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Abstract. Since the advent of high brilliance synchrotron radiation sources, magnetic x-ray 

scattering has become a standard microscopic probe for the investigation of magnetic struc-

tures, magnetic phase transitions and magnetic disorder phenomena. Modern experiments 

highlight the complementarity of this new probe with the standard neutron diffraction 

technique by taking advantage of the high momentum space resolution, the element 

sensitivity, the possibility to separate spin- and orbital contributions etc. In this lecture we 

introduce the scattering cross sections for resonant and non-resonant magnetic x-ray 

scattering, discuss their polarisation dependencies, compare them to polarised neutron 

diffraction and illustrate the capabilities of these methods with some instructive examples.  

 

11.1 Introduction 

Most of our present knowledge of the atomic structure of condensed matter results from x-ray 

diffraction studies, which probe the interaction of the electric field with the electric charge of 

the electron. However, since x-rays represent an electromagnetic radiation and since in 

magnetic materials some electrons carry a magnetic moment due to spin- and angular 

momentum, we naturally would expect a magnetic interaction in addition to the pure charge 

interaction. Even so this interaction was well established in theory [1] since Klein-Nishina 

1929, the first magnetic diffraction effect was demonstrated only 1972 by de Bergevin and 

Brunel [2] with a commercial x-ray tube. The same authors gave a classical picture of the 

interaction process, deduced the detailed polarisation dependence and presented measure-

ments on ferromagnetic compounds in a subsequent paper [3]. However, since the magnetic 

interaction gives just a relativistic correction to the cross section, the amplitudes of magnetic 

diffraction are down by approximately three orders of magnitude as compared to charge scat-

tering, resulting in an intensity ratio of about 10-6. Therefore magnetic x-ray scattering was 

considered an exotic topic until the experiments on Ho by Gibbs et al [4], which took advan-

tage of the high brilliance of a synchrotron radiation x-ray source thus compensating by a 

high photon flux at the sample position for the weak magnetic scattered intensities. The 



polarisation properties and the tunability of synchrotron radiation offered new perspectives 

for magnetic x-ray investigations. This was again demonstrated on Ho [5] by an attempt to 

separate spin- and angular momentum with polarisation analysis and by the observation of a 

resonance enhancement of the magnetic signal at the absorption edges. 

 

Nowadays, synchrotron radiation techniques for the study of properties of magnetic materials 

are well established. Very widespread is the application of incoherent probes which measure a 

macroscopic ensemble average of local magnetic properties. Among these we mention Kerr-

microscopy, measurements of the Faraday effect and the linear or circular x-ray magnetic di-

chroism. The Kerr- and Faraday effect measure the rotation of the plane of polarisation of an 

electromagnetic wave as it is reflected from or transmitted through a magnetic material, re-

spectively. Magnetic circular dichroism describes the difference in the absorption of right- 

and left circularly polarised x-rays by magnetic materials. It measures essentially the same 

quantities as the Kerr- and Faraday effect, namely the orbital and spin contributions to the 

magnetic moments with element and certain site specifities. Kerr microscopy and x-ray 

topography are used for magnetic domain imaging. Absorption techniques become local 

microscopic probes when the spin resolved x-ray absorption fine structure is observed. In 

analogy to classical EXAFS experiments, such measurements provide information about the 

local environment, but are explicitly sensitive to the magnetic neighbours only. True 

microscopic spatial resolution is obtained with the coherent probes, namely magnetic x-ray 

diffraction (as well non-resonant as resonance exchange scattering) and nuclear resonant 

scattering. Magnetic scattering provides a wealth of information on magnetic correlation 

lengths, the local magnetic moments and environment, the magnetic structure and phase 

transitions. Magnetic x-ray reflectivity is the corresponding probe for the investigation of 

magnetic thin films. Nuclear resonant scattering yields information on hyperfine fields and 

might eventually become important for the measurement of magnetic excitations. Resonant 

diffraction and absorption techniques are intimately related by the optical theorem, which 

states that the attenuation coefficient is proportional to the imaginary part of the forward 

scattering amplitude. In this sense, diffraction experiments comprise absorption techniques, 

but in addition they provide true atomic resolution. In this impressive list of synchrotron 

radiation techniques we want to finally mention magnetic Compton scattering for the 

determination of the spin resolved electron momentum density and angular- and spin resolved 

photoemission, which gives the spin resolved band structure. 



Many of these topics are discussed in detail in a textbook [6]. In what follows I will concen-

trate on magnetic x-ray diffraction. I will introduce the cross section for non-resonant and 

resonant magnetic x-ray scattering in section 2 and discuss examples of non-resonant diffrac-

tion experiments in section 3. Examples of resonance exchange scattering experiments on 

bulk antiferromagnets, ferromagnets and thin film systems are given in section 4. Finally in 

section 5, I summarise some important features of magnetic x-ray scattering and compare it to 

magnetic neutron diffraction.  

 

11.2 The cross section for magnetic x-ray scattering 

A calculation of the cross-section for x-ray scattering including the magnetic terms from a 

quasi-relativistic Hamiltonian for electrons in a quantised electromagnetic field within sec-

ond-order perturbation theory was done by Blume [7] and Blume and Gibbs [8]. Platzman and 

Tzoar [1] and de Bergevin and Brunel [3] started from the Dirac equation and reduced this 

relativistic ansatz using a Foldy-Wouthuysen transformation to a quasi-non-relativistic form 

analogous to that obtained from the non-relativistic Hamiltonian. The expansion of this quasi-

non-relativistic Hamiltonian in dependence of photon energy over electron rest mass h  

allows the description of the magnetic scattering process. Grotch, Kazes, Bhatt and Owen [9] 

extended the Foldy-Wouthuysen transformation to second order in 

2mc/ω

2mc/ωh . Here we follow 

a presentation given by Blume [7] and Blume and Gibbs [8] based on a non-relativistic treat-

ment in second order perturbation theory. We start with the Hamiltonian for electrons in a 

quantised electromagnetic field: 
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Here, the first term corresponds to the kinetic energy of the electrons in the electromagnetic 

field, represented by the vector potential A(r), the second term corresponds to the Coulomb 

interaction between the electrons, the third term to the Zeeman energy -µ⋅H of the electrons 

with spin sj, the fourth term to the spin-orbit coupling and the final term to the self energy of 

the electromagnetic field. From the form of (1), we can immediately guess that the cross-

section and polarisation dependence of the scattering of an electromagnetic wave from mag-

netic materials is more complex than the corresponding cross-section for neutron scattering - 

at least if we only consider the two main interaction potentials for nuclear scattering and mag-

netic dipole scattering. In the case of neutron scattering, only the magnetic dipole interaction 

of the neutron spin with the magnetic field of the electrons gives rise to magnetic scattering. 

