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Abstract 
 

The present thesis provides extensive investigations on the effect of geometrical 

spin frustration in both molecular-based spin clusters and infinite pyrochlore lattice, 

using advanced neutron scattering, DC and AC susceptibilities, and specific heat 

methods.  

Clear short-range spin correlations have been observed in the spin-frustrated 

molecular magnet {Mo72Fe30} by means of polarized neutron scattering. Simulations 

of the spin correlations were carried out within a frustrated three-sublattice spin 

model, which are in reasonable agreement with the differential magnetic cross 

section measured at 1.5 K. The specific heat of {Mo72Fe30} was measured down to 60 

mK. The low-lying magnetic excitations of {Mo72Fe30} are identified by the Schottky 

anomalies in the specific heat data, consistent with the theoretical predictions of 

quantum rotational band model. The nature of the magnetic ground state of 

{Mo72Fe30} can therefore be described by the three-sublattice spin model, where the 30 

Fe3+ spins are divided into three sublattices with equal and coplanar unit vectors 

each. 

The low-lying magnetic excitations of single molecular magnet {As6V15} were 

determined by means of specific heat measurements down to 60 mK. The resultant 

energy spectrum agrees with the theoretical predictions of the “three-spin” model 

and the experimental results of inelastic neutron scattering. Hence the “three-spin” 

model is a good approach to the magnetic ground state of {As6V15}. 

Complicated magnetic behaviors have been observed in the antiferromagnetic 

pyrochlore Na3Co(CO3)2Cl. The average crystal structure of Na3Co(CO3)2Cl was 

determined by means of X-ray and neutron powder diffraction measurements. 

Though there is no site disorder in the Co2+ magnetic sublattice, positional disorder 

may exist in Na and Cl atom sites. The DC and AC susceptibility measurements 

show a spin-glass-like transition at 4.5 K, and a field- and frequency- independent 

kink at 17 K. The specific heat of Na3Co(CO3)2Cl exhibit a peak at 1.5 K due to the 

long-range magnetic order, and a broad hump at 5 K associated with the 

spin-glass-like transition. The diffuse neutron scattering with polarization analysis 

reveals short-range spin correlations dominated by antiferromagnetic coupling over 

the range of nearest neighbors, down to at least 3.3 K. Ferromagnetic coupling 

between next-nearest neighbors might also exist. Long-range magnetic order is 



evidenced by magnetic Bragg peaks at 50 mK, consistent with the specific heat result. 

Inelastic neutron scattering reveals the existence of collective magnetic excitations at 

3.5 K, indicating that the transition temperature T = 4.5 K does not correspond to a 

complete spin-glass freezing as expected in traditional metallic spin glasses. 

Na3Co(CO3)2Cl therefore exhibits exotic magnetic behavior, which has not yet been 

understood completely and requires more experiments in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Zusammenfassung 
 

Die vorliegende Arbeit enthält umfassende Untersuchungen über den Effekt 

geometrischer Spinfrustration sowohl in molekularen Spin-Clustern als auch in 

ausgedehnten Pyrochlor-Gittern mit den Methoden der Neutronenstreuung, 

Messung der DC- und AC-Suszeptibilität und der spezifischen Wärme. 

Deutliche kurzreichweitige Spinkorrelationen in den Spin-frustrierten molekularen 

Magneten {Mo72Fe30} wurden mit Hilfe von polarisierter Neutronenstreuung 

beobachtet. Simulationen der Spinkorrelationen auf der Basis eines frustrierten 

drei-Untergitter-Spinmodells erfolgten mit guter Übereinstimmung mit dem 

differentiellen magnetischen Streuquerschnitt bei 1.5 K. Die spezifische Wärme von 

{Mo72Fe30} wurde bis hinab zu 60 mK gemessen. Die tief liegenden magnetischen 

Anregungen von {Mo72Fe30} werden als Schottky-Anomalien in der spezifischen 

Wärme identifiziert, im Einklang mit den theoretischen Vorhersagen des „Quantum 

Rotational Band“-Modells. Der Ursprung des magnetischen Grundzustands von 

{Mo72Fe30} kann daher durch das drei-Untergitter-Spinmodell beschrieben werden, 

bei dem die 30 Fe3+-Spins in drei Untergitter mit jeweils gleichen und coplanaren  

Spinvektoren eingeteilt sind. 

Die tiefliegenden magnetischen Anregungen des Einzelmolekülmagneten {As6V15} 

wurden durch Messungen der spezifischen Wärme bis hinab zu 60 mK ermittelt. Das 

daraus resultierende Energiespektrum stimmt mit den theoretischen Vorhersagen 

des „Drei-Spin“-Modells und mit experimentellen Ergebnissen aus inelastischer 

Neutronenstreuung überein. Daher ist das „Drei-Spin“-Modell eine gute 

Beschreibung des magnetischen Grundzustands von {As6V15}. 

Im antiferromagnetischen Pyrochlor Na3Co(CO3)2Cl wurde ein kompliziertes 

magnetisches Verhalten beobachtet. Die mittlere Kristallstruktur von Na3Co(CO3)2Cl 

wurde mittels Röntgen- und Neutronenpulverdiffraktometrie bestimmt. Obwohl es 

im magnetischen Co2+-Untergitter keine Gitterplatzunordnung gibt, kann bei den 

Na- und Cl-Atomen Platzunordnung existieren. DC- und AC-Suszeptibilität zeigen 

einen spinglasartigen Übergang bei 4.5 K, und einen feld- und 

frequenzunabhängigen Knick bei 17 K. Die spezifische Wärme von Na3Co(CO3)2Cl 

weist einen Peak bei 1.5 K aufgrund der langreichweitigen magnetischen Ordnung 

und eine breite Struktur bei 5 K aufgrund des spinglasartigen Übergangs auf. Diffuse 

Neutronenstreuung mit Polarisationsanalyse zeigt kurzreichweitige 



Spinkorrelationen, die durch antiferromagnetische Kopplungen im Bereich der 

nächsten Nachbarabstände dominiert wird, mindestens bis hinab zu 3.3 K. 

Ferromagnetische Kopplung zwischen übernächsten Nachbarn gibt es 

möglicherweise auch. Langreichweitige magnetische Ordnung wird durch 

magnetische Braggpeaks bei 50 mK belegt, im Einklang mit den Ergebnissen der  

spezifischen Wärme. Inelastische Neutronenstreuung zeigt die Existenz kollektiver 

magnetischer Anregungen bei 3.5 K, was darauf hinweist, dass die 

Übergangstemperatur T = 4.5 K nicht einem vollständigen Einfrieren des Spinglases 

entspricht wie man es von den traditionellen metallischen Spingläsern erwartet. 

Na3Co(CO3)2Cl zeigt daher ein exotisches magnetisches Verhalten, das bisher noch 

nicht vollständig verstanden ist und zukünftig weitere Experimente erfordert. 
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1.1    Molecular Magnetism 

 

  In the last quarter of 20th century, molecular chemistry has had great impact on 

the field of nanoscale magnetism by providing new magnetic clusters, which consist 

partially or entirely of molecular components and are commonly defined as 

molecular magnets [1-3]. An appealing research field, Molecular Magnetism, was 

opened accordingly. A general definition of molecular magnetism has been given 

by Oliver Kahn [1], who is considered as one of the founders of this area, as follows: 

“Molecular magnetism deals with magnetic properties of isolated molecules and/or 

assemblies of molecules”. With the remarkable progress in the chemical synthesis and 

experimental characterization of molecular magnets, more emphasis has been given 

to the aspect of rational molecular design of interesting magnetic properties. 

Therefore, molecular magnetism becomes “a discipline which conceives, realizes, 

studies, and uses new molecular materials bearing new but predictable magnetic (and other) 

physical property” [4].  

  As the smallest well-defined quantum magnets, molecular magnets have 

attracted intense and ongoing attention owing to their fascinating magnetic 

properties and potential applications. In molecular magnets, each molecule contains 

a relatively small number of paramagnetic ions (i.e., spins), interacting via 

superexchange interactions. The magnetic molecules are well isolated by ligands, so 

that the bulk magnetic properties are of molecular origin because intermolecular 

magnetic interactions can be neglected as compared to the dominating 

intramolecular interactions. Beyond providing new class of magnets, molecular 

magnetism also offers valuable model systems of appealing physical properties, 

which attracts much interest from the solid state physicists.  

  In this chapter, I will give a general introduction to the field of molecular 

magnetism, including the brief history, the important representatives and magnetic 

properties, and the neutron scattering of molecular magnets. 

 

1.1.1    Magnetism: From Bulk to Molecules 

  Magnetism is one of the fundamental properties of matter and has been known to 

humans for millennia. From the magnetic needle compass one thousand years ago 
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to the magnetic digital storage nowadays, deeper understanding of magnetism 

accompanies the progress of human society. Traditionally, the research on 

magnetism in solid state physics has been focusing on inorganic elements (e.g., Fe, 

Co, Ni), alloys (e.g., permalloy) and simple compounds (e.g., transition metal 

oxides), leading to numerous technological applications [5]. An underlying 

assumption was built that most fundamental physics is better revealed on 

chemically simple materials. Yet some exciting studies in solid state physics can 

now be carried out on molecular magnets of chemically complicated structure [5]. 

  The building blocks of molecular magnets are molecules rather than atoms, which 

distinguishes molecular magnets from the conventional magnets based on metallic 

and ionic lattices. Molecular magnetism originates from the magnetochemistry. In 

the beginning, the interest in molecular materials arose from the search for magnets 

from purely organic compounds. In 1991, Tamura et al. discovered the first purely 

organic ferromagnet based on a nitronyl nitroxide [6]. Organic molecular magnets, 

where spins are carried by free radicals, became the first species of molecular 

magnets.  

  Molecular magnets can also be synthesized by inorganic approach. A turning 

point is the discovery of Mn12-acetate (Mn12ac) in 1990s, whose molecule comprises 

12 manganese ions and is characterized by a ground state with S = 10 [7-10], as 

shown in Figure 1-1-1. Another interesting inorganic molecular magnet is “Fe8”, 

with 8 iron ions and a ground state of S = 10 per molecule [11, 12].  

These molecular magnets possess high-spin ground states and at sufficiently low 

temperatures exhibit a pronounced hysteresis loop under magnetic fields. They 

show slow relaxation of the magnetization at low temperatures. Here molecules act 

like tiny magnets. Therefore, these molecular magnets are often called 

“single-molecule magnets” (SMMs) [10, 13]. In contrast to classical magnets, the 

magnetic properties of SMMs are of pure molecular origin, instead of cooperative 

effects. Besides the magnetic bistability, SMMs allow a direct observation of 

quantum physical properties [14], such as quantum tunnelling of magnetization 

and quantum coherence [15-19]. SMMs have been proposed as potential candidates 

for some important technical applications, such as high-density magnetic storage 

[20], spintronics [21] and quantum computing [22]. 
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Figure 1-1-1 The ball and stick presentation of the magnetic core Mn12O12 of 

Mn12ac. Eight outer Mn3+ ions (s = 2) are parallel, and four inner Mn4+ ions (s = 3/2) 

are antiparallel to the outer spins, resulting in a ferrimagnetic spin configuration 

with total spin S = 10 per molecule. 

 

  The research in molecular magnetism in the past two decades has been focused 

on the magnetic bistability of SMMs, by pursuing high-spin ground states in 

conjunction with large molecular magnetic anisotropy. However, the effort to 

significantly increase the energy barrier stabilizing the hysteresis behavior has met a 

bottleneck. Consequently, the field of molecular magnetism is branching out into 

new areas, where new model systems of promising physical phenomena are 

discovered. One of these new areas is molecular polyoxometalate chemistry [23–25]. 

Polyoxometalates (POMs) provide by now the largest, structurally well-defined 

species of molecular magnets. From a bottom-up design based on well-defined 

building blocks, geometrical spin frustration can be realized in individual 

polyoxometalate molecules with highly symmetric spin structures. These materials 

combine metal oxide-based spin-frustrated M3 triangles (M = e.g., Fe, Cr, V) and can 

be perfect model systems to study how spin frustration behaves within quasi-zero 

dimension owning to their molecular origin. The first two materials, {Mo72Fe30} and 

{V15As6}, presented in this thesis belong to spin-frustrated molecular 
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polyoxometalate systems. The number of spin triangles per molecule is twenty (in 

case of {Mo72Fe30}) and one (in case of {V15As6}). Detailed introductions to these two 

systems will be given in Chapter 3 and 4, respectively. 

 

1.1.2    Slow Relaxation and Quantum Tunneling of Magnetization 

  In SMMs, ligands isolate neighboring magnetic clusters from each other. All 

magnetic clusters are identical and at temperatures significantly lower than the 

temperature equivalence of the intramolecular exchange interaction each of them 

can be regarded as a single magnetic unit with a total spin S, which is obtained by 

the sum of individual spin s within one magnetic cluster taking into account the 

particular magnetic exchange interactions among the spins. An essential mechanism 

in SMMs is an energy barrier to magnetization reorientation, which is given in the 

simplest case of uniaxial anisotropy by ΔE = |D|·S2 [10]. In this expression for the 

energy barrier, S is the dimensionless total spin state and D is the zero-field splitting 

parameter. The total spin of the cluster must overcome this energy barrier to switch 

from parallel alignment to antiparallel alignment. The anisotropy gives rise to a 

zero-field splitting of the S multiplets, ranging from –MS to MS, where MS is the 

magnetic quantum number of the spin operator Sz. Under no external magnetic 

field, the energy spectrum is plotted in Figure 1-1-2 (a). All energy levels are 

degenerate pairs, except MS = 0. At sufficiently low temperature, only the lowest 

two states |±MS> are equally populated in the ground state. Net magnetization 

vanishes. 

