d is the layer thickness.  
(5.14) is central for the choice of an instrument or experimental set-up, since it tells us which 
Q-range we have to cover in order to get information on a certain length range in real space. 
(5.13) tells us, at which angles we will observe the corresponding intensity maxima for a 
given wavelength. This angle has to be large enough in order to separate the scattering event 
clearly from the primary beam. This is why we need different instruments to study materials 
on different length scales. Table 5.1 gives two examples. 
 

 
 
Tab. 5.1: Examples for scattering from structures on different characteristic real space 

length scales d.  ΔQ is the corresponding characteristic scattering vector accord-
ing to (5.14), 2θ the scattering angle according to (5.13), calculated for two differ-
ent wavelength λ. 

 
1. The study of structures on atomic length scales is typically done with a wavelength of 

around 1 Å (comparable to the distance between the atoms) and the scattered intensity 
is observed at rather large angles between 5° and 175°. Therefore one speaks of wide 
angle diffraction, which is employed for the study of atomic structures.  

2. For the study of large scale structures (precipitates, magnetic domains, macromole-
cules in solution or melt) on length scales of 10 up to 10,000 Å (1 up to 1000 nm), the 
magnitude of the relevant scattering vectors as well as the corresponding scattering 

Example 

Distance between 
atoms in crystals 

Precipitates in 
metals (e.g. Co in 
Cu) 

2θ  
(λ=10 Å)

d 

2 Å 

400 Å 

ΔQ 

3.14 Å-1

0.016Å-1

"cut-off"

1.46°

Technique 

wide angle diffraction

small angle scattering

2θ  
(λ=1 Å)

29°

0.14°
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angles are small. Therefore one chooses a longer wavelength in order to expand the 
diffractogram. The suitable technique is small angle scattering, which is employed to 
study large scale structures.  

 
In what follows we will first focus on the study of large scale structures. In the corresponding 
conceptually very simple instruments, some typical considerations for the design of an in-
strument can be exemplified. We will distinguish between small angle neutron scattering in-
struments and reflectometers, discuss the basic instrument concepts and list some possible 
applications. After having discussed how large scale structures can be studied with neutron 
diffraction, we will then introduce instruments for wide angle scattering and their possible 
applications.  
 
 
5.4.2 Small angle neutron scattering SANS 
 
As mentioned in chapter 5.4.1, small angle scattering is employed whenever structures on 
length scales between typically 10 Å and 10,000 Å (1 nm and 1,000 nm) are of interest. This 
range of real space lengths corresponds to a scattering vector of magnitude between about 
10-1 Å-1 and 10-4 Å-1 (1 nm-1 and 10-3 nm-1). In order to observe the scattering events under 
reasonable scattering angles, one chooses a rather long wavelength. However, due to the 
moderator spectrum (see chapter "Neutron Sources"), there is very little neutron flux at wave-
lengths above 20 Å. Therefore typically neutrons of wavelength between 5 and 15 Å are em-
ployed for small angle neutron scattering.  
 
Two different principles of small angle neutron scattering will be distinguished in this chap-
ter: the pinhole SANS and the focusing SANS depicted in figures 5.4 and 5.5, respectively. 
Other types of instruments, e.g. with multi-pinhole grid collimation, are variants of these 
techniques and will not be discussed here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.4: Schematics of a pinhole SANS, where the incident wave vector is defined through 
 distant apertures (KWS-1 or KWS-2 of JCNS [3]). 
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Fig. 5.5: Schematics of a focusing SANS, where an image of the entrance aperture is  pro-
duced on the detector by a focusing mirror (KWS-3 of JCNS [3]).  
 
For both instrument concepts, the wavelength band is usually defined by a so-called velocity 
selector. Figure 5.6 shows a photo of a velocity selector drum build in Jülich for the instru-
ment KWS-3. 
 

 
Fig. 5.6: Drum of a velocity selector made from a 
light-weight, neutron absorbing alloy (MgLi).  A veloc-
ity selector works on the "screw threat principle": it is 
rotating at high speeds and only neutrons in a certain 
velocity band can travel undisturbed in the channels 
between the absorbing partition walls; neutrons out-
side this velocity band are stopped in the walls. Thus 
only a certain velocity- or wavelength band can pass 
this device. 
 
 

 
In the pinhole SANS, the incident wave vector k is defined by two distant apertures of compa-
rable size. The longer the distance between the diaphragms, the higher is the collimation for a 
given cross section of the beam. The sample is placed right next to the second aperture and 
the scattered neutrons are being recorded in a detector, which is at a large distance from the 
sample; typically the sample-detector distance is comparable to the collimation distance. The 
overall length of such an instrument can amount to 40 m, up to 80 m.  
 
In contrast to the pinhole SANS, the focusing SANS uses a divergent incident beam and a 
focusing optical element produces an image of the entrance aperture on the detector. The 
sample is positioned directly behind the focusing element. Small angle scattering from the 
sample appears on the position-sensitive area detector around the primary beam spot. Such a 
set-up with a focusing element would be the natural solution in light optics, where focusing 
lenses are readily available. Due to the weak interaction of neutrons with matter, the index of 
refraction for neutrons is very close to one, and it is difficult to produce efficient focusing 
elements. In case of the focusing SANS realized by Forschungszentrum Jülich [4], a toroidal5 
mirror is employed as focusing element. Locally, the toroidal shape is a good approximation 
to an ellipsoid with its well-known focusing properties. The challenge in realizing such a de-
vice lies in the fact that small angle scattering from the focusing element has to be avoided i.e. 
                                                 