In the case of x-rays, we have several interaction terms as well between the spin of the elec-

trons and the electromagnetic field as between the orbital momentum and the magnetic field. 

In addition, photons are spin 1 particles as compared to spin 1/2 neutrons. Therefore we can 

expect a much more complex polarisation dependence.  

 

The vector potential A(r) in (1) is linear in photon creation and annihilation operators, )k(c λ+  

and )k( λc  and is given in a plane wave expansion by:  
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Here V is a quantisation volume and )q( σε  is the unit polarisation vector corresponding to a 

wave q of polarisation state σ. Two polarisation states 2,1=σ  of the photons have to be dis-

tinguished. As a basis, we can either use linear polarisation in two perpendicular directions or 

left and right circular polarisation. Since A(r) is linear in the c+ and c-operators, scattering 

occurs in second order for terms linear in A and in first order for quadratic terms. We do not 

want to reproduce the calculation given in [7] in detail. The Hamiltonian (1) is written as a 

sum 
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where H0 contains only the degrees of freedom of the electron system, Hr is the Hamiltonian 

for the quantised electromagnetic field and H' corresponds to the interaction between the 

electrons and the radiation field. Scattering cross-sections are calculated by assuming that ini-

tially the solid is in a quantum state |a>, which is an eigenstate of H0 with energy Ea, and that 

there is a single photon present. We then calculate the probability of a transition induced by 

the interaction Hamiltonian H' to a state |b> with photon k'λ'. For elastic scattering |b> = |a>. 

The transition probability per unit time can be calculated by the golden rule to second order 

perturbation theory. The fact that we have to go to second order perturbation theory for terms 

linear in A immediately implies that besides the so-called non-resonant magnetic x-ray 

scattering, resonance phenomena will appear due to the energy denominator found in second 

order perturbation theory (compare the Breit-Wigner-formula for resonant scattering of the 

neutron from a nucleus). Here we will just quote the final result of this calculation: at 

moderately high x-ray energies and far away from all absorption edges of the elements in the 

sample, the elastic cross-section for scattering of photons with incident polarisation ε into a 

state of final polarisation ε' can written as: 
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Here re=e2/mc2 = 2.818 fm denotes the classical electron radius, λC = h/mc = 2.426 pm the 

Compton length of an electron. The scattering amplitudes <fC> and <fM> are given as matri-

ces which describe the polarisation dependencies of charge and magnetic scattering, respec-

tively. Here we discuss the case of linear polarisation, described by unit vectors perpendicular 

to the wave vectors of incident and scattered photons, k and k'. σ-polarisation corresponds to 

the basis vector perpendicular to the scattering plane, π-polarisation corresponds to the 

vectors in the k, k' plane. The basis vectors for the components of the magnetic moment of the 

sample and for the polarisation states are defined as follows, see figure 1:  

 

ˆ u 1 = k + k '( ) k + k'

ˆ u 2 = k ' ×k( ) k' ×k ≡ σ ≡ σ '

ˆ u 3 = k' −k( ) k' −k = Q Q

π = ˆ k × σ    ;     π' = ˆ k ' ×σ '

 (5) 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Illustration of the definition of the co-ordinate system and the basis vectors used to 

describe the polarisation dependence of x-ray scattering.  

 

In this basis the matrices in (4) can be written as 

- <fM> for the magnetic part:  

 

to\ from σ π
σ ' S2 ⋅cos θ ( L1 + S1 ) ⋅cos θ + S3 ⋅sin θ[ ]⋅sin θ
π' −( L1 + S1 ) ⋅cos θ + S3 ⋅sin θ[ ]⋅sin θ 2 L2 ⋅sin2 θ + S2[ ]⋅cos θ

 (6) 

 

- <fC> for charge scattering:  

 

to \ from σ π
σ ' ρ(Q) 0
π' 0 ρ(Q) cos2θ( )

 (7) 

 

Here Si = Si(Q) and Li = Li(Q) (i=1, 2, 3) denote the components of the Fourier transform of 

the magnetisation density due to the spin and orbital angular momentum, respectively. ρ(Q) 

denotes the Fourier transform of the electronic charge density distribution.  

 



As can be seen from (4), magnetic scattering is a relativistic correction to charge scattering. 

For coherent elastic Bragg scattering, the ratio between the magnetic and the charge 

amplitude is determined by the momentum transfer and therefore we have written the pre-

factor for the magnetic amplitude in the cross-section (4) as λC/d which emphasises that for a 

given Bragg reflection the ratio between magnetic and charge scattering is virtually 

independent of photon energy, at least to within the approximations leading to (4). 

 

(4) contains three terms: pure Thomson-scattering, purely magnetic scattering and an interfer-

ence term. The latter becomes important if charge- and magnetic scattering occur at the same 

position in reciprocal space, which is the case for ferromagnets. Note, however, that the 

prefactor "i" in front of the magnetic scattering amplitude means that magnetic scattering is 

shifted in phase by π/2 as compared to charge scattering. Therefore if both amplitudes, <fC> 

and <fM> are real, the interference term vanishes. The interference can only be observed, if 

one of the amplitudes contains an imaginary part (e. g. non centrosymmetric structures or 

photon energy close to an absorption edge for charge scattering) or if circular polarised 

radiation is used. The importance of the interference term for ferromagnets becomes evident, 

if we consider the ratio between magnetic and charge scattering amplitudes. An estimate for 

this ratio can be given as: 
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Here, N(NM) and f(fM) denote the number and the form factor of all (the magnetic) electrons, 

S  the expectation value of the spin quantum number. Using appropriate values for the pa-

rameters in (8), one finds that the amplitude for magnetic scattering is typically three orders 

of magnitude smaller than the amplitude of charge scattering, resulting in an intensity ratio of 

10-6 between pure magnetic and pure charge scattering. It is not practical to measure a 10-6 

effect in intensities. Therefore for ferromagnets, where charge and magnetic scattering 

coincide in reciprocal space, the interference term between charge and magnetic scattering is 

the leading term after charge scattering. In a very similar way to flipping-ratio measurements 

in neutron scattering, the direction of the magnetisation (or the incident photon polarisation) 

is changed periodically to change the sign of the interference term and thus extract this term 

from the pure charge scattering.  