As shown in Figure 1-1-2 (b), if a large magnetic field is applied parallel to the z 

axis at sufficiently low temperatures, only the level (MS = -S) corresponding to 

magnetization parallel to the applied magnetic field will be populated with a 

saturated magnetization. When the field is switched off, the system will go back to 

thermal equilibrium with no net magnetization, namely magnetic relaxation. As 

shown in Figure 1-1-2 (c), half of the molecules must overcome the energy barrier to 

settle at MS = +S state. This relaxation progress is attributed to the coupling of the 

spin system to the vibrational degrees of freedom, which allows transitions from 

states |MS> to |MS±1> [26]. This means a sequence of energy levels are involved in 

the reversal of molecular magnetization. The requirements for longer relaxation 

time are: (i) larger total spin S and (ii) larger zero-field splitting parameter D [10]. 

The typical relaxation time of Mn12ac is of the order of months at 2 K. 
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Figure 1-1-2 Energy levels for a molecule with spin state S and easy axis magnetic 

anisotropy. (a) In zero field the two wells are equally populated; (b) The right well 

is populated selectively after applying a magnetic field; (c) Equilibrium is retrieved 

through a series of steps after removing the field. [Picture taken from R. Sessoli and 

D. Gatteschi, Angew. Chem. Int. Ed. 42 (2003) 268] 

 

Below the blocking temperatures, the magnetization of SMMs shows a hysteresis 

behavior as shown in Figure 1-1-3 in case of Mn12ac. The clear hysteresis loops are 

directly associated with the slow relaxation dynamics of the system within the 

studied temperature range. Furthermore, some steps can be seen at the field 

dependence of the magnetization, where the relaxation rate is increased 

significantly. This phenomenon has been identified to be due to the quantum effect 

of the magnetic molecules, and consequently called quantum tunneling of the 

magnetization. 
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Figure 1-1-3 Magnetization hysteresis loops measured from Mn12ac with SQUID 

magnetometer at various temperatures. [Picture taken from L. Thomas et al., Nature 

383 (1996) 145] 

 

The process of quantum tunneling can be explained as following. In zero field 

(top panel in Figure 1-1-4), the levels on both side of the barrier coincide in energy. 

Spin tunneling is favored under this circumstance and may compete with the 

thermally activated mechanism. The tunneling through the barrier causes a 

significant acceleration of the magnetic relaxation. If a longitudinal magnetic field is 

applied, the positive and negative MS levels are no longer degenerate. Tunneling is 

suppressed because of the lack of coincidence between the ±MS levels (middle panel 

in Figure 1-1-4). However, accelerations of the relaxation due to tunneling occur 

again when the external field fulfills the condition Hz = n|D|/gμB. For n integer the 

levels on both sides of the barrier coincide. Therefore the field dependence of 

magnetization exhibits the step-wise hysteresis curve owing to the quantum 

tunneling effect at particular field values. 
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Figure 1-1-4 Energy levels of Mn12ac split by an axial anisotropy (top). In zero field, 

overcoming the energy barrier can occur through a thermal activation or quantum 

tunneling effect. If external field is applied, the levels on both sides of the barrier 

may not be coincident and thus tunneling is suppressed (middle), unless specific 

values of the field are reached (bottom). [Picture taken from R. Sessoli, Europhys. 

News 34 (2003) 41] 

 

1.1.3    Quantum Coherence of SMMs 

  The key concept for quantum information processing is that a two-level system 

with arbitrary superpositions of its two levels can be a candidate for a quantum bit 

(qubit). The contribution of each of the two levels to the superposition state has a 

cyclic dependence on the electromagnetic radiation pulse length, leading to 

so-called Rabi oscillations [18, 28]. The observation of Rabi oscillations is a 

proof-in-principle to identify a system to be a quantum computing material or not 

[18]. SMMs have been regarded as candidates for quantum computing due to the 

magnetic bistability and the superpositions of spin eigenstates in these materials. A 

lot of work has been done to determine the quantum coherence time of SMMs [18, 

29-32]. A long coherence time is crucial to achieve a long-lived quantum memory. 
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Take the Fe4 complex (see Figure 1-1-5) as an example. Clear evidence for long-live 

quantum coherence was obtained by means of pulsed W-band electron spin 

resonance (ESR) spectroscopy [18].  

 

 

Figure 1-1-5 (a) Structure of Fe4 molecule with relative spin orientations (S = 5). (b) 

Double-well energy diagram with anisotropic energy barrier. (c) Rabi cycle 

between magnetic sublevels. [Picture taken from C. Schlegel et al., Phys. Rev. Lett. 

101 (2008) 147203] 

 

 

Figure 1-1-6 Rabi oscillations of Fe4 complex as measured in pulsed ESR 

spectroscopy, together with corresponding path on Bloch sphere. [Picture taken 

from C. Schlegel et al., Phys. Rev. Lett. 101 (2008) 147203] 
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As shown in Figure 1-1-6, intensity oscillations can be seen clearly on the echo 

intensity as a function of the duration of the pulse. These oscillations are coherent 

spin oscillations (i.e., Rabi oscillations) in Fe4. The observation of Rabi oscillations 

indicates that SMMs can be candidates for performing quantum computations [18]. 

 

1.1.4    Neutron Scattering of Molecular Magnets 

  Neutron scattering, has been one of the most important techniques in the study 

on magnetism of classical magnetic materials, including the magnetic structure, 

magnetic phase transitions, magnetic excitations, and so on. Neutron scattering 

technique is also playing an important role in the study of molecular magnets [33].  

 

 

Figure 1-1-7 Observed [difference I(1.8 K) - I(12 K)] and calculated magnetic 

neutron diffraction patterns for {[P(C6D5)4][MnIICrIII(C2O4)3]}n. [Picture taken from 

R. Pellaux et al., Inorg. Chem. 36 (1997) 2301]. 

 

  First, elastic neutron diffraction experiments can be used to determine the 

magnetic structure of molecular magnets. For example, the two-dimensional 

molecular complex {[P(C6D5)4][MnIICrIII(C2O4)3]}n was reported to establish a 

long-range magnetic order at ~ 6 K [34, 35]. A neutron powder diffraction 

measurement was performed on this compound at 1.8 K and 12 K, and revealed 

several magnetic Bragg reflections by subtracting the spectrum for 12 K from the 

one for 1.8 K. A collinear ferromagnetic arrangement of Mn2+ and Cr3+ spins along 
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the c-axis was suggested to represent the magnetic ordered phase. The measured 

and calculated diffraction patterns are shown in Figure 1-1-7. 

  Besides the determination of long-range magnetic order, neutron diffraction can 

also be used to investigate the short-range spin correlations in molecular magnets. 

The diffuse neutron scattering with polarization analysis has proven to be a 

powerful tool in the study of spin correlations in spin-frustrated molecular magnets. 

This will appear as the essential part in Chapter 3 of this thesis. 

 

 

Figure 1-1-8 Energy spectrum (filled circles) of Mn12ac as measured using inelastic 

neutron scattering at 23.8 K. Dashed line: Lorentzian background. Long-dashed 

line: elastic intensity. Thin line: theoretical calculation. Thick line: the sum of all 

components. [Picture taken from I. Mirebeau et al., Phys. Rev. Lett. 83 (1999) 628] 

 

  Another important application of neutron scattering in molecular magnetism is 

the study of magnetic excitations using inelastic neutron scattering. As 

aforementioned in Section 1.1.2, some SMMs are described as a single total spin S, 

split by anisotropy terms into sublevels with -S ≤ MS ≤ +S under zero magnetic field. 

When neutrons interact with these spin clusters they may give rise to transitions 

between the MS levels of S multiplets, according to the selection rule ΔMS = 0, ±1. 

Therefore, inelastic neutron scattering measurements of SMMs can provide detailed 
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information on the spectrum of the MS energy levels. Take Mn12ac as the example 

[36]. The inelastic neutron scattering of Mn12ac was measured at various 

temperatures with incident wavelength of 5.9 Å resulting in an energy resolution 

with a full width at half maximum (FWHM) about 27.5 μeV at zero energy transfer. 

The inelastic neutron scattering spectrum measured at 23.8 K is shown in Figure 

1-1-8. 14 well-resolved peaks were directly observed, whose positions were 

temperature independent. The data were analyzed by considering not only the 

diagonal terms but also the transverse term in the spin Hamiltonian. The resultant 

theoretical calculation agreed excellently with the experimental spectrum, as shown 

in Figure 1-1-8. Therefore, the energy spectrum of Mn12ac has been determined 

precisely using inelastic neutron scattering technique [36]. The relevant anisotropy 

parameters could thus be determined. 
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1.2    Geometrical Spin Frustration 

   

In the scope of condensed matter physics, geometrical spin frustration is an 

important magnetic phenomenon, which stems from the topological arrangement of 

the spins [37, 38]. The term “frustration” has been introduced into magnetism by 

Gerard Toulouse [39]. It describes the situation that “a spin (or a number of spins) 

in the system cannot find an orientation to fully satisfy all the interactions with its 

neighboring spins” [38]. Magnetic frustration has attracted long and ongoing 

attention and been regarded as an organizing principle that governs a wide range of 

physical phenomena in the collective behaviors of spins. The basic concept of 

frustration has been found to have practical meanings in areas from 

microelectronics to drug delivery. Besides the geometrical constrains, other 

mechanisms like competing magnetic interactions [40] or disorder [41, 42] in lattices 

can also cause frustration. In this section, by geometrical spin frustration I refer to 

the systems with no disorder or competing interactions, where the spin frustration 

arises only from the topology of the crystal lattice or molecular structure. 

 

1.2.1    Geometrically Frustrated Lattices 

  The simplest case of geometrical frustration is the equilateral spin triangle with 

antiferromagnetic interactions, which has been considered by Wannier in 1950 [43]. 

For Ising spins with SA = SB = SC on the equilateral triangle in Figure 1-2-1 (a), one 

cannot construct a ground state with all antiferromagnetic bonds fully satisfied. The 

ground state does not correspond to the minimum of the interaction energy of 

every spin pair, since one of the three spins cannot align itself antiparallel to its two 

neighbors simultaneously. For the sake of simplicity, the discussion in this section 

will be restricted to Ising spins with antiferromagnetic interactions. Naturally the 

real material with geometrical frustration consists of triangle-based spin structure, 

such as the triangular lattice (see Figure 1-2-1 (b)), which is built from edge-sharing 

triangles and has been studied theoretically by Wannier in 1950 [43]. He found in 

such a system, the threefold multiplicity of lowest and degenerate energy levels 

results in residual entropy, even at absolute zero [43].  

Another two-dimensional (2D) spin-frustrated structure is constructed from 

corner-sharing triangles, which is named after a particular kind of Japanese basket 
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weave pattern, so-called “kagome” lattice (see Figure 1-2-1 (c)). Calculation of the 

residual entropy of kagome lattice shows that kagome lattice might be “more 

frustrated” than the triangular lattice [44]. The antiferromagnetism on kagome 

lattice has been studied extensively from both theoretical and experimental points 

of view [44-47]. 

What about the case of three-dimensional (3D) structures? Similar geometrical 

frustration as found in 2D structures can also happen in 3D structures. 

Corresponding to the equilateral triangle, four Ising spins with antiferromagnetic 

interactions at the corners of tetrahedron are frustrated. As illustrated in Figure 

1-2-1 (d), if two of the four spins satisfy the antiferromagnetic interaction between 

them, it is not possible to arrange the other two spins so that all antiferromagnetic 

interactions between the spins are fulfilled. Like the 2D case, one can arrange the 

spin tetrahedra in both edge-sharing geometry and corner-sharing geometry, 

resulting in two frustrated 3D structures: face-centered-cubic (FCC) lattice (Figure 

1-2-1 (e)) and pyrochlore lattice (Figure 1-2-1 (f)), respectively. The FCC lattice is 

regarded as a 3D analogue of triangular lattice, while the pyrochlore lattice as a 3D 

analogue of kagome lattice accordingly. The pyrochlore lattice is “more frustrated” 

than the FCC lattice and actually the most frustrated lattice readily realizable in 

three dimensions [48]. A lot of interesting physical phenomena have been observed 

in magnetic pyrochlores. More information about magnetic pyrochlores will be 

given in Chapter 5, where the investigations performed on a new compound 

Na3Co(CO3)2Cl with antiferromagnetic pyrochlore structure will be presented in 

detail.  

A direct effect of ideal geometrical spin frustration is that it prevents the system 

from being long-range magnetically ordered due to the huge ground-state 

degeneracy, which makes the system unable to settle into any particular ground 

state. Even slight perturbations may introduce instabilities in spin-frustrated 

systems and give rise to the emergence of novel magnetic phenomena. This is 

actually where the attractiveness of geometrical spin frustration lies in both 

fundamental and applied respect [48]. 
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2D                                             3D 

(a)                                         (d) 

 

 

Unit 

 

 

 

          Triangle                                     Tetrahedron 

 

(b)                                         (e) 

 

 

Edge-Sharing 

 

 

 

Triangular lattice                                  FCC lattice 

 

(c)                                         (f) 

 

 

 

Corner-Sharing 

 

 

 

 

 

Kagome lattice                                Pyrochlore lattice 

Figure 1-2-1 Examples of 2D and 3D frustrated magnetic lattices. The second and 

third rows correspond to the edge- and corner-sharing constructions of triangles 

and tetrahedra, respectively. 
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1.2.2    Geometrical Spin Frustration in Molecular Magnets 

  As discussed in the previous section, the magnetic frustration in infinite lattices 

has been extensively studied in condensed matter physics. Geometrical spin 

frustration can also happen in isolated magnetic molecules [49, 50]. A wide variety 

of molecular-based spin structures can be realized via bottom-up approaches of 

chemical synthesis. This offers the prospect for research on geometrical spin 

frustration at the nanoscale level.  

