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11.1 Introduction 
 
Materials with strong electronic correlations are materials, in which the movement of one 
electron depends on the positions and movements of all other electrons due to the long-range 
Coulomb interaction. With this definition, one would naively think that all materials show 
strong electronic correlations. However, in purely ionic systems, the electrons are confined to 
the immediate neighborhood of the respective atomic nucleus. On the other hand, in ideal 
metallic systems, the other conduction electrons screen the long-range Coulomb interaction. 
Therefore, while electronic correlations are also present in these systems and lead for example 
to magnetism, the main properties of the systems can be explained in simple models, where 
electronic correlations are either entirely neglected (e. g. the free electron Fermi gas) or taken 
into account only in low order approximations (Fermi liquid, exchange interactions in mag-
netism etc.). In highly correlated electron systems, simple approximations break down and 
entirely new phenomena appear, possibly with related novel functionalities. These so-called 
emergent phenomena cannot be anticipated from the local interactions among the electrons 
and between the electrons and the lattice [1]. This is a typical example of complexity:  the 
laws that describe the behavior of a complex system are qualitatively different from those that 
govern its units [2]. This is what makes highly correlated electron systems a research field at 
the very forefront of condensed matter research. The current challenge in condensed matter 
physics is that we cannot reliably predict the properties of materials with strong electronic 
correlations. There is no theory, which can handle this huge number of interacting degrees of 
freedom. While the underlying fundamental principles of quantum mechanics (Schrödinger 
equation or relativistic Dirac equation) and statistical mechanics (maximization of entropy) 
are well known, there is no way at present to solve the many-body problem for some 1023 
particles. Some of the exotic properties of strongly correlated electron systems and examples 
of emergent phenomena and novel functionalities are:  
 

• High temperature superconductivity; while this phenomenon was discovered in 1986 
by Bednorz and Müller [3], who received the Nobel Prize for this discovery, there is 
still no commonly accepted mechanism for the coupling of electrons into Cooper 
pairs, let alone a theory which can predict high temperature superconductivity or its 
transition temperatures. This lack of understanding is the more surprising, the more we 
consider the large number of solid-state physicists worldwide, which are trying to 
solve this problem. High temperature superconductivity has already some applications 
like in so-called SQUID (Superconducting Quantum Interference Device) magnetic 
field sensors, superconducting generators or motors, high field magnets etc but might 
in the future have even further applications for loss-free energy storage or -transport. 

 
• Colossal magnetoresistance effect CMR, which was discovered in transition metal ox-

ide manganites and describes a large change of the electrical resistance in an applied 
magnetic field [4]. This effect can be used in magnetic field sensors and could eventu-
ally replace the giant magnetoresistance field sensors1, which are employed for exam-
ple in the read heads of magnetic hard discs.  

                                                 
1 The giant magnetoresistance effect [5] is an effect that occurs in artificial magnetic thin film multilayers. It was 
discovered independently by P. Grünberg and A. Fert, who received the Nobel Prize in 2007 for their discovery. 
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• The magnetocaloric effect [6], which describes a temperature change of a material in 
an applied magnetic field and can for example, be used for magnetic refrigeration 
without moving parts or a cooling fluid.  

 
• The multiferroic effect [7], which describes the simultaneous occurring of various fer-

roic orders in one material. This could be ferromagnetism, ferroelectricity or ferroelas-
ticity. If the respective degrees of freedom are strongly coupled, one can switch one of 
the orders by applying the conjugate field of the other order. In certain multiferroic 
materials, the application of a magnetic field can switch the ferroelectric polarization 
or the application of an electric field can switch the magnetization of the material. Fu-
ture applications of multiferroic materials in computer storage elements are apparent. 
One could either imagine elements, which store several bits in form of a magnetic- and 
electric polarization, or one could apply the multiferroic properties for an easier 
switching of the memory element. 

 
• Metal-insulator-transitions as observed e. g. in magnetite (Verwey transition [8]) or 

certain vanadites are due to strong electronic correlations and could be employed as 
electronic switches. 

 
• Negative thermal expansion [9] is just another example of the novel and exotic proper-

ties that these materials exhibit. 
 
It is likely that many more such emergent phenomena will be discovered in the near future. 
This huge potential is what makes research on highly correlated electron systems so interest-
ing and challenging: this area of research is located right at the intersection between funda-
mental science investigations, striving for basic understanding of the electronic correlations, 
and technological applications, connected to the new functionalities [10].  
 
 
11.2 Electronic structure of solids 
 
In order to be able to discuss the effects of strong electronic correlations, let us first recapitu-
late the textbook knowledge of the electronic structure of solids [11]. The description of the 
electron system of solids usually starts with the adiabatic or Born-Oppenheimer approxima-
tion. The argument is made that the electrons are moving so quickly compared to the nuclei 
that the electrons can instantaneously follow the movement of the much heavier nuclei and 
thus see the instantaneous nuclear potential. This approximation serves to separate the lattice- 
and electronic degrees of freedom. Often one makes one further approximation and considers 
the nuclei to be at rest in their equilibrium positions. The potential energy seen by a single 
electron in the averaged field of all other electrons and the atomic core potential is depicted 
schematically for a one dimensional system in figure 11.1.  
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Fig. 11.1: Potential energy of an electron in the solid; once in the case of free electrons, 

where the electron is described as moving in a potential well with infinitely high 
walls; and once taking into account the potential arising from the Coulomb inter-
action with the atomic cores, which is periodic in the infinite solid.  
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The following simple models are used to describe the electrons in a crystalline solid:  
 

• Free electron Fermi gas: here a single electron moves in a 3D potential well with infi-
nitely high walls corresponding to the crystal surfaces. All electrons move completely 
independent, i. e. the Coulomb interaction between the electrons is not considered ex-
plicitly, only the Pauli exclusion principle. 