(6) and (7) show that magnetic scattering can be discriminated from charge scattering by a 

polarisation analysis experiment, where the off-diagonal terms σ→π' or π→σ' are being 

measured. Finally, (6) shows that the spin and orbital contributions have different angular- 

and polarisation dependencies and can therefore be distinguished in principle. 

 

We have sketched a derivation of the non-resonant magnetic scattering cross sections starting 

from non-relativistic quantum mechanics and applying perturbation theory up to second 

order. It should be noted that the scattering cross-section can also be derived in a purely 

classical theory [10]. It turns out that the classical calculation reproduces the quantum 

mechanical cross-section for the spin part, but not for the orbital part. De Bergevin and 

Brunel [3] have drawn a simple diagram, representing the various interaction processes in 

such a classical model. This diagram is reproduced as figure 2.  

 

The first process shown in figure 2 is the classical charge or Thompson scattering: an electro-

magnetic wave is incident on a free electron and due to the Coulomb force between the elec-

tric field vector and the charge of the electron, the electron is accelerated into a harmonic os-

cillation and re-radiates electric dipole radiation. The three other processes only appear if the 

electron carries a spin momentum, i. e. these processes give rise to magnetic x-ray scattering. 

The second process in figure 2 arises from the same Coulomb interaction with the incident 

electromagnetic wave. The accelerated spin moment gives rise to re-radiation of magnetic 

quadrupole radiation. In the third and fourth process of figure 2, the interaction with the 

incident electromagnetic field is between the spin moment and the magnetic field vector. 

 

From figure 2, the polarisation dependence of charge and magnetic scattering becomes 

immediately evident. In charge scattering, the polarisation of the incident wave is conserved. 

From our simple classical pictures, it is immediately evident that the matrix (7) has to be 

diagonal. The cos 2θ factor for π→π’-scattering is simply explained by the projection of the 

acceleration vector onto a plane perpendicular to the observation direction. Figure 2 shows 

that in contrast to charge scattering, the polarisation can indeed change for magnetic x-ray 

scattering. Therefore the existence of off-diagonal terms in the matrix (6) can easily be 

motivated from the classical picture figure 2. Polarisation analysis allows us to clearly 

distinguish charge and magnetic scattering.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Illustration of the processes leading to scattering of x-rays by the charge (top) and the 

spin moment (bottom three) of the electron in a classical picture (from [3]).  
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For what follows it is of interest to examine the high energy limit of the purely magnetic diff- 

raction cross section. It can be easily calculated from (6). In this limit, the cross-section be-

comes virtually independent of polarisation and is sensitive only to the component of the Fou-

rier transform of the spin density distribution perpendicular to the scattering plane: 
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Thus at high photon energies around 100 keV, the pure spin density distribution becomes ac-

cessible without polarisation analysis, while in neutron diffraction always the sum L+2S is 

being measured. 

 

If the x-ray energy is tuned to the absorption edge of magnetic elements, resonance phenom-

ena occur due to second order perturbation theory [11]: 
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Here |c> denotes an intermediate excited state with energy Ec, ωh  the photon energy and Γ  

the level width of the excited state due to the finite lifetime )( h≈τ⋅Γ . The operator O(k) is 

given by the expression:  
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(10) gives rise to anomalous dispersion, i. e. an energy dependence of the charge scattering, 

as well as to resonant magnetic scattering. The operator (11) can be expanded in a multipole 

series. It turns out that in the x-ray regime, the spin and orbital contributions can be neglected 

in most cases, and only the electric multipole terms have to be retained. These electric 

multipole (predominantly dipole and quadrupole) operators induce virtual transitions between 

core levels and unoccupied states above the Fermi energy with subsequent reemission of a 

photon. These processes become sensitive to the magnetic state in exchange split bands due to 

the difference in occupation of minority and majority bands leading to so called resonance 

exchange scattering XRES [12] as illustrated schematically in figure 3.   

 



Due to the resonance denominator in (10), resonance enhancements occur at the absorption 

edges of the magnetic elements. The strengths of these enhancements for XRES depend 

mainly on three factors:  
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matic illustration of the second order perturbation process leading to XRES in 

ase of a lanthanide metal, e.g. a Gd3+ - ion.  

nitude of the transition matrix element. Dipole transitions between states |a> and 

ring in orbital angular momentum quantum number by ∆L = 1 are generally 

 than quadrupolar transitions with ∆L = 2. A large overlap of the wave functions 

|c> favours large transition matrix elements. In contrast, transitions from "s" core 

 "p" or "d" excited states do not show large resonance enhancements due to the 

erlap of the wave functions. 

rence in the density of empty states above the Fermi level for minority and major-

states. To give an example: in lanthanide metals, the 5d bands are spin polarised 

e magnetic 4f states. However, the exchange splitting in the 5d is much weaker as 



compared to the 4f states and dipolar transitions 2p → 5d are sometimes not much stronger 

than quadrupolar transitions 2p → 4f.  

3. The strength of the spin-orbit coupling in the ground- and excited states. Only due to this 

coupling do the electric multipole transitions become sensitive to the spin magnetism.  

Using these criteria, we can qualitatively categorise the possible transitions according to the 

magnitude of the resonance enhancement, see Tab. 1. Here we define the term "resonance 

enhancement" as the ratio between the intensity of magnetic Bragg peaks in the maximum of 

the resonance relative to the intensity for non-resonant magnetic scattering.  

 

elements edge transition energy range

[keV] 

resonance

strength 

comment 

3d K 1s → 4p 5 - 9 weak small overlap 

3d LI 2s → 3d 0.5 - 1.2 weak small overlap 

3d LII, LIII 2p → 3d 0.4 - 1.0 strong dipolar, large overlap, 

high spin polarisation of 3d 

4f K 1s → 5p 40 - 63 weak small overlap 

4f LI 2s → 5d 6.5 - 11 weak small overlap 

4f LII, LIII 2p → 5d 

2p → 4f 

6 - 10 medium dipolar 

quadrupolar 

4f MI 3s → 5p 1.4 - 2.5 weak small overlap 

4f MII, MIII 3p → 5d 

3p → 4f 

1.3 - 2.2 medium 

to strong 

dipolar 

quadrupolar 

4f MIV, MV 3d → 4f 0.9 - 1.6 strong dipolar, large overlap, 

high spin polarisation of 4f 

5f MIV, MII 3d → 5f 3.3 - 3.9 strong dipolar, large overlap, 

high spin polarisation of 5f 

 

Tab. 1:  Magnitude of the resonance enhancements for XRES for some elements relevant for 

magnetism. Only order of magnitude estimates are given with "weak" corresponding 

to a factor of about "100", "medium" to about "102" and "strong" to ">103".  