  In certain spin lattices with antiferromagnetic nearest-neighbor interactions, such 

as the kagome lattice and pyrochlore lattice, one expects prominent frustration 

effects to occur. Some molecular-based analogs of kagome lattice have been 

discovered. In the spin systems of these molecular magnets, corner-sharing spin 

triangles are arranged around square or pentagonal fragments on a spherical-like 

structure, resulting in spin cuboctahedron [51-53] (see Figure 1-2-2 (a)) and spin 

icosidodecahedron [53-55] (see Figure 1-2-2 (b)).  

 

(a)                                  (b) 

 

 

 

 

 

 

 

 

Figure 1-2-2 Structure of cuboctahedron (a) and icosidodecahedron (b). [Picture 

taken from Jürgen Schnack, Dalton Trans., 39 (2010) 4677]. 

 

  The spin frustration leads to a non-trivial classical ground-state degeneracy in 

such molecules [56]. Figure 1-2-3 is a planar projection of a spin cuboctahedron with 

antiferromagnetic nearest-neighbor interactions, illustrating the degenerate classical 

ground state. For Heisenberg spins, the nearest neighbors should have a relative 

angle of 120˚ between them in the classical ground states. The number of classical 

ground states is actually infinite since the groups of four spins (outer and inner 
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square) can rotate independently as long as the 120˚ angles between nearest 

neighbors are kept [56]. 

 

 

Figure 1-2-3 Planar projection of the classical ground state of spin cuboctahedron. 

Solid edges: antiferromagnetic interactions. Two groups of spins (out and inner 

square) can rotate independently in the classical ground states. [Picture taken from 

Jürgen Schnack, Dalton Trans., 39 (2010) 4677] 

 

  However, the ground state of the corresponding quantum system is 

non-degenerate [56, 57]. The degeneracy of the classical ground states is lifted by 

quantum fluctuations, which is also denoted as “order by disorder” [56, 58]. After 

quantum corrections, the classical ground states will appear as low-lying singlets in 

the quantum energy spectrum [56, 59]. Figure 1-2-4 shows the quantum energy 

spectrum of antiferromagnetic cuboctahedron for spins of s = 1/2 and s = 3/2. In 

both cases, the ground states are non-degenerate. The case for icosidodecahedron 

will be discussed in Chapter 3. 
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Figure 1-2-4 Low-lying energy spectrum of antiferromagnetic cuboctahedron for s 

= 1/2 (a) and s = 3/2 (b). [Picture taken from Jürgen Schnack, Dalton Trans., 39 

(2010) 4677] 

 

  Geometrical frustration causes a variety of unusual magnetic phenomena in 

geometrical spin-frustrated molecular magnets, such as magnetization plateaus [60, 

61] and magnetization jumps [62]. Because of the molecular origin of these systems, 

the frustration effect can be studied within a quasi-zero-dimensional nanoscale level, 

which is impossible for the traditional infinite frustrated systems. Molecular 

magnetism has greatly extended the understanding to geometrical spin frustration, 

from the synthesis of new model systems to the fundamental theoretical analysis. 

Some important concepts, such as localized independent magnons [56], developed 

in geometrical molecular magnets have proven to be universal for other frustrated 

systems.
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1.3    Scope of this Thesis 

 

  In this thesis, I report the results of magnetization, magnetic susceptibility, heat 

capacity and neutron scattering measurements on two molecular magnets {Mo72Fe30} 

and {As6V15}, and a newly-discovered antiferromagnetic pyrochlore magnet 

Na3Co(CO3)2Cl. This research allows the effects of geometrical frustration and the 

collective behavior of interacting spins to be investigated from the 

quasi-zero-dimensional magnetic molecules to the infinite 3D pyrochlore lattice.  

  In Chapter 2, an introduction to the xyz-difference method with polarized 

neutrons is given. This method is essential for the polarized neutron scattering 

technique, which is the major probe used in this thesis. 

  Chapter 3 discusses the heat capacity and polarized neutron scattering of 

{Mo72Fe30} in detail. The analysis of experiments is compared to the theoretical 

predictions within the frustrated three-sublattice spin model for this system. The 

calculation of the short-range spin correlations in this chapter may have general 

significance for the analysis on similar spin structures.  

  In Chapter 4, the magnetization, heat capacity and polarized neutron scattering 

results of {As6V15} are presented. The low-lying magnetic excitations revealed in 

heat capacity are compared to the inelastic neutron scattering spectra and the 

theoretical prediction based on the three-spin model for {As6V15}.  

  Chapter 5 presents an extensive investigation of antiferromagnetic pyrochlore 

Na3Co(CO3)2Cl. The crystal structure is determined using x-ray and neutron 

powder diffraction measurements. Static and dynamic magnetic measurements 

reveal novel magnetic behavior in this system. Short-range spin correlations and 

spin-wave-like excitations measured from neutron scattering measurements are 

analyzed and give an insight to the interesting spin dynamics of this system.  
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2.1    Introduction 

 

  Neutrons are neutral particles with a nuclear spin 1/2 and a magnetic moment of μ 

= -1.91 μN, where μN is the nuclear magneton. The kinetic energy of neutrons is given 

by [63, 64] 
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           (2.1.1) 

where E is in meV, T is in K, v is the velocity of neutrons and in km/s, k is the 

module of wavevector in Å-1, λ is neutron wavelength in Å. Given an equivalent 

temperature T of ~ 300 K, the neutron wavelength λ is around 1.8 Å and the kinetic 

energy of neutrons is about 26 meV, which approximately match the atomic spacing 

and elementary excitations in most materials, respectively. These properties make 

neutron scattering a powerful and direct probe for studying the static and dynamic 

properties of materials on an atomic scale in many scientific fields [65, 66].  

  Neutrons for research purpose are released from nuclei through either fission or 

spallation nuclear reaction, as shown in Figure 2-1-1. In nuclear fission, a 235U 

nucleus absorbs a thermal neutron and is thereby highly excited. The excited nucleus 

fissions into lighter nuclei, simultaneously releasing 2 or 3 highly energetic fast 

fission neutrons, which, after moderation to thermal energies by collisions with light 

nuclei, can cause the fission of other nuclei and start the so-called chain reaction. 

Another way to produce free neutrons is the spallation reaction. In spallation 

reaction, highly energetic protons with energies of ~ 1 GeV hit the target of heavy 

nuclei. The target nuclei are highly excited as a result of the so-called intranuclear 

cascade and “evaporate” neutrons and protons, which in turn can cause the 

spallation reactions of other nuclei [67, 68]. 

The neutrons obtained from fission reaction have typical energies of several MeV, 

while those from spallation reaction may have energies up to 1 GeV. They must be 

cooled down in moderators in order to acquire the desired energies prior to being 

used in scattering research. The thermal neutrons coming out from a heavy water 

moderator have a characteristic energy of 25 meV, and the energy of cold neutrons 
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from a liquid-hydrogen moderator is about 2 meV. Both thermal neutrons and cold 

neutrons are used in this thesis. 

 

 

Figure 2-1-1 Schematic presentation of fission and spallation reactions. [Picture taken 

from D. Richter, Scattering Techniques: Neutron Diffraction in “Magnetism Goes Nano: 

Lectures of the 36th Spring School of the Institute of Solid State Research”, S. Blügel, Th. 

Brückel, C. M. Schneider (eds.), (Forschungszentrum Jülich GmbH, Jülich 2005)] 

 

In neutron scattering events, taking into account the conservation of momentum 

and energy, the double differetial cross section can be derived as [63, 64], 

( )
22 2
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k and k' are the incident and outgoing wavevectors of neutrons. |α > and |α' > 

denote the initial and final states of the system, weighted with their thermodynamic 

occupation probability pα and pα', respectively. Û is the operator for scattering 

potential between the neutrons and the target. The two main interaction processes of 
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neutrons with matter are nuclear and magnetic interaction. 

  The neutrons are scattered from nuclei by the strong-force interaction, whose 

range is very short and in the order of the nuclei diameter. Thus the scattering 

potential can be represented by the “Fermi Pseudopotential”: 

                           ( )
22ˆ ˆj

j
b

m
π δ= −∑h

jU r r .                   (2.1.3) 

Here rj is the position of the jth scattering nucleus in the sample and bj is the 

corresponding scattering length. Considering the plane wave function for neutrons, 

the double differential cross section can then be expressed by inserting Eq. (2.1.3) into 

Eq. (2.1.2), as 
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H is the Hamiltonian of the scattering system. It is convenient to write Eq. (2.1.4) as 

                         ( )
2

,
4

d k NS
d d k

σ σ ω
ω π

′
=

Ω
Q ,                   (2.1.5) 

where S(Q, ω) is the dynamic structure factor and is given by 
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Therefore, S(Q, ω) is the Fourier transform of the pair correlation function 
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with respect to space and time. This is the basis of the theoretical simulations of 

polarized neutron scattering in this thesis.

The nuclear magnetic moment associated with spin of the neutrons allows them to 

interact with the magnetic moment of unpaired elections in the target. The magnetic 
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interaction operator is given by 
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where γ = -1.913 is the gyromagnetic ratio, Nσ̂  are the Pauli spin matrices for the 

neutron spin, ŝ  is the electron spin operator, μB is the Bohr magneton and ve is the 

velocity of electron. Using Eq. (2.1.2) and Eq. (2.1.8), the double differential cross 

section for magnetic scattering of unpolarized neutrons by localized spins can be 

given as follows, 
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where r0 = 0.2818·10-12 cm is the classical radius of the election, g is the Landé 

splitting factor, F(Q) is the magnetic form factor, and e-W is the Debye-Waller factor 

due to the thermal fluctuations of the magnetic ions. The dynamic magnetic structure 

factor Sαβ(Q, ω) is the Fourier transform of the magnetic pair correlation function and 

is given by 
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2.2    Theory of XYZ‐Difference Method Using Polarized Neutrons 

 

  The xyz-difference method using polarized neutrons is a powerful technique in the 

sense that various scattering contributions (i.e., nuclear coherent, spin-incoherent 

and magnetic scattering) can be distinguished simultaneously and unambiguously. 

This method is particularly important for the research in this thesis, because the 

magnetic neutron scattering from spin-frustrated molecular magnets are normally 

too weak to be extracted directly from unpolarized neutron scattering.  

  The early theoretical foundation for polarized neutron scattering has been set by 

the works of Halpen and Johnson [69], Maleyev [70], and Blume [71]. The first 
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neutron scattering measurements with polarization analysis were performed by 

Moon, Riste and Koehler in 1969 [72]. The surveys on the xyz-difference method with 

polarized neutrons have been given by Schärpf and Capellmann [73] and Brückel 

[74]. 

  The discussion in this section will be restricted to the case of a multi-detector 

instrument like what is shown in Figure 2-2-1 [73]. The multidetectors and the 

incident beam define the scattering plane (i.e., x-y plane), which makes the scattering 

vector Q always perpendicular to the z direction. The measurements are performed 

with the incident polarization alternately in the x, y, and z directions with spin-flip 

and non-spin-flip. The neutrons go out from the monochromator, and pass through 

the beryllium filter, the polarizer, the flipper, and the chopper, to the sample in the 

cryostat. There they are scattered by the sample and go through the guide fields and 

arrive at the analyzers and detectors.  

 

 

Figure 2-2-1 Schematic view of multipurpose spectrometer D7 of the Institute 

Laue-Langevin in Grenoble. [Picture taken from O. Schärpf and H. Capellmann, Phys. 

Stat. Sol. (a) 135 (1993) 359] 
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  For polarized neutrons, the double differential scattering cross section is [73] 

( )
22 2

2
ˆ, ,

2ss

d m k p E E
d d k α α α

αα

σ α α δ ω
ω π ′

′′

′⎛ ⎞ ⎛ ⎞ ′ ′ ′= ⋅ + −⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠⎝ ⎠
∑ h

h
k s V ks ,   (2.2.1) 

where quantum numbers without prime belong to the initial states and those with 

prime belong to the final states, k, s are wave vector and quantum numbers of the 

neutron, α is the quantum number of the sample. The magnetization density of 

electrons Me(r) in the sample interacts with the dipolar field Bn(r) of the neutrons, 

resulting in magnetic scattering. The magnetic interaction operator 

is                      . The matrix element                   has been given 

by [73] 

( ) ( ) ( ) ( )
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Q r Q rQ Qk M r B r k M r M rμ μ .    (2.2.2) 

  Defining the polarization as a vector with P = (Px, Py, Pz) = Pxex+Pyey+Pzez, the 

magnitude of P is normally expressed as |P| = (n↑ – n↓)/( n↑ + n↓), where n↑ and n↓ 

are the numbers of neutrons with spin-up and spin-down.  