• Fermi liquid: here the electron-electron interaction is accounted for in a first approxi-
mation by introducing quasiparticles, so-called dressed electrons, which have a charge 
e, and a spin ½ like the free electron, but an active mass m*, which can differ from the 
free electron mass m.  

• Band structure model: this model takes into account the periodic potential of the 
atomic cores at rest i. e. the electron moves in the average potential from the atomic 
cores and from the other electrons.  

 
Considering the strength of the long-range Coulomb interaction, it is surprising that the sim-
ple models of Fermi gas - or better Fermi liquid - already are very successful in describing 
some basic properties of simple metals. The band structure model is particularly successful to 
describe semiconductors. But all three models have in common that the electron is described 
with a single particle wave function and electronic correlations are only taken into account to 
describe phenomena like magnetism due to the exchange interaction between the electrons or 
BCS superconductivity [12], where an interaction between electrons is mediated through lat-
tice vibrations and leads to Cooper pairs, which can undergo a Bose-Einstein condensation.  
 
What we have sketched so far is the textbook knowledge of introductory solid state physics 
courses. Of course there exist more advanced theoretical descriptions, which try to take into 
account the electronic correlations. The strong Coulomb interaction between the electrons is 
taken into account in density functional theory in the so-called "LDA+U" approximation or in 
so-called dynamical mean field theory DMFT or a combination of the two in various degrees 
of sophistication [13]. Still, all these extremely powerful and complex theories often times fail 
to predict even the simplest physical properties, such as whether a material is a conductor or 
an insulator.  
 
Let us come back to the band structure of solids. In the so-called tight binding model one 
starts from isolated atoms, where the energy levels of the electrons in the Coulomb potential 
of the corresponding nucleus can be calculated. If such atoms are brought together, the wave 
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functions of the electrons from different sites start to overlap, leading to a broadening of the 
atomic energy levels, which eventually will give rise to the electronic bands in solids. The 
closer the atoms are brought together, the more the wave functions overlap, the more the elec-
trons will be delocalized, and the broader are the corresponding bands. This relationship is 
depicted graphically in figure 11.2.  
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Fig. 11.2: Left: The figure on the left shows the atomic potential of an electron interacting 

with the atomic core and the corresponding level scheme, which consists of sharp 
energy levels. The figure in the middle shows how these atomic energy levels 
broaden into bands, the more the wave functions of neighboring atoms overlap. 
Right: The figure on the right shows schematically the band width as a function of 
atomic number for the rare-earth- and transition metals. Underneath a certain 
width, the electrons remain localized. For partially filled shells such electrons can 
be magnetic. But even itinerant electrons can remain magnetic up to a certain 
band width. At band width over typically 8 eV, the electrons will be itinerant (the 
material will be metallic) and non-magnetic.  

 
If electronic correlations are not too strong, the electronic properties can be described by a 
band structure, which allows one to predict, whether a material is a metal, a semiconductor or 
an insulator. This is shown in figure 11.3. At T = 0 all electronic states are being filled up to 
the Fermi energy. At finite T the Fermi-Dirac distribution describes the occupancy of the en-
ergy levels. If the Fermi energy lies somewhere in the middle of the conduction band, the ma-
terial will be metallic. If it lies in the middle between valence band and conduction band and 
these two are separated by a large gap significantly larger than the energy equivalent of room 
temperature, the material will show insulating behavior. Finally, if the gap is small enough to 
allow thermal excitations of electrons from the valence band to the conduction band, we have 
semiconducting behavior. But again, this band structure model describes the electrons with 
single particle wave functions. Where are the electronic correlations?  
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Fig. 11.3: Schematic band structure for a simple metal, semiconductor and insulator.  
 
 
11.3 Electronic correlations 
 
It turns out that electronic correlations are particularly important in materials, which have 
some very narrow bands. This occurs for example in transition metal oxides or transition 
metal chalcogenides2 as well as in some light rare earth intermetallics (heavy fermion sys-
tems). Let us chose CoO as a typical and simple example of a transition metal oxide. CoO has 
the rock salt structure depicted in figure 11.4.  
 
 
 
 
 
 
 
 
 
 
 
Fig. 11.4: CoO crystallizes in the rock salt structure.  
 
The unit cell depicted in figure 11.4 is face centered cubic fcc and contains four formula units. 
The primitive unit cell of the fcc lattice, however, is spanned by the basis vectors 

   ( ) ( ) ( )1 1 1'  ;  '  ;  '
2 2 2x y y za a e e b a e e c a e e= + = + = +$ $ $ $ $ $

z x  (11.1) 

Here a is the lattice constant, and ˆ ˆ ˆ,  , x ye e ez

                                                

are the unit basis vectors of the original fcc unit 
cell. Therefore the primitive unit cell contains exactly one cobalt and one oxygen atom. The 
electronic configurations of these atoms are: Co: [Ar]3d74s2; O: [He]2s22p4. In the solid, the 
atomic cores of Co and O have the electronic configuration of Ar and He, respectively. These 
electrons are very strongly bound to the nucleus and we need not consider them on the usual 
energy scales for excitations in the solid state. We are left with nine outer electrons for the Co 

 
2 Chalcogenides are compounds of the heavier chalcogens (group VI elements of the periodic table, particularly 
sulfides, selenides, tellurides). Even so, oxygen is in the same group of the periodic table, oxides are usually not 
considered chalcogenides. 
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and six outer electrons for the O atom in the solid, so that the total number of electrons per 
primitive unit cell is 9 + 6 = 15. Therefore we have an uneven number of electrons in the 
primitive unit cell. According to the Pauli principle, each electronic state can be occupied by 
two electrons, one with spin up and one with spin down. Therefore with an uneven number of 
electrons, we must have at least one partially filled band and according to figure 11.3, CoO 
must be a metal.  
 