Tab. 1 only lists some of the most prominent examples. It demonstrates that the resonance 

enhancements for 3d transition metal ions is negligible in the hard x-ray regime (e. g. [13]), 

while it can be strong for soft x-rays. Unfortunately, at wavelengths of 12 to 30 Å, atomic 

resolution cannot be obtained under normal conditions. However, the transition metal LII and 

LIII edges turn out to be extremely important for the investigation of magnetic thin films and 

nanostructures (e. g. [14]). For the 4f elements, resonance enhancements of about two orders 

of magnitude are observed in the hard x-ray range at the LII and LIII edges (e. g. [15]). At 

these edges, dipolar transitions are in general dominant, but quadrupolar transitions can be 

significant. The so-called "branching ratio", i. e. the ratio between resonance enhancement at 

the LII edge and the LIII edge has a tendency for a systematic variation along the rare earth 

series. While it is close to 1 for rare earth ions with seven 4f electrons, the LIII resonance is 

generally stronger for ions with more than seven 4f electrons while the LII resonance tends to 

be stronger for less than half filling of the 4f shell. As in the case of the 3d transition metals, 

the soft x-ray range with the MIV and MV resonances is of importance for magnetic 

nanostructures [16]. At the MIV edge of actinides, the intensity gain due to XRES can be as 

high as seven orders of magnitude [17]. Finally, we have not listed the 4d and 5d transition 

metal elements in Tab. 1, even so resonance enhancements at the LII and LIII edges can be so 

large that surface magnetic x-ray diffraction becomes possible, e. g. in Co3Pt (111) 

( d ) [18]. We can conclude that XRES can provide large intensity 

gains for magnetic x-ray scattering, allows a spectroscopy of the exchange split empty states 

above the Fermi level and renders magnetic diffraction sensitive to the magnetic species. 

5p2:keV5.11L 2/3
Pt
III →≈

 

Let us come back to the explicit form of the cross-section, including resonant magnetic 

scattering. We start from (10), which gives the general form of the cross-section for 

anomalous scattering. In what follows, we will neglect the spin dependent part and limit 

ourselves to electric dipole transitions. Detailed derivations are given in [11], [12] and the 

polarisation dependence, also for the case of electric quadrupole transitions, is discussed in 

[19]. Anomalous scattering becomes relevant close to the absorption edges of the elements. 

Then, an energy dependent amplitude has to be added to the expression (4) for the scattering 

cross-section. In dipole approximation, this amplitude reads:  

)E(f)E(f)E(f)E(f lincirco
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f0 is independent of the magnetic state (i.e. the conventional anomalous charge scattering), 

while fcirc and flin are the amplitudes connected for the special case of forward scattering with 

circular and linear dichroism, respectively. All three amplitudes have different polarisation 

properties. fcirc depends linear on the magnetic moment m, while flin depends quadratic on m. 

Therefore for antiferromagnets, only fcirc gives a contribution at positions in reciprocal space 

separated from the main charge reflections by the magnetic propagation vector. Finally, for a 

simple excitation into one atomic-like level, the energy dependence of the amplitudes is con-

tained in the oscillator strengths 
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Here  denotes the photon energy, ω ω res the position of the absorption edge and  the reso-

nance width. The phenomenological parameter α

Γ

M gives a measure for the amplitude of the 

resonance and stands for the product of the transition matrix elements. 

 

After this discussion of the cross section for non-resonant magnetic x-ray diffraction and for 

resonance exchange scattering, we will now demonstrate the possibilities of these techniques 

by some illustrative examples.  Just for convenience most of these examples are from our own 

research, while we are very well aware of the beautiful work done by other groups. 

 

11.3 Non-resonant magnetic x-ray diffraction 

Resonant magnetic x-ray scattering has the convenience of easily detectable signals due to the 

resonance enhancement and provides element specific information.  Therefore many magnetic 

x-ray diffraction studies nowadays deal with resonance exchange scattering.  However, for 

transition metal ions, only K-edges lie in the range of hard x-ray wavelengths, where atomic 

resolution is achievable.  Due to the dipolar and quadrupolar selection rules and the small 

overlap between core 1s-states and the magnetic sensitive 3d or 4p energy bands, resonance 



enhancements are negligible at transition metal K-edges and one is left with neutron- or non 

resonant magnetic x-ray scattering.  These techniques have the advantage that they measure 

directly the order parameter, in contrast to resonant scattering, where transition matrix 

elements are involved, which are not known a priori.  Moreover, the form of the cross section 

(6) suggests that spin S and orbital L angular momentum can be determined separately by 

means of polarisation analysis.  Take the example of a collinear antiferromagnet for which 

charge – and magnetic reflections are well separated in reciprocal space and for which we can 

align the moments along the û2 – axis, i.e. S(Q) = (0,S(Q),0) and L(Q) = (0,L(Q),0).  At the 

antiferromagnetic reflections charge scattering vanishes and, according to (6), magnetic 

scattering only occurs in the σ→σ’ and the π→π’ polarisation channels.  In the former, 

scattering is sensitive to S(Q) only, in the latter, it is sensitive to a linear combination of S(Q) 

and L(Q), thus allowing a unique determination of the ratio between both contributions.  

While such a model independent separation of S and L cannot be achieved with neutron 

scattering due to the fact that the neutron cross section is proportional to L+2S, it provides 

very important information e.g. to verify band structure calculations.  Such a separation of S 

and L by means of polarisation analysis of non-resonant magnetic x-ray diffraction has for 

example been done in Ho [5], NiO [20] or Cr [21]. 

 

Here we discuss an alternative method, namely the non resonant magnetic scattering of very 

hard x-rays with energies above 80 keV [22-25].  From (9) it follows that with high energy x-

ray diffraction one can determine the spin density distribution independent of the polarisation 

of the incident beam and without analysis of the final polarisation after scattering.  While in 

neutron diffraction only the total magnetic moment, proportional to the sum L+2S is 

accessible, x-ray diffraction in the conventional energy range requires polarisation analysis to 

separate the spin momentum S(Q) from the orbital angular momentum density L(Q). The 

additional principal feature of high energy magnetic x-ray diffraction is the drastic increase in 

penetration depth.  For 3d transition metals, the absorption length 1 µ  increases from some 

µm at 8 keV to several mm at 80 keV.  This leads to a volume enhancement of the signal 

which is however partly compensated by the λ2 term for the reflectivity.  Moreover, true bulk 

properties become accessible, a feature especially important for studies of magnetic disorder 

phenomena.  Magnetic x-ray scattering can be studied in transmission geometry.  Corrections 

for absorption, extinction, beam foot print etc. are simple and therefore, by normalising the 

intensity of the magnetic reflections to the intensity of the charge reflections, absolute values 



for the spin moment can be determined [25]. Neutron and photon experiments of bulk 

properties from the same crystal become possible, where one advantage of the x-ray study is 

the high intrinsic resolution of about 10-3 Å-1 longitudinal and 2·10-4Å-1 transversal. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Schematic sketch of the three crystal diffractometer for high energy x-ray scattering 

BW5 at HASYLAB / Hamburg. 