  The spin-flip and non-spin-flip magnetic cross sections for the xyz-polarization 

analysis have been given by Schärpf and Capellmann [73]. For non phase shifted 
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and for the phase shifted part, 
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           (2.2.4) 

where Mαβ (r, ω) (α, β = x, y, z) are the thermal and quantum mechanical average of 

B
ˆ ˆ ( ) ( ) / 4e n= πμ⋅V M r B r ( ) ( )ˆ' e n⋅k M r B r k
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the corresponding correlation functions, and Γαss' (r, ω) (α = x, y, z and s, s' = |↓>, |↑>) is 

the time Fourier transform of correlation functions.  

  For a powder measurement, the mixed correlation functions are zero. Therefore 

the phase-shifted parts are all zero and only the first three columns of the 

non-phase-shifted parts still remain for presenting the spin-flip and non-spin-flip 

magnetic cross sections. Define the double differential cross section as following 

                      ( ) ( )
22

20 ,
2

ss
ss

rk F S
k

α
ασ γ ω

ω
′

′

′∂ ⎛ ⎞= ⎜ ⎟∂Ω∂ ⎝ ⎠
Q Q              (2.2.5) 

where ( ),ssS
α ω′ Q  is the space Fourier transform of the function ( ),ss

α ω′Γ Q . The 

corresponding expressions for different scattering components are 

                   ( ) ( )
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202 ,
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                          ( )
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2 ,coh
coh

k b S
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σ ω
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′∂
=

∂Ω∂
Q ,                    (2.2.8) 

with B being the magnetic field of the electrons and b being the nuclear scalar 

contribution. Combining Eqs. (2.2.3) and (2.2.6-8), the six partial cross sections 

obtained from the measurements with polarization in x, y and z directions in both 

spin-flip and non-spin-flip channels are expressed as following [73] 

 

 

 

 

 

 

 

( )
22 2

21 2cos 1
2 3

x spin
para incohσσ σα

ω ω ω
↑↓

∂∂ ∂
= + +

∂Ω∂ ∂Ω∂ ∂Ω∂
 (2.2.9) 

( )
22 2

21 2sin 1
2 3

y spin
para incohσσ σα

ω ω ω
↑↓

∂∂ ∂
= + +

∂Ω∂ ∂Ω∂ ∂Ω∂
 (2.2.10) 

22 21 2
2 3

z spin
para incohσσ σ

ω ω ω
↑↓

∂∂ ∂
= +

∂Ω∂ ∂Ω∂ ∂Ω∂
 (2.2.11) 

22 2 2 2
21 1sin

2 3

x spin isotop
para incoh coh incohσσ σ σ σα

ω ω ω ω ω
↑↑

∂∂ ∂ ∂ ∂
= + + +

∂Ω∂ ∂Ω∂ ∂Ω∂ ∂Ω∂ ∂Ω∂
 (2.2.12) 



2.2 Theory of XYZ-Difference Method Using Polarized Neutrons 

29 
 

From the above expressions for the measured cross sections, one can separate the 

nuclear coherent, spin-incoherent and magnetic cross sections simultaneously. The 

magnetic cross section can be extracted from measurements in either spin-flip 

channels by  

                  
2 2 2 2

2 2
x y z

paraσ σ σ σ
ω ω ω ω

↑↓ ↑↓ ↑↓
∂ ⎛ ⎞∂ ∂ ∂

= + −⎜ ⎟
∂Ω∂ ∂Ω∂ ∂Ω∂ ∂Ω∂⎝ ⎠

,            (2.2.15) 

or non-spin-flip channels by 

                 
2 2 2 2
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= − −⎜ ⎟
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.             (2.2.16) 

The magnetic differential cross section is often taken as the average of Eq. (2.2.15) 

and (2.2.16) to account for the systematic errors in actual measurements. 

  The spin-incoherent and nuclear coherent scattering cross sections can be obtained 

by the following expressions: 
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  With the help of polarization analysis, the magnetic contribution can be identified 

and distinguished from other contributions. Polarization analysis is particularly 

useful in improving the magnetic signal to background ratio if the moments and 

magnetic scattering are weak. Furthermore, the polarization analysis can be used to 

study the so-called q = 0 antiferromagnetic structure, whose magnetic peak positions 

coincide with the nuclear Bragg peaks and are difficult to be identified with 

unpolarized neutron scattering [75, 76]. 
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3.1    Introduction 

 

  Since the discovery of Mn12-acetate in the beginning of the 1990’s, most efforts in 

the field of molecular magnetism have been dedicated to synthesize molecular 

magnets with high-spin ground states and high molecular magnetic anisotropy 

which exhibit magnetization hysteresis on the molecular level [2, 10]. Because of the 

difficulty in increasing the effective energy barrier significantly, the field of 

molecular magnetism is branching out into new areas to explore promising 

molecular-based systems of attractive physical properties. These systems provide 

valuable test beds for nano science from both experimental and theoretical points of 

view [23]. Polyoxometalate molecular magnets are the largest known structurally 

well-defined molecular cluster species frequently comprising highly symmetric spin 

arrays. Via bottom-up construction strategies, impressive polyoxometalate 

nanostructures can be synthesized on the basis of well-defined pentagonal building 

blocks [23, 27]. Spherical Keplerate molecule of the type {(Mo)Mo5}12M30 (M = Fe, Cr, 

V) localise 30 transition metal M spins and are well isolated by ligands. The 

geometrical arrangement of the 30 spins in such a molecule can be described as a 

molecular analogue of a kagome lattice on the surface of a sphere, consisting of a 

regular arrangement of corner sharing spin triangles and spin pentagons. When the 

nearest neighbors are antiferromagnetically coupled, spin frustration occurs. This 

family of polyoxometalates is thus an ideal test bed for finite-sized frustrated spin 

systems. 

 

3.1.1    Introduction to Molecular Magnet {Mo72Fe30} 

  As one of the largest polyoxomolybdate molecular magnets synthesized to date, 

[Mo72Fe30O252(CH3COO)12{Mo2O7(H2O)}2{H2Mo2O8(H2O)}(H2O)91]·150H2O, {Mo72Fe30} 

for short, represents a highly frustrated spin system and provides us with a 

molecular analogue of the planar Kagome lattice [23]. The ball-and-stick 

representation of one {Mo72Fe30} molecule is shown in Figure 3-1-1.  

30 Fe3+ (s = 5/2, L = 0) ions serve as magnetic centers and occupy the vertices of an 

icosidodecahedron. –O–Mo–O– fragments act as effective superexchange pathways 

between Fe3+ ions [23, 54, 55]. The 30 spins form 20 corner-sharing triangles 



3.1 Introduction 

33 
 

(highlighted in Figure 3-1-1) grouped around the 12 regular pentagonal {(Mo)Mo5} 

building blocks. Low-field magnetic susceptibility shows dominant 

antiferromagnetic coupling between the nearest neighbors (see Ref. [55] and also 

Section 3.2), indicating spin frustration should arise. 

 

 

Figure 3-1-1 Ball-and-stick representation of one {Mo72Fe30} molecule (Fe: red, green, 

blue spheres; Mo: purple spheres; O: black spheres; C, H: not shown). The arrows 

(red, green, blue) denote the classical spin vectors within the frustrated 

three-sublattice spin model (see Section 3.1.2 for details). Twenty Fe3+ triangles are 

highlighted in yellow. [Picture taken from P. Kögerler, B. Tsukerblat and Achim 

Müller, Dalton Trans. 39 (2010) 21] 

 

3.1.2    Three‐sublattice Spin Model and Quantum Rotational Band Theory 

  The iron ions are located in regular octahedral Fe3+O6 coordination environments, 

leading to negligible local spin anisotropy. The Fe3+ ions are linked by nearly planar 

pentagonal fragments {(Mo)Mo5} [55]. As shown in Figure 3-1-2, the magnetic 

exchange interactions between nearest-neighboring Fe3+ ions are transmitted via 

-O-Mo-O- bridges, whereas the next-nearest-neighboring superexchange interactions 
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go through -O-Mo-O-Mo-O- bridges and are estimated to be at least two orders of 

magnitude smaller by means of density functional theory calculation and thus 

negligible [23, 78]. Therefore I can safely assume the intramolecular exchange 

interactions are restricted among the nearest neighbors. The magnetic properties of 

{Mo72Fe30} can then be described by the isotropic Heisenberg model with a single 

exchange constant J, neglecting the anisotropy term [55],  

                         B
,

ˆ ˆ ˆˆ
i j i

i j i
= J gμ

< >
⋅ + ⋅∑ ∑H S S B S ,               (3.1.1) 

where    and    are spin operators in units of ħ, B is the external field, g is the 

spectroscopic splitting factor, µB is the Bohr magneton, J is the exchange constant for 

nearest-neighbor coupling and found to be about 0.134 meV through a mean-field 

simulation approach, indicating antiferromagnetic exchange interaction [55].  

 

 

Figure 3-1-2 Five Fe3+ ions (yellow) connected by a pentagonal {(Mo)Mo5} group 

(blue: Mo; red: O). The superexchange pathways, -O-Mo-O- between nearest 

neighbors 1-2 and -O-Mo-O-Mo-O- between next-nearest neighbors 1-3, are 

emphasized. [Picture taken from P. Kögerler, B. Tsukerblat and Achim Müller, 

Dalton Trans. 39 (2010) 21] 

 

Approximate approaches must be taken to establish a spin model describing the 

way how spins arrange on the surface of this highly symmetric structure, because the 

ˆ
iS ˆ

jS
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total dimension of Hilbert space of this spin system is (2S+1)30 = 630, which is 

astronomically large so that the complete matrix diagonalization of Hamiltonian 

(3.1.1) is not feasible for now. Despite this difficulty, an approximate, diagonalizable 

effective Hamiltonian was adopted to explain the major low-temperature properties 

of {Mo72Fe30} [79]. The classical version of this effective Hamiltonian represents a 

frustrated ground state spin configuration called the “three-sublattice model”, where 

the 30 spins can be grouped into three sublattices of 10 spins each. All the 10 spins in each 

sublattice are parallel and the unit vectors of the three sublattices are co-planar with 120˚ 

angular difference in the zero-field limit. Here the word “co-planar” means one can 

always find a plane parallel to all the unit vectors of the three sublattices. The sketch 

map of this model is shown in Figure 3-1-1, where the vectors of the three sublattices 

are indicated by three colors – red, yellow and green. Obviously, there are no nearest 

neighbors carrying the same color.  

  Corresponding to this classical three-sublattice configuration, the approximate 

quantum model was established to account for the quantum mechanical effects. The 

resulting effective Hamiltonian is reduced to interactions between the three 

sublattices with spin operators ŜA, ŜB and ŜC, and adopted with the absence of an 

external magnetic field and the spin anisotropy term [23, 79, 80], which is written as 

                   eff A B B C C A
ˆ ˆ ˆ ˆ ˆ ˆˆ ( )

5
J

= ⋅ + ⋅ + ⋅H S S S S S S .                (3.1.2) 

Accordingly, the energy eigenvalues of Hamiltonian (3.1.2) are given in Ref. [79] 

A A B B C C( ) [ ( 1) ( 1) ( 1) ( 1)]
10
JE S S S S S S S S S= + − + − + − + ,        (3.1.3) 

where SA, SB, SC are the spin quantum numbers of the three sublattices (0 ≤ SA,B,C ≤ 25), 

S is the total spin quantum number (0 ≤ S ≤ 75), the exchange constant J is ~ 0.134 

meV determined from the magnetization measurements on {Mo72Fe30} [55, 79]. The 

degeneracies of the ground state (SA = SB = SC = 25) and the first excited state (SA = 24, 

SB = SC = 25 and the permutations) are (2S+1)2 and 27(2S+1)2, respectively [81].  

The resultant low-lying energy spectrum is shown in Figure 3-1-3, where S is the 

total spin quantum number. From the expression of Eq. (3.1.3), it is known that the 

resultant S states form a parabola for one set of SA , SB and SC. The effect of an 

external field appears as a Zeeman term in the Hamiltonian, which lifts the 

degeneracies of the individual MS = -S, …, +S substates belonging to an S state. 
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Spin-level-crossing will happen upon increasing the external field gradually from 

zero. Its positions are shown as the arrows in Figure 3-1-4. Eventually the system will 

saturate in S = 75, MS = 75 state at Bsat = 30|J|/(gμB) = 17.7 Tesla [23, 79, 80]. This 

saturation field was confirmed by the high-field magnetization at 0.46 K [55].  
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Figure 3-1-3 Low-lying section of the magnetic excitation spectrum as calculated 

from the quantum rotational band model.  
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Figure 3-1-4 Splitting of the ground-state MS sublevels under external magnetic field. 

Arrows mark where the spin-level-crossing happens. 
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Besides the high-field magnetization measurements, other techniques were also 

utilized to proof the validity of the three-sublattice model for {Mo72Fe30}. According 

to the quantum rotational band theory, the energy difference between the two lowest 

ground-state levels is only |J|/5 ≈ 0.03 meV, which is very difficult to be observed 

experimentally. But the energy gaps between the ground state and the first excited 

state were directly confirmed to be ~ 0.6 meV by means of inelastic neutron 

scattering measurements [81]. The muon spin relaxation and 1H nuclear magnetic 

resonance measurements provide further experimental determination of this first 

interband gap [82]. The differential susceptibility dM/dB of {Mo72Fe30} exhibits a 

local minimum at approximately one-third of Bsat, which is attributed to the thermal 

population of competing three-sublattice spin phases [61]. 