What does experiment tell us? Well, in fact, CoO is a very good insulator as the resistivity at 
room temperature amounts to ρ ~ 108 Ωcm. This value can be compared to a good conductor 
like iron, which has a resistivity of about 10-7 Ωcm. The resistivity of CoO corresponds to 
activation energies of about 0.6 eV or a temperature equivalent of 7000 K, which means there 
is a huge band gap making CoO a very good insulator. To summarize these considerations: 
the band theory breaks down already for a very simple oxide consisting of only one transition 
metal and one oxygen atom! 
 
In order to understand the reason for this dramatic breakdown of band theory, let us consider 
an even simpler example: the alkali metal sodium. It has the electronic configuration: 
Na: [Ne]3s1=1s22s22p63s1. Following our argumentation for CoO, sodium obviously has a 
half-filled 3s band and is therefore a metal. This time our prediction was correct: the electrical 
resistivity at room temperature is about 5·10-6 Ωcm. However, what happens if we pull the 
atoms further apart and increase the lattice constant continuously? Band theory predicts that 
for all distances sodium remains a metal, since the 3s band will always be half-filled. This 
contradicts our intuition and of course also the experiment: at a certain critical separation of 
the sodium atoms, there must be a transition from a metal to an insulator. It was Sir Nevill 
Mott (Nobel Laureate in physics of 1977), who predicted this metal-to-insulator transition, 
which is therefore called the Mott-transition [14]. The physical principle can be made clear 
with the illustration in figure 11.5.  
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Fig. 11.5: Illustration of the hopping process of an electron between two neutral sodium ions 
leading to charge fluctuations.  

 
On the left of figure 11.5, two neutral sodium atoms are depicted. The atomic energy levels of 
the outer electrons correspond to an energy ε3s. The wave functions of the 3s electrons will 
overlap giving rise to a finite probability that an electron can hop from one sodium atom to 
the other one. Such a delocalization of the electrons is favored according to the Heisenberg 
uncertainty principle 

   
2

p xΔ ⋅Δ ≥
h  (11.2) 
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(11.2) shows that we can gain kinetic energy, if the electrons become more delocalized. Fig-
ure 11.5 on the right shows the situation after the electron transfer. Instead of neutral atoms, 
we have one Na+ and one Na- ion. However, we have to pay a price for the double occupation 
of the 3s states on the Na- ion, namely the intra-atomic Coulomb repulsion between the two 
electrons denoted as U3s. While this is a very simplistic picture, where we assume that the 
electron is either located on one or the other Na atom, this model describes the two main en-
ergy terms by just one parameter: the hopping matrix element t, connected to the kinetic en-
ergy, and the intra-atomic Coulomb repulsion U, connected with the potential energy due to 
the Coulomb interaction between the two electrons on one site. In this simple model, we have 
replaced the long range Coulomb potential proportional to 1

r  with its leading term, an onsite 

Coulomb repulsion U. More realistic models would have to take higher order terms into ac-
count but already such a simple consideration leads to very rich physics. We can see from 
figure 11.5 that electronic conductivity is connected with charge fluctuations and that such 
charge transfer costs energy, where U is typically in the order of 1 or 10 eV. Only if the gain 
in kinetic energy due to the hopping t is larger than the penalty in potential energy U can we 
expect metallic behavior. If the sodium atoms are now being separated more and more, the 
intra-atomic Coulomb repulsion U will maintain its value, while the hopping matrix element t, 
which depends on the overlap of the wave functions, will diminish. At a certain critical value 
of the lattice parameter a, potential energy will win over kinetic energy and conductivity is 
suppressed. This is the physical principle behind the Mott transition.  
 
More formally, this model can be cast into a model Hamiltonian, the so-called Hubbard 
model [15]. In second quantization of quantum-field theory, one can write down the so-called 
single band Hubbard Hamiltonian: 
   

,
. .

( )j l l j j j
j l j
n N

t σ σ σ σ
σ

+ + U ↑ ↓

∈

= − + +∑∑ ∑H c c c c n n  (11.3) 

The operator jσ
+c  creates an electron in the tight binding (Wannier)-state ( )jr R σΦ − , jσn  

is the occupation operator j jσ σ
+c c  of the corresponding Wannier state; U is the Coulomb re-

pulsion in one orbital at one site: 

   
2 22

1 2
1 2

1 20

( ) (
4

je r R r R
U dr dr

r rπε
Φ − Φ −

=
−∫ ∫

)j  (11.4) 

t is the hopping amplitude  
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−∫ 2 )  (11.5) 

The Hubbard model is a so-called "lattice fermion model", since only discrete lattice sites are 
being considered. It is the simplest way to incorporate correlations due to the Coulomb inter-
action since it takes into account only the strongest contribution, the onsite Coulomb interac-
tion. Still there is very rich physics contained in this simple Hamiltonian like the physics of 
ferromagnetic- or antiferromagnetic metals and insulators, charge- and spin density waves and 
so on [15]. A realistic Hamiltonian should contain many more inter-site terms due to the long 
range Coulomb interaction and it is quite likely that additional new physics would be con-
tained in such a more realistic model.  
 
The most direct consequence of the onsite Coulomb interaction is that additional so-called 
Hubbard bands are created due to possible hopping processes. This is illustrated in figure 
11.6.  
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Fig. 11.6: Illustration of hopping processes between neighboring atoms together with their 

corresponding energy scales.  
 