5 A torus is a surface of revolution generated by revolving a circle about an axis coplanar with the circle, which 
does not touch the circle (examples: doughnuts, inner tubes). 
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the mirror has to be flat on an atomic scale (root-mean square roughness of about 3 Å !), 
which became possible due to the developments of optical industry for x-ray satellites.6 
 
As an example of the considerations leading to the design of a neutron scattering instrument, 
we will now discuss the resolution of a pinhole SANS machine. In general terms, the resolu-
tion of an instrument denotes the smearing out of the signal due to the instruments’ finite per-
formance (5.12). As neutron scattering is a flux limited technique, there is need for optimiza-
tion: the better the resolution of the instrument, i. e. the better the angular collimation Δθ, the 
smaller the wavelength spread Δλ, the smaller is the intensity recorded on the detector. There-
fore resolution has to be relaxed to such an extent that the features of interest are still measur-
able and not smeared out entirely by the resolution of the instrument, while at the same time 
the intensity is maximized. In order to determine the resolution of a SANS instrument, we 

start from (5.13): 4 sinQ π θ
λ

= . The influence of angular- and wavelength spread can be de-

termined by differentiation of this equation, where the different contributions have to be 
added quadratically:  
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ΔQ2 is the variance of the scattering vector due to the finite collimation and monochromatiza-
tion. dE and dS are the diameters of the entrance and sample aperture, respectively. dD denotes 
the detector pixel size. LC and LD are collimation length and sample-detector distance, respec-
tively. An optimization can be achieved, if all terms in (5.15) contribute the same amount, 
which leads to the condition  
    ,   2D C E DL L d d d= = = S  (5.16) 
(5.16) shows that a pinhole SANS has to be designed such that sample-to-detector distance LD 
is equal to the collimation length LC. Typical values are LD = LC = 10 m with openings of 
dE = 3 cm for the entrance- and dS = 1.5 cm for the sample aperture.  Note that one can chose 
the opening of the entrance aperture to be twice as large as the opening of the sample aperture 
- or sample size - without sacrificing markedly in resolution, while gaining in neutron count 
rate!  The detector needs a minimum pixel resolution dD ≈ dE ; A detector with a radius of 
about RD ≈ 30 cm is necessary to cover the required Q-range up to 0.05 Å-1 at LD = 10 m and 
for λ = 8 Å. Having defined the incident collimation, we can now determine the appropriate 
wavelength spread with the same argument as above: the last term in the sum in (5.15), corre-
sponding to the wavelength spread, should contribute the same amount to the variance of the 
scattering vector as the corresponding terms for the collimation, i. e.:  

   1 10%
10

E D E

C D D

d L d
L r r

λ
λ
Δ

= ⋅ ≈ ≈ =  (5.17) 

(5.17) demonstrates that in general for small angle scattering we don't need a very high degree 
of monochromatization. A 10 % wavelength band is acceptable, since for small angles the 
smearing due to the wavelength spread is quite comparable to the smearing due to the incident 
divergence. This is the reason why usually a velocity selector is employed as monochroma-
tizing element for small angle scattering, as it lets a wavelength band of typically 10 % pass.  
 
 
                                                 
6 It should be mentioned that nowadays focusing lenses for neutron scattering have also been realised. These 
have a very long focal distance, but can be employed to improve intensity or resolution in pinhole SANS.  
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Let us give a short introduction into the analysis of small angle scattering experiments. As in 
any scattering experiment, the detected intensity is proportional to the scattering cross section, 
which in the SANS case is usually normalised to the sample volume and therefore has the unit 
[cm-1]:  

 1

sample

d
d V d

dσ∑
= ⋅

Ω Ω
 (5.18) 

Here we discuss the so-called “two phase model” only, where homogeneous particles are dis-
persed in a matrix (e. g. precipitates in metals or nanoparticles in solution etc.). The cross sec-
tion will then be proportional to the contrast between particles and solution  
 
  (5.19) ( , ,j j P j M

j

b b ρ ρΔ = −∑ )
where j labels atom species j of scattering length bj with number density ρj,P in the particle 
and ρj,M in the matrix, respectively. The differential cross section per particle is given by the 
interference term (note: we use a continuum description for the small Q limit):  
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 (5.20) 

Here f(Q) denotes the particle form factor for a homogeneous particle of volume V:  

 31( ) iQ rf Q e d
V

⋅= ∫ r  (5.21) 

(5.20) is the differential cross section for a single particle. For very dilute solutions of identi-
cal particles, the cross section will be given by (5.20) times the number N of particles (“single 
particle approximation”). However, in more concentrated solutions, there will be additional 
interference effects between the particles, which are described by the so-called structure fac-
tor S and we obtain the modified cross section for dense solutions:  

 
22 2 ( ) ( )d N b V f Q S Q

d
σ

= ⋅Δ ⋅ ⋅ ⋅
Ω

 (5.22) 

where S(Q) is related to the Fourier Transform of the pair correlation function g(R) between 
the single particles at distance R:  

 31( ) 1 ( )
sample

iQ R

sample V

S Q g R e d r
V

⋅= + ∫  (5.23) 

(Note: for vanishing pair correlations g(R)≡0, i. e. random distributed particles, the structure 
factor has to be unity: S(Q)≡1).  
 
The isotropic form factor of a homogeneous sphere of radius R has already been given in the 
chapter “Neutron Primer”:  

 3

sin cos( ) 3
( )

QR QR QRf Q
QR
−

=  (5.24) 

For foreward scattering f(Q=0)=1 per definition. For small values of the scattering vector, 
this expression can be approximated by:  
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“Guinier Law” for QR≤2:  

 
2( ) 2 2

2 3( ) 1
3

GQR
GQ Rf Q e

−
≈ ≈ −  (5.25) 

Here the quantity RG is the so-called radius of gyration of the particle. For a spherical particle 
2 3

5G
2R R= , but RG can defined in a more general way also for non-spherical particles.  