 

3.1.3    Motivation 

  {Mo72Fe30} possesses a complex, yet aesthetically beautiful molecular structure. The 

30 spins with antiferromagnetic coupling between nearest neighbors provide a 3D 

and finite analog with periodic boundary conditions of the 2D kagome lattice, which 

makes {Mo72Fe30} a good model to investigate the phenomenon known as geometrical 

spin frustration. The three-sublattice model was developed not only for 

icosidodecahedron but also for some other types of polyhedral spin structures. The 

validity of the three-sublattice spin model for {Mo72Fe30} could be of more general 

significance for the studies on spin frustration in a variety of spin polyhedra. 

However, the aforementioned experimental support to the three-sublattice model 

remained indirect, as long as there were no direct observations of the microscopic 

spin correlations owning to the ground-state spin structure of the {Mo72Fe30} 

molecule.  

  In this chapter, an approach to the magnetic ground state of {Mo72Fe30} is 

attempted by a direct observation of the spin correlation function by means of 

polarized neutron scattering. The low-lying magnetic excitation spectrum predicted 

by the quantum rotational band theory is revealed using the low-temperature 

specific heat. The three-sublattice spin model for {Mo72Fe30} is thus strongly 

supported. 
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3.2    Magnetic Properties of {Mo72Fe30} 

   

The magnetic susceptibility of {Mo72Fe30} was measured using a Superconducting 

Quantum Interference Device (SQUID) magnetometer (Quantum Design, San Diego). 

In this chapter, M/H is defined as the magnetic susceptibility, where M stands for 

the magnetization measured with the probing field H. Figure 3-2-1 shows the 

magnetic susceptibility and the inverse susceptibility of {Mo72Fe30} measured from 2 

K to 300 K under a probing field of 500 Oe. As seen in Figure 3-2-1 (a), there is no 

sign of any magnetic phase transition. The molar magnetic susceptibility χ of a 

paramagnetic substance can be approximately described by [83] 

                                 
2

A eff

B3
μχ =

N
k T

,                         (3.2.1) 

where NA is the Avogadro constant, kB is the Boltzmann constant, μeff is the effective 

magnetic moment, the unit of χ is emu/mol/Oe, T is temperature in Kelvin. From Eq. 

(3.2.1), μeff can be determined by 

                               eff 2.828μ χ= T .                       (3.2.2) 

The unit of the effective moment calculated from Eq. (3.2.2) is Bohr magneton μB. The 

temperature dependence of the product of magnetic susceptibility and temperature 

(χT) is shown in Figure 3-2-1 (a). Obviously χT deceases continuously upon cooling, 

indicative of antiferromagnetic interactions between Fe3+ ions. At room temperature, 

the effective moment μeff is determined as 5.61 μB per Fe3+ ion in terms of Eq. (3.2.2), 

slightly smaller than the spin only value 5.92 μB for S = 5/2.  

 



3.2 Magnetic Properties of {Mo72Fe30} 

39 
 

    
-50 0 50 100 150 200 250 300

0

2

4

6

 

χ 
(e

m
u/

O
e/

m
ol

)

Temperature (K)

H = 500 Oe

(a)

0

50

100

χT (em
u*K

/O
e/m

ol)

 

-50 0 50 100 150 200 250 300
0

1

2

3

Curie-Weiss law
 Inverse susceptibility

1/
χ 

(m
ol

*O
e/

em
u)

Temperature (K)

(b)

 

Figure 3-2-1 Magnetic susceptibility χ and inverse susceptibility of {Mo72Fe30} as a 

function of temperature. (a) χ and χT with a probing field of 500 Oe. (b) Inverse 

susceptibility with the refinement representing a Curie-Weiss law (red line). 

 

The inverse magnetic susceptibility vs. temperature is plotted in Figure 3-2-1 (b). A 

Curie-Weiss function given by Eq. (3.2.3) was fit to the inverse susceptibility over the 

temperature range of 30 K ≤ T ≤ 300 K. The Curie-Weiss function is known as 

                                ( )CW
1 1 Θ
χ

= +T
C

,                      (3.2.3) 
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where C is the Curie constant, ΘCW is the Curie-Weiss temperature. 

The best fit with a Curie-Weiss function is shown as the red line in Figure 3-2-1 (b) 

and gives a Curie-Weiss temperature of ΘCW = -28.05 ± 0.05 K. The negative value of 

the Curie-Weiss temperature confirms that the nearest Fe3+ ions are 

antiferromagnetically coupled. In the mean field approximation it is assumed that 

every magnetic atom experiences a field proportional to the macroscopic 

magnetization. If only the nearest-neighbor interactions are taken into account, the 

effective exchange constant Jeff is related to the Curie-Weiss temperature via [84] 

                             CWeff

B

3
2 ( 1)

Θ
= ⋅

+
J

k S S z
,                    (3.2.4) 

where S = 5/2 is the spin quantum number of the Fe3+ ion, z = 4 is the number of 

nearest neighbors. |Jeff|/kB is then determined to be around 1.26 ± 0.01 K (~ 0.11 

meV), close to the reported value of 0.134 meV [55]. The molar Curie constant 

obtained from the best fit is 122.60 ± 0.30 emu·K/Oe/mol. The Curie constant can be 

expressed as 

                             
2

2A B

B

( 1)
3

N N S SC g
k

μ +
= ,                    (3.2.5) 

where N = 30 is the number of Fe3+ ions in one {Mo72Fe30} molecule. The Landé factor 

g in Eq. (3.2.5) can then be determined as ~ 1.93, in reasonable agreement with the 

value of 1.974 reported by A. Müller et al. [55].  

  The magnetization as a function of the applied field was measured at 2, 10, 30, and 

100 K, as shown in Figure 3-2-2. At 2 K, the field dependence of magnetization was 

measured first from 0 to 7 T, then from 7 T to -7 T, and finally from -7 T to 7 T. The 

measurements at other temperatures were taken from 0 to 7 T. No saturation has been 

reached up to 7.0 Tesla. No hysteresis behavior is found, consistent with the 

antiferromagnetic nature of {Mo72Fe30} and the finite spin system. 

  In this section, the static magnetic properties of {Mo72Fe30} have been studied. No 

magnetic phase transition has been detected. The Curie-Weiss temperature was 

determined to be ΘCW = -28.05 ± 0.05 K, indicating that the nearest-neighbor Fe3+ ions 

are antiferromagnetically coupled. The mean-field effective exchange constant is 

obtained as Jeff = 0.110 ± 0.002 meV.  
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Figure 3-2-2 Field-dependent magnetization of {Mo72Fe30} at 2, 10, 30, and 100 K. 

 

 

3.3    Specific Heat of {Mo72Fe30} 

   

The specific heat of {Mo72Fe30} has been measured using a commercial Quantum 

Design Physical Property Measurement System (PPMS) equipped with a 

liquid-helium (LHe) cryostat and a dilution insert. The heat capacity values are 

extracted using the relaxation method [85, 86]. The background heat capacity of the 

microcalorimeter and the Apiezon N grease was measured carefully in a separate 

run and subtracted from the raw data to acquire the absolute heat capacity of the 

sample. In the measurements using the LHe cryostat, a rhombohedral single crystal 

of nondeuterated {Mo72Fe30}, with dimensions of about 2×2×1 mm3 and about 5 mg, 

has been used. In the measurements using the dilution insert instead of the LHe 

cryostat, a thin, plate-like crystal with a flat surface and a mass of about 1 mg was 

used to achieve better thermal conductivity.  

Figure 3-3-1 shows the temperature dependence of the specific heat measured with 

0 and 5 Tesla external magnetic fields within the temperature range 1.8 K to 300 K on 

nondeuterated {Mo72Fe30} crystal. There is no sign of a magnetic phase transition 

within this temperature range, which is reasonable for {Mo72Fe30} as a molecular 
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magnet with highly frustrated spin structure. Lacking of a non-magnetic reference of 

{Mo72Fe30}, the determination of the lattice contribution is rather difficult. The 

attempt to fit the data with a simple Debye model shows that a Debye model is 

inadequate to reproduce the specific heat of {Mo72Fe30}. As shown in Figure 3-1-4, 

significant splitting of the magnetic levels can already be introduced by small fields 

below 1 T. Therefore the change of magnetic specific heat should be seen by 

comparing the data for 0 T and 5 T. In Figure 3-3-1, the specific heat data measured 

under 0 and 5 T basically coincide with each other above 30 K, indicative of 

nonmagnetic origin within this temperature range. This agrees with the magnetic 

susceptibility measurements, which show that the system is basically paramagnetic 

within this temperature. Thus I actually do not expect any anomaly of magnetic 

origin above 30 K. The later discussion will focus on the low-T (< 18 K) part of the 

specific heat where the lattice contribution could be simplified and the magnetic 

nature of the system is studied in terms of the magnetic specific heat. 
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Figure 3-3-1 Specific heat data of {Mo72Fe30} from 1.8 K to 300 K under zero external 

magnetic field (blue circles) and 5 Tesla external field (red squares). The black line 

shows the lattice specific heat as used in the fits for the very low temperature data. 

Apparently this fit has no significance at higher temperatures. 
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Figure 3-3-2 Specific heat data of {Mo72Fe30} from 60 mK to 18 K under 0 (blue circles) 

and 5 (red circles) Tesla external fields in linear-linear (a) and log-log (b) scale. 

 

  Figure 3-3-2 shows the low-T specific heat data of {Mo72Fe30} from 60 mK to 18 K 

under 0 and 5 Tesla external magnetic field. Figure 3-3-2 (a) is in linear-linear scale 

and (b) is in log-log scale. Firstly the data obtained under zero external field was 

analyzed because the absence of an external field avoids the Zeeman effect that 

disturbs the sequence of the energy levels (see Figure 3-1-4). The lattice contribution 

to the total specific heat was fitted with a combination of the Debye and Einstein 

models. As seen in Figure 3-3-2, there is an obvious anomaly at ~ 3 K and a small 

hump at ~ 0.3 K in the zero-field data. These two Schottky-like anomalies were fitted 
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with conventional two-level Schottky models to account for the magnetic specific 

heat, which are deduced as follows [87]. Imagine a two-level system, e.g., a particle 

with two possible energy levels, ε1 and ε2 (ε1 < ε2), separated by Δ = (ε2 – ε1) / kB. The 

partition function of this system is: 

                              
2

B
1

exp( / )ε
=

= −∑ i
i

Z k T ,                    (3.3.1) 

and thus the average thermal energy at temperature T is: 

                          2
B

B

ln ln
1
Z ZE k T

T
k T

∂ ∂⎛ ⎞= = ⎜ ⎟∂⎛ ⎞ ⎝ ⎠∂ −⎜ ⎟
⎝ ⎠

.                (3.3.2) 

The Schottky specific heat is then obtained by differentiating Eq. (3.3.2) with respect 

to temperature and multiplying it by the Avogadro number, 

                            
( )2 /

Sch 2( / )1

Δ

Δ

Δ⎛ ⎞= ⎜ ⎟
⎝ ⎠ ⎡ ⎤+⎣ ⎦

T

T

eC R
T e

,                  (3.3.3) 

where R = kBNA = 8.3145 J K-1 mol-1 is the ideal gas constant. The low and high 

temperature limits of Eq. (3.3.3) are: 

                           ( )
2

/
Sch ~ TC R e

T
−ΔΔ⎛ ⎞

⎜ ⎟
⎝ ⎠

,     T << Δ             (3.3.4) 

                           
2

Sch ~
2

C R
T
Δ⎛ ⎞

⎜ ⎟
⎝ ⎠

.         T >> Δ             (3.3.5) 

Obviously, at low temperatures (T << Δ) there is very little probability of a transition 

to the upper energy level and hence the upper level will be unpopulated. 

Consequently CSch approaches zero. As the temperature T is comparable to Δ, the 

transition from the lower level to the upper level can take place to an appreciable 

degree and result in a Schottky specific heat which is characterized by a broad peak 

around the temperature Δ and corresponds to a large change in entropy for a small 

change in temperature. At high enough temperature (T >> Δ), both levels are almost 

equally populated and the transition probability between the levels can be neglected 

and thus CSch approaches zero again. The above derivation of Schottky specific heat 

for the two-level system can be extended to a multi-level system [87]. Suppose an 
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independent particle with m energy levels. Assume all the energy levels to be 

non-degenerate and have energies of ε1, ε2,…, εm. The average thermal energy of one 

such particle at a temperature T is  

                         
B

B

exp( / )

exp( / )

i i
i

i
i

k T
E

k T

ε ε

ε

−
=

−

∑

∑
.                      (3.3.6) 

For one mole of this substance, the Schottky specific heat can be calculated by 

differentiating the total energy with respect to T. It is described by the following 

expression: 

( ) ( ) ( )
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∑
.  (3.3.7) 

  After deriving the expressions for Schottky specific heat, the total specific heat 

from 60 mK to 18 K under zero external field was fitted with the sum of one Debye 

term, one Einstein term and two Schottky terms, as expressed below. The Debye term 

could be simplified to be proportional to T3 at low temperatures. The total fit to the 

experimental data was satisfying, as shown by the red line in Figure 3-3-3. The data 

and the total fit were also plotted in log-log scale in the insert of Figure 3-3-3, where 

it could be seen that the sample still possess significant heat capacity even at 60 mK. 