The first row in figure 11.6 shows hopping processes, which are connected with a change of 
the total Coulomb energy. The second row shows hopping processes without transition. The 
last row shows hopping processes, which are forbidden due to the Pauli principle. From figure 
11.6 we can identify two different energy states. Configurations for which the onsite Coulomb 
repulsion comes into play have an energy which is higher by the onsite Coulomb repulsion U 
as compared to such configurations where the electrons are not on the same atom. In a solid 
these two energy levels will broaden into bands (due to the delocalization of the electrons on 
many atoms driven by the hopping matrix element t), which are called the lower Hubbard 
band and the upper Hubbard band. If these bands are well separated, i. e. the Coulomb repul-
sion U dominates over the hopping term t, we will have in insulating state, since only the 
lower Hubbard band is occupied. If the bands overlap, we will have a metallic state. Note 
however that lower and upper Hubbard band are totally different from the usual band struc-
ture of solids as they do not arise due to the interaction of the electrons with the atomic cores 
but due to electronic correlations. As a result the existence of the Hubbard bands depends on 
the electronic occupation. Figure 11.6 illustrates how in correlated electron systems the en-
ergy terms for simple hopping processes depend of the occupation of neighboring sites and 
how hopping transports spin information. The apparently simple single electron operator gets 
complex many body aspects.  
 
 
11.4 Example: doped CMR manganites 
 
In what follows we will discuss one example of highly correlated electron systems, the mixed 
valence manganites (see e.g. [16]). Their stoichiometric formula is A1-xBxMnO3, where A is a 
trivalent cation (A= La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Y, Bi) and B is a divalent cation 
(B = Sr, Ca, Ba, Pb). The doping with divalent cations leads to a mixed valence on the man-
ganese sites. If we neglect covalency3 and describe these compounds in a purely ionic model, 
charge neutrality requires that manganese exists in two valence states: Mn3+ and Mn4+ accord-
ing to the respective doping levels:  
    (11.6) 3 2 3 4

1 3 1 1x x x x x xA B MnO A B Mn Mn O+ + + +
− − −⎡ ⎤ ⎡ ⎤→ ⎣ ⎦ ⎣ ⎦ 3

                                                 
3 an assumption which is often made but certainly not entirely adequate this class of materials! 
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This is why one speaks of mixed valence manganites as Mn exists in two valence states with 
the following electronic configurations:  
   Mn3+: [Ar]3d4     /    Mn4+: [Ar]3d3 (11.7) 
The structure of these mixed valence manganites is related to the perovskite structure depicted 
in figure 11.7.  
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Fig. 11.7: The perovskite structure. Left: The ideal cubic structure; middle: the cubic struc-

ture in orthorhombic setting; right: the distorted perovskite structure with rotated 
and tilted oxygen octahedra.  

 
Perovskite is a mineral CaTiO3, which has a cubic crystal structure, where the smaller Ca2+ 
metal cation is surrounded by six oxygen atoms forming an octahedron; these corner sharing 
octahedra are centered on the corners of a simple cubic unit cell and the larger Ti4+ metal 
cation is filling the interstice in the centre of the cube. This ideal cubic perovskite structure is 
extremely rare. It only occurs when the sizes of the metal ions match to fill the spaces be-
tween the oxygen atoms ideally. Usually there is a misfit of the mean ionic radii of the A and 
B ions, which leads to sizeable tilts of the oxygen octahedra. The resulting structure is related 
to the perovskite structure as illustrated in figure 11.7: in the middle of figure 11.7 the cubic 
perovskite structure is shown in a different, orthorhombic setting. The usually observed 
perovskite structure is related to this structure by a tilting of the corner shared oxygen octahe-
dra as shown on figure 11.7 on the right. Such an orthorhombic structure is for example real-
ized in LaMnO3 with space group Pbnm. Orthorhombic or rhombohedral structures occur if 
the so-called tolerance factor T, which is the measure for the misfit of the ionic radii deviates 
significantly from the value 1, where T is defined as:  

   A,B O

MN O

R R1T
R R2

+
=

+
 (11.8) 

 
For the manganites the octahedral surrounding of the Mn ions leads to so-called crystal field 
effects. To explain these we stay in the ionic model and describe the oxygen atoms as O2- 
ions. The outer electrons of the Mn ions, the 3d electrons, experience the electric field created 
by the surrounding O2- ions of the octahedral environment. This leads to a splitting of the 
electronic levels as depicted in figure 11.8, the so-called crystal field splitting. Those 3d orbi-
tals, which have loops of the electron density pointing towards the negatively charged oxygen 
ions, will have higher energies with respect to those 3d orbitals, where the loops point in di-
rections between the oxygen atoms. This leads to a splitting of the d-electron levels into three 
so-called t2g and two so-called eg crystal field levels. For the manganites this crystal field 
splitting is typically in the order of 2 eV. If we now consider a Mn3+ ion, it depends on the 
ratio between the crystal field splitting and the intra-atomic exchange, how the electrons will 
occupy these crystal field levels. According to Hunds' rule, electrons tend to maximize the 

 11.9



total spin i. e. occupy energy levels in such a way that the spins of all electrons are parallel as 
far as Pauli principle permits. This is a consequence of the Coulomb interaction within a sin-
gle atom and is expressed by the Hunds’ rule energy JH. If the crystal field splitting is much 
larger than Hunds’ coupling, a low spin state will result where all electrons are in the lower t2g 
level and two of these t2g orbitals are single occupied, while one orbital is double occupied. 
Due to Pauli principle the spins in the doubly occupied orbital have to be antiparallel giving 
rise to a total spin S = 1 for this low spin state. Usually, however, in the manganites Hunds’ 
rule coupling amounts to about 4 eV, and is stronger than the crystal field splitting. In this 
case the high spin state shown in figure 11.8 is realized, where four electrons with parallel 
spin occupy the three t2g levels plus one of the two eg levels. The high spin state has a total 
spin of S = 2 and the orbital angular momentum is quenched4. This state has an orbital degree 
of freedom. The eg electron can either occupy the 3z2-r2 or the x2-y2 orbital. Nature does not 
like such degenerate states. The MnO3 octahedra will undergo a geometric distortion that re-
moves this degeneracy and lowers the overall energy of the complex. This is called the Jahn-
Teller effect, which is depicted in figure 11.8 as a further splitting of the d-electron levels. For 
the case shown in the figure, the c-axis of the octahedron has been elongated thus lowering 
the energy of the 3z2-r2 orbital with respect to the energy level of the x2-y2 orbital. The Jahn-
Teller splitting in the manganites has a magnitude of typically some 0.6 eV.  
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Fig. 11.8: Energy level diagram for a MnO3+ ion in an oxygen octahedron. For the free ion, 