 

Fig. 4 depicts a typical experimental set-up.  The diffractometer of the beamline BW5 at 

HASYLAB receives a white x-ray beam from a 2T high field wiggler.  Inclined water cooled 

Cu plates limit the beam dimensions to about 4x4 mm2.  To reduce the heat load on the 

optical elements, a water cooled 1 mm thick Cu window absorbs all radiation of energy 

smaller than 60 keV.  For the experiments on MnF2 described below, we employed annealed 

Si 311 crystals with a mosaic width of 10´´ in Laue (transmission) geometry as 

monochromator and analyser crystals.  The analyser can be used to increase the momentum 

space resolution and to reduce the background, but should not be employed for the collection 

of integral intensities.  Iron collimators with a quadratic cross section of 50 x 50 mm2 and a 

free bore of 10x10 mm2 are positioned between monochromator and sample, sample and 

analyser and analyser and detector to reduce the background.  With an energy sensitive Ge 

solid state detector, the inelastic background from Compton scattering and fluorescence can 

be efficiently suppressed.  The sample is mounted inside a cryostat with Al windows and 

large tails to avoid Al background scattering to enter the detector. 

The potential of magnetic high energy x-ray diffraction can be demonstrated with 

experiments on the antiferromagnetic model system MnF2 [24].  With an energy of 80keV, a 



high peak count rate of 12.000 counts/sec, a good peak-to-background ratio of 230:1 and an 

excellent Q space resolution can be obtained for the magnetic 300 Bragg reflection. Fig. 5 

shows a measurement of the temperature dependence of the sublattice magnetisation.  In the 

critical region close to the Néel temperature TN, the reduced sublattice magnetisation 

m = M(T ) M(T = 0)  follows very accurately a power law behaviour 

m(τ ) = D ⋅τ β  (15)  

as a function of the reduced temperature τ = TN − T( ) TN .  The value of the critical exponent 

of β=0.333(3) corresponds well to the predictions of the Ising model.  

 

Fig. 5:  Critical behaviour of 

the sublattice magnetisation of 

MnF2 in a double logarithmic plot 

in reduced variables.  The insert 

shows the temperature dependence 

of the intensity of the magnetic  

3 0 0 Bragg reflection of MnF2 

measured with 80 keV photons.   
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MnF2 is a classical model antiferromagnet with localised spin moments and therefore is an 

ideal test material for any new technique in magnetism. The 3d metal Cr on the other hand 

shows very intriguing magnetic properties. Chromium is an itinerant antiferromagnet 

exhibiting an incommensurate spin density wave (SDW) below TN = 311 K [26]. Above the 

spin flip transition at TSF = 123 K the spin density wave is transversally polarised, whereas 

below TSF the polarisation becomes parallel to the modulation wave vector, which leads to a 

longitudinally polarised SDW. The SDW gives rise to magnetic satellite peaks at positions 

corresponding to the magnetic propagation vector qm. These satellites could be readily 

measured, despite the small root-mean-squared moment of 0.43 µB, see Fig. 6. The 

temperature dependence of the intensity and propagation vector for the 1- δ  0 0 satellite is 

plotted in Fig. 7. One can clearly see the spin flip transition at 123 K in a drastic drop of the 

satellite intensity as the spin moment rotates from an orientation perpendicular to the 

scattering plane to an orientation within the scattering plane. Therefore at the spin flip 



transition, the spin component S2 - and according to (9) the Bragg intensity - vanishes. 
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Fig. 6: Diffraction geometry (left) and 1- δ  0 0 magnetic satellite (right) of Cr.  The 

measurements were done with photons of energy 100 keV.  While above the spin flip 

transition in the transverse SDW, moments perpendicular to the diffraction plane 

exist, these moments come to lie within the diffraction plane as the SDW becomes 

longitudinal polarised below TSF.   

 

The main aim of our study of chromium was, however, to determine the relative contribution 

of spin and orbital angular momentum to the SDW. As discussed above, the spin momentum 

is directly accessible with high energy x-ray diffraction, while neutrons measure the 

combination L+2S.  Therefore by combining results of measurements of both techniques, spin 

S and orbital L momentum densities can be determined separately. To this end, we measured 

5 satellites of Cr as a function of momentum transfer. In Fig. 8 we compare these high energy 

x-ray data with neutron results of Moon et al. [27].  In addition, results of calculations using a 

fully relativistic spin density functional theory for the form factors of spin and orbital angular 

momentum are shown. Neutron and x-ray data coincide within the error bars indicating a 

magnetic moment due to spin only. This interpretation is supported by the band structure cal-

culation. A more detailed analysis gives an orbital contribution of -4(8)%. It is interesting to 



note that the orbital moment for antiferromagnetic chromium is about an order of magnitude 

smaller than that calculated for the pure ferromagnetic transition metals Fe, Co and Ni. 

Fig. 7: Temperature dependence of the magnetic propagation vector (left) and of the intensity 

(right) of the 1-  0 0 magnetic satellite of Cr measured with photons of energy 100 

keV.  

δ

100 150 200 250 300
0.951

0.953

0.955

0.957

0.959

0.961

0.963

T [K]

q m
 [r

.l.
u.

]

1−δ 0 0  BW5

0 40 80 120 160 200
0.0

0.2

0.4 1 0 −δ

Neutrons

100 150 200 250 300

2

4

Temperature [K]

In
te

gr
at

ed
 In

te
ns

ity
 [a

rb
. u

ni
ts

]

1−δ 0 0  PETRA II

 
Fig. 8: Magnetic form factor 

of Cr in the ordered state as a 

function of momentum transfer 

(respectively 1/2d, where d denotes 

the lattice spacing).  Full triangles 

are neutron results on a 

commensurate Cr alloy [27].  Open 

circles correspond to averaged values 

from magnetic satellites around the 

commensurate positions determined 

with 100 keV high energy x-rays.  