After analyzing the raw data, I thought it could be attributed to the residual entropy 

due to the highly spin-frustrated and degenerate ground state of {Mo72Fe30}. This 

might explain the small divergence of the fitting curve and the specific heat data 

below 0.2 K. The green line in Figure 3-3-3 represents the vibrational contribution to 

the total specific heat, described by the combination of the Debye and the Einstein 

terms [87-89], 

                              Latt Ein Debye= +C C C ,                      (3.3.8) 

with the Einstein term CEin, 

                     
-22

E E E
Ein E= 3 exp exp -1

T T T
C Rr

T T T
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
,            (3.3.9) 
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and the Debye term CDebye, 

                               
3

D
Debye 3

D

234
=

r T
C R

Θ
.                    (3.3.10) 
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Figure 3-3-3 Low-temperature zero-field specific heat data (black circles) at 0 T and 

the best fit (red line) in terms of the combination of the vibrational contribution 

(green line) and the Schottky contributions (see Figure 3-3-4). The vibrational 

contribution is the sum of contributions from an Einstein mode (dash-dot line) and a 

Debye model (dashed line). Inset: data with the total fit in log-log scale. 

 

In Eqs. (3.3.9) and (3.3.10), rE is the number of Einstein oscillators per molecule, TE 

= EEin/kB is the temperature equivalent of the energy of the Einstein mode, ΘD is the 

Debye temperature, rD is the number of atoms per molecule and is estimated as 1100 

in {Mo72Fe30}, taking account of the loss of crystal water molecules after the crystal 

was kept at room temperature. The best fit yields a Debye temperature of ΘD = 349.7 

± 12.1 K. The temperature of the Einstein mode, TE, is found to be 3.1 ± 0.3 K and the 

oscillator strength corresponds to rE = 3.3 ± 0.3. The Einstein term is usually 

associated to the existence of flat portions of the optical phonon dispersions. The 

present fitting parameters suggest that very few low-frequency oscillators are active 
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at low temperatures. However, from the plots of the Einstein mode and the Debye 

mode in Figure 3-3-3, the Einstein-like contribution dominates the lattice specific 

heat below 10 K. A possible origin for this Einstein mode can be given as follows. In 

the polarized neutron scattering measurements on {Mo72Fe30} polycrystals, a broad 

nuclear coherent scattering maxima at Q ~ 1.80 Å-1 was observed (see Section 3.5). I 

interpret this contribution as originating from the amorphous crystal water in the 

sample. It is known that localized harmonic vibration modes may exist in amorphous 

materials [90-92]. The Einstein-like contribution in the lattice specific heat may be 

due to the localized vibrations in the amorphous crystal water. The lattice specific 

heat obtained from the above fit is also plotted in Figure 3-3-1 within larger 

temperature range. Above 30 K, this lattice contribution increases sharply and 

diverges from the experimental data since a simplified ~T3 dependence of the Debye 

term, which only holds at low temperatures, is used. 
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Figure 3-3-4 The magnetic specific heat contribution (black circles) at 0 T obtained by 

subtracting the lattice contribution from the zero-field specific heat data. The best fit 

using two Schottky terms is represented by the red line and the blue line, 

respectively. 

 

However, I shall mention here that the determination of the vibrational 

contribution to the total specific heat under zero external field is not unique. Good fit 

to the data was also achieved by replacing the Einstein term with a linear term, 
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which could, e.g., be attributed to the conducting electrons localized on the surfaces 

of {Mo72Fe30} molecules, or some other kind of excitation leading to linear 

contribution to the specific heat. But the analysis of the specific heat data under 5 

Tesla precluded the existence of the linear term, which will be discussed later in this 

section. 

The magnetic contribution at zero external field is then obtained by subtracting the 

lattice contribution from the total specific heat, shown as the circles in Figure 3-3-4. 

Two Schottky-type anomalies are evident in Figure 3-3-4, which can be well fitted 

with the two-level Schottky model given by Eq. (3.3.3). The fitting results of the two 

anomalies are plotted as the red and the blue line in Figure 3-3-4 and labeled CSch1 

and CSch2, respectively. The corresponding energy gaps of CSch1 and CSch2 are then 

determined as Δ1 = 0.09 ± 0.01 meV and Δ2 = 0.64 ± 0.01 meV. There is a small and 

broad hump in the data as indicated by the ellipse in Figure 3-3-4, which possibly 

originates from the thermal population of higher rotational bands. But it is too small 

to give confident evidence through a satisfying fit. 
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Figure 3-3-5 Low-lying rotational bands calculated from the quantum rotational 

band model, with the ground state levels (black short lines), the first (red) and 

second (green) excited state levels. The corresponding energy splitting values are in 

unit of meV.  



3.3 Specific Heat of {Mo72Fe30} 

49 
 

These low-lying magnetic excitations revealed from the zero-field specific heat 

were investigated in the light of the quantum rotational band (QRB) theory of 

{Mo72Fe30} [79]. The resultant low-lying energy spectrum derived from the QRB 

theory [79, 81] is plotted in Figure 3-3-5. 

The arrows in Figure 3-3-5 indicate the interband energy splitting between the 

excited states and the ground state, as well as the intraband splitting in the 

ground-state levels. The Schottky anomaly CSch1 (see Figure 3-3-4) is located at very 

low temperatures around 0.5 K. Very likely the ground-state levels are most 

populated at this temperature. The energy gap Δ1 = 0.09(1) meV obtained from the fit 

can be understood as an averaged gap of the intraband splitting among the 

ground-state levels. As the temperature increases, the first excited state starts to be 

populated. The energy gap Δ2 = 0.64(1) meV obtained from the Schottky term CSch2 is 

close to but a little smaller than the characteristic gap 0.67 meV between the S = 0 

ground state and S = 0 first excited state. Within this temperature range (around 3 K), 

some higher levels of the ground state should be populated. The energy gaps 

between these levels and the S = 0 first excited state are smaller than 0.67 meV. For 

example, the gap between S = 2 ground state and S = 0 first excited state is 0.589 meV. 

In the mean time, some S > 0 levels of the first excited state could also be populated. 

The gaps between them and the S = 0 ground state are higher than 0.67 meV. I adopt 

Δ2 = 0.64(1) meV as an averaged gap for the various gaps between the ground-state 

levels and the first excited state levels. The second excited state is located ~ 1.34 meV 

above the ground state, which is possibly responsible for the small hump at around 

15 K in Figure 3-3-4. 

From the above discussion, it can be seen that the specific picture of the thermal 

population of the energy levels in this system could be very complicated, and a 

reliable many-level Schottky fit to the magnetic specific heat is almost impossible. 

The fit using a simple two-level Schottky model could be a good approximation to 

the real case. As seen in Figure 3-3-4, the fit yields a satisfactory match with the 

experimental data. The two energy gaps obtained from the fit should actually 

account for a number of gaps with two sets of similar energies. In an inelastic 

neutron scattering measurement on deuterated {Mo72Fe30} [81], the energy gap 

between the ground state and the first excited state is determined as ~ 0.6 meV, 

which is close to what was found in the zero-field specific heat data. However, the 

intraband transitions within ground states could not be measured due to the high 
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background in the inelastic neutron scattering data at small energy transfer.  

Therefore based on the above analysis, the anomaly at 0.3 K in the zero-field 

specific heat data of {Mo72Fe30} is considered to be due to the Schottky effect arising 

from the thermal population of discrete ground state energy levels, while the one at 3 

K originates from the Schottky effect between the ground states and the first excited 

states. The energy gaps that were found in the specific heat data basically reflect the 

low-lying magnetic excitations in {Mo72Fe30}.  

  The above fitting procedures were also carried out to fit the specific heat data 

measured with 5 T external field. As shown in Figure 3-3-2, the peak at ~ 3 K, which 

corresponds to the Schottky effect between the ground state and the first excited state 

levels, shifts a little towards higher temperature in the 5 T data as compared to the 

zero-field data. There are two anomalies at ~ 0.1 and ~ 0.3 K in the 5 T data with 

log-log scale (inset of Figure 3-3-2). The one at ~ 0.3 K can be seen more clearly in 

Figure 3-3-7. The anomaly at ~ 0.3 K should correspond to the intraband Schottky 

effect within the ground state levels, while the one at ~ 0.1 K is quite small in 

absolute specific heat value and may not be regarded as a Schottky effect. As already 

mentioned in the analysis of zero-field specific heat data, the sample possesses 

residual entropy at very low temperatures under zero external fields, owing to the 

highly degenerate ground state. Upon applying a 5 T external field, the ground state 

degeneracy is lifted, which causes a fast decrease in the 5 T specific heat as compared 

to the zero-field data below 0.1 K. The specific heat values of the anomaly at ~ 0.1 K 

is actually very small, as shown in Figure 3-3-7 with linear-linear scale. Thus I can 

safely analyze the 5 T specific heat data while neglecting the anomaly at ~ 0.1 K. 

  Figure 3-3-6 shows the low-temperature part (T < 18 K) of the 5 T specific heat data 

from non-deuterated {Mo72Fe30} crystal. The total specific heat was fitted with one 

Einstein term (Eq. 3.3.9), one Debye term (Eq. 3.3.10) and two Schottky terms (Eq. 

3.3.3). The total fit is shown as the red line in Figure 3-3-6. The vibrational 

contribution (Einstein + Debye) in this fit remains the same as the one used in the fit 

of zero-field data, which is reasonable because the lattice specific heat is not affected 

by an external magnetic field. 

The magnetic contribution under 5 Tesla was then obtained by subtracting the 

vibrational contribution from the total specific heat, shown as the circles in Figure 

3-3-7. Two Schottky-type anomalies were fitted with the two-level Schottky model 

(Eq. 3.3.3), giving two energy gaps Δ1 = 0.08 ± 0.02 meV and Δ2 = 0.70 ± 0.02 meV. 
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Taking into account the error of the fit, the intraband gap within the ground state 

levels and the interband gap between the ground state and first excited state did not 

change significantly. The reason may be as follows. A 5 T external field might have 

disturbed the rotational bands of the system as shown in Figure 3-1-4, which made 

the field-dependence of the energy gaps complicated and unable to be described by a 

simple enlargement under such a high field. For the sake of clarity, the energy gaps 

obtained in the fit of 0 and 5 T specific heat data are summarized in Table 3-3-1. 
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Figure 3-3-6 Low-temperature part of the 5 T specific heat data (black circles) and the 

best fit (red line) in terms of the combination of the vibrational contribution (green 

line) and the Schottky contributions (see Figure 3-3-7). The vibrational contribution 

is the sum of contributions from one Einstein mode (dash-dot line) and a Debye 

model (dashed line). Inset: data and total fit in log-log scale. 

 

When fitting the specific heat data at zero field, another possibility was to use a 

linear term instead of the Einstein term and the fitting result was also satisfying. But 

as shown in Figure 3-3-2, the 5 T specific heat data really approach zero at the lowest 

temperatures as compared to the zero-field specific heat, which made the linear term 

used in the fit of the zero-field data unfeasible in the fit of the 5 T specific heat data. 

Of course, there is the possibility that the external magnetic field removed the linear 
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term. Such a removal should result in noticeable decrease in the specific heat at high 

temperatures. But as shown in Figure 3-3-2, the 0 and 5 T specific heat data are 

almost identical at high temperatures. Therefore the linear contribution should not 

exist in the fit of specific heat data of {Mo72Fe30}. 
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Figure 3-3-7 The magnetic specific heat contribution (black circles) obtained by 

subtracting the lattice contribution from the 5-Tesla specific heat data. The best fit 

using the Schottky terms is represented by the red line and the blue line, 

respectively. 

   

Table 3-3-1 Fitting parameters for 0 and 5 T specific heat of {Mo72Fe30}. The evidence 

of the energy gap between the ground state and the first excited state from the 

inelastic neutron scattering (INS) study in Ref. [81] is given. Based on the QRB 

theory, some intraband energy gaps within the ground state and the gap between 

the S = 0 ground state and S = 0 first excited state are also given for comparison. 

Parameters 
ΘE ΘD 

(K) 

Δ1 

(meV) 

Δ2 

(meV) (K) 

0 Tesla 3.1 ± 0.3 349.7 ± 12.1 0.09 ± 0.01 0.64 ± 0.01 

5 Tesla 3.1 ± 0.3 349.7 ± 12.1 0.08 ± 0.02 0.70 ± 0.02 

INS [81]    ~ 0.6 

QRB theory [79]   0.027, 0.081, 0.162 0.67 
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Hence, the analysis of the specific heat data under 0 and 5 T external fields 

revealed two low-lying magnetic excitations at ~ 0.09 meV and ~ 0.64 meV. The 

former one originates from the intraband transitions within the ground states levels, 

while the latter one from the interband transitions between the ground state and the 

first excited state levels. These energy gaps are in reasonable agreement with the 

theoretical prediction of the quantum rotational band model and the result of 

inelastic neutron scattering. These results give additional strong experimental 

support to the quantum rotational band theory and the three-sublattice spin 

configuration model of {Mo72Fe30}. It is suggested that the quantum rotational band 

model is still practicable in explaining the low-lying magnetic excitations of {Mo72Fe30} 

up to about 10 K. But the study on magnetic excitations by means of specific heat 

method is indirect, especially for a system like {Mo72Fe30} which possesses a complex 

energy spectrum. In the next section, a direct observation of the magnetic excitations 

in {Mo72Fe30} will be attempted using high-resolution inelastic neutron scattering. 