the four 3d electron levels are degenerate. They split in a cubic environment into 
t2g and eg levels. If Hunds’ rule coupling is stronger than crystal field splitting, a 
high spin state results. The degeneracy of the eg level is lifted by a Jahn-Teller dis-
tortion, which results in an elongation of the oxygen octahedra. On the right of the 
figure, the 3d orbitals corresponding to the different orbital magnetic quantum 
numbers are depicted.  

 
The Jahn-Teller effect demonstrates nicely how in these transition metal oxides electronic 
degrees of freedom and lattice degrees of freedom are coupled. Only the Mn3+ ion with an 
even number of electrons (the so-called Kramer ion) exhibits the Jahn-Teller effect, while the 
Mn4+ ion with only three d electrons does not. A transfer of charge between neighboring 
manganese ions is accompanied with a change of the local distortion of the oxygen octahe-
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dron: a so-called lattice polaron. Due to the Jahn-Teller effect, charge fluctuations and lattice 
distortions become coupled in these mixed valence transition metal oxides.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11.9: Orbital order in LaMnO3.  Below the Jahn-Teller transition temperature of 780 K, 

a distinct long range ordered pattern of Jahn-Teller distortions of the oxygen oc-
tahedra occurs leading to orbital order of the eg orbitals of the Mn3+ ions as 
shown. Also shown is the antiferromagnetic spin order which sets in below the 
Néel temperature TN ~ 145 K.  Oxygen atoms are represented by filled circles, La 
is not shown. 

 
Having explained the Jahn-Teller effect, we can now introduce an important type of order 
occurring in these transition metal oxides: orbital order. Let us look at the structure of the 
LaMnO3 parent compound. Here all manganese are trivalent and are expected to undergo a 
Jahn-Teller distortion. In order to minimize the elastic energy of the lattice, the Jahn-Teller 
distortions on neighboring sites are correlated. Below the Jahn-Teller transition temperature 
TJT ~780 K, a cooperative Jahn-Teller transition takes place, with a distinct pattern of distor-
tions of the oxygen octahedra throughout the crystal lattice as shown in figure 11.9. This cor-
responds to a long range orbital order of the eg electrons, which should not be confused with 
magnetic order of an orbital magnetic moment. In fact, the orbital magnetic moment is 
quenched i. e. totally suppressed by the crystal field surrounding the Mn3+ ions. Orbital order-
ing instead denotes a long range ordering of an anisotropic charge distribution around the nu-
clei. As the temperature is further lowered, magnetic order sets in at the Néel temperature of 
145 K. In LaMnO3 the spin degree of freedom of the Mn3+ ion orders antiferromagnetically in 
so-called A-type order: spins within the a-b plane are parallel, while spins along c are coupled 
antiferromagnetically. This d-type orbital ordering and A-type antiferromagnetic ordering 
results from a complex interplay between structural-, orbital- and spin degrees of freedom and 
the relative strengths of the different coupling mechanisms in LaMnO3.  
 
The situation becomes even more complex for doped manganites, where the charge on the 
manganese site becomes an additional degree of freedom due to the two possible manganese 
valances Mn3+ and Mn4+. In order to minimizes the Coulomb interaction between neighboring 
manganese sites, so-called charge order can develop. This is shown for the example of half-
doped manganites in figure 11.10.  
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Fig. 11.10: Charge-, orbital- and spin-order in the half-doped manganite 
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These half-doped manganites show antiferromagnetic spin order, a checkerboard-type charge 
order with alternating Mn4+ and Mn3+ sites and a zigzag orbital order of the additional eg elec-
tron present on the Mn3+ sites. This is only one example of the complex ordering phenomena 
that can occur in doped mixed valence manganites. These ordering phenomena result from a 
subtle interplay between lattice-, charge-, orbital-, and spin degrees of freedom and can have 
as a consequence novel phenomena and functionalities like the colossal magnetoresistance 
effect.  
 
How are these ordering phenomena related with the macroscopic properties of the system? To 
answer this question, let us look at the resistivity of doped Lanthanum-Strontium-Manganites, 
see figure 11.11.  
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Fig. 11.11: Resistivity in the La1-xSrxMnO3 series, taken from [17].  Left: resistivity in zero 

field for various compositions from x = 0 to x = 0.5. Right: resistivity for x = 0.15 
in different magnetic fields as well as the magnetoresistance defined as the change 
in resistivity relative to its value for field equal zero.  
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The zero field resistance changes dramatically with composition. The x = 0 compound shows 
insulating - or better semiconducting - behavior as the resistivity increases with decreasing 
temperature. The higher doped compounds e. g. x = 0.4 are metallic as the resistivity de-
creases with decreasing temperature. Note however that the resistivity of these compounds is 
still about three orders of magnitude higher than for typical good metals. At an intermediate 
composition x = 0.15, the samples are insulators at higher temperatures down to about 250 K, 
then a dramatic drop of the resistivity indicating an insulator-to-metal transition and again an 
upturn below about 210 K with typical insulating behavior. The metal-insulator transition 
occurs at a temperature, where the ferromagnetic long-range order sets in. Around this tem-
perature we also observe a very strong dependence of resistivity on external magnetic field. 
This is the so-called colossal magnetoresistance effect. In order to appreciate the large shift in 
the maximum of the resistivity curve with field shown in figure 11.11, one should remember 
that the energy scales connected with the Zeeman interaction of the spin ½ electron in an ap-
plied magnetic field are very small: the energy equivalent of 1 Tesla for a spin ½ system cor-
responds to 0.12 meV, which in turn corresponds to a temperature equivalent of 1.3 K.  
 
Can we understand this strong dependence of the resistance on an external field in simple 
terms? Indeed there is a mechanism for a magnetic exchange interaction which can give rise 
to a ferromagnetic order and at the same time is connected with conductivity. This mechanism 
is called double exchange and is depicted schematically in figure 11.12. This exchange inter-
action can only occur between transition metals of different valences. In the case depicted in 
figure 11.12, an eg electron from a Mn3+ ion hops into the oxygen 2p orbital while the other 
oxygen 2p electron hops on the Mn4+ site. Since eg and t2g electrons are strongly coupled 
through the Hund's rule coupling, this transfer of an electron from Mn3+ to Mn4+ can only oc-
cur if the spins of the t2g electrons are parallel. 
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Fig. 11.12: Schematic representation of the double exchange interaction. On the left, the 

transfer of an eg electron through the intervening 2p orbitals from a Mn3+ to a 
Mn4+ ion is shown. On the right, this process is illustrated in an energy level dia-
gram for the manganese atoms. There is an antiferromagnetic exchange interac-
tion JAF between the t2g electrons. Within the Mn atoms, Hund's rule coupling JH is 
assumed to be larger than the crystal field splitting. t represents the hopping term 
between the two Mn sites. Only if the t2g spins of both Mn atoms are parallel can 
the eg electron hop between the two sites.  If the t2g spins are anti-parallel, hopping 
is suppressed by the strong Hund’s rule coupling between eg and t2g spins.  As 
double exchange is stronger than JAF, the Mn spins tend to align parallel. 

 
For an anti-parallel orientation of the t2g spins hopping is suppressed due to the penalty of the 
Hund's rule coupling energy JH. Therefore the double exchange between Mn3+ and Mn4+ ions 
is ferromagnetic and this ferromagnetic exchange is connected with conductivity. In terms of 
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the double exchange mechanism, we can now explain the insulator-to-metal transition occur-
ring at TC: in the paramagnetic states, the spins of the t2g electrons fluctuate, thus suppressing 
the hopping of the eg electron due to Hund’s rule coupling. The system behaves like an insula-
tor. As soon as ferromagnetism sets in, hopping between neighboring manganese sites can 
occur and the resistivity drops. An applied external field aligns the Mn spins even above the 
Curie temperature. This induced magnetization permits an increased hopping of the eg elec-
trons and thus to a decrease of resistivity. Thus in this simple model of the double exchange 
interaction, magnetoresistance can be explained qualitatively. However, it has been shown 
[18] that the double exchange interaction alone gives the wrong magnitude for the magnetore-
sistance effect. Other effects, such as the electron-phonon interaction, have to be taken into 
account. 
 
It is also clear that our entire discussion starting from ionic states is only a crude approxima-
tion to the real system. Therefore we now have to pose the question how can we determine the 
true valence state? Or more general, which experimental methods exist to study the complex 
ordering and excitations of the charge-, orbital-, spin- and lattice- degrees of freedom in these 
complex transition metal oxides?  
 
11.5 Experimental techniques: Neutron and x-ray scattering 
 
In this chapter we will give a first glimpse into how these various ordering phenomena can be 
studied experimentally. Obviously we need probes with atomic resolution which interact as 
well with the spins as with the charges in the system. Therefore neutron and x-ray scattering 
are the ideal microscopic probes to study the complex ordering phenomena and their excita-
tion spectra. The lattice and spin structure can be studied with neutron diffraction from a 
polycrystalline or single crystalline sample as detailed in the chapter on "Structure deter-
mination" of this course. Figure 11.13 shows as an example a powder spectrum of a 
La7/8Sr1/8MnO3 material.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11.13: High resolution neutron powder diffractogram of a powdered single crystal of 

La7/8Sr1/8MnO3. Circles are the data points, the solid line is the result of the struc-
tural refinement. Structural and magnetic Bragg reflections are located at the 2θ 
values indicated by the vertical lines below the spectrum. The solid line under-
neath shows the difference between the observed and simulated spectrum. Inserts 
show details in certain 2θ regions e. g. a magnetic Bragg reflection at very low Q.  
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Preferably the structure determination from polycrystalline material is done by a simultaneous 
refinement of neutron and x-ray powder diffraction spectra, as the two probes have different 
contrast mechanisms. For example an x-ray spectrum contains less precise information on the 
structural parameters for the oxygen atoms, since these rather light atoms scatter much weaker 
than the heavier metal atoms. Neutrons have the added advantage of a vanishing form factor 
for nuclear scattering and therefore give information up to larger momentum transfer. This is 
particularly useful for the determination of the thermal parameters (Debye-Waller factors). 
Neutrons also allow one to determine the magnetic structure from a powder diffraction pat-
tern. As a result of such a refinement, one can show that the low temperature structure of this 
compound is monoclinic or even triclinic5, i.e. there exists an additional distortion from the 
Pnma structure introduced in chapter 11.4. Ferromagnetic order becomes visible by intensity 
on top of the structural Bragg peak. Antiferromagnetic order is usually (but not always!) con-
nected with an increase in the unit cell dimension, which in turn shows up in the diffracto-
gram by additional superstructure reflections between the main nuclear reflections. It is be-
yond the scope of this lecture to discuss the experimental and methodological details of such a 
structure analysis or to present detailed results on specific model compounds. For this we re-
fer to the literature, e.g. [16]. We just want to mention that with detailed structural infor-
mation, we cannot only determine the lattice- and spin structure, but also the charge- and or-
bital order and can relate them to macroscopic phenomena such as the CMR effect. At first 
sight it might be surprising that neutron diffraction is able to give us information about charge 
order. We have learnt in the introductory chapters that neutrons interact mainly through the 
strong interaction with the nuclei and through the magnetic dipole interaction with the mag-
netic induction in the sample. So how can neutrons give information about charge order? Ob-
viously charge order is not determined directly with neutrons. However in a transition metal-
oxygen bond, the bond length will depend on the charge of the transition metal ion. The 
higher the positive charge of the transition metal, the shorter will be the bond to the neighbor-
ing oxygen, just due to Coulomb attraction. This qualitative argument can be quantified in the 
so-called bond valence sum.  There exists an empirical correlation between the chemical bond 
length and the bond valence:  

   0 ij
ij

R - R
s exp B

⎛ ⎞
= ⎜

⎝ ⎠
⎟  (11.9) 

Here, the Rij are the experimentally determined bond lengths, B is a constant (B = 0.37 ac-
cording to [19]) and R0 are tabulated values for the cation-oxygen bonds see e. g. [19]. Table 
11.1 reproduces some of these values.  
 
 

 

 
 
 
 
 
 
 
 
 
Tab. 11.1:  R0 values of cation-oxygen bonds in manganese perovskites needed for the bond 

valence calculation (11.9);  taken from [19].  

                                                 
5 Highest resolution synchrotron x-ray powder diffraction is best suited to solve the problem of the metric of the 
low temperature structure, as peak splitting can be detected much better with this method than with laboratory x-
ray- or neutron powder diffraction which has generally less resolution 
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Finally the valence or oxidation state of the cation can be determined by the sum of the bond 
valences around the respective atom i according to:  
    (11.10) i

ij
V =∑ ijs

Even though this method to determine the valence state is purely empirical, it proves to be 
rather precise, if compared to other techniques. The values of the valences found with this 
method differ significantly from a purely ionic model. Instead of integer differences between 
charges on different transition metal ions, one finds more likely differences of a few tenth of a 
charge of an electron.  
 
Just like charge order, orbital order is not directly accessible to neutron diffraction techniques 
since orbital order represents an anisotropic charge distribution and neutrons do not directly 
interact with the charge of the electron. However, we have seen in the discussion of the Jahn-
Teller effect (figure 11.8 and figure 11.9) that an orbital order is connected with a distortion 
of the local environment visible in different bond lengths within the anion complex surround-
ing the metal cation. In this way, by a precise determination of the structural parameters from 
a combined neutron and x-ray powder diffraction experiment, one can determine in favorable 
cases the ordering pattern of all four degrees of freedom: lattice, spin, charge and orbitals.  
 
One can ask, whether there is not a more direct way to determine charge- and orbital order.  
The scattering cross section of x-rays contains the atomic form factors, which are Fourier 
transforms of the charge density distribution of an atom. Naively one would think therefore 
that charge and orbital order can be easily determined with x-ray scattering. However, as dis-
cussed in the last paragraph on bond valence sums, it is usually only a fraction of an elemen-
tary charge, which contributes to charge- or orbital ordering. If we take the case of the Mn 
atom, the atomic core has the Ar electron configuration i. e. 18 electrons are in closed shells 
with spherical charge distributions. For the Mn4+ ion, three further electrons are in the t2g lev-
els. Since in scattering, we measure intensities and not amplitudes, these 21 electrons contrib-
ute  to the scattered intensity2 2

021 r 6. If the difference in charge between neighboring Mn ions 
amounts to 0.2e, this will give an additional contribution to the scattered intensity of . 

The effect of charge ordering in x-ray scattering is therefore 

2 2
00.2 r

2
-4

2

0.2 ~ 1 10 0.1
21

× = ‰. In this 

simple consideration, we have completely ignored the scattering from all the other atoms, so 
that detection of charge- or orbital ordering becomes even more difficult in reality. There is, 
however, a way to enhance the scattering from non-spherical charge distributions, the so-
called anisotropic anomalous x-ray scattering. It was first discussed by Templeton and 
Templeton [20] and applied for orbital order in manganites by Murakami et al. [21]. The prin-
ciple of this technique is shown in figure 11.14.  
 
 
 
 
 
 
 
 
 

                                                 
6 The classical electron radius r0=e/mc2=2.82 fm is the natural unit for the scattering amplitude of x-ray Thomson 
scattering 
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Fig. 11.14: Illustration of the principle of anisotropic anomalous x-ray scattering for a hypo-

thetical 2-dimensional compound consisting of two atoms with different number of 
electrons. On the left a possible reconstruction of the charge distribution from a 
laboratory x-ray source is shown. Non resonant x-ray scattering is sensitive 
mainly to the spherical charge distribution and a unit cell as shown by the white 
lines is being deduced from this experiment. In the middle the principles of a reso-
nance x-ray scattering is depicted in an energy level diagram (see text). On the 
right, the charge distribution deduced from such an anomalous x-ray scattering 
experiment is shown. Now an orbital ordering pattern becomes apparent, which 
could not be detected with non-resonant x-ray scattering. The unit cell is evidently 
larger, giving rise to superstructure reflections which appear at resonance.  

resonantnon resonant

εF

E

 
The figure shows scattering from a hypothetical two dimensional compound consisting of two 
atoms with different number of electrons. Non resonant x-ray scattering as it can be done on a 
laboratory x-ray source is sensitive mainly to the spherical charge distribution. A reconstruc-
tion of the charge distribution done from such an experiment might look schematically as 
shown on the left of figure 11.4. The corresponding crystal structure can be described with a 
primitive unit cell indicated by the white lines. In order to enhance the scattering from the non 
spherical part of the charge distribution, an experiment can be done at a synchrotron radiation 
source. There the energy of the x-rays can be tuned to the energy of an absorption edge as 
shown in the middle of figure 11.4. Now second order perturbation processes can occur, 
where a photon induces virtual transitions of an electron from a core level to empty states 
above the Fermi energy and back with re-emission of a photon of the same energy as the inci-
dent photon. Since second order perturbation processes have a resonant denominator, this 
scattering will be largely enhanced close to an absorption edge. If the intermediate states in 
this resonant scattering process are somehow connected to orbital ordering, scattering from 
orbital ordering will be enhanced. Thus in the resonant scattering experiment, orbital order 
can become visible as depicted schematically on the right of figure 11.14. With the shown 
arrangement of orbitals, the true primitive unit cell of this hypothetical compound is obvi-
ously larger than the unit cell that was deduced from the non resonant scattering experiment 
(shown on the left), which was not sensitive enough to determine the fine details of the struc-
ture. An increase of the unit cell dimensions in real space, however, is connected with a de-
crease of the distance of the reciprocal lattice points, i. e. an increase in the number of Bragg 
reflections. Therefore orbital order is visible by a resonant scattering process in the appear-
ance of additional superstructure reflections. The intensity of these reflections has strong en-
ergy dependence as we would expect for a second order perturbation process. This type of 
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scattering experiment is called anisotropic anomalous x-ray scattering, since it is sensitive to 
the anisotropic local charge distribution around an atom.  
 
Figure 11.15 shows data from such a resonant scattering experiment [22] together with its 
interpretation in terms of an orbital polaron lattice [23].  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11.15: The figure on the left shows the dependence of the intensity of resonant superlat-

tice reflections from La7/8Sr1/8MnO3 as a function of the energy of the incident pho-
tons. Clearly visible is the strong resonant enhancement at the K-absorption edge 
of Mn (note the logarithmic intensity scale). Several reflections with half indices 
along c become visible at resonance. The interpretation of this experiment is given 
in real space on the right of the figure. There is an alternating arrangement of 
Mn3+ and Mn4+ ions. The additional electron of the Mn3+ ion occupies an eg or-
bital, which points towards the Mn4+ ion. This arrangement is called an orbital 
polaron. In the ferromagnetic insulating phase of La7/8Sr1/8MnO3 below 155 K, 
these orbital polarons arrange into a long ranged ordered orbital polaron lattice.  
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The figure gives a nice example of how anisotropic anomalous x-ray scattering gives detailed 
information on charge- and orbital ordering in solids. Its advantage is that it is element spe-
cific (due to the different absorption edge energies for the different elements) and that it com-
bines diffraction and spectroscopy. This can also be seen in figure 11.15: there is a distinct 
fine structure in the resonance above the absorption edge, which gives information about the 
density of states of the unoccupied orbitals above the Fermi level.  
 
So far we have discussed some powerful experimental techniques to determine the various 
ordering phenomena in complex transition metal oxides. Scattering can give much more in-
formation than just on the time averaged structure. Quasielastic diffuse scattering gives us 
information on fluctuations and short range correlations, i. e. short range correlations of pola-
rons above the phase transition, magnetic correlations in the paramagnetic state, local dy-
namic Jahn-Teller distortions above the Jahn-Teller transition etc. Studying these correlations 
and fluctuations help us to understand what drives the respective phase transitions into long 
range order. The relevant interactions, which give rise to these ordering phenomena, can be 
determined from inelastic scattering experiments as we have learnt in the chapter on "Inelastic 
neutron scattering". For example, one can determine the exchange interactions from meas-
urements of the spin wave spectra and compare with models for superexchange interactions 
and double exchange in order to verify or falsify the simple model explanations for the CMR 
effect discussed in chapter 11.4. Since there is a huge amount of such experiments on highly 
correlated transition metal oxides and chalcogenides, a review of these experiments definitely 
goes far beyond the scope of this introductory lecture.  
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11.6 Summary 
 
This chapter gave a first introduction into the exciting physics of highly correlated electron 
systems, restricted to the complex transition metal oxides and -chalcogenides. The main mes-
sage can be summarized in figure 11.16.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11.16: Illustration of complexity in correlated electron systems. Meaning of the symbols 

is:  H, E: magnetic and electric field, respectively; µ: chemical potential (doping); 
T: temperature; P: pressure; σ: strain (epitaxial growth); d: dimensionality (e. g. 
bulk versus thin film systems); CO: charge order; OO: orbital order; SO: spin or-
der; JT: Jahn-Teller transition.  

 
The complexity in these correlated electron systems arises from the competing degrees of 
freedom: charge, lattice, orbit and spin. The ground state is a result of a detailed balance be-
tween these different degrees of freedom. This balance can be easily disturbed by external 
fields or other thermodynamical parameters, giving rise to new ground states or complex col-
lective behavior. Examples are the various ordering phenomena discussed, Cooper pairing in 
superconductors, so-called spin Peierls transitions in one dimensional systems etc. This high 
sensitivity to external parameters as well as the novel ground states of the systems gives rise 
to novel functionalities, such as the colossal magnetoresistance effect, high temperature su-
perconductivity, multiferroic behavior and many more. A theoretical description of these 
complex systems starting from first principles, like Schrödinger equation in quantum mechan-
ics or the maximization of entropy in statistical physics, is bound to fail due to the large num-
ber of strongly interacting particles. Entirely new approaches have to be found to describe the 
emergent behavior of these complex systems. Therefore highly correlated electron systems 
are a truly outstanding challenge in modern condensed matter physics. We have shown in this 
lecture that neutron and x-ray scattering are indispensable tools to disentangle this complexity 
experimentally. They are able to determine the various ordering phenomena as well as the 
fluctuations and excitations corresponding to the relevant degrees of freedom. No other ex-
perimental probe can give so much detailed information on a microscopic level as scattering 
experiments.  
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