11.4 Resonance exchange scattering 

As an example of the effect of resonance exchange scattering, we show in fig. 9 raw data 

taken at the W1 beam line at HASYLAB for the LII resonance of GdS [15].  Due to the high 

absorption cross section of Gd for thermal neutrons, no detailed neutron diffraction studies 

exist for GdS.  With x-rays a comfortable count rate of about 3000 photons per second was 

obtained for the 9/2 1/2 1/2 reflection on resonance and we could verify the assumed type II 

antiferromagnetic ordering on the fcc lattice.  While resonant exchange scattering can in 

principle give information about the density of unoccupied states above the Fermi level, most 

resonance line shapes can well be approximated with the simple two level model of equation 

(14).  This is also true for the resonance shown in fig. 9, where only a small asymmetry 

remains after absorption correction [15].  There are, however, examples of much more 

structured resonances with double and multiple peaks as a function of energy.  Examples are 

the K-edge resonance of manganese in the perovskite type compound RbMnF3 [13] or the L-

edge resonances in the rare-earth metal Tb [28]. 
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Fig. 9:  The resonance 

enhancement of the magnetic 

signal of the 9/2 1/2 1/2 

superstructure peak of GdS at 

the Gd LII edge measured at 

4.2K.  The top diagram shows 

raw data of rocking curve 

scans at various photon 

energies.  The bottom diagram 

shows as a function of photon 

energy the peak intensities 

together with the structure of 

the absorption edge.  
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The strength of resonance exchange scattering that makes it unique compared to all other 

techniques is that it combines spatial resolution (in reciprocal Fourier space) with element 

specificity.  By choosing a resonance, where an enhancement of several orders of magnitude 

for a specific magnetic element is obtained, non-resonant scattering becomes negligible and 

only the magnetic pair correlation functions for this element in question are observed.  This 

can be nicely demonstrated for the mixed crystal series Gd1-xEuxS.  While GdS is an 

antiferromagnetic metal, EuS is a ferromagnetic insulator.  For some intermediate 

concentration, a metal-insulator transition occurs.  Moreover, since the system exhibits 

competing magnetic interactions (ferromagnetic versus antiferromagnetic), frustration occurs, 

i.e. not all magnetic bonds can be satisfied simultaneously.  Frustration combined with 

disorder typical for a stochastic occupancy of the rare earth site in the solid solution, leads to 

a spin glass phase without magnetic long range order separating the ferromagnetic from the 

antiferromagnetic phase.  Some questions that can be tackled with XRES are:  can we observe 

the frustration mechanism and what is the magnetic microstructure of the long range ordered 

and of the spin glass phase?  The answer to these questions lies in the study of the magnetic 

correlations with element specificity [29, 30]. 

Fig. 10:  Absorption corrected energy dependence of the intensity of the 1/2 1/2 9/2 magnetic 

Bragg reflection at the Eu and Gd LII and LIII edges for a Gd0.8Eu0.2S sample at 4K. 

The solid line is a fit with (14), the dashed line shows the absorption coefficient. 



Fig. 10 shows the resonance behaviour for a Gd0.8Eu0.2S sample at all 4 LII and LIII edges 

together with a fit assuming a simple atomic-like two level dipolar transition [29,30] 

(compare eq. (14)).  The resonances for the two different elements are well separated in 

photon energy and the enhancement amounts to between one and more than two orders of 

magnitude compared to non-resonant scattering.  This is the reason for the element 

specificity, as is illustrated in Fig. 11. 

non resonant Gd resonance Eu resonance

: Gd3+ ion : Eu2+ ion

 

Fig. 11:  Illustration of the effect of XRES for GdxEu1-xS: In the case of non-resonant x-ray 

diffraction or neutron scattering, the magnetic order is observed independent of the magnetic 

species.  In the maximum of the resonance of Gd, only the ordering of the Gd moments is 

visible due to the large resonance enhancement.  At the Eu resonances, only the order of the 

Eu moments is visible. 
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Fig. 12: Temperature dependence of the element specific sublattice magnetisation for 

Gd0.8Eu0.2S together with neutron data and a model refinement (left).  The refinement 

is based on the frustration model illustrated on a 2d lattice on the right.   



Fig. 12 shows the temperature dependence of the sublattice magnetisation determined with 

neutron diffraction (filled triangles), with XRES at the Gd LII edge (small circles) and with 

XRES at the Eu LII edge (open squares) [29,30].  The sublattice magnetisation was obtained 

from rocking curves as the normalised square root of the integrated intensities.  This is the 

correct procedure for the case of neutron diffraction.  However, in the case of XRES, the 

intensity depends on transition matrix elements (compare (14)), which can, in principle, 

change with temperature.  Scattering in second order perturbation theory is a priori not 

directly related to the order parameter.  Therefore the neutron data were taken as a cross 

check:  it turns out that the weighted sum of the XRES curves for Eu and Gd matches nicely 

the neutron curve, indicating that with XRES we measure indeed the sublattice magnetisation 

for each species Eu2+ and Gd3+ individually.   

The surprising observation is that the sublattice magnetisation has a different temperature 

dependence for the two ions Eu2+ and Gd3+, even so both have the same 8S7/2 electronic 

ground state and they both are embedded “in the same sea of conduction electrons”. An 

explanation for this observation can be given, if we assume frustration effects to occur.  In a 

very simple model, we start from an isotropic Heisenberg Hamiltonian 

∑ ⋅−= jiij SSJH  (16) 

with nearest neighbour interactions only, place the two ions at random on a simple cubic 

lattice and assume the exchange interaction between pairs of Gd-Gd and Gd-Eu to be 

antiferromagnetic and between pairs of Eu-Eu to be ferromagnetic.  This will lead to 

frustration for pairs, triplets etc of Eu spins within the surrounding Gd matrix, see fig. 12 

(right).  To calculate these frustration effects for the case of small Eu concentrations, we 

rewrite the Hamiltonian (16) in the form of a sum with one term for the Gd subsystem, 

including single Eu spins, and another term for the Eu “clusters” (pairs, triplets etc.).  The 

size of the Eu “clusters” follows a binomial distribution.  The Gd subsystem is treated in a 

mean field theory, while the Hamiltonian for the Eu pairs in the mean field of the surrounding 

Gd ions can be diagonalized exactly [29,30].  The result is shown in fig. 12 (left):  we obtain a 

surprisingly good agreement between theory and experiment, indicating that the abnormal 

temperature dependence of the Eu subsystem is actually due to frustration effects.  With 

Monte Carlo simulations we can employ a more realistic interaction model with exchange up 

to second neighbours on the fcc lattice and obtain similar results.  We observe a change from 

a collinear magnetic structure for GdS to a canted structure for the antiferromagnetic mixed 

crystals, see fig. 13. 



 

Fig. 13:  Antiferromagnetic structure of  

Gd1-xEuxS for small x as obtained from 

Monte Carlo simulations.  While GdS has a 

collinear antiferromagnetic structure of type 

II on the fcc lattice (i.e. all spins on [111] 

planes are parallel and the magnetisations 

for neighbouring [111] planes are 

antiparallel), the doped crystals exhibit a 

canted spin arrangement. 
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Fig. 14:  Linear scan in reciprocal space from (0.3 0.3 4.3) to (0.7 0.7 4.7) around the 

antiferromagnetic Bragg peak position for Gd0.67Eu0.33S at a temperature of 4K.  The energy 

was tuned to the Gd LII edge.  A polarisation analyser with σ→π´ geometry was used to 

suppress the background from charge scattering.  The inserts show the energy and 

temperature dependencies.  On the right a model for the spin glass state is shown. 



The combined occurrence of frustration and disorder can result in a spin glass phase for 

intermediate concentrations.  In fact, we do not observe long range magnetic order for a 

x=0.33 sample.  Instead, short range antiferromagnetic correlations are observed for the Gd 

subsystem with correlation lengths of about 40 Å, see fig. 14.  We could not detect any 

antiferromagnetic correlations at the Eu LII or LIII edges.  This leads us to the conclusion that 

a cluster spin glass state is formed for intermediate concentrations:  while the Gd spins show 

antiferromagnetic correlations in regions of typical sizes of 40 Å, the Eu spins develop 

ferromagnetic correlations.  These spin “clusters” freeze in into arbitrary directions, leading 

to the spin glass behaviour. 

To conclude this section on Gd1-xEuxS, we have shown which detailed information can be 

obtained with an element-specific probe:  for this mixed crystal series we could reveal the 

frustration mechanism and verify that the spin glass state at intermediate compositions 

consists of a frozen cluster glass state.  Such detailed information is not accessible with any 

other probe. 

 

We can give one other example for the element specific information XRES offers.  This 

example concerns thin film magnetism, namely Er/Tb rare earth super-lattices [31].  Such 

super-lattices, for which the single Er or Tb layers are just a few mono-layers thick, can be 

grown epitaxially with high quality on sapphire substrates.  They show a rich magnetic phase 

diagram.  Phase transition temperatures are altered compared to the bulk and some phases 

appear, which are not present in the bulk materials.   

Here we want to discuss only one special feature for a multilayer consisting of 150 double 

layers of 20 mono-layers of Er and 5 mono-layers of Tb:  [Er20 / Tb5] x 150.  In a temperature 

range between 80K and 130K, magnetic satellite peaks appear, which indicate that a helical 

magnetic structure with a propagation vector close to the one for bulk Er is formed 

throughout the multilayer, despite the fact that the Tb layers show basal plane ferromagnetic 

order.  The satellite peaks are resolution limited, which shows that the phase information for 

the magnetic helix is carried through the ferromagnetic Tb layers.  Can XRES help us to 

understand the coupling mechanism of the Er layers through ferromagnetic Tb layers?  Indeed 

it can:  if we tune the x-ray energy to the LII or LIII absorption edges of Tb, we enhance its 

magnetic scattering and can thus observe specifically what happens within the Tb layers.  Fig. 

15 shows a plot of a XRES measurement as a function of x-ray energy and a reciprocal space 

co-ordinate.  These data tell us that XRES peaks at an energy corresponding to the Tb LIII 



edge and at a Q-space position corresponding to the propagation vector of the Er magnetic 

helix.   

 

Fig. 15:  XRES from an 

[Er20/Tb5]x150 rare earth super 

lattice measured as a function of 

x-ray energy in linear Q-scans 

along the [000l] axis.  The 

intensity peaks at an energy 

corresponding to the Tb LIII 

resonance energy and a Q-space 

position close to the magnetic 

propagation vector of bulk Er. 

 

 

 

 

However, from neutron scattering, we know that the 4f moments of Tb are aligned 

ferromagnetically.  This apparent contradiction can be resolved, if we consider the XRES 

process depicted schematically in fig. 3.  Polarisation analysis tells us that the relevant 

transitions are dipolar in nature.  Therefore, the intermediate states in the XRES process are 

the 5d conduction band states and with XRES, we do not observe the 4f magnetic order, but 

the spin polarisation of the 5d conduction electrons in the Tb layer.  Apparently, these 

conduction band electrons form a spin density wave within the Tb layers corresponding to the 

helical magnetic order in the Er layers.  They carry the phase information through the Tb 

interlayers and thus allow the Er layers to develop a coherent helical magentic structure 

throughout the super lattice. 

To conclude this section, we have shown that the information provided by XRES is not only 

element specific, but also specific to the electronic state of this element (4f versus 5d 

electrons).  In the case of rare earth superlattices, XRES allows a direct observation of the 

interlayer coupling mechanism.  Spin polarisation in the conduction band is observed, as 

predicted by the RKKY exchange mechanism. 



So far, we have only discussed XRES from antiferromagnetic structures, for which magnetic 

and charge scattering are well separated in reciprocal space.  Due to the high brilliance of the 

modern synchrotron radiation sources, even a small magnetic signal can be readily observed.  

Polarisation analysis helps to distinguish charge and magnetic scattering and allows to 

suppress the charge background.   

For ferromagnetic samples, the situation is quite different.  Here charge and magnetic 

scattering coincide.  Since magnetic scattering is typically orders of magnitude weaker as 

compared to charge scattering, it becomes difficult to observe.  Combining (4) and (12), the 

cross section for magnetic scattering takes the form: 

2
RC

2 )E(fff
d
d

+==
Ω
σ  (17) 

Here, fC denotes the amplitude for charge scattering, fR the amplitude for resonance exchange 

scattering, and we have neglected non-resonant magnetic scattering close to a relevant 

absorption edge.  Let us now chose the scattering geometry depicted in fig. 16.   

 

Fig. 16:  Experimental set-up for the 

measurement of XRES from 

ferromagnetic samples.  The primary 

beam is polarised horizontally, the 

magnetic field is applied perpendicular to 

the horizontal scattering plane and a 

polarisation analyser is employed to 

suppress the vertically polarised 

component. 

 

In this geometry, |fcirc| of eq. (13) is maximised, since in saturation ( )ε×ε'm .  The resonant 

amplitude fcirc is proportional to the expectation value of the z-component of the magnetic 

moment zm .  Then the form of the cross section (17) will lead to the following form of the 

ferromagnetic Bragg intensities: 

eargchzint
2
zmag ImImII ++=  (18) 



There are three contributions to the scattered intensity I:  a pure charge term Icharge, a pure 

XRES term Imag and an interference term between charge and XRES scattering Iint.  By 

switching the direction of the external magnetic field, an asymmetry ratio 

↓↑

↓↑

+

−
≡

II

IIR a  (19) 

can be measured.   

In the case of EuS and with the scattering geometry of fig. 16, this asymmetry ratio is as large 

as 67% [32].  In fact, magnetic scattering, interference term and charge scattering become 

quite comparable in magnitude.  Fig. 17 shows the LII resonance of EuS at 4K. 

 

Fig. 17:  Absorption-corrected energy 

dependence of the (115) reflection 

measured at the Eu-LII edge.  Two 

measurements with magnetic fields of 

+0.5T and –0.5T were performed at 4K 

and one measurement at 40K well above 

the Curie temperature of 17K.  The solid 

line represents a refinement, see text. 

 

Such data can be used to obtain spectroscopic information about the electronic states at the 

Fermi energy.  In [32] a model has been refined to the data, which assumes that the empty 

states available for spin-up and spin down electrons are narrow, but shifted by an exchange 

energy ε.  The value for this exchange splitting was determined to ε = 0.27(1) eV.   

To conclude this section, we have shown that XRES can also be measured from 

ferromagnetic samples.  This allows one to measure element specific hysteresis loops.  

Spectroscopic information about the intermediate states close to the Fermi energy can be 

obtained from the shape of the resonance curves.  In order to determine values such as the 

exchange splitting unambiguously, it is however, not sufficient to just measure the asymmetry 

ratio (19).  Instead, several data sets with the energy dependencies for positive and negative 

field and for pure charge scattering have to be refined. 

 

 



11.5 Summary and comparison to magnetic neutron scattering 

The above examples clearly demonstrate that x-ray diffraction from magnetic materials has 

become a microscopic probe of magnetism, complementary to the traditional probe of neutron 

scattering.  First, it allows the investigation of strongly neutron-absorbing materials, e.g. GdS 

and EuS.  Second it stands out by the high momentum-space resolution of typically 10-4Å-1, 

about one to two orders of magnitude better than a standard neutron experiment.  This is of 

advantage for the investigation of incommensurate structures (e.g. Cr), magnetic disorder 

phenomena which involve a broadening of the magnetic Bragg reflection or critical 

scattering.  In critical scattering investigations of the sublattice magnetisation, the magnetic 

Bragg peak can be well separated from critical diffuse scattering (see our example of MnF2).  

For measurements of the critical diffuse scattering, the high Q-space resolution permits a 

detailed line shape analysis and a closer approach of the phase transition.  Moreover, due to 

the high incident energy the full integration over the energy spectrum of magnetic 

fluctuations is guaranteed.  Third, x-ray diffraction is a perfect tool for the investigation of 

surface-near phenomena and ultimately of surface magnetism [33, 18]. 

Considering non-resonant and resonant scattering, some specific applications are opened for 

each technique.  In the case of resonance-exchange scattering, most evidently the resonance-

enhancements at the absorption edges allow the investigation of samples with very small 

magnetic moments.  A „magnetic“ spectroscopy of the unoccupied levels above the Fermi 

edge is possible (compare the discussion of the scattering from EuS).  Finally the resonance 

effects render magnetic scattering element specific.  In alloys and mixed crystals it is now 

possible to investigate the magnetic order of the various magnetic elements separately.  In 

addition to the sensitivity to the magnetic species, a sensitivity to the electronic states can be 

achieved (compare the Er/Tb multilayer).  The big draw back of resonant scattering is, 

however, that as for any second order perturbation process the scattered intensity is not easily 

interpretable in a simple and fundamental quantity such as the magnetic moment.  This is one 

reason, why non-resonant scattering remains essential.  It permits the separate determination 

of the spin- and angular moment contributions to the form factor.  The rich cross section of 

non-resonant scattering gives complementary information to neutron diffraction in the case of 

complicated magnetic structures.  As a special case of non-resonant scattering we introduced 

the diffraction of high-energy x-rays with energies around or above 100 keV.  The large 

penetration power makes this radiation a true volume probe just like neutron scattering.  A 

simple sample environment without specific x-ray transparent windows can be used and x-ray 



and neutron diffraction experiments can be performed from the same bulk crystal.  A volume 

enhancement of the signal is obtained, independent of composition.  The short wavelength 

and the small cross section eliminate extinction effects, which allows precision measurements 

of structure factors within the first Born approximation.  Finally, the simple form of the cross 

section (9) makes possible a mapping of the spin momentum distribution alone without 

polarisation analysis and by combination with neutron diffraction, a determination of L(Q) 

and S(Q) can be achieved. 

The experimental techniques for neutron and magnetic x-ray scattering are similar in many 

ways.  For both techniques, polarisation analysis allows the separation of magnetic from non-

magnetic scattering.  “Flipping ratio” measurements are employed for both probes to measure 

the interference effects between magnetic and non-magnetic contributions.   

There are, of course, clear differences between the three probes:   

• For neutron scattering, nuclear and magnetic scattering are comparable in magnitude, 

while for x-ray scattering the magnetic contribution is generally significantly smaller.  

Therefore, magnetic structure determination from powder samples will remain a typical task 

for neutron scattering.   

• The form factors are quite different for the three techniques:  In XRES, the spatial 

extension of the core levels is relevant and therefore virtually no decrease of the scattering 

amplitude as a function of momentum transfer is observed.  In non-resonant x-ray scattering, 

the form factors of spin and angular momentum can be determined separately, while neutrons 

are sensitive to a combination of both.   

• Angular- and polarisation dependencies are richer for magnetic x-ray scattering.  To give 

an example:  magnetic neutron scattering is sensitive only to the magnetic moment 

perpendicular to the scattering vector Q, while x-rays see various components of L and S, 

compare (6). 

 

To summarise:  both neutron and x-ray scattering techniques are important for the 

investigation of magnetic structures.  They are largely complementary and it is wise for every 

condensed matter scientist to know the strengths and weaknesses of both methods and to 

chose carefully which probe to use to solve a specific problem in magnetism. 
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