 
For QR=3 the form factor squared has dropped to about 10 %. In the larger Q region - ne-
glecting the sharp minima of the form factor (5.24), which are often not visible due to particle 
size distribution and instrumental resolution - the form factor follows the behaviour:  
 
“Porod Law” for QR≥4.5: 

 2 4
2( ) 2 Af Q

V
π −≈ Q  (5.26) 

where A=4πR2 is the surface, and 34
3

V Rπ
= the volume of the sphere of radius R. In small 

angle scattering, often times one does not deal with simple geometrically smooth particles in a 
second phase. In stochastical growth processes or soft matter system, irregular fractal struc-
tures can appear, which show self-similarity on multiple length scales. For such structures, 
power laws with other exponents are observed:  

 

1 3
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 (5.27) 

where D denotes the so-called fractal dimension for porous objects. D is in general smaller 
than 3 and non-integer. If the particles have a dense core, but a rough self-similar surface, 
they are called surface fractals with a surface area of A ~ RDs. From the above discussion we 
see that characteristic regions can be distinguished in a small angle scattering experiment:  
 

1. Close to forward direction in the very small Q limit and for dilute solutions, we ob-
serve constant scattering proportional to the number of particles N, the square of the 
particle volume V2 and contrast (5.19). For known contrast, we can deduce the product 
N⋅V2, if the scattering is measured in absolute units by comparing to a known scatterer 
e. g. water. For dense solutions, the structure factor form correlations between parti-
cles becomes apparent. 

 
2. In the region up to QR≤2, the Guinier Law (5.25) holds for compact particles. From a 

Guinier-Plot ln d
d
σ
Ω

 versus Q2 one can determine the radius of gyration  

 

2 3

3

( )

( )
V

G

V

r b r d r

R
b r d r

Δ

=
Δ

∫
∫

 (5.28) 

 
3. In the Porod-region QR≥4.5 

 2 2d b NAQ
d

4σ π −= Δ
Ω

 (5.29) 
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 we can, independent of particle shape, determine the total surface area N⋅A of all parti-

cles with sharp surfaces from a Porod Plot 4d Q
d
σ
⋅

Ω
 versus Q4. 

4. Finally, if Q approaches the value 1/a where a corresponds to typical atomic distances, 
we approach the region of Bragg scattering from atomic structures (wide angle scatter-
ing).  

 
Let us now turn to applications of small angle scattering. One example is given in figure 5.7, 
which is concerned with the self-organization of crystalline amorphous diblock-copolymers 
[4]. Combining three different instruments, small angle scattering has been observed over ten 
orders of magnitude in cross section and nearly four orders of magnitude in momentum trans-
fer. In different regions, different power laws apply, corresponding to different structures ob-
served: the Q-2 power law corresponds to 2d structures on the shortest length scale, the Q-1 
power law corresponds to the organization of rods in bundles, while the Q-3 power law corre-
sponds to a network of bundles with a mass fractal aspect and finally, correlations become 
visible in the very low Q-range.  
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Fig. 5.7:  SANS investigation of the 
self-organization of a crystalline-
amorphous diblock-copolymer mea-
sured with three different instruments 
of different resolution:  double crystal 
diffractometer, focussing SANS and 
pinhole SANS for the low, medium and 
larger Q range, respectively.  Plotted 
is the cross section in absolute units 
versus the magnitude of the scattering 
vector.  For details see [4]. 
 
 
 
 
 

We will end this short introduction into the principles of small angle scattering by listing 
some examples for applications of small angle scattering in different fields of science:  
 

• soft matter: polymers and colloids, e. g. micelles, dendrimers, liquid crystals, gels, re-
action kinetics of mixed systems, … 

• materials science: phase separation in alloys and glasses, morphologies of superalloys, 
microporosity in ceramics, interfaces and surfaces of catalysts 

• biological macromolecules: size and shape of proteins, nucleic acids and of macromo-
lecular complexes, biomembranes, drug vectors 

• magnetism: ferromagnetic correlations and domains, flux line lattices in superconduc-
tors, … 
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5.4.3 Large scale structures: Reflectometry 
 
As elaborated in chapter 5.4.2, neutron small angle scattering is applied to determine large 
scale structures, e. g. scattering length density fluctuations on length scales of some 100 Å in 
bulk material. There is another type of instruments, which is dedicated to the study of large 
scale structures in thin film systems, on surfaces and in multilayers. Such an instrument is 
called a neutron reflectometer.  This conceptually simple instrument is depicted schematically 
in figure 5.8. 

primary collimation slits

monitorthin film sample
on goniometer

reflected beam

PSD:  position
sensitive detector monochromator

white
beam
from
source

primary collimation slits

monitorthin film sample
on goniometer

reflected beam

PSD:  position
sensitive detector monochromator

white
beam
from
source

 
 
Fig. 5.8: Schematics of a neutron reflectometer. Monochromatization can be done in many 

different ways:  by a velocity selector, by a crystal monochromator, or by a chop-
per in a time-of-flight instrument.  Collimation slits define the direction of the in-
cident beam.  The monitor is a low efficient detector of high transmission, which 
measures the incident flux on the sample.  The reflected neutrons are either de-
tected in a position sensitive detector, or a secondary collimation track in front of 
a point detector selects the direction of the reflected beam.  For magnetic samples, 
a polarizer, a polarization analyzer and guide fields can be inserted for polariza-
tion analysis experiments. 