 

 

3.4    Inelastic Neutron Scattering of {Mo72Fe30} 

 

  In Section 3.3, the low-lying magnetic excitations of {Mo72Fe30} were determined by 

analyzing the Schottky-type anomalies in specific heat data. But no direct 

observations of the magnetic excitation spectrum could be given by the specific heat 

measurements. In this regard, the inelastic neutron scattering technique has been 

proven to be most effective. As discussed in Section 3.3, an inelastic neutron 

scattering measurement on deuterated {Mo72Fe30} has been carried out by V. O. 

Garlea et al. [81]. They collected inelastic neutron scattering spectra at 65 mK under 

zero magnetic field and observed a clear peak near an energy transfer of 0.6 meV, in 

rough agreement with the overall energy scale of the predicted interband transition 

energy 26J/5 ≈ 0.69 meV between the ground state and the first excited state. Due to 

the high background of inelastic neutron scattering at small energy transfer, their 

measurements could not identify the lowest intraband magnetic excitations within 

the ground state levels predicted by the rotational band theory. In order to achieve a 

direct determination of the low-lying magnetic excitations and compare with the 

theoretical models, we performed inelastic neutron scattering on deuterated 

{Mo72Fe30} on the backscattering spectrometer BASIS at the Spallation Neutron 
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Source (SNS) at the Oak Ridge National Laboratory (ORNL). [93, 94] An introduction 

to the backscattering method and the BASIS instrument is given in Appendix C. 

  The polycrystalline {Mo72Fe30} sample used for inelastic neutron scattering was 

deuterated to reduce attenuation and incoherent scattering from hydrogen atoms. 

The deuterated sample was dried in vacuum at 400 K for 18 hours to further reduce 

the hydrogen content. The drying procedure also intended to increase the 

amorphization of the sample to depress the attenuation to the neutron flux by Bragg 

diffractions. Approximately 1.8 g of deuterated and dried {Mo72Fe30} sample was 

sealed in a copper cylinder under helium atmosphere to make sure that the sample 

could be cooled down to the base temperature of 1.5 K.  

  The backscattering spectrometer BASIS is an inverse geometry time-of-flight 

spectrometer that uses Si(111) analyzer crystals to select the final energy of the 

neutrons of 2082 μeV (corresponding to neutron wavelength λ = 6.267 Å) out of a 

polychromatic incident neutron beam. In my experiments, the instrument choppers 

were operated at 30 Hz, making an effective dynamic range from -50 μeV to +900 μeV 

for the data analysis. This instrument provides a high energy resolution, ~ 3.5 μeV 

full width at half maximum (FWHM) at the elastic position. The detector bank of the 

spectrometer covers the wave vector range of 0.3 ≤ Q ≤ 1.9 Å-1. The background 

spectrum from the empty Cu holder was measured separately and was subtracted 

from the data to acquire the inelastic neutron scattering from the sample. A 

vanadium standard was measured to account for the detector efficiency. In order to 

study the field dependence of the spectra, a cryomagnet was used with a maximum 

field of μ0H = 5 Tesla and a base temperature of T = 1.5 K.  

The inelastic neutron scattering spectra were collected at 1.5 K (under 0, 0.5 and 1 

Tesla) and 4 K (under 0 and 0.5 Tesla). Figure 3-4-1 shows the intensity contour map 

of S(Q, E) for various temperatures and fields investigated. The x- and y- axis 

corresponds to the wave vector transfer Q and energy transfer E, respectively. 

As shown in Figure 3-4-1, the high intensities at the edges of the x-axis of the 

spectra originated from the monitor normalization. Thus the range of the energy 

transfer for data analysis was taken from -50 to +900 μeV. If the background 

measured from the empty can was subtracted fully, negative values in the elastic line 

region appeared. For the plots in Figure 3-4-1, the background was subtracted from 

the raw data with a factor of 0.9, assuming a transmission of 90%. At high Q (Q >1.5 

Å-1), the background was too high to be subtracted properly. Hence, the high Q data 
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were omitted for the data analysis. The signals from the sample were rather weak. 

No magnetic excitation could be seen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4-1 Intensity contour map of neutron inelastic scattering on deuterated 

{Mo72Fe30} at 1.5 K (under 0, 0.5 and 1 T), and 4 K (under 0 and 0.5 T). 
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Figure 3-4-2 Neutron inelastic scattering spectra integrated over Q interval from 0.3 

to 1.5 Å-1 of deuterated {Mo72Fe30} at 1.5 K (under 0, 0.5 and 1 T) (a) – (c) and 4 K 

(under 0 and 0.5 T) (d), (e); (f): background spectrum measured from empty Cu can 

at 4 K (note the change in scale). 
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Figure 3-4-2 (a) – (e) shows the neutron inelastic scattering intensity, S(E), 

representing the integration of S(Q, E) within the Q range from 0.3 to 1.5 Å-1 at the 

temperatures and fields investigated. The background spectrum measured from the 

empty Cu holder at 4 K is shown in Figure 3-4-2 (f). The sharp peak at 0 μeV in all 

plots is the elastic-scattering component. As shown in Figure 3-4-2, no obvious 

features for magnetic excitations can be found at the energy transfer values either 

predicted by the rotational band theory, i.e., ~ 30 μeV and ~ 700 μeV, or suggested by 

the Schottky specific heat, i.e., ~ 90 μeV and ~ 640 μeV. The small peaks at ~ 200 μeV 

should be attributed to the imperfect subtraction of the background, because there is 

a large peak at this position in the background spectrum as seen in Figure 3-4-2 (f). 

The quasielastic components in the spectra of 4 K are more prominent than those in 

the spectra of 1.5 K. At each temperature, nearly no field-dependence could be 

identified from the measurements. 

As a summary of Section 3.4, unfortunately no magnetic excitations were observed 

from the inelastic neutron scattering measurements on deuterated {Mo72Fe30} at the 

high-resolution backscattering spectrometer BASIS at the Spallation Neutron Source 

SNS, ORNL. The background was high and probably buried the weak inelastic 

scattering from the sample, resulting in large error bars of the data. The 

measurements were carried out with the cryomagnet, which might be the main 

source of the large background. In a successful inelastic neutron scattering 

measurement from deuterated {Mo72Fe30} [81], about 8 g of sample was used, while 

the mass of the sample used in my experiment was only around 1.8 g. This could be 

another reason why the sample signal was weak. The magnetic scattering from this 

system was thus found to be quite weak. In next section, the weak magnetic 

scattering from {Mo72Fe30} will be measured and investigated in more detail by 

means of polarized neutron scattering. 
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3.5    Diffuse Neutron Scattering with Polarization Analysis of {Mo72Fe30} 

 

  The collective phenomena of interacting magnetic moments may strongly depend 

on the topology of the crystal structure. As a geometrically spin-frustrated molecular 

magnet, {Mo72Fe30} possesses highly symmetric spin arrangements. No long-range 

magnetic order has been found in the specific heat measurements (see Section 3.3) 

even down to 60 mK, owing to the strong spin frustration and the relatively large 

distance between the molecules in {Mo72Fe30}. In the previous sections, some 

experimental results have been presented and discussed. Most of these results are 

consistent with the theoretical predictions made by the three-sublattice spin model 

and the resultant quantum rotational band theory, which have been developed to 

represent the frustrated ground state spin configuration of {Mo72Fe30}. However, 

these experimental supports of the three-sublattice spin model still remained indirect, 

as long as there were no direct observations of the spin correlations in the magnetic 

ground state of the {Mo72Fe30} molecule. The magnetic ground state of {Mo72Fe30} is 

expected to be characterized by short-range spin correlations within the individual 

molecules, since the intermolecular magnetic interactions are negligible as compared 

to the intramolecular ones for this system. An intensive study on the spin 

correlations of {Mo72Fe30} will shed more light on the nature of the novel magnetic 

ground state of this complex magnetic system.  

  The spin correlation functions of frustrated magnetic systems containing hydrogen 

are difficult to measure at low temperatures because magnetic diffuse neutron 

scattering is often weak as compared to nuclear diffuse scattering and thermal 

diffuse scattering. However, diffuse neutron scattering with polarization analysis 

allows one to separate nuclear coherent, magnetic and nuclear spin-incoherent 

scattering simultaneously and unambiguously [73]. In this section, the quantitative 

short-range spin correlations in the large spin-frustrated molecular magnet {Mo72Fe30} 

are being investigated for the first time, by means of diffuse neutron scattering with 

polarization analysis at various temperatures.  

 

3.5.1    Experimental Details 

  The {Mo72Fe30} samples were synthesized at Rheinisch-Westfälische Technische 

Hochschule (RWTH) Aachen University according to the method described in Ref. 
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[54]. {Mo72Fe30} polycrystals were deuterated to minimize attenuation and incoherent 

scattering from hydrogen atoms. Approximately 2 g of sample was sealed in a 

copper holder in a helium atmosphere. Polarized neutron scattering measurements 

were carried out on the diffuse neutron scattering instrument DNS [95] at the FRM II 

research reactor (Garching, Germany), equipped with a 4He closed cycle cryostat and 

an orange-type liquid helium cryostat. A detailed introduction to DNS is given in 

Appendix C. The energy of the incident neutron beam was 3.6 meV (corresponding 

to a wavelength of 4.74 Å), allowing the structure factor to be determined up to the 

scattering vector Q of 2.30 Å-1. Within the quasistatic approximation, the nuclear 

coherent, spin-incoherent and magnetic scattering cross section were separated 

simultaneously with the xyz-polarization method in the spin-flip (SF) and 

non-spin-flip (NSF) channels [73]. In the xyz-polarization analysis, the multidetectors 

of DNS define the x-y plane, which makes the scattering vector Q always 

perpendicular to the z direction. The SF and NSF differential cross sections were then 

measured for the incident beam polarized in turn along x, y, and z direction, giving 

totally six partial cross sections, labeled (x,y,z)
SFd / dΩσ  and (x,y,z)

NSFd / dΩσ . The 

quantitative value of the differential magnetic cross section, Magd / dΩσ , in units of 

barn (sr)-1 per Fe atom, can be extracted from either 

                       
yx z

Mag SF SF SFd dd d
2 2

d d d d
=

σ σσ σ⎛ ⎞
+ −⎜ ⎟⎜ ⎟Ω Ω Ω Ω⎝ ⎠

,                (3.5.1) 

or 

                     
yz x

Mag NSF NSF NSFd dd d
2 2

d d d d
=

σ σσ σ⎛ ⎞
− −⎜ ⎟⎜ ⎟Ω Ω Ω Ω⎝ ⎠

.              (3.5.2) 

The two expressions correspond to independent measurements, and the magnetic 

differential cross section is taken as their average after verifying their equivalence to 

check for systematic errors. The flipping ratio correction was made using the 

reference measurements from an ideal isotropic incoherent scatterer, a NiCr alloy. 

The background was measured from an empty copper holder separatedly and 

subtracted from the raw data. In order to obtain the absolute scattering cross section 

from the sample, a vanadium standard was measured under the same experimental 

settings. Data was then normalized to the incoherent scattering of the vanadium 
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standard. The differential scattering cross section per Fe atom in absolute units was 

then obtained as 

                              S S V
V

V S

d
d 4

I N
=

nI N
σ

σ
πΩ

,                      (3.5.3) 

where IS and IV are the intensities scattered by the sample and the vanadium 

respectively, n is the number of Fe atoms per molecule and equals to 30, NS and NV 

are the amount of sample and vanadium atoms in the beam, σV is the total scattering 

cross section of vanadium. It should be mentioned that the determination of the 

absolute scattering cross section in my experiments may also be effected by the 

absorption (from the sample holder, the vanadium standard, the cryostat, and the 

sample) and the spin incoherent scattering from the sample. It is estimated that the 

attenuation to the primary beam in the sample measurements is around 20%, and the 

attenuation in the vanadium measurements is around 22%. Therefore the absolute 

cross section was determined using Eq. (3.5.3) without consider other factors, 

because they were basically canceled out. 

 

3.5.2    Experimental Results 

The polarized neutron scattering spectra of deuterated {Mo72Fe30} were recorded at 

various temperatures from 1.5 K to 100 K on DNS. Figure 3-5-1 shows the nuclear 

coherent, spin-incoherent and paramagnetic components separated from the total 

scattering by means of xyz-polarization method. Data are plotted as a function of Q. 

The spin-incoherent scattering intensity is nearly constant, suggesting a successful 

separation of different scattering contributions. The nuclear coherent scattering 

shows a broad hump at high Q around 1.80 Å-1, which can be attributed to the 

scattering from amorphous crystal water [96]. The high intensity of nuclear coherent 

scattering below 0.25 Å-1 originates from the background of the incident neutron 

beam. Several nuclear Bragg peaks are located within the Q range 0.25 - 1.00 Å-1, 

which are consistent with the simulation of the powder diffraction pattern (marked 

as the blue line at the bottom of Figure 3-5-1) of {Mo72Fe30}. Just like what has been 

indicated in the inelastic neutron scattering on BASIS, the magnetic contribution (red 

circles in Figure 3-5-1) is weak, leading to long counting time to obtain reasonable 

statistics. The magnetic scattering intensity is almost 40 times smaller than the total 

scattering intensity. Without the polarized neutron scattering method, the magnetic 
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component would be hardly seen. Here the magnetic scattering data were actually 

integrated over the energy-transfer window of DNS since no energy analysis option 

was installed during this experiment. The INS measurements by V. O. Garlea et al. 

[81] showed that the magnetic excitations of {Mo72Fe30} are lower than 3 meV. Thus 

the energy integration on DNS with incident neutron energy of 3.6 meV should be 

enough to retrieve the magnetic scattering of {Mo72Fe30}. 
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Figure 3-5-1 Nuclear coherent (black circles), spin-incoherent (green circles) and 

paramagnetic (red circles) contributions to the total scattering for {Mo72Fe30} at 1.5 K 

from xyz-polarization analysis at DNS. The blue area is a powder diffraction 

simulation convoluted with the experimental resolution. 

 

Figure 3-5-2 presents the differential magnetic cross section, dσ/dΩ, extracted from 

the total scattering cross section at 1.5, 2.5, 10, 20, 50 and 100 K from DNS 

measurements. The absolute magnetic cross sections were determined by calibration 

against the scattering of a known mass of vanadium standard. The scale of dσ/dΩ in 

Figure 3-5-2 corresponds to the experimental curve at 100 K. The data at lower 

temperatures are each displaced vertically by 1.5 barn (sr-1) per Fe atom for clarity.  
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Figure 3-5-2 Temperature evaluation of the differential magnetic scattering cross 

section dσ/dΩ obtained from DNS measurements. The data at different 

temperatures are to scale and displaced vertically by 1.5 barn (sr-1) per Fe atom each 

for clarity. The solid and the dashed lines indicate the pure and the 91% scaled 

paramagnetic form factor of Fe3+ (S = 5/2), respectively. The arrow indicates the 

position Q = 2π/D. D = 6.5 Å is the distance between the nearest-neighbor Fe atoms. 

 

In the pure paramagnetic phase of {Mo72Fe30}, the Fe3+ moments should have no 

significant spin pair correlations and the Q dependence of the differential magnetic 

cross section should follow the paramagnetic form factor. As shown in Figure 3-5-2, 

the magnetic scattering above 50 K monotonically decreases with scattering vector Q, 

and agrees with the pure paramagnetic form factor of Fe3+ ions [97]. This result is 
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also consistent with the temperature dependence of the magnetic susceptibility of 

{Mo72Fe30} (see Section 3.2 and also Ref. [55]). Below 20 K, a diffuse peak at Q ≈ 0.70 

Å-1 is seen to evolve and sharpen upon cooling, indicating the presence of 

short-range antiferromagnetic spin correlations. No long-range magnetic order can 

be detected, even down to 1.5 K, owing to the strong geometrical spin frustration of 

the single molecules and the lack of intermolecular magnetic interactions. 

 

0 20 40 60 80 100

9

10

11

12

σ to
t (b

ar
n 

/ F
e 

at
om

)

Temperature (K)

Paramagnetic limit = 11.68

 

Figure 3-5-3 Temperature dependence of the total magnetic cross section (black 

squares) integrated over the Q range 0.39 < Q < 2.27 Å-1 for {Mo72Fe30}. 

 

The total differential magnetic cross section within the experimental energy 

window of DNS is determined by integration over the scattering vector Q at each 

temperature, shown as black squares in Figure 3-5-3. The integration is done over the 

Q range 0.39 < Q < 2.27 Å-1. The exchange interaction energy between the nearest Fe3+ 

neighbors is estimated to be ~ 1 meV (see Section 3.2 and Ref. [55]). The energy of the 

incident neutrons in these measurements is 3.6 meV. Therefore, the dynamic range of 

this spin system is well covered by the energy window of DNS. The data can be 

interpreted within a quasi-static approximation for the magnetic cross section. The 

total magnetic cross section of a pure paramagnet is given, ignoring the 

Debye-Waller term, by [74, 98] 
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where (γe2/mc2) = -0.54×10-12 cm is the magnetic scattering length, S is the spin 

quantum number of the scattering ion, F(Q) is the spin-only magnetic scattering form 

factor of Fe3+ (S = 5/2), and the Landé splitting factor g = 2 is taken [55]. The total 

magnetic cross section within the Q range from 0.39 to 2.27 Å-1 for the pure 

paramagnetic Fe3+ ion can be determined as 11.68 barns per Fe atom [97]. As shown 

in Figure 3-5-3, the values obtained from measurements are close to the 

paramagnetic limit. Thus it can be estimated that ~ 91% of the total magnetic cross 

section expected from the pure paramagnetic phase of {Mo72Fe30} has been observed 

at the investigated temperatures within the energy and Q window of DNS. The 

dashed line in Figure 3-5-2 shows 91% of the paramagnetic form factor of Fe3+, which 

agrees well with the magnetic differential cross section measured at 100 K.  

 

3.5.3    Theoretical Simulations within Three‐sublattice Spin Model 

  In order to determine the nature of the short-range spin correlations for the 

magnetic ground state of {Mo72Fe30}, I will compare the experimental data with a 

theoretical simulation based on the three-sublattice spin configuration model in this 

section. In agreement with our specific heat measurements presented in Section 3.3, 

the quantum rotational band theory [79] predicts that the lowest two ground-state 

energy levels, with total spin quantum number S = 1 and 2 respectively, locate at 

energies of 0.021 and 0.081 meV from the S = 0 ground state. At 1.5 K, these levels are 

appreciably populated. However, within the three-sublattice model, the S = 2 ground 

state corresponds to a rather small spin canting of 2˚ away from the coplanar S = 0 

ground state. Within the statistical accuracy of our neutron scattering data, the 

resulting, minor change in spin correlations will not be detectable and thus I can 

safely assume that the spin correlations at 1.5 K predicted by the three-sublattice 

model should be very close to those of the S = 0 ground state. Experimentally, the 

true S = 0 ground state of {Mo72Fe30} is very difficult to reach in diffuse neutron 

scattering measurements, because the thermal conductivity of {Mo72Fe30} is poor and 

furthermore a large amount of sample is normally required in such measurements. 
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Therefore, the model used to reproduce the neutron scattering data is based on the S 

= 0 ground state of {Mo72Fe30}. The spin correlations are calculated for a rigid 

configuration of classical S = 5/2 Fe3+ spins corresponding to the three-sublattice spin 

model. Only the spin correlations within individual molecules are considered in the 

simulation because the intermolecular magnetic correlations are negligible. 

 

 

Figure 3-5-4 Two random spins S and S', and the definition of their projections on 

axis X, Y and Z. 

 

The simulation starts with the equation given by I. A. Blech and B. L. Averbach for 

the differential magnetic scattering cross section of spin pairs, which, already in the 

powder average, can be written as [99] 

2 22 2
mag 2 2

2 2

d 2 ( 1) ( ) ( )
d 3

e eS S F Q F Q
mc mc

σ γ γ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠ ⎝ ⎠
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Qr Qr Qr
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Qr Q r Q r

⎡ ⎤⎛ ⎞
× + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ ,        (3.5.5) 

where (γe2/mc2) = -0.54×10-12 cm and F(Q) have been introduced in Eq. (3.5.4), rn is 

the distance from an atom at an arbitrary origin to the nth atom in the same molecule, 

and an and bn are related to the probability of finding spin pairs with parallel 

components and can be expressed as 
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,                  (3.5.6) 

where Sx, Sy and S'x, S'y are the projections of two spins S and S' on the X and Y 

directions, and are defined in Figure 3-5-4. 

In Figure 3-5-4, S and S' are two random spins. Axis X is along the line going 

through the starting points of the two spins. The X-Y plane is chosen such that S lies 

within this plane. Axis Z is then perpendicular to the X-Y plane. Given these 

definitions, the correlations of this spin pair in Z direction is zero. If the distance of 

the two spins is fixed as rn, the result of Eq. (3.5.5) depends mainly on an and bn, 

namely the scalar product of the corresponding projections of the two spins.  

 

3.5.3.1.  Spin Correlations of a Specific Ground State of {Mo72Fe30} 

  The first thought is to calculate the spin correlations of a specific ground state 

within the three-sublattice spin model. The calculation begins with the deriviation of 

the correlations of a random spin pair by means of Eqs. (3.5.5) and (3.5.6). As shown 

in Figure 3-5-4, assume the positions of two random spins S and S' are (a, b, c) and (a', 

b', c'), respectively. The vector of the bond between them is then RAB = (a - a', b - b', c 

- c'). The X axis is defined along RAB and the unit vector ex of the X axis is given by ex 

= RAB/|RAB|. 

The Z axis is perpendicular to S and ex. The unit vector of Z axis is given by 

                             AB

AB sinz ψ
×

=
S Re

S R
.                        (3.5.7) 

Accordingly ey is determined by performing the right-hand rule to ez and ex.  

  Having determined ex, ey and ez, the projections of S and S' in ex and ey directions 

can be expressed as following: 

x x x= ⋅ ⋅S S e e   and  x x x′ ′= ⋅ ⋅S S e e                  

                      y y y= ⋅ ⋅S S e e   and  y y y′ ′= ⋅ ⋅S S e e              (3.5.8) 

The an and bn in Eqs. (3.5.5) and (3.5.6) for this spin pair can then be calculated by 

inserting Eq. (3.5.8) into Eq. (3.5.6). Therefore the spin correlations for a random spin 
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pair is determined by this method.  

  Select a random {Mo72Fe30} molecule in the lattice (the position doesn’t matter). 

Within the three-sublattice model, take the unit vectors of the three sublattices as (0, 0, 

-1), (-0.866, 0, 0.5) and (0.866, 0, 0.5). This is one of the ground states for the 

three-sublattice model, as shown in Figure 3-5-5.  

 

 

Figure 3-5-5 A specific ground state of the three-sublattice model (see text). 

   

The spin correlations for this specific ground state can be calculated by applying 

the calculation for spin pair-correlation to all the spin pairs in this spin structure. The 

final result is plotted in Figure 3-5-6, along with the magnetic scattering cross section 

measured at 1.5 K. It can be seen that the simulation (blue line in Figure 3-5-6) is 

close to the experimental data (red circles in Figure 3-5-6). But clear deviations also 

exist. This suggests that the calculation for just one specific ground state is not 

enough to account for the measured magnetic scattering. 
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Figure 3-5-6 Calculation (blue line) for a specific ground state (see Figure 3-5-5) 

within the three-sublattice model of {Mo72Fe30}, along with the magnetic cross section 

(red circles) measured at 1.5 K. Black line: magnetic form factor of Fe3+ (S = 5/2) ions. 

 

The specific ground state shown in Figure 3-5-5 is of course not the only ground 

state for {Mo72Fe30}. When employing the three-sublattice model to {Mo72Fe30}, the 

spins within one molecule are no longer randomly arranged in the sense that the 30 

Fe3+ spins are divided into three sublattices whose unit vectors are coplanar with 

intermediate angles of 120˚ [79, 80]. The 10 spins within each sublattice are parallel to 

each other. The sublattices can rotate as long as the 120˚ angular difference between 

them is kept. Therefore the true spin correlations for this three-sublattice spin model 

should be obtained by first summing the spin correlations over all versions of 

three-sublattice model and then averaging numerically. Setting a random Fe atom in 

the molecule as the origin, the simulation of the averaged spin correlations will be 

given in the next sections following three steps: (i) calculation of the spin correlations 

between the spins in the same sublattice, (ii) calculation of the spin correlations 

between the spins from different sublattices, and (iii) numerical average over 

different versions of the three-sublattice spin model. 
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3.5.3.2.    Spin‐pair Correlations between Spins in the Same Sublattice 

  In Figure 3-5-7, the spin S at the origin is shown with another spin S' from the 

same sublattice.  

 

 

Figure 3-5-7 Two spins in the same sublattice of the three-sublattice model. 

 

The vector of S and S' is random with an angle ψ from axis X. Since S and S' are 

parallel and |S| = |S'|,  

                 Sx = Sx' = |S|·cosψ·ex  and  Sy = Sy' = |S|·sinψ·ey ,           (3.5.9) 

where ex and ey denote the unit vector of X and Y axis, respectively. Substitute Eq. 

(3.5.9) into Eq. (3.5.6), 

                          
( )

2 2

2 2 2
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b

ψ

ψ ψ

=

= −

S

S
.                   (3.5.10) 

Eq. (3.5.10) gives the coefficients an and bn for spin pairs in the same sublattice, 

where it can be found that an and bn depend only on the angle ψ. Given the spin 

quantum number S and the atomic distances, the spin pair-correlations between the 

origin spin and the other 9 spins in the same sublattice can then be determined using 

Eq. (3.5.5) once the vector of the origin spin is fixed. 
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3.5.3.3.    Spin‐pair Correlations between Spins from Two Different Sublattices 

  Before calculating the spin pair correlations between spins from two different 

sublattices, it should be noticed that there exist an infinite number of specific ground 

state configurations when employing the three-sublattice model to this 

icosidodecahedral spin structure, because the three spin sublattices can rotate as long 

as the angle remains 120˚ between their unit vectors. In any case, the analysis can 

start with the correlation between two spins, S and S', from two different sublattices 

in this model, as shown in Figure 3-5-8. S' can take all relative orientations, keeping 

the 120˚ angle with respect to the direction of S. As such, we can always obtain the 

spin S'' (see Figure 3-5-8) by a rotation of S' by 180˚ about the direction of S. Thus S 

and S'' belong to another configuration of the three-sublattice model. The final 

simulating result should be the numerical average of the spin correlations of all the 

spin configurations within the three-sublattice model. In the case of {Mo72Fe30}, the 

simulation could be greatly simplified in the sense that the relationship between spin 

correlation and spin direction could be neglected as long as the rigid three-sublattice 

model is fulfilled. