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2.1 Introduction 
 
After we have learnt how neutrons are produced in neutron sources, we will explain in this 
chapter, how neutrons can be used to study the atomic structure and dynamics of condensed 
matter systems. We will give a basic introduction into scattering methods in general and then 
introduce the special properties of neutrons, which make them an invaluable probe for con-
densed matter research. Neutrons tell us, where the atoms are, how the atoms move and what 
their atomic magnetic moments do. 
 
Our present understanding of the properties and phenomena of condensed matter science is 
based on atomic theories. The first question we pose when studying any condensed matter 
system is the question concerning the internal structure: what are the relevant building blocks 
(atoms, molecules, colloidal particles, ...) and how are they arranged? The second question 
concerns the microscopic dynamics: how do these building blocks move and what are their 
internal degrees of freedom? For magnetic systems, in addition we need to know the arrange-
ment of the microscopic magnetic moments due to spin and orbital angular momentum and 
their excitation spectra. In principle, the macroscopic response and transport properties, such 
as specific heat, thermal conductivity, elasticity, viscosity, susceptibility, magnetization etc., 
which are the quantities of interest for applications, result from the microscopic structure and 
dynamics. To determine these macroscopic properties from the microscopic information pro-
vided by scattering experiments represents a huge challenge to condensed matter theory as we 
are dealing with an extreme many body problem with typically 1023 particles involved. It is a 
true masterly achievement of mankind that for many solid state systems, such microscopic 
theories could be developed, based on quantum mechanics and statistical physics. 
 
For the progress of modern condensed matter research, the availability of probes to study 
structure and dynamics on a microscopic level is therefore essential. Modern scattering tech-
niques can provide all the required information. Radiation, which has a rather weak inter-
action with the sample under investigation, provides a non-invasive, non-destructive probe for 
the microscopic structure and dynamics. This has been shown for the first time by 
W. Friedrich, P. Knipping and M. von Laue in 1912, when interference of x-ray radiation 
scattered from a single crystal was observed. Max von Laue received the Nobel Prize for the 
interpretation of these observations. One cannot overestimate this discovery: it was the first 
definite proof that atoms as the elementary building blocks of condensed matter are arranged 
in a periodic manner within a crystal. The overwhelming part of our present-day knowledge 
of the atomic structure of condensed matter is based on x-ray structure investigations. The 
method has developed rapidly since 1912. With the advent of modern synchrotron x-ray 
sources, the source brilliance has since then increased by 18 orders of magnitude. Currently 
X-ray Free Electron Lasers, e. g. the XFEL project (http://xfel.desy.de/), are being realized 
which will increase this brilliance by another 10 orders of magnitude. Nowadays the structure 
of highly complex biological macromolecules, like the crystal structure of the ribosome, can 
be determined with atomic resolution. Extremely weak phenomena such as magnetic x-ray 
scattering can be exploited successfully at modern synchrotron radiation sources. In soft con-
densed matter research, where one is interested in the dynamics on larger lengths scales, such 
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as of colloidal particles in solution, light scattering is an important tool besides x-ray scatter-
ing. Finally, intense neutron beams have properties, which make them an excellent probe for 
condensed matter investigations. Neutron scattering is a unique tool to solve magnetic struc-
tures and determine magnetic excitations and fluctuations. In soft matter and life science, neu-
trons excel due to the possibility to apply contrast variation techniques by selective deutera-
tion of molecules or molecular subunits. Neutrons give access to practically all lengths scales 
relevant in condensed matter investigations from the sub-atomic level of some pm up to about 
1000 nm. They are particularly well suited for investigations of the movement of atoms and 
molecules. Similar to x-rays, the experimental techniques are in rapid evolution, mainly due 
to the advent of new neutron optical devices, but also of new sources. The new spallation 
sources, such as the American Spallation Neutron Source SNS (http://www.sns.gov/) or the 
proposed European Spallation Source ESS (http://neutron.neutron-eu.net/n_ess) will increase 
the capabilities of neutron investigations in condensed matter science drastically in the years 
to come. 
 
This lecture is organized as follows: First we give a very basic introduction into elementary 
scattering theory for elastic scattering, which is valid for any probe. Then a more rigorous 
derivation in the framework of the Born series follows. This section can be skipped by begin-
ners, but is provided for completeness.  
 
We will introduce the concepts of coherence and pair correlation functions. Then we will dis-
cuss, which probes are most relevant for condensed matter investigations and present in some 
detail the interaction of neutrons with matter leading to the absorption and scattering cross-
sections. More details can be found in [1 - 5].  
 
We will frequently make use of the particle-wave dualism of quantum mechanics, which tells 
us that the radiation used in the scattering process can be described in a wave picture, when-
ever we are interested in interference phenomena, and in a particle picture, when the interac-
tion with matter is relevant, e. g. for the detection process.  
 
 
2.2 Elementary scattering theory: Elastic scattering 
 
Throughout this lecture we assume that the atoms within our sample are rigidly fixed on equi-
librium positions in space. Therefore we only look at those processes, in which the recoil is 
being transferred to the sample as a whole so that the energy change for the radiation is negli-
gible and the scattering process appears to be elastic. In subsequent lectures, this restriction 
will be dropped and so-called inelastic scattering processes will be discussed. These are due to 
excitations or internal fluctuations in the sample, which give rise to an energy change of the 
radiation during the scattering process.  
 
A sketch of the scattering experiment is shown in Figure 2.1.  
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Fig. 2.1: A sketch of the scattering process in the Fraunhofer approximation in which it is 

assumed that plane waves are incident on sample and detector due to the fact that 
the distances source-sample and sample-detector, respectively, are significantly lar-
ger than the size of the sample.  

 
Here we assume the so-called Fraunhofer approximation, where the size of the sample is 
much smaller than the distance between sample and source and the distance between sample 
and detector, respectively. This assumption holds in all cases discussed in this lecture. In addi-
tion we assume that the source emits radiation of one given energy, i. e. so-called monochro-
matic radiation. Then the wave field incident on the sample can be considered as a plane 
wave, which is completely described by a wave vector k. The same holds for the wave inci-
dent on the detector, which can be described by a vector k'. In the case of elastic scattering 
(diffraction) we have 

  2' 'k k k k π
λ

= = = =  (2.1) 

Let us define the so-called scattering vector by 
  'Q k k= −  (2.2) 
ħQ represents the momentum transfer during scattering, since according to de Broglie, the 
momentum of the particle corresponding to the wave with wave vector k is given by p=ħk. 
The magnitude of the scattering vector can be calculated from wavelength λ and scattering 
angle 2θ as follows 

  2 2 4' 2 'cos 2 sinQ Q k k kk Q πθ θ
λ

= = + − ⇒ =  (2.3) 

A scattering experiment comprises the measurement of the intensity distribution as a function 
of the scattering vector I(Q). The scattered intensity is proportional to the so-called cross sec-
tion, where the proportionality factors arise from the detailed geometry of the experiment. For 
a definition of the scattering cross section, we refer to Figure 2.2.  
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Fig. 2.2: Geometry used for the definition of the scattering cross section.  
 
If n' particles are scattered per second into the solid angle dΩ seen by the detector under the 
scattering angle 2θ and into the energy interval between E' and E' + dE', then we can define 
the so-called double differential cross section by:  

  
2 '

' '
d n

d dE jd dE
σ

=
Ω Ω

 (2.4) 

Here j refers to the incident beam flux in terms of particles per area and time. If we are not 
interested in the change of the energy of the radiation during the scattering process, or if our 
detector is not able to resolve this energy change, then we will describe the angular depend-
ence by the so-called differential cross section: 

  
2

0

d d dE 'd d dE '

∞
σ σ=
Ω Ω∫  (2.5) 

Finally the so-called total scattering cross section gives us a measure for the total scattering 
probability independent of changes in energy and scattering angle:  

  
4

0

d d
d

π σσ =
Ω∫ Ω  (2.6) 

Therefore our task is to determine the arrangement of the atoms in the sample from the 
knowledge of the scattering cross section /d dσ Ω . The relationship between scattered inten-
sity and the structure of the sample is particularly simple in the so-called Born approximation, 
which is often also referred to as kinematic scattering approximation. In this case, refraction 
of the beam entering and leaving the sample, multiple scattering events and the extinction of 
the primary beam due to scattering within the sample are being neglected. Following Figure 
2.3, the phase difference between a wave scattered at the origin of the coordinate system and 
at position r is given by 

( )
  2 '

AB CD
k r k r Q rπ

λ

−
ΔΦ = ⋅ = ⋅ − ⋅ = ⋅  (2.7) 
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Fig. 2.3: A sketch illustrating the phase difference between a beam scattered at the origin of 

the coordinate system and a beam scattered at the position r.  
 
The scattered amplitude at the position r is proportional to the scattering density ρs(r) at this 
position. ρs depends on the type of radiation used and the interaction of this radiation with the 
sample. In fact, ρs is directly proportional to the interaction potential, as will be shown in the 
next chapter. Assuming a laterally coherent beam, the total scattering amplitude is given by a 
coherent superposition of the scattering from all points within the sample, i. e. by the integral 
  ( ) 3

0
S

iQ r

V

A A r e d rsρ
⋅= ⋅ ⋅∫  (2.8) 

Here A0 denotes the amplitude of the incident wave field. (2.8) demonstrates that the scattered 
amplitude is connected with the scattering density ρs(r) by a simple Fourier transform. 
Knowledge of the scattering amplitude for all scattering vectors Q allows us to determine via 
a Fourier transform the scattering density uniquely. This is the complete information on the 
sample, which can be obtained by the scattering experiment. Unfortunately, nature is not so 
simple. On one hand, there is the more technical problem that one is unable to determine the 
scattering cross section for all values of momentum transfer ħQ. The more fundamental prob-
lem, however, is that normally the amplitude of the scattered wave is not measurable. Instead 
only the scattered intensity  
  2~I A  (2.9) 
can be determined. Therefore the phase information is lost and the simple reconstruction of 
the scattering density via a Fourier transform is no longer possible. This is the so-called phase 
problem of scattering. There are ways to overcome the phase problem, e. g. by use of refer-
ence waves (e. g. holography). Then the scattering density becomes directly accessible. The 
question, which information we can obtain from a conventional scattering experiment despite 
the phase problem will be addressed below. 
 
Which wavelength do we have to choose to obtain the required real space resolution? For in-
formation on a length scale L, a phase difference of about Q⋅L ≈ 2 π has to be achieved. Oth-
erwise according to (2.7) k' and k will not differ significantly. According to (2.3) Q ≈ 2π/λ for 
typical scattering angles (2θ ~ 60°). Combining these two estimates, we end up with the re-
quirement that the wavelength λ has to be in the order of the real space length scale L under 
investigation. To give an example: with the wavelength in the order of 0.1 nm, atomic resolu-
tion can be achieved in a scattering experiment. 
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2.3 Fundamental scattering theory: The Born series 
 
In this chapter, we will give a simple formulation of scattering theory. Our purpose is to de-
rive (2.8) from fundamental principles. The conditions under which (2.8) holds and the limita-
tions of kinematical scattering theory will thus become clearer. The derivation will be done 
for particle beams – in particular neutrons - for which the Schrödinger equation holds. Begin-
ners can skip this chapter and continue with 2.4.  
 
In quantum mechanics, neutrons are described as particle wave fields through the Schrödinger 
equation: 

  
2

2
H V i

m t
⎛ ⎞ ∂

Ψ = − Δ + Ψ = Ψ⎜ ⎟ ∂⎝ ⎠

h
h  (2.10) 

ψ is the probability density amplitude, V the interaction potential. In case of purely elastic 

scattering E = E', the time dependence can be described by the factor exp - Ei t
h

⎛
⎜
⎝ ⎠

⎞
⎟ . Assuming 

this time dependence, a wave equation for the spatial part of the probability density amplitude 
ψ can be derived from (2.10):  
  ( )2 0k rΔΨ + Ψ =  (2.11) 
In (2.11) we have introduced a spatially varying wave vector with the magnitude square:  

  ( ) ( )(2
2

2mk r E V r= −
h

)  (2.12) 

Solutions of (2.10) in empty space (i. e. V ≡ 0) can be guessed immediately. They are given 

by plane waves ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −⋅Ψ=Ψ tErki

h
exp0  with 2

2

2mk =
h

E . The relations between magni-

tude of the wave vector k, wave length λ and energy of the neutron E can be written in practi-
cal units:  

  

[ ]
[ ]

[ ]

1

2

0.695

9.045 /

81.8 /

k Å E meV

Å E me

E meV Å

λ

λ

−⎡ ⎤ ≈⎣ ⎦

⎡ ⎤ ≈⎣ ⎦
≈ ⎡ ⎤⎣ ⎦

V  (2.13) 

To give an example, neutrons of wavelength λ=2.4Å=0.24nm have an energy of 
14.2 meV with a magnitude of the neutron wave vector of k = 2.6 Å-1.  
 
To obtain solutions of the wave equation (2.11) in matter, we reformulate the differential 
equation by explicitly separating the interaction term:  

  ( )2
2

2 :mk V χΔ + Ψ = ⋅Ψ =
h

 (2.14) 

Here k denotes the wave vector for propagation in empty space. The advantage of this for-
mulation is that the solutions of the left hand side are already known. They are the plane 
waves in empty space. Equation (2.14) is a linear partial differential equation, i. e. the super-
position principle holds: the general solution can be obtained as a linear combination of a 
complete set of solution functions. The coefficients in the series are determined by the bound-
ary conditions. To solve (2.14) one can apply a method developed for inhomogeneous linear 
differential equations. For the moment, we assume that the right hand side is fixed (given as 
χ). We define a Greens-function by:  
  ( ) ( ) ( )2 , ' 'k G r r r rδΔ + = −  (2.15) 
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A solution of (2.15) is given by: 

  ( )
'

, '
4 'r rπ −

The meaning of (2.16) is immediately clear: the scattering from a point-like sca

ik r reG r r
−

=  (2.16) 

tterer (δ-
otential) gives an emitted spherical wave. In a schematic graphical representation: 

e Greens-function G(r

p
 
 
 
 
 
Using th ,r'), we can write down a formal solution of the wave equation 

.14):  (2
  ( ) ( ) 3, ' ' 'o G r r r d rχΨ = Ψ + ∫  (2.17) 

Here, we have taken the initial conditions of an incident plane wave ψ0 into account. (2.17) is 
indeed a solution of (2.14) as can be easily verified by substituting (2.17) into (2.14). If we 
fi  the so-called Lippmann-Schwinger equation:  nally substitute the definition of χ, one obtains

( ) ( ) ( ) ( ) ( ) 3
2

2 , ' ' ' 'mr G r r V rψΨ = + Ψ∫h
o r  r d r  (2.18) 

 
 
 
 
 
 
(2.18) has a simple interpretation: the incident plane wave ψ0(r) is superimposed by spherical 
waves emitted from scattering at positions r'. The intensity of these spherical waves is pro-
portional to the interaction potential V(r') and the amplitude of the wave field at the position 
r'. To

 

 obtain the total scattering amplitude, we have to integrate over the entire sample volume 
s.  

n in the right hand side of (2.18). The first non-trivial approximation can thus be 
obtained:  

V
 
However, we still have not solved (2.14): our solution ψ appears again in the integral in 
(2.18). In other words, we have transformed differential equation (2.14) into an integral equa-
tion. The advantage is that for such an integral equation, a solution can be found by iteration. 
In the zeroth approximation, we neglect the interaction V completely. This gives ψ = ψ0. The 
next higher order approximation for a weak interaction potential is obtained by substituting 
this solutio

  ( ) ( ) ( )1 ' 3exp '2 ' 'ik r ik rik r rmr e V r e d r⋅ −
Ψ = + ∫  (2.19) 

ut a mathematical formulation of the well-known Huygens principle 
r wave propagation.  

2 4 'r rπ −h

(2.19) is nothing else b
fo
 
The approximation (2.19) assumes that the incident plane wave is only scattered once from 
the potential V(r'). For a stronger potential and larger sample, multiple scattering processes 
will occur. Again, this can be deduced from the integral equation (2.18) by further iteration. 
For simplification we introduce a new version of equation (2.18) by writing the integral over 

e "Greens functh tion" as operator G:  
  o Vψ ψ ψ= +G  (2.20) 
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The so-called first Born approximation, which gives the kinematical scattering theory is ob-
tained by substituting the wave function ψ on the right hand side by ψ0: 
  1 o oVψ ψ ψ= +G  (2.21) 
This first approximation can be represented by a simple diagram as a sum of an incident plane 
wave and a wave scattered once from the potential V: 
 
 
 
 

 

+ 
ψ0 ψ0 

V 

G 

The second approximation is obtained by substituting the solution of the first approximation 
(2.21) on the right hand side of equation (2.20):  
  2 1o o oV V V oVψ ψ ψ ψ ψ= + = + +G G G G ψ  (2.22) 
Or in a diagrammatic form:  
 
 
 
I. e. in the second approximation, processes are being taken into account, in which the neutron 
is scattered twice by the interaction potential V. In a similar manner, all higher order ap-
proximations can be calculated. This gives the so-called Born series.1 For weak potential and 
small samples, this series converges rather fast. Often, the first approximation, the kinematic 
scattering theory, holds very well. This is especially the case for neutron scattering, where the 
scattering potential is rather weak, as compared to x-ray- or electron- scattering. Due to the 
strong Coulomb interaction potential, the probability for multiple scattering processes of elec-
trons in solids is extremely high, making the interpretation of electron diffraction experiments 
very difficult. But even for neutrons, the kinematic scattering theory can break down, for ex-
ample in the case of Bragg scattering from large ideally perfect single crystals, where the 
Born series does not converge. The wave equation has to be solved exactly under the bound-
ary conditions given by the crystal geometry. For simple geometries, analytical solutions can 
be obtained. This is then called the dynamical scattering theory. Since for neutrons, the kin-
ematical theory holds in most cases, or multiple scattering events can often be corrected for, 
we will no longer discuss dynamical theory in what follows and refer to 
[3, 6].  

 

+ + 
ψ0 ψ0 

V 

G ψ0 

V 

V 

G 
G 

 
Let us return to the first Born approximation (2.19). In a further approximation, the Fraun-
hofer approximation, we assume that the size of the sample is significantly smaller than the 
distance sample-detector. The geometry to calculate the far field limit of (2.19) is given in 
Figure 2.4. Under the assumption 'rR >> , we can deduce from Figure 2.4 the following 
approximation for the emitted spherical wave:  

  
( ) ( )( ) ' '

ˆexp 'exp ' exp( )
'

i k r
ik R r Rik r r ikR e

r r R R
− ⋅

− ⋅−
≈ ≈ ⋅

−
 (2.23) 

The probability density amplitude for the scattered wave field in the limit of large distances 
from the sample is thus given by:  

  ( ) ( ) '1
2

2 '
4

ikR
iQ rik R m e 3 'R e V r e

R
ψ

π
⋅⋅⇒ = + ∫h

d r

                                                

 (2.24) 

 

 
1 Note that Born approximation or the Born series violates energy conservation: scattered waves are created 
without weakening of the incident plane wave. Born series can therefore only be applied in the limit of very 
weak scattering potentials. 
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Fig. 2.4: Scattering geometry for the calculation of the far field limit at the detector. In the 

Fraunhofer approximation, we assume that |R| >> |r'|. 
 
This is just the sum of an incident plane wave and a spherical wave emitted from the sample 
as a whole. The amplitude of the scattered wave is given according to (2.24):  
  ( ) ( ) ( )3

2 ~
2

iQ rmA Q V r e d r F V
π

⋅ ⎡= ⎣∫h
r ⎤⎦  (2.25) 

The integral in the above equation is nothing but the transition matrix element of the interac-
tion potential V between the initial and final plane wave states, therefore: 

  
2 2

2 '
2

d m k V kd
σ

π
⎛ ⎞= ⎜ ⎟Ω ⎝ ⎠h

 (2.26) 

This formula corresponds to Fermi’s Golden Rule from time-dependent perturbation theory, 
where the transition probability per time interval from state k to states k' is given by:  

  (
2

'
2 'k k k )'V k EW kπ ρ= ⋅
h

)
 (2.27) 

Here,  denotes the density of states for the final states k’. ( 'kEρ
 
With this exact derivation of the scattering cross section, we can now deduce by comparison 
with (2.8) that the scattering density in the simple derivation of chapter 2.2 is just 

( )2( )
2S

mr Vρ
π

=
h

r  for particle beams governed by the Schrödinger equation. 

 
We now allow for inelastic processes, where the sample undergoes a change of its state from 
α to α' (α denotes a set of quantum numbers characterizing an eigenstate of the sample). In 
this case, due to the different length of the wavevectors for incoming and outgoing waves, we 
have to introduce factors k' and k, which arise from the density of states factor in (2.27). Since 
the scattering event must fulfill energy and momentum conservation, we arrive at the double 
differential cross section:  

  (
22 2

'2
'

' ', ' ,
2

d k m p k V k E Ed d k α
α α

σ α α δ ωω π
⎛ ⎞= ⎜ ⎟Ω ⎝ ⎠ ∑ ∑ h

h
)α α⋅ + −  (2.28) 

The first summation is carried out over all possible initial states α of the system, weighted 
with their thermodynamic occupation probability pα. The sum over α' is the sum over all final 
states allowed by energy conservation, which is guaranteed through the δ-function. 
ωh  denotes the energy transfer of the neutron to the system. This double differential cross 

section will be discussed in the following lectures on inelastic scattering. 
 

r|| k‘

R ‘
detector
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2.4 Coherence 
 
In the above derivation, we assumed plane waves as initial and final states. For a real scatter-
ing experiment, this is an unphysical assumption. In the incident beam, a wave packet is pro-
duced by collimation (defining the direction of the beam) and monochromatization (defining 
the wavelength of the incident beam). Neither the direction k̂ , nor the wavelength λ have 
sharp values but rather have a distribution of finite width about their respective mean values. 
This wave packet can be described as a superposition of plane waves. As a consequence, the 
diffraction pattern will be a superposition of patterns for different incident wavevectors k and 
the question arises, which information is lost due to these non-ideal conditions. This instru-
mental resolution is intimately connected with the coherence of the beam. Coherence is 
needed, so that the interference pattern is not significantly destroyed. Coherence requires a 
phase relationship between the different components of the beam. Two types of coherence can 
be distinguished. 
 
• Temporal or longitudinal coherence due to a wavelength spread. 
A measure for the longitudinal coherence is given by the length, on which two components of 
the beam with largest wavelength difference (λ and λ+Δλ) become fully out of phase. 

According to the following figure, this is the case for ( )||
1
2

l n nλ λ λ⎛ ⎞= ⋅ = − + Δ⎜ ⎟
⎝ ⎠

.  

 
 
 
 
 
 
 
 
 
Fig. 2.5: A sketch illustrating the longitudinal coherence due to a wavelength spread. 
 
From this, we obtain the longitudinal coherence length  as  ||l

  
2

|| 2l λ
λ=

Δ
 (2.29) 

 
• Transversal coherence due to source extension 
Due to the extension of the source (transverse beam size), the phase relation is destroyed for 
large source size or large divergence. According to the following figure, a first minimum oc-

curs for sin
2

d dλ θ θ= ⋅ ≈ ⋅ .  

 
 
 
 
 
 
 
 
 
Fig. 2.6: A sketch illustrating the transverse coherence due to source extension. 
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From this, we obtain the transversal coherence length l⊥  as  

  2l λ
θ⊥ = Δ

 (2.30) 

Here Δθ is the divergence of the beam. Note that l⊥  can be different along different spatial 
directions: in many instruments, the vertical and horizontal collimations are different.  
 
Together, the longitudinal and the two transversal coherence lengths (in two directions per-
pendicular to the beam propagation) define a coherence volume. This is a measure for a vol-
ume within the sample, in which the amplitudes of all scattered waves superimpose to pro-
duce an interference pattern. Normally, the coherence volume is significantly smaller than the 
sample size, typically a few 100 Å for neutron scattering, up to µm for synchrotron radiation. 
Scattering between different coherence volumes within the sample is no longer coherent, i. e. 
instead of the amplitudes the intensities of the contributions to the scattering pattern have to 
be added. This limits the real space resolution of a scattering experiment to the extension of 
the coherence volume. 
 
 
2.5 Pair correlation functions 
 
After having clarified the conditions under which we can expect a coherent scattering process, 
let us now come back to the question, which information is accessible from the intensity dis-
tribution of a scattering experiment. From (2.9) we see that the phase information is lost dur-
ing the measurement of the intensity. For this reason the Fourier transform of the scattering 
density is not directly accessible in most scattering experiments (note however that phase in-
formation can be obtained in certain cases).  
 
Substituting (2.8) into (2.9) and applying variable substitution R=r’-r, we obtain for the mag-
nitude square of the scattering amplitude, a quantity directly accessible in a scattering experi-
ment: 

  ( ) ( ) ( )
2 '3 3~ ~ ' ' iQ r iQ r

s sI A Q d r r e d r r eρ ρ⋅ − ⋅∗∫ ∫ ( ) ( ) ( )'3 3' ' iQ r r
s sd r d r r r eρ ρ ⋅ −∗= ∫∫  

  ( ) ( )3 3 iQ R
s sd Rd r R r r eρ ρ ⋅∗= +∫∫  (2.31) 

This shows that the scattered intensity is proportional to the Fourier transform of a function 
P(R): 
  ( ) ( )3~ iQ RQ d R P R e ⋅

∫I  (2.32) 
This function denotes the so-called Patterson function in crystallography or more general the 
static pair correlation function:  
  ( ) ( ) (3

s sP R d r r r Rρ ρ∗= ∫ )+  (2.33) 
P(R) correlates the value of the scattering density at position r with the value at the position 
r+R, integrated over the entire sample volume. If, averaged over the sample, no correlation 
exists between the values of the scattering densities at position r and r+R, then the Patterson 
function P(R) vanishes. If, however, a periodic arrangement of a pair of atoms exists in the 
sample with a difference vector R between the positions, then the Patterson function will have 
an extremum for this vector R. Thus the Patterson function reproduces all the vectors con-
necting one atom with another atom in a periodic arrangement.  
 
Quite generally, in a scattering experiment, pair correlation functions are being determined. In 
a coherent inelastic scattering experiment, we measure the scattering law S(Q,ω), which is the 
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Fourier transform with respect to space and time of the spatial and temporal pair correlation 
function: 

  ( ) (
2

31,
2

iQ ri td S Q dt e d r e G r t
d d

ωσ ω
ω π

+∞
⋅−

−∞

=
Ω ∫ ∫�

h
),  (2.34) 

While the proportionality factor between the double differential cross section and the scatter-
ing law depends on the type of radiation and its specific interaction potential with the system 
studied, the spatial and temporal pair correlation function is only a property of the system 
studied and independent of the probe used: 

  ( ) ( )( ) ( )( ) ( ) ( )3 31 1, ' ' 0 ' ' ',0j i
ij

G r t d r r r r r r t d r r r r t
N N

δ δ ρ ρ= − ⋅ + − =∑∫ ∫ ' ,+  (2.35) 

Here, the pair correlation function is once expressed as a correlation between the position of N 
point-like particles (expressed by the delta functions) and once by the correlation between the 
densities at different positions in the sample for different times. In a magnetic system, we 
scatter from the atomic magnetic moments, which are vector quantities. Therefore, the scat-
tering law becomes a tensor - the Fourier transform of the spin pair correlations: 

  ( )0
0

1( , ) (0) ( )
2

li Q R R t
l

l
Q dt e Sωαβ α βω

π
⎡ ⎤− −⎣ ⎦= ∑∫S S t  (2.36) 

α, ß denote the Cartesian coordinates x, y, z; R0 and Rl are the spatial coordinates of a refer-
ence spin 0 and a spin l in the system. 
 
 
2.6 Form-factor 
 
So far we have not specified the nature of our sample. Now we assume an assembly on N 
scatterers of finite size, see Figure 2.7.  
 

r'

rj

r

Vj

Vs

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.7: Sketch showing the assembly of N scatterers of finite size and defining the quantities 

needed for the definition of the form factor.  
 
These could be atoms in a solid or colloidal particles in a homogeneous solution. In what fol-
lows, we will separate the interference effects from scattering within one such a particle from 
the interference effects arising from scattering between different particles. With the decom-
position of the vector r into the centre-of-gravity-vector rj and a vector r' within the particle, 
the scattering amplitude can be written as (all particles are assumed to be identical):  
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With (2.37), we have separated the scattering from within the single particles from the inter-
ference between different particles. tot

jρ  denotes the total scattering power of the particle. The 
form-factor f(Q) is defined as the normalized amplitude of scattering from within one parti-
cle2 (it describes the “form” of the particle):  
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For a homogeneous sphere 
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 (2.39) 

, the form-factor can be calculated by using spherical co-ordinates:  

  ( ) 3

sin cos3
( )

QR QR QRf Q
QR
− ⋅

⇒ = ⋅  (2.40) 

The function (2.40) is plotted in Figure 2.8. In forward direction, there is no phase difference 
between waves scattered from different volume elements within the sample (note: we assume 
the Fraunhofer approximation and work in a far field limit). The form-factor takes its maxi-
mum value of one. For finite scattering angles 2θ, the form-factor drops due to destructive 
interference from various parts within one particle and finally for large values of the momen-
tum transfer shows damped oscillations around 0 as a function of QR.  
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Fig. 2.8: Form-factor for a homogeneous sphere according to (2.40).  
 
 
2.7 Scattering from a periodic lattice in three dimensions 
 
As an example for the application of (2.8) and (2.9), we will now discuss the scattering from a 
three dimensional lattice of point-like scatterers. As we will see later, this situation corre-
sponds to the scattering of thermal neutrons from a single crystal. More precisely, we will 
restrict ourselves to the case of a Bravais lattice with one atom at the origin of the unit cell. To 

                                                 
2 For simplicity we now drop the index j 
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each atom we attribute a “scattering power3 α”. The single crystal is finite with N, M and P 
periods along the basis vectors a, b and c. The scattering density, which we have to use in 
(2.8) is a sum over δ-functions for all scattering centers:  

  ( ) ((
1 11

0 00

M PN

s
m pn

r r n a m b p cρ α δ
− −−

= ==

= ⋅ − ⋅ + ⋅ +∑∑∑ ))⋅  (2.41) 

The scattering amplitude is calculated as a Fourier transform:  
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Summing up the geometrical series, we obtain for the scattered intensity:  
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The dependence on the scattering vector Q is given by the so-called Laue function, which 
factorizes according to the three directions in space. One factor along one lattice direction a is 
plotted in Figure 2.9.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.9: Laue function along the lattice direction a for a lattice with five and ten periods, 

respectively.  
 
The main maxima occur at the positions Q = n ⋅ 2π/a. The maximum intensity scales with the 
square of the number of periods N2, the half width is given approximately by ΔQ = 2π/(N⋅a). 
The more periods contribute to coherent scattering, the sharper and higher are the main peaks. 
Between the main peaks, there are N-2 side maxima. With increasing number of periods N, 
their intensity becomes rapidly negligible compared to the intensity of the main peaks. The 
main peaks are of course the well known Bragg reflections, which we obtain for scattering 
from a crystal lattice. From the position of these Bragg peaks in momentum space, the metric 
of the unit cell can be deduced (lattice constants a, b, c and unit cell angles α, β, γ). The width 
of the Bragg peaks is determined by the size of the coherently scattering volume (parameters 
N, M, and P) - and some other factors for real experiments (resolution, mosaic distribution, 
internal strains, ...). 
 
 

                                                 
3 We will later see that this „scattering power“ is connected to the so-called scattering length of the atom. 
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2.8 Probes for scattering experiments in condensed matter science 
 
In this chapter, we will discuss which type of radiation is suitable for condensed matter inves-
tigations. For neutron beams, we will then discuss the relevant interaction processes with mat-
ter in detail.  
 
A list of requirements for the type of radiation used in condensed matter investigations looks 
as follows:  
 

(1) The achievable spatial resolution should be in the order of the inter-particle distances, 
which implies (see section 2.2) that the wavelength λ is in the order of the inter-parti-
cle distance L.  

(2) If we want to study volume effects, the scattering has to originate from the bulk of the 
sample, which implies that the radiation should be at most weakly absorbed within 
matter.  

(3) For a simple interpretation of the scattering data within the Born approximation (see 
section 2.2), multiple scattering effects should be negligible, i. e. the interaction of the 
radiation with matter should be weak.  

(4) For the sake of simplicity, the probe should have no inner degrees of freedom, which 
could be excited during the scattering process (i. e. avoid beams of molecules, which 
have internal vibrational or rotational degrees of freedom).  

(5) To study magnetic systems, we need a probe which interacts with the atomic magnetic 
moments in the sample. 

(6) If, in addition to structural studies, we want to investigate elementary excitations, we 
would like the energy of the probe to be in the order of the excitation energies, so that 
the energy change during the scattering process is easily measurable. 

 
This list of requirements leads us to some standard probes in condensed matter research. First 
of all, electromagnetic radiation governed by the Maxwell equations can be used. Depending 
on the resolution requirements, we will use x-rays with wavelength λ of about 0.1 nm to 
achieve atomic resolution or visible light (λ ~ 350 - 700 nm) to investigate e. g. colloidal par-
ticles in solution. Besides electromagnetic radiation, particle waves can be used. It turns out 
that thermal neutrons with a wavelength λ~0.1nm are particularly well adapted to the above 
list of requirements. The neutron beams are governed by the Schrödinger equation of quantum 
mechanics. An alternative is to use electrons, which for energies of around 100keV have 
wavelengths in the order of 0.005nm. As relativistic particles, they are governed by the Dirac 
equation of quantum mechanics. The big drawback of electrons as a condensed matter probe 
is the strong Coulomb interaction with the electrons in the sample. Therefore neither absorp-
tion, nor multiple scattering effects can be neglected. However the abundance of free elec-
trons and the relative ease to produce optical elements makes them very suitable for imaging 
purposes (electron microscopy). Electrons, but also atomic beams are very powerful tools for 
surface science: due to their strong interaction with matter, both types of radiation are very 
surface sensitive. Low Energy Electron Diffraction LEED and Reflection High Energy Elec-
tron Diffraction RHEED are both used for in-situ studies of the crystalline structure during 
thin film growth, e.g. with Molecular Beam Epitaxy MBE. In what follows we will concen-
trate on neutron scattering as one of the probes, which is best suited for bulk studies on an 
atomic scale. We will introduce the properties of the neutron, discuss the absorption of neu-
trons in matter and derive the scattering cross sections for the main interaction processes with 
matter.  
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2.9 Properties of the neutron 
 
We mentioned in the introduction that neutron beams provide a particularly useful probe for 
condensed matter investigations. The neutron is an elementary particle, a nucleon, consisting 
of three valance quarks, which are hold together by gluons. It thus has an internal structure, 
which, however, is irrelevant for condensed matter physics, since the energy scales involved 
in its internal excitations are much too high. Keeping in mind the difference in lengths scales 
(diameter of an atom: about 0.1nm=10-10m; diameter of a neutron: about 1fm=10-15m), we can 
safely consider the neutron as a point-like particle without internal structure for our purposes. 
Due to the weak interaction, the neutron is not a stable particle. A free neutron undergoes a β-
decay after an average lifetime of about 15 minutes:  

  15minn p e ν−⎯⎯⎯⎯→ + +  (2.44) 
This leaves ample time for scattering investigations. In contrast to the massless photon, the 
neutron has a mass m of about one atomic mass unit ~ 1.675 ⋅ 10-27 kg. The finite neutron 
mass is comparable to the mass of a nucleus and thus an appreciable amount of energy can be 
transferred during the scattering process. The neutron is a charge less particle and thus does 
not show the strong Coulomb interaction with matter. This results in large penetration depths. 
Finally, the neutron has a nuclear spin 1/2 giving rise to a magnetic dipolar moment of  
  27; 1.91; 5.05 10 /n N N J Tμ γμ γ μ −= = = ⋅  (2.45) 
Due to this magnetic moment, the neutron can interact with the magnetic field of unpaired 
electrons in a sample leading to magnetic scattering. Thus magnetic structures and excitations 
can be studied by neutron scattering. 
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Mass     ~ 1u      1.67495⋅10-27 kg 

·10-21 e 
 ± 2.2)·10-20 e/2α 

·10-25 e·cm 

Charge     0       (-0.4±1.1)
Magnetic monopole moment 0      (0.85
Electric dipole moment    0         (-0.1 ± 0.36)
Spin  1/2

Fig. 2.10: Schematics of the neutron being composed of three quarks and gluons and the 
main quantities characterizing the neutron as a particle.  

 
To calculate the interference effects during the scattering process, a neutron has to be de-
scribed as a matter wave with momentum 
  ; /p m v k p h λ= ⋅ = =h  (2.46) 
and energy 

  
2 2 2

2
2

1
2 2 2 B eq

k hE mv k T
m mλ

= = = ≡
h  (2.47) 

Here v is the velocity of the neutron and Teq defines the temperature equivalent of the kinetic 
energy of the neutron. In practical units:  
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Let us consider the example of so-called thermal neutrons from a moderator at ambient tem-
perature corresponding to a temperature equivalent of Teq~300K. According to (2.47), their 
wavelength is 0.18nm, matching perfectly the distance between atoms. The energy of thermal 
neutrons is around 25meV, which matches well the energy of elementary excitations, such as 
spin waves (magnons) or lattice vibrations (phonons). Together with the usually large pene-
tration depths (charge = 0) and the magnetic interaction, these properties make neutrons so 
extremely useful for condensed matter investigations.  
 
In the elementary scattering theory of chapter 2.3, we saw that the relevant quantity is the 
interaction potential V(r) of the probe with the system from which the probe is scattered. This 
potential enters in the cross-section in kinematical theory derived either from Born approxi-
mation or from Fermi's golden rule. To determine this interaction potential, we will look in 
more detail at the interaction of neutrons with matter. For neutrons there exist two dominant 
interactions: the interaction of the neutron with nuclei and its interaction with the magnetic 
field in the sample. The nuclear interaction results from the so-called strong interaction of 
particle physics, which is also responsible for the binding of neutrons and protons in the 
atomic nuclei. The interaction with the magnetic field is nothing but the magnetic dipole in-
teraction of the neutron due to its dipolar moment with the magnetic field of unpaired elec-
trons. There are other interactions, which are significantly weaker. One is the interaction of 
the neutron with the electric fields in the sample due to the neutrons magnetic dipole moment. 
This is a purely relativistic effect. Another is the magnetic dipole interaction of the neutron 
with the magnetic field produced by the nuclei. Since such interactions are several orders of 
magnitude weaker than the nuclear and magnetic interaction, they can usually be neglected 
and we will not discuss them further in this lecture.  
 
 
2.10 Nuclear interaction: Scattering and absorption 
 
To evaluate the cross section (2.26) for nuclear scattering, we have to specify the interaction 
potential with the nucleus. To derive this interaction potential from first principles is one of 
the fundamental challenges of nuclear physics. Fermi has proposed a phenomenological po-
tential based on the argument that the wavelength of thermal neutrons is much larger than the 
nuclear radius. This means that the nuclei are point-like scatterers which leads to isotropic, Q-
independent, (so-called s-wave) scattering. We will therefore use the so-called Fermi-pseudo-
potential:  

  ( ) (
22V r b r R

m
π δ=
h )−  (2.49) 

to evaluate the cross section (2.26).  
 
Note, that despite the fact that the strong interaction of high energy physics is responsible for 
the scattering of the neutron with the nucleus, the scattering probability is small due to the 
small nuclear radius. Therefore, we can apply the first Born approximation. The quantity b 
introduced in (2.49) is a phenomenological quantity describing the strength of the interaction 
potential and is referred to as the scattering length. Tabulated values of b can be found in [7] 
or at http://www.ncnr.nist.gov/resources/n-lengths/. The total cross section of a given nucleus 
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is 24 bσ π= , corresponding to the surface area of a sphere with radius b. Since the interac-
tion potential obviously depends on the details of the nuclear structure, b is different for dif-
ferent isotopes of the given element and also for different nuclear spin states. This fact gives 
rise to the appearance of so-called coherent and incoherent scattering, see section 2.12. Fig-
ure 2.11 shows the variation of the scattering amplitude as a function of atomic weight 
throughout the periodic table. The scattering length is mostly positive but can also adopt nega-
tive values. Since -1 = exp(iπ) this negative sign corresponds to a phase shift of π (or 180°) 
during the scattering process. The scattering length roughly follows the dashed line labeled 
potential scattering contribution, despite the fact that there are rather large excursions from 
this line.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.11: Scattering length as a function of atomic weight throughout the periodic table 

(from Research, London 7 (1954), 257).  
 
In the simplest one dimensional model, we can describe the nucleus as a rectangular potential 
well, see Figure 2.12. 
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Fig. 2.12: The nucleus described as a potential well of radius R and depth -V0, while the neu-

tron has the kinetic energy 
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The wave function of the neutron being scattered from such a potential well can be written as:  
  

( )~ fikr ikrr e erΨ +
 (2.50) 

Here the first term describes the incident plane wave and the second term describes a spheri-
cal wave emitted from the nucleus. f describes the scattering amplitude. In the limit of a hard 
sphere, the wave function on the surface of the nucleus has to vanish since the neutron cannot 
penetrate inside the hard sphere. Mathematically this is described by the condition 
ψ(R) = 0 or -f = R. The scattering length is defined as b: = -f, so that its value is positive for 
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most nuclei. Therefore for pure potential scattering, where the nucleus is assumed to be a hard 
sphere, b attains the value of the nuclear radius b = R, which is plotted in Figure 2.11 as a 
dashed line: the potential scattering contribution. The marked deviations from this overall 
behavior are due to so-called resonance scattering. In a simplified picture, such resonances 
occur, when the neutron energy is such that absorption of the neutron in the nucleus produces 
a bound excited state. This can lead to a resonant absorption process, but it can also lead to 
resonance scattering, a typical second order perturbation process: in the initial state, the nu-
cleus is in its ground state and the interaction with the neutron can be described as a virtual 
transition into an excited state of the compound nucleus and back with a re-emission of the 
neutron, where the nucleus decays back from the excited compound system into its ground 
state. This process n+K→C*→K+n has a cross-section given by the famous Breit-Wigner-
formula:  
  

 

2

4 1
2

R
R

constR
E E i

σ π= +
− + Γ

 (2.51) 

Here R is the radius of the nucleus, E the neutron energy, ER the resonance energy and Γ a 
damping term connected with the life-time of the excited state. As one can see, this formula 
describes very strong energy dependence with a pronounced maximum, when the neutron 
energy equals the resonance energy. Moreover, the resonance amplitude has an imaginary 
part, which describes the resonance absorption. In the resonant absorption process, the neu-
tron is captured by the nucleus, leading to a compound nucleus in an excited state, containing 
one more neutron then the original nucleus. In a subsequent nuclear reaction, the compound 
nucleus gets rid of its excess energy. Examples for such absorption reactions will be given in 
the subsequent section. Finally the Breit-Wigner-formula gives an indication that the scatter-
ing length can be negative whenever the resonant term is negative (i. e. E < ER), and its mag-
nitude is larger than the contribution from potential scattering.  
 
 
2.11 Neutron absorption 
 
As explained above, neutron absorption can occur during nuclear reactions. Far away from the 
resonance, the absorption cross section is given by 

  1~ ~a v
σ λ  (2.52) 

This proportionality to the wavelength λ or the inverse velocity 1/ν is a result of the density of 
states appearing in Fermi's golden rule. One can argue that wavelength and neutron velocity v 
are inversely proportional and thus, for longer wavelength i. e. smaller velocity, the neutron 
remains correspondingly longer close to the nucleus, which leads to a higher absorption cross-
section. Table 2.1 gives examples for neutron absorption processes connected with nuclear re-
actions.  
 

Examples: 
σa (25 meV) [barn]

5333 n + 3He → 4He* → p + 3T
940 n + 6Li → 7Li* → 3T + 4He

3837 n + 10B → 11B* → 4He + 7Li + γ
681 n + 235U → fission

neutron
detection

 
 
 
 
 
 
 
 
Tab. 2.1: Examples for neutron absorption processes due to nuclear reactions. The absorption 

cross-section is given for neutrons of energy 25 meV in barn = 10-28 m2 = 100 fm2.  
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As an example, there is a high probability of neutrons to be absorbed by 3He nuclei, because 
the 4He or α-particle is very stable, since it corresponds to a closed nuclear shell. However, 
during the absorption of the neutron, the 4He nucleus is produced in an excited state. It gets 
rid of its surplus energy by decay into a proton and a triton4 3T. Since these two particles have 
very high energies of about 0.5 MeV due to the nuclear reaction, charged particles are created 
during this decay, which can be used for neutron detection in a proportional counter. In a 
similar manner, the reaction with 6Li, 10B or 235U can be used to build neutron detectors. It 
should be mentioned, however, that the neutron absorption in 3He is very strongly dependent 
on the relative orientation of the nuclear spins of both particles. While for anti parallel spin 
direction, the absorption cross-section is ≈ 6000 barn, it reduces to 2 barn for parallel spin 
direction. This effect can be used to build efficient neutron polarization filters. By optical 
pumping with laser light, the nuclear moment of the 3He nuclei can be aligned along one di-
rection (so-called hyperpolarized 3He gas). If an unpolarized neutron beam passes a filter cell 
filled with hyperpolarized 3He, the neutrons with spin moment anti parallel to the nuclear 
moment of the 3He have a high probability to be absorbed, while neutrons with the other spin 
direction have a high probability to be transmitted. For an appropriate thickness of the filter 
cell, a very high neutron beam polarization can be achieved in this manner.  
 
Another class of absorption processes are so-called (n, γ)-resonances. Examples are given in 
Table 2.2. In these processes, a nucleus is produced, which contains one additional neutron 
and this compound nucleus decays into the ground state by emission of γ-radiation. Prominent 
(n,γ)-resonances occur for Cadmium or Gadolinium where, depending on the isotope, the ab-
sorption cross-section can be very high, see Table 2.2. These metals are often used as neutron 
absorbers in shieldings or diaphragms, which define the size of the neutron beam. One should, 
however, be aware that in these reactions, γ-radiation of very high energy is being released, 
which requires additional lead shielding for radiation protection.  
 
 
 
 
 
 
 
 
 
 
 

(n, γ)-resonances: 

nucleide σγ[barn] Eresonance[meV]
113Cd 20600 178
151Eu 9200 321
155Gd 60900 26.8
157Gd 254000 31.4

(compare photoel. 
abs. of x-rays!)

(n, γ)-resonances: 

nucleide σγ[barn] Eresonance[meV]
113Cd 20600 178
151Eu 9200 321
155Gd 60900 26.8
157Gd 254000 31.4

(compare photoel. 
abs. of x-rays!)

 31.4 

Tab. 2.2: Examples for (n, γ)-resonances with the cross-section in barn and the resonance 
energy in meV.  

 
As described by the Breit-Wigner-Formula, these resonance absorption cross-sections have 
very strong energy dependences. The simple proportionality to the wavelength given in equa-
tion (2.52) no longer holds close to the resonance energies. As an example, we show the en-
ergy dependence of the absorption cross-section for Cadmium in Figure 2.13. Such data can 
be found in the compilation [8].  
 
 
 
 

                                                 
4 The triton 3T nucleus is a hydrogen isotope with one proton and 2 neutrons. 
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λ = 0.64 Å
σ ~ 20 kbarn 

λ = 0.2 Å 
σ ~ 8 barn 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.13: Absorption cross-section of the element Cadmium as a function of energy in a dou-

ble logarithmic representation (from 8).  
 
Figure 2.13 shows that for lower energies, i. e. long wavelengths, the proportionality of the 
absorption cross-section to the wavelength holds to very good approximation. However, there 
is a strong resonance for a wavelength of 0.64 Å, where the cross-section attains a maximum 
of about 20 kbarn. Above this energy, i. e. for shorter wavelengths, the absorption cross-
section drops drastically. At a wavelength of 0.2 Å, it attains a value of only 8 barn. This 
shows that in the thermal energy range, Cadmium can be used as an efficient neutron ab-
sorber. However, one has to be careful and not use it for the same purpose in case of hot neu-
trons, where Cadmium becomes virtually transparent. There are many more resonances for 
higher neutron energies, which are not relevant for neutron scattering, where only hot, thermal 
and cold neutrons are being used.  
 
A similar strong energy dependence occurs for the element Gadolinium. Usually, neutron 
scatterers try to avoid samples containing Gadolinium since it is the most absorbing element, 
especially the isotope 157Gd. However, the resonances lay right in the thermal neutron energy 
range. If the scattering experiment is performed with hot neutrons, the absorption cross- 
section of Gadolinium becomes much smaller and scattering experiments become feasible5.  
 
 
2.12 Coherent and incoherent scattering 
 
As mentioned above, the nuclear interaction potential depends on the details of the nuclear 
structure and thus, the scattering length b is different for different isotopes of a given element 
and also for different nuclear spin states. In this section, we will discuss the effects of these 
special properties of the interaction of neutrons and nuclei for the scattering from condensed 
matter.  
 
Let us assume an arrangement of atoms with scattering lengths bi on fixed positions Ri. For 
this case, the scattering potential writes:  

  ( ) (∑ −=
i

ii
n

Rrb
m

rV δπ 22 h )

                                                

 (2.53) 

The scattering amplitude is obtained from a Fourier transform:  

 
5 Another possibility is to use isotope enriched Gadolinium. While the isotope 157Gd with natural abundance 
15.7% has a thermal absorption cross section of 259000 barn, the isotope 158Gd, which is the most abundant with 
24.8%, and has an absorption cross section of only 2.2 barn. 
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When we calculate the scattering cross section, we have to take into account that the different 
isotopes are distributed randomly over all sites. Also the nuclear spin orientation is random, 
except for very low temperatures in external magnetic fields. Therefore, we have to average 
over the random distribution of the scattering length in the sample:  

  ( ) ( ) 2 *~ ji iQ RiQ R
i j

i j

d Q A Q b e b e
d
σ −⋅= ⋅
Ω ∑ ∑   (2.55) 

In calculating the expectation value of the product of the two scattering lengths at sites i and j, 
we have to take into account that according to the above assumption, the distribution of the 
scattering length on the different sites is completely uncorrelated. This implies that for i ≠ j, 
the expectation value of the product equals to the product of the expectation values. Only for 
i = j a correlation occurs, which gives an additional term describing the mean quadratic de-
viation from the average:  
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The line for i = j results from the identity:  

  ( ) 222222 bbbbbbbb −=+−=−  (2.56) 

Therefore, we can write the cross section in the following form:  
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The scattering cross section is as a sum of two terms. Only the first term contains the phase 
factors eiQ⋅R, which result from the coherent superposition of the scattering from pairs of scat-
terers. This term takes into account interference effects and is therefore named coherent scat-
tering. The scattering length averaged over the isotope- and nuclear spin- distribution enters 
this term. The second term in (2.57) does not contain any phase information and is pro-
portional to the number N of atoms (and not to N2!). This term is not due to the interference of 
scattering from different atoms. As we can see from (2.56) (line i = j), this term corresponds 
to the scattering from single atoms, which subsequently superimpose in an incoherent manner 
(adding intensities, not amplitudes!). This is the reason for the intensity being proportional to 
the number N of atoms. Therefore the second term is called incoherent scattering. Coherent 
and incoherent scattering are illustrated in Figure 2.14. 
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Scattering from the  

 
 
Fig. 2.14: Two-dimensional schematic illustration of the scattering process from a lattice of 

N atoms of a given chemical species, for which two isotopes (small dotted circles 
and large hatched circles) exist. The area of the circle represents the scattering 
cross section of the single isotope. The incident wave (top part of the figure for a 
special arrangement of the isotopes) is scattered coherently only from the average 
structure. This gives rise to Bragg peaks in certain directions. In the coherent 
scattering only the average scattering length is visible. Besides these interference 
phenomena, an isotropic background is observed, which is proportional to the 
number N of atoms and to the mean quadratic deviation from the average scatter-
ing length. This incoherent part of the scattering is represented by the lower part 
of the figure.  

 
The most prominent example for isotope incoherence is elementary nickel. The scattering 
lengths of the nickel isotopes are listed together with their natural abundance in Table 2.3 [7]. 
The differences in the scattering lengths for the various nickel isotopes are enormous. Some 
isotopes even have negative scattering lengths. This is due to resonant bound states, as com-
pared to the usual potential scattering. 
 

Isotope Natural Abundance Nuclear Spin Scattering Length [fm] 
58Ni 68.27 % 0 14.4(1) 
60Ni 26.10 % 0 2.8(1) 
61Ni 1.13 % 3/2 7.60(6) 
62Ni 3.59 % 0 -8.7(2) 
64Ni 0.91 % 0 -0.37(7) 
Ni   10.3(1) 

 
Tab. 2.3: The scattering lengths of the nickel isotopes and the resulting scattering length of 

natural 28Ni [7].  
 
Neglecting the less abundant isotopes 61Ni and 64Ni, the average scattering length is calculated 
as:  
  ( )[ fmfmb 2.107.804.08.226.04.1468.0 ≈−⋅+⋅+⋅≈ ]  (2.58) 
, which gives the total coherent cross section of:  
  24 bcoherent πσ =⇒ ))3(3.13:(1.13 barnexactbarn≈  (2.59) 

regular mean lattice 
⇒ Interference

+
Scattering from randomly 
distributed defects 
⇒ isotropic scattering 

+ 

N x 

2
2 iiQ R
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b e ⋅∑
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The incoherent scattering cross section per nickel atoms is calculated from the mean quadratic 
deviation:  

   (2.60) ( ) ( ) ( )2 2 2 24 0.68 14.4 10.2 0.26 2.8 10.2 0.04 8.7 10.2

5.1 ( : 5.2(4) )

Isotope
incoherent fm

barn exact barn

σ π ⎡ ⎤= ⋅ − + ⋅ − + ⋅ − −⎣ ⎦
≈

Values in parentheses are the exact values taking into account the isotopes 61Ni and 64Ni and 
the nuclear spin incoherent scattering (see below). From (2.59) and (2.60), we learn that the 
incoherent scattering cross section in nickel amounts to more than one third of the coherent 
scattering cross section.  
 
The most prominent example for nuclear spin incoherent scattering is elementary hydrogen. 
The nucleus of the hydrogen atom, the proton, has the nuclear spin I = ½. The total nuclear 
spin of the system H + n can therefore adopt two values: J = 0 and J = 1. Each state has its 
own scattering length: b- for the singlet state (J = 0) and b+ for the triplet state (J = 1) 
- compare Table 2.4.  
 

Total Spin Scattering Length Abundance 
J = 0 b- = - 47.5 fm 

4
1  

J = 1 b+ = 10.85 fm 
4
3  

 <b> = - 3.739(1) fm  
 
Tab. 2.4: Scattering lengths for hydrogen [7].  
 
As in the case of isotope incoherence, the average scattering length can be calculated:  

  ( ) ( ) fmfmb 74.385.10
4
35.47

4
1

−=⎥⎦
⎤

⎢⎣
⎡ ⋅+−=  (2.61) 

This corresponds to a coherent scattering cross section of about ≈ 1.76 barn [7]:  
  barnbcoherent )10(7568.124 ==⇒ πσ  (2.62) 
The nuclear spin incoherent part is again given by the mean quadratic deviation from the av-
erage:  

  ( ) ( ) 2274.385.10
4
3274.35.47

4
14 fmspinnuclear

incoherent ⎥⎦
⎤

⎢⎣
⎡ +++−= πσ barn2.80=  

            (exact: 80.26(6) barn) (2.63) 
Comparing (2.62) and (2.63), it is immediately clear that hydrogen scatters mainly incoher-
ently. As a result, we observe a large background for all samples containing hydrogen. We 
should avoid all hydrogen containing glue for fixing our samples to a sample stick. Finally, 
we note that deuterium with nuclear spin I = 1 has a much more favorable ratio between co-
herent and incoherent scattering:  
   (64) barnbarn D

inc
D
coh )3(05.2;)7(592.5 .. == σσ

The coherent scattering lengths of hydrogen (-3.74 fm) and deuterium (6.67 fm) are signifi-
cantly different. This can be used for contrast variation by isotope substitution in all samples 
containing hydrogen, i. e. in biological samples or soft condensed matter samples, see corre-
sponding chapters.  
 
A further important element, which shows strong nuclear incoherent scattering, is vanadium. 
Natural vanadium consists to 99,75 % of the isotope 51V with nuclear spin 7/2. By chance, the 
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ratio between the scattering lengths b+ and b- of this isotope are approximately equal to the 
reciprocal ratio of the abundances. Therefore, the coherent scattering cross section is very 
small and the incoherent cross section dominates [7]: 
   (2.65) barnbarn V

incoh
V
coh )6(08.5;)12(01838.0 == σσ

For this reason, Bragg scattering of vanadium is difficult to observe above the large incoher-
ent background. However, since incoherent scattering is isotropic, the scattering from vana-
dium can be used to calibrate multi-detector arrangements.  
 
Here, we will not discuss scattering lengths for further elements and refer to the values tabu-
lated in [7]. 
 
 
2.13 Magnetic neutron scattering 
 
So far, we have only discussed the scattering of neutrons by the atomic nuclei. Apart from 
nuclear scattering, the next important process is the scattering of neutrons by the magnetic 
field created within the sample from the moments of unpaired electrons. This so-called mag-
netic neutron scattering comes about by the magnetic dipole-dipole interaction between the 
magnetic dipole moment of the neutron and the magnetic field of the unpaired electrons, 
which has spin and orbital angular momentum contributions. This magnetic neutron scattering 
allows us to study the magnetic properties of a sample on an atomic level, i. e. with atomic 
spatial- and atomic energy- resolution. In what follows, we will give an introduction into the 
formalism of magnetic neutron scattering, restricting ourselves to the case of elastic magnetic 
scattering. Inelastic magnetic scattering will we discussed in subsequent lectures.  
 
To derive the magnetic scattering cross section of thermal neutrons, we consider the situation 
shown in Figure 2.15: a neutron with the nuclear moment µn is at position R with respect to an 
electron with spin S, moving with a velocity ve.  
 
 

B 
 
 
 
 
 
 
 
 
Fig. 2.15: Geometry for the derivation of the interaction between neutron and electron.  
 
Due to its magnetic dipole moment, the neutron interacts with the magnetic field of the elec-
tron according to (“Zeeman-potential”):  
  m n

Bμ= − ⋅V  (2.66) 
Here, the magnetic moment of the neutron is given by:  
  n Nn
μ γ μ σ= − ⋅  (2.67) 

σ denotes the spin operator, µN the nuclear magneton and γN = -1.913 the gyromagnetic factor 
of the neutron. The magnetic field B of an electron is due to a spin- and orbital- part 
B = BS + BL. The dipole field of the spin moment is given by:  

S

Ve
e-

R

µn
n
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×⎛ ⎞

= ∇× = − ⋅⎜ ⎟
⎝ ⎠

 (2.68) 

The field due to the movement of the electron is given according to Biot-Savart: 

  3
e

L
e v RB

c R
− ×

=  (2.69) 

The magnetic scattering cross section for a process, where the neutron changes its wave vec-
tor from k to k' and the projection of its spin moment to a quantization axis z from σz to σz' 
can be expressed within the first Born approximation:  

  
2

2

2 ' '
2

n
z m z

md k k
d
σ σ σ

π
⎛ ⎞= ⎜ ⎟Ω ⎝ ⎠

V
h

 (2.70) 

As mentioned, we only consider the single differential cross section for elastic scattering. In-
troducing the interaction potential from (2.66) to (2.69) in (2.70) we obtain after some algebra 
[1, 4]:  

  ( ) ( )
2

2
0

1 '
2n z

B

d r M
d
σ γ σ σ

μ ⊥
= − ⋅

Ω zQ σ  (2.71) 

The pre-factor γnr0 has the value γnr0=0.539⋅10-12cm=5.39fm. Here, M⊥(Q) denotes the com-
ponent of the Fourier transform of the sample magnetization, which is perpendicular to the 
scattering vector Q (see Figure 2.16):  
  ( ) ( )ˆ ˆM Q Q M Q Q⊥ = × ×  (2.72) 

  ( ) ( ) 3iQ rQ M r e d r⋅= ∫  (2.73) M
The total magnetization is given as a sum of the spin- and orbital-angular- momentum part 
according to:  

  
( ) ( ) ( )
( ) ( ) ( )2 2

S L

S i iB B
i

M r M r M r

M r S r r rμ μ δ

= +

= − ⋅ = − −∑ S  (2.74) 

(2.71) tells us that with magnetic neutron scattering, we are able to determine the magnetiza-
tion M(r) in microscopic atomic spatial co-ordinates r. This gives a lot more information than 
a simple macroscopic measurement, where we obtain the ensemble average of the magnetiza-
tion over the entire sample. We also see from (2.71) that the orientation of the nuclear spin 
momentum of the neutron (represented by σz) plays an important role in magnetic scattering. 
This is not surprising, since magnetism is a vector property of the sample and obviously there 
should be an interaction with the vector property of the neutron, its nuclear magnetic moment. 
Therefore, the analysis of the change of the direction of the neutron nuclear moment in the 
scattering process should give us valuable additional information as compared to a determi-
nation of the change of energy and momentum direction of the neutron alone. These so-called 
polarization analysis experiments are discussed in a following lecture. Finally, to obtain an 
idea of the size of magnetic scattering relative to nuclear scattering, we can replace the matrix 
element in (2.71) for a spin ½ particle by the value 1 µB. This gives us an "equivalent" scatter-
ing length for magnetic scattering of 2.696 fm for a spin ½ particle. This value corresponds 
quite well to the scattering length of cobalt, which means that magnetic scattering is compara-
ble in magnitude to nuclear scattering.  
In contrast to nuclear scattering, we obtain for magnetic scattering a directional term: neutrons 
only "see" the component of the magnetization perpendicular to the scattering vector (see 
Figure 2.16).  
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Fig. 2.16: For magnetic neutron scattering, only the component M⊥ of the magnetization 

perpendicular to the scattering vector Q is of relevance.  
 

A second specialty of magnetic scattering as compared to nuclear scattering is the existence of 
the magnetic form factor. How the form factor comes about is most easily understood in the 
simple case of pure spin scattering, i. e. for atoms with spherical symmetric (L = 0) ground 
state, such as Mn2+ or Fe3+. Moreover, the derivation is simplified for ionic crystals, where the 
electrons are located around an atom. We denote the spin operators of the electrons of atom i 
with sik. The spatial co-ordinates of the electron number k in atom i are rik = Ri + tik, where Ri 
denotes the position vector to the nucleus of atom i. Now we proceed to separate the intra-
atomic quantities. We can write the operator for the magnetization density as:  
  ( ) ( )2S i ikB

ik
kM r r rμ δ= − − ⋅∑ s  (2.75) 

The Fourier transform of this magnetization density is calculated to:  
  ( ) ( ) 3 ik i ikiQ r iQ r iQ R iQ t

S ik ik
ik i k

M Q M r e d r e s e e⋅ ⋅ ⋅ ⋅= = =∑ ∑ ∑∫ s⋅  (2.76) 

To calculate the scattering cross section, we now have to determine the expectation value of 
this operator for the quantum mechanical state of the sample averaged over the thermody-
namic ensemble. This leads to 
  ( ) ( )2 iiQ R

iB m
i

M Q f Q eμ ⋅= − ⋅ ⋅ ⋅∑ S  (2.77) 

The single differential cross section for elastic scattering is thus given by:  

  ( ) ( )
2

2
0

iiQR
n m i

i

d r f Q S e
d
σ γ ⊥=
Ω ∑  (2.78) 

Here, fm(Q) denotes the form factor, which is connected with the spin density of the atom via 
a Fourier transform:  
  ( ) ( ) 3iQ r

m s
Atom

f Q r eρ ⋅= ∫ d r  (2.79) 

With the form (2.78), we have expressed the cross section in simple atomic quantities, such as 
the expectation values of the spin moment Si at the various atoms. The distribution of the spin 
density within an atom is reflected in the magnetic form factor (2.79).  
 
For ions with spin and orbital angular momentum, the cross section takes a significantly more 
complicated form [4]. Under the assumption that spin- and orbital- angular momentum of 
each atom couple to the total angular momentum Ji (L/S-coupling) and for rather small mo-
mentum transfers (the reciprocal magnitude of the scattering vector has to be small compared 
to the size of the electron orbits), we can give a simple expression for this cross section in the 
so-called dipole approximation:  
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  ( ) ( )
2

2

2
iJ iQ R

n o m i
i

gd r f Q J e
d
σ γ ⋅

⊥= ⋅
Ω ∑  (2.80) 

Here the magnetic form factor writes:  
  ( ) ( ) ( )2 2m of Q j Q C j Q= +  (2.81) 

gJ denotes the Lande g-factor, C2=
2

Jg
-1 and 

  ( ) ( ) ( )2 2

0

4l lj Q j Qr R r rπ
∞

= ∫ dr  (2.82) 

are the spherical transforms of the radial density distributions R(r) with the spherical Bessel 
functions jl(Qr). For isolated atoms, the radial part R(r) has been determined by Hartree-Fock-
calculations and the functions 0 ( )j Q  and 2 ( )j Q  in (2.82) have been tabulated [9]. 
 
Since the distribution of the magnetic field for spin and orbital angular momentum is com-
pletely different, different Q-dependencies of the corresponding form factors result. More-
over, because only the outer electrons in open shells contribute to magnetic scattering, the 
magnetic form factor also differs from the x-ray form factor, which is the Fourier transform of 
the entire electron density distribution within an atom, see Figure 2.17.  
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Fig. 2.17: Form-factor of Cr [10, 11]. Due to the different distribution of the magnetic field 

for spin S and orbital angular momentum L, a more rapid decrease of the scatter-
ing amplitude as a function of momentum transfer results for the spin form factor. 
For the x-ray form factor, the inner electrons play an important role, too. There-
fore, the x-ray form factor drops slower as compared to the magnetic form factor. 
On the Å length scale of the thermal neutron wavelength, the nucleus is point-like. 
Therefore, nuclear scattering is independent of the momentum transfer. Finally, 
we want to mention that the magnetic form factor can in general be anisotropic, if 
the magnetization density distribution is anisotropic.  
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2.14 Comparison of probes 
 
In this lecture, we have so far introduced the elementary formalism to describe the scattering 
process and discussed the interaction of neutrons with matter. We now want to ask the ques-
tions, for which problems in condensed matter research, neutrons can be utilized successfully 
also in comparison to other probes, such as x-ray scattering or electron microscopy and elec-
tron scattering. To answer these questions, we have to look at the ranges of energies, wave-
length or scattering vector, which can be covered by various probes as well as the different 
contrast mechanisms.  
 
Figure 2.18 shows a double logarithmic plot of the dispersion relation "wavelength versus 
energy" for the three probes neutrons, electrons and photons. The plot demonstrates, how 
thermal neutrons of energy 25 meV are ideally suited to determine interatomic distances in 
the order of 0.1 nm, while the energy of x-rays or electrons for this wavelength is much 
higher. However with modern techniques at a synchrotron radiation source, energy resolutions 
in the meV-region become accessible even for photons of around 10 keV corresponding to a 
relative energy resolution ΔE/E≈ 10-7! The graph also shows that colloids with a typical size 
of 100 nm are well suited for the investigation with light of energy around 2 eV. These length 
scales can, however, also be reached with thermal neutron scattering in the small angle region. 
While Figure 18 thus demonstrates for which energy-wave-length combination a certain probe 
is particularly useful, modern experimental techniques extend the range of application by sev-
eral orders of magnitude.  
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Fig. 2.18: Comparison of the three probes - neutrons, electrons and photons - in a double 

logarithmic energy-wavelength diagram.  
 
It is therefore useful to compare the scattering cross sections as it is done in Figure 2.19 for 
x-rays and neutrons. Note that the x-ray scattering cross sections are in general a factor of 10 
larger as compared to the neutron scattering cross sections. This means that the signal for 
x-ray scattering is stronger for the same incident flux and sample size. But caution has to be 
applied that the conditions for kinematical scattering are fulfilled. For x-rays, the cross section 
depends on the number of electrons and thus varies in a monotonic fashion throughout the 
periodic table. Clearly it will be difficult to determine hydrogen positions with x-rays in the 
presence of heavy elements such as metal ions. Moreover, there is a very weak contrast be-
tween neighboring elements as can be seen from the transition metals Mn, Fe and Ni in Figure 
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2.19. However, this contrast can be enhanced by anomalous scattering, if the photon energy is 
tuned close to the absorption edge of an element. Moreover, anomalous scattering is sensitive 
to the anisotropy of the local environment of an atom. For neutrons the cross section depends 
on the details of the nuclear structure and thus varies in a non-systematic fashion throughout 
the periodic table. As an example, there is a very high contrast between Mn and Fe. With neu-
trons, the hydrogen atom is clearly visible even in the presence of such heavy elements as 
Uranium. Moreover there is a strong contrast between the two Hydrogen isotopes H and D. 
This fact can be exploited for soft condensed matter investigations by selective deuteration of 
certain molecules or functional groups. This will vary the contrast within the sample.  
 
Finally, both neutrons and x-rays allow the investigation of magnetism on an atomic scale. 
Magnetic neutron scattering is comparable in strength to nuclear scattering, while non-reso-
nant magnetic x-ray scattering is smaller than charge scattering by several orders of magni-
tude6. Despite the small cross sections, non-resonant magnetic x-ray Bragg scattering from 
good quality single crystals yields good intensities with the brilliant beams at modern syn-
chrotron radiation sources. While neutrons are scattered from the magnetic induction within 
the sample, x-rays are scattered differently from spin and orbital momentum and thus allow 
one to measure both form factors separately. Inelastic magnetic scattering e.g. from magnons 
or so called quasielastic magnetic scattering from fluctuations in disordered magnetic systems 
is a clear domain of neutron scattering and cannot be done with x-rays up to now. Finally, 
resonance exchange scattering XRES allows one not only to get enhanced intensities, but also 
to study magnetism with element- and band sensitivity [12].  
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Fig. 2.19: Comparison of the coherent scattering cross-sections for x-rays and neutrons for a 

selection of elements. The area of the colored circles represent the scattering cross 
section, where in the case of x-rays a scale factor 10 has to be applied. For neu-
trons, the blue and green circles distinguish the cases where the scattering occurs 
with or without a phase shift of π. For 1H and 28Ni, scattering cross sections for 
certain isotopes are given in addition to the averaged values for the natural abun-
dancies.  

                                                 
6 Typically between 6 to 9 orders of magnitude. 
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With appropriate scattering methods, employing neutrons, x-rays or light, processes in con-
densed matter on very different time and space scales can be investigated. Which scattering 
method is appropriate for which region within the "scattering vector Q - energy E plane" is 
plotted schematically in Figure 2.20. A scattering vector Q corresponds to a certain length 
scale, an energy to a certain frequency, so that the characteristic lengths and times scales for 
the various methods can be directly determined from the Figure. Examples for applications 
and information on instrumentation will follow in subsequent lectures. 
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Fig. 2.20: Regions in frequency v and scattering vector Q or energy E and length d, which 

can be covered by various scattering methods.  
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	As an example, there is a high probability of neutrons to be absorbed by 3He nuclei, because the 4He or (-particle is very stable, since it corresponds to a closed nuclear shell. However, during the absorption of the neutron, the 4He nucleus is produced in an excited state. It gets rid of its surplus energy by decay into a proton and a triton 3T. Since these two particles have very high energies of about 0.5 MeV due to the nuclear reaction, charged particles are created during this decay, which can be used for neutron detection in a proportional counter. In a similar manner, the reaction with 6Li, 10B or 235U can be used to build neutron detectors. It should be mentioned, however, that the neutron absorption in 3He is very strongly dependent on the relative orientation of the nuclear spins of both particles. While for anti parallel spin direction, the absorption cross-section is ( 6000 barn, it reduces to 2 barn for parallel spin direction. This effect can be used to build efficient neutron polarization filters. By optical pumping with laser light, the nuclear moment of the 3He nuclei can be aligned along one direction (so-called hyperpolarized 3He gas). If an unpolarized neutron beam passes a filter cell filled with hyperpolarized 3He, the neutrons with spin moment anti parallel to the nuclear moment of the 3He have a high probability to be absorbed, while neutrons with the other spin direction have a high probability to be transmitted. For an appropriate thickness of the filter cell, a very high neutron beam polarization can be achieved in this manner. 
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