 
Similar to a pinhole SANS instrument, the incident beam is collimated through a set of two 
well separated slits. However, since in reflectometry, one is mainly interested in the momen-
tum transfer perpendicular to the planar sample surface, the collimation of a reflectometer is 
tight only in this direction. Along the sample surface the beam can be wide and have a larger 
divergence in order to gain intensity. This collimated beam impinges on the sample under a 
grazing angle (typically fractions of a degree up to a few degrees) and is reflected into a single 
point detector or a position sensitive detector. To define the angle of exit for a point detector, 
a secondary collimation is needed between sample and detector. The incident beam is mono-
chromatized using different techniques, depending on the resolution requirements: velocity 
selector, time-of-flight chopper or crystal monochromator.  
 
With such an instrument, the layer structure of a sample can be determined, such as layer 
composition, layer thickness and surface- or interfacial roughness. This information is ob-
tained in so-called specular reflection, for which the incident angle is equal to the final angle 
like in a reflection from a perfect optical mirror. In this case, the momentum transfer of the 
neutrons is perpendicular to the surface of the sample and thus only laterally averaged infor-
mation can be obtained. In order to determine lateral correlations within the layers, for exam-
ple magnetic domain sizes, a momentum transfer within the layer has to occur, which implies 
that angle of incidence and final angle have to be different. Short range correlation within the 
layers will then give rise to so-called off specular diffuse scattering as well know in optics 
from a bad optical mirror. 
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The scattering geometry is shown in Fig. 5.9.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.9: Scattering geometry for grazing incidence neutron scattering. Specular reflections 

are obtained, if the angle of incidence equals the final angle αi = αf. Off-specular 
scattering is observed at αi ≠ αf.  

at

ki

 
In fact, the theoretical description of neutron reflectometry follows exactly along the lines of 
conventional optics, except that for neutrons in most cases the index of refraction is smaller 
than one and thus external total reflection occurs for neutrons coming from vacuum towards 
matter7: The index of refraction n of neutrons of wavelength λ from a layer composed of ele-
ments with scattering length bi and number density ρi and linear absorption coefficient µn is 
given by:  

 
2

1 :
2 4j j n

j

n b i µλ λ 1 iρ δ β
π π

= − − = − −∑  (5.30) 

Refraction and total reflection are described by the well-known Snell's Law of optics: 

     Snells law:                       cos
cos

i t

t

k n
k

α
α

= =  (5.31) 

     angle of total reflection:  cos c nθ =  (5.32) 
The intensities of reflected and transmitted beam can be determined from the optical Fresnel 
equation (A0, A1, B0: amplitudes of incident, transmitted and reflected waves, respectively; kz, 
ktz: component of wavevector k and kz, respectively, perpendicular to average surface):  
Fresnel equation: 
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Transmissivity 
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 (5.34) 

 
7 This is exactly what happens in neutron guides, evacuated tubes of usually rectangular cross section, where 
neutrons are totally reflected from the smooth glass side walls, often coated, e.g. with 58Ni, to enhance the angle 
of total reflection.  Since for total reflection conditions, reflectivity is close to 100%, neutrons are transported 
nearly without loss from the source to the instruments by bouncing back- and forth from the guide side walls. 
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Fig. 5.10 shows as an example the reflectivity and transmissivity of a Ni layer.  
 

 
 
Fig. 5.10: Reflectivity and transmissivity of neutrons from a Ni surface.  
 
Here we just want to demonstrate with very simple arguments how interference effects from 
layered structures arise and how the intensity modulation in Q-space are related to real space 
length scales. Figure 5.11 shows how interference can occur from a beam being reflected at 
the surface and at the internal interface of a double layer stack.  
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Fig. 5.11: Schematics of the reflection of a neutron beam from a single layer on a substrate.  

There exists an optical path length difference Δ between the rays drawn with a 
solid line and those drawn with a dotted line. 

 
For simplicity we consider only the case of a specular reflection, i. e. the incident angle αi is 
equal to the angle of exit αf: i fα α= =α . Interference occurs between beams reflected from 
the surface (dotted line in Fig. 5.11) and those first transmitted into the layer, reflected from 
the interface between layer 1 and substrate and then leaving the layer into vacuum (solid line). 
To a good approximation, refraction at the top surface can be neglected for incident angles 
larger than about twice the critical angle of total reflection. In this case t i fα α α α= = =  
holds. Since the index of refraction for neutrons is very close to one, this approximation is 
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valid even for rather small angles of incidence.  Then the optical path length difference for the 
two beams is: 
   2 sind αΔ =   (5.35) 
Here d is the thickness of the layer 1. We can now determine the distance between interfer-
ence maxima from the condition that the path length difference has to differ by one wave-

length: 2 (sin ) 2d dλ α α= ⋅Δ ≈ ⋅Δ .  With 4 4sinQ π πα α
λ λ

= ≈  we finally obtain: 

   2Q
d
π

Δ ≈   (5.36) 

Again we can see that the interference phenomena in Q-space are connected with real space 
length scales in a reciprocal way. (5.36) tells us that there will be a number of interference 

maxima at distances in Q of 2
d
π . These interference phenomena are called “Kiessig fringes” 

and are well known to us in conventional optics for example as the beautiful colors observed 
in soap bubbles. Figure 5.12 shows as an example the reflectivity of neutrons from a thin 
nickel layer on a glass substrate, which is nothing else but a section of a neutron guide em-
ployed to transport the neutrons from the source to the instrument over long distances by mul-
tiple total reflections. The Kiessig fringes are nicely visible in this example and the thickness 
of the nickel layer can be determined from the distance between adjacent intensity maxima.  

 
Fig. 5.12: Reflectivity of neutrons from a nickel layer on glass substrate on a logarithmic 

scale. Data points were measured on the HADAS reflectometer of the late FRJ-2 
reactor. The solid line shows a fit, where the layer thickness was determined to be 
837.5 Å with a root mean square roughness of 14.5 Å and where the resolution of 
the instrument of 32.08 10Qδ 1Å− −= ⋅  has been taken into account; the dotted line 
shows a simulation for the same structural parameters, but for an ideal instrument 
without resolution broadening; the short dashed line shows the simulation for the 
same layer thickness but without roughness; the long dashed line shows the simu-
lation for the glass substrate only.  

 
Neutron reflectometry has many applications in different fields of science of which we can 
only list a few:  
 

• soft matter science: thin films e. g. polymer films; polymer diffusion, self-organization 
of diblock copolymers; surfactants; liquid-liquid-interfaces, … 

• life science: structure of biomembranes 
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• materials science: surface of catalysts; kinetic studies of interface evolution; structure 
of buried interfaces 

• magnetism: thin film magnetism e. g. exchange bias, laterally structured systems for 
magnetic data storage, multilayers of highly correlated electron systems, … 

 
 
5.4.4 Atomic structures: Single crystal and powder neutron diffraction 
 
As explained in chapter 5.4.1, wide angle scattering with neutrons of wavelength typically 
1 Å is applied for the determination of atomic structures. Due to the periodicity of the lattice, 
Bragg peaks appear under diffraction angles given by the Bragg equation (compare reflecto-
metry:  (5.35) and (5.36)!): 
   2 sind θ λ=   (5.37) 
The intensity of the Bragg peaks is governed by the arrangement of the atoms within the unit 
cell (structure factor) and the scattering from the single atom (form factor). By collecting a 
large set of scattered intensities for many Bragg peaks, modeling the atomic structure and 
refining the parameters in order to get an optimum agreement between calculated and ob-
served intensities, the arrangement of atoms within the unit cell as well as the arrangements of 
spins for magnetic samples can be determined. Figure 5.13 shows the schematics of a single 
crystal diffractometer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.13: Schematics of a single crystal diffractometer.  The drawing shows the layout of the 

diffractometer D9 at the Institute Laue-Langevin and has been taken from 
http://www.ill.eu/. 

 
In contrast to small angle scattering, where a broad wavelength band is employed to enhance 

the scattered intensity, a better monochromatization of typically ~ 1%λ
λ
Δ  has to be achieved 

for wide angle scattering to avoid the broadening of the Bragg reflections due to the wave-
length spread according to (5.37). This monochromatization is typically done by Bragg dif-
fraction from a single crystal. The direction of the incident beam is determined by a set of 
slits. As Bragg reflections only occur when the corresponding lattice planes have a definite 
orientation with respect to the incident beam, the single crystal sample is usually mounted on 
a so-called Eulerian cradle, which allows one to orient the sample using the three Eulerian 
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angles ω, χ and φ. Finally the scattered beam is detected in a point- or small area detector. 
Care must be taken to collect the entire integrated intensity for a scan through the Bragg re-
flection. 
 
A conceptually simpler experiment for the determination of atomic structures is the neutron 
powder diffractometer. In this case, since the powder grains in the sample usually have ran-
dom orientations with respect to the incident beam, there is no need for orienting the sample 
with respect to the beam. Scattering will always occur for some of the grains, which by 
chance fulfill the Bragg condition. As scattering occurs for all allowed Bragg reflections si-
multaneously, it would be very inefficient to detect it by a single point detector, which would 
have to be positioned recursively for the correct 2θ values. Therefore in powder diffraction 
one usually uses a large linear - or even better area - position sensitive detector, which is ar-
ranged on a circular arch around the sample position.  
 
While neutron powder diffraction is conceptually simple, it poses the problem that Bragg re-
flections will overlap for larger unit cells e. g. due to the finite peak width. Among other fac-
tors, the peak width is determined by the resolution of the instrument. One can show that the 
resolution function for a neutron powder diffractometer on a beam being monochromized by a 
Bragg reflection from a monochromator crystal is given by:  
    (5.38) ( )2 22 tan tanU Vθ θ θΔ = + +W
In such a situation, one cannot determine the intensities of the various Bragg reflections sepa-
rately. The solution to the problem is the so-called Rietveldt- or profile refinement, where 
structural parameters (unit cell metric a,b,c,α,β,γ, atom positions and site occupations, the 
Debye-Waller-factors, etc) are refined together with the instrumental parameters (zero point 
of the scattering angle 2θ0, parameters of the resolution function U, V, W, etc). Assuming a 
certain peak shape function, this allows one to model the entire powder diffractogram and 
determine the corresponding parameters from a refinement, which aims at minimizing the 
weighted sum of the quadratic deviations of calculated and observed intensities for all data 
points. Figure 5.14 shows an example of such a Rietveldt analysis for data taken from a colos-
sal magnetoresistance manganite.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 5.20



 

CMR
Manganite
CMR
Manganite

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.14: Powder neutron diffraction from a colossal magnetoresistance manganite. Points 

represent the measured intensities, the solid line the calculated profile function. 
The green bars below the diffractogram indicate the positions of the Bragg 
reflections and the line beneath shows the difference between observed and calcu-
lated intensities [5].  

 
As one can see, there is a very strong overlap of Bragg reflections, especially at larger scatter-
ing angles. Still, by using the above mentioned profile refinement technique, the atomic struc-
ture of the compound could be determined to a great position.  
 
Applications of wide angle diffractions are manifold: 
 

• lifescience: structure of biological macromolecules, e. g. Hydrogen (crystal water!) in 
protein structures 

• chemistry: structure determination of new compounds, position of light atoms; time 
resolved reaction kinetics 

• materials science: stress-strain determination;  texture of materials 
• geo-science: phase and texture analysis 
• solid state physics: structure - function relations e. g. in high TC superconductors; 

magnetic structures and spin densities, e. g. in molecular magnets 
 
 
5.5 Spectroscopy 
 
So far, we have only explored the purely elastic - or the quasistatic correlation functions, 
which give us structural information on various length scales only. We will now turn to the 
general case of correlation functions in space and time, which allow us to determine in addi-
tion the microscopic dynamics of the sample under investigation. Again, different instrument 
types exist for different applications. First of all, if we consider the neutron as a particle, we 
can determine the time of flight it needs to travel from the sample to the detector and thus its 
velocity or energy after the scattering process. With the knowledge of the incident energy, the 
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energy transfer during the scattering process can be determined. This kind of neutron spec-
trometer is called a time-of-flight or TOF spectrometer. A special case of the TOF spec-
trometer is the so-called neutron spin echo spectrometer, where the time-of-flight of each 
single neutron is being determined through the Larmor precession of the nuclear spin of the 
neutron in an external magnetic field. Neutron spin echo spectroscopy has the highest energy 
resolution and measures the intermediate scattering function directly. Therefore it is well 
suited to study slow relaxation processes. An alternative approach to spectroscopy is to de-
termine the energy of the scattered neutrons by means of Bragg reflection from an analyzer 
crystal. Such an instrument is called a crystal spectrometer and if the selection of the incident 
wavelength is done by a crystal monochromator, it is called a triple axis spectrometer. A vari-
ant of a crystal spectrometer is the high resolution backscattering spectrometer. Of course 
there are various combinations of these techniques, which exist in particular at spallation 
sources. A discussion of all of the various instrument concepts goes well beyond the scope of 
this introductory chapter.  
 
 
5.5.1 Time-of-Flight or TOF spectrometry 
 
Figure 5.15 depicts schematically a generic time-of-flight spectrometer.  

 
Fig. 5.15: Generic TOF spectrometer.  The 
neutron beam is monochromatized, either by 
a crystal monochromator (X-TOF) or by 
time-of-flight (TOF-TOF) with choppers and 
/ or the pulse from a spallation source.  A 
chopper creates monochromatic neutron 
beam pulses incident on the sample.  The 
scattered neutrons are collected in an array 
of detectors surrounding the sample.  For 
each detector pixel, the neutrons are counted 
into a histogram as a function of their arrival 
time.  These intensity – time histograms can 
be converted into the scattering function 
S(Q,ω) by using a reference sample for abso-
lute calibration and simple kinematic rela-
tions between scattering angle and flight time 
on one hand and scattering vector and en-
ergy on the other hand. 
 

 
Neutrons are being monochromized either by reflection from a monochromator crystal or by 
time-of-flight techniques (X-TOF or TOF-TOF instruments). Monochromatic neutron pulses 
are produced by a chopper, which can be a fast rotating (up to e.g. 600 Hz) disc or drum made 
from neutron absorbing material, which has a slit that lets neutron pass only during a short 
time interval of typically some microseconds. This pulsed neutron beam impinges on the 
sample and is scattered under all possible scattering angles. Neutrons are recorded on a two 
dimensional position sensitive detector (nowadays, this is often an array of linear position 
sensitive 3He detector tubes) surrounding the sample typically on the surface of a cylinder. 
From the arrival time of the neutrons in the detector with respect to the starting time given by 
the opening of the chopper, an intensity spectrum can be recorded for each scattering angle 
separately as a function of the arrival time of the neutrons in the detector. Using simple kine-
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matic equations for the neutron as a particle and a calibration obtained by measuring a refer-
ence sample, this time-of-flight spectrum can be converted into the scattering function 
S(Q,ω). Figure 5.16 illustrates the scattering process in a flight path versus time diagram.  
 

 
Fig. 5.16: Flight-path-versus-time-diagram for a 
generic time-of-flight instrument (see text). (Cour-
tesy of Dr. M. Monkenbusch) 
 
 
 
 
 
 
 
 
 
 

In such a diagram, a monochromatic neutron beam has a certain slope, which can be derived 

from the de Broglie equation :h sp m v m
tλ

= = ⋅ = ⋅  

   mt s
h

λ= ⋅ ⋅   (5.39) 

Typical velocities for thermal neutrons lie in the range of meter per millisecond. In figure 5.16 
the neutrons coming from a monochromator enter the chopper with a certain slope in the path-
vs.-time diagram corresponding to the velocity of the monochromatic neutrons. With a repeti-
tion rate of 1

τ  given by the chopper frequency, pulses of monochromatic neutrons leave the 

chopper. A second chopper can be applied to suppress higher order reflections. The neutron 
scattered from the sample can either gain energy, resulting in a steeper slope in the path-vs.-
time diagram or loose energy resulting in a shallower slope. The number of neutrons entering 
the detector in a certain time interval is counted into a histogram with the elastic line usually 
being strongest and inelastic events being visible in neutron energy gain or -loss.  
 
A nice example for a powder neutron time-of-flight spectrum is given by the excitation spec-
trum of a molecular magnet, namely Mn12 acetat, see figure 5.17 [6]. Here the time-of-flight 
axis has been converted into an energy scale. Clearly visible are nicely separated excitations, 
which result in the energy level diagram depicted on the middle of figure 5.17. Transitions 
between these levels correspond to transitions between different values of the magnetic quan-
tum number of the total spin of the molecule. Modeling this energy level spectrum allows one 
to determine the magnetic interaction parameters, here mainly the magnetic anisotropy.  
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Fig. 5.17: Left:  Time-of-flight spectrum of the molecular magnet Mn12 acetat converted into 

an energy scale; middle: the corresponding energy level diagram; right: the mag-
netic molecule consisting of an outer ring of 8 Mn atoms with parallel coupled 
spins and an inner ring of 4 Mn atoms with opposite spin orientation. Taken from 
[6].  

 
Typical applications of time-of-flight spectroscopy can be found in various fields of science:  
 

• soft matter and biology: dynamics of gels, proteins and biological membranes; diffu-
sion of liquids, polymers; dynamics in confinement 

• chemistry: vibrational states in solids and adsorbed molecules on surfaces; rotational 
tunneling in molecular crystals 

• materials science: molecular excitations in materials of technological interest (e. g. 
zeolithes) and especially in diluted systems (matrix isolation); local and long range 
diffusion in superionic glasses, hydrogen-metal systems, ionic conductors 

• solid state physics: quantum liquids; crystal field splitting in magnetic systems; spin 
dynamics in high TC superconductors; phase transitions and quantum critical phenom-
ena; phonon density of states.  

 
 
5.5.2 Triple axis spectroscopy 
 
An alternative approach for the study of dynamics of condensed matter systems is the so-
called triple axis spectroscopy. The schematic of a triple axis spectrometer is depicted in fig-
ure 5.18.  
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Fig. 5.18: right: schematics of a triple axis spectrometer showing the three axes; 
 left: scattering diagram in reciprocal space. (Courtesy of Dr. H. Conrad) 
 
In this case the energies of the incident and scattered neutrons are selected by means of a sin-
gle crystal monochromator and - analyzer, respectively. Also the sample is usually in single 
crystalline form. These crystals (monochromator, sample, analyser) are on rotation tables, 
which form axis 1, axis 2 and axis 3 of the triple axis spectrometer. If we compare this in-
strument with the time-of-flight spectrometer shown in figure 5.15, one difference becomes 
immediately clear: while the time-of-flight spectrometer with its large detector bank allows 
one to obtain an overview over the excitation spectrum in reciprocal space, the triple axis 
spectrometer is the instrument of choice, if a certain narrow region in Q and ω is of interest. 
This is the case, if sharp excitations like lattice vibrations (phonons) or spin waves (magnons) 
are being investigated. A propagation vector of such an excitation together with a certain en-
ergy transfer can be selected by setting monochromator, sample and analyzer to the corre-
sponding values as depicted in the scattering diagram of figure 5.18, left. Here the energy 

transfer is given by 
2

2 2( ' )
2

E k k
m

Δ = −
h , while the momentum transfer is given as 

' hklQ k k G= − = +h h h h hq .  
 
Figure 5.19 shows as an example spin wave dispersion relations determined for the garnet 
Fe2Ca3Ge3O12 by triple axis spectroscopy.  
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Fig. 5.19: Spin wave dispersion relations for the garnet Fe2Ca3Ge3O12 along main symmetry 

directions in reciprocal space. The data points are obtained from scans keeping 
the momentum transfer Q constant. The figure on the right shows examples of such 
“constant Q scans”. The solid lines are model calculations, from which the inter-
action (exchange) parameters between the spins in the unit cells can be deter-
mined; figure taken from [7].  

 
Typical examples of triple axis spectroscopy lie mainly in solid state physics: 
 

• phonon dispersions in crystalline material, from which the interatomic forces can be 
determined 

• spin wave dispersions, which allow one to determine exchange and anisotropy pa-
rameters 

• dynamics of biological model membranes 
• lattice and spin excitations in quantum magnets, superconductors, … 
• phase transitions: critical behavior.  

 
 
5.5.3 High resolution spectroscopy 
 
Both, time-of-flight and triple axis spectroscopy, have typical energy resolutions of a few per-
cent of the incident neutron energy. While such energy resolutions are sufficient in many 
cases, there is need for higher energy resolutions, for example to investigate the rather slow 
movements of large macromolecules, the slow spin dynamics of frustrated spin systems, dif-
fusion of atoms or tunneling processes in molecular crystals. In order to improve the energy 
resolution, one could just narrow the energy band width of the neutrons incident on the sam-
ple. However, such an improvement of resolution goes hand-in-hand with the decrease of the 
signal in the detector and is therefore not practicable. There are, however, alternative ap-
proaches to increase the energy resolution: neutron spin echo spectroscopy and backscattering 
spectroscopy.  
 
Neutron spin echo spectroscopy can be understood as a further development of the time-of-
flight spectroscopy, where the flight time of each single neutron is encoded and thus a broad 
wavelength band of incident neutron energies can be used. Encoding of the flight-time is done 
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by the Larmor precession of the nuclear spin of the neutrons in an external magnetic field. 
Loosely speaking "each neutron carries its own clock" to measure its individual time-of-flight. 
Figure 5.20 demonstrates the principle of neutron spin echo spectroscopy: the incident neu-
tron beam with a broad wavelength band of typically 10 % is being polarized with the polari-

zation along the neutron flight direction. A so-called 
2
π -flipper turns the neutron polarization 

into the vertical direction, just before the neutrons enter a strong magnetic field, which is de-

signed in such a way that the field integral ( )B s d s∫  is identical for all neutron flight paths 

(an absolute non-trivial requirement!!). In the external filed, the nuclear magnetic moment of 
the neutron starts to precess in this field with a Larmor precession frequency determined by: 

   ds s Bdt = γ ×   (5.40) 

Due to the different neutron velocities and thus different flight times in the magnetic field 
area, the neutron beam reaching the sample is entirely depolarized. Typical field integrals are 
in the range of 0.5 T·m giving rise to some 10,000 precessions of the neutron spin. At the 
sample, the polarization of each neutron is inverted by a so-called π-flipper. In the second arm 
of the neutron spin echo spectrometer, the scattered neutrons travel through an identical sole-
noid as on the incident side. If the neutrons are scattered elastically and the field integrals in 
the two coils are precisely identical, then the full polarization of the neutron beam will be re-

stored and a full intensity will be recorded in the detector after a further 
2
π  flip and a polariza-

tion analyzer. This maximum intensity is called the spin echo. This spin echo is due to the fact 
that in the second coil, each neutron performs as many revolutions as in the first coil and thus 
has to end up with the initial spin direction. If an inelastic scattering event happens at the 
sample, the spin echo will be destroyed i. e. the intensity in the detector will be lowered. The 
echo signal can be measured by scanning the field of the second coil with respect to the field 
of the first coil. Since the echo signal depends directly on the time-of-flight which neutrons 
need to travel through the magnetic field region, the spin echo technique directly measures the 
intermediate scattering function S(Q,t) instead of S(Q,ω). This type of spectroscopy is there-
fore well suited to measure slow relaxation processes like the magnetization dynamics in spin 
glasses or the dynamics of large macromolecules. This aspect will be detailed in the lecture 
“Dynamics of Macromolecules”.  
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Fig. 5.20: Schematics of the neutron spin echo spectrometer of JCNS at the FRM II reactor 

in Munich [3]. The incident neutron beam has wavelength – or energy band of 
10%λ

λ
Δ = . 

 
Another instrument for high resolution spectroscopy, based on a crystal analyzer and thus 
related to the triple axis spectrometer, is the so-called neutron backscattering instrument. 
Starting from the Bragg equation 2 sindλ θ=  one can derive the wavelength spread of a 
Bragg reflection from a monochromator or analyzer crystal by simple derivation:  

   ( ) ( ) ( )
2 2 2 2

2 2 2 cotdd
d d
λ λ λ 2λ θ

θ λ
∂ ∂ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ = Δ + Δ ⇒ = + ⋅ Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

θ θ  (5.41) 

(5.41) shows that the wavelength spread results from two factors: an uncertainty in the lattice 
d-spacing, which can be minimized for perfect crystals such as silicon or germanium and a 
term resulting from the divergence of the beam. For backscattering i. e. 2 180θ = °  or 90θ = °  
this latter contribution vanishes due to the cot(θ) dependence. Thus in backscattering, one can 
work with a very divergent beam and still achieve a very good wavelength- or energy- resolu-
tion – of course at the prize of a poor Q resolution. This principle is applied for backscattering 
instruments. An example of such a spectrometer from a neutron spallation source is shown in 
figure 5.21.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.21: Schematics of the neutron backscattering spectrometer BASIS at the Spallation 
 Neutron Source SNS in Oak Ridge, USA, taken from [8].  
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Neutron pulses are produced in the supercritical hydrogen moderator.  These pulses have a 
width of about 45 μs for  wavelength neutrons (this wavelength corresponds with 
silicon (111) backscattering analyzer). Bandwidth choppers are used to select a certain wave-
length band from the pulsed white neutron beam. A long incident flight path of 84 m between 
moderator and sample allows one to define with great precision the wavelength of the incident 
neutrons arriving at the sample at a certain time after the initial neutron pulse. Neutrons are 
scattered from the sample onto Si (111) analyzers, reflected from these analyzers into detec-
tors in a close-to-backscattering geometry. In this way the final neutron wavelength is fixed to 
6.267 Å, while the incident neutron wavelength varies with time after the pulse and thus the 
energy transfer can be determined like in a time-of-flight instrument. An energy resolution of 
about 2.2 μeV can be achieved with the dynamic range of ± 250 μeV. Typical applications of 
such a backscattering spectrometer lie in the investigation of tunneling in molecular crystals, 
spin diffusion or slow spin relaxation in frustrated spin systems, or atomic diffusion proc-
esses.  

6.267Åλ =

 
 
5.12 Summary and conclusions 
 
In this chapter we have given a rough overview over the different neutron scattering tech-
niques and their applications. Many details will be discussed in the practical part of this 
course. In addition to the instrument concepts presented, there are many variants, which could 
not be discussed within the scope of this introduction. Besides neutron scattering there are of 
course many other techniques, which cover similar length and time scales for research in con-
densed matter. All these techniques are complementary since all of them can only access a 
certain range of length or time scales and since the contrast mechanisms are quite different for 
the different techniques. Figures 5.22 and 5.23 depict the relevant length and time scales ac-
cessible with the various neutron- and non-neutron techniques.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.22: Experimental techniques with spatial resolution: neutron diffraction compared to 
 other experimental techniques;  taken from [9]. 
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Fig. 5.23: Experimental techniques with time and energy resolution, respectively: neutron 
 spectroscopy compared to other experimental techniques; taken from [9].  
 
As these figures clearly demonstrate, neutron techniques cover a very large range of length 
and time scales relevant for research on condensed matter systems. Together with the typical 
assets of neutrons - sensitivity to magnetism, gentle non-destructive probe, sensitivity to light 
elements, contrast for neighboring elements etc. - it is clear why neutrons are such an impor-
tant probe in many fields of research. Figure 5.24 shows how research with neutrons is rele-
vant in many areas of fundamental research and how this in turn is highly relevant for many 
developments of modern technologies, which are the basis to solve current challenges of 
mankind.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.24: Significance of research with neutrons in fundamental research and modern tech-

nologies, which finally shape our environment and help solve pressing problems of 
modern societies, like energy supply, transport or communication; taken from [9].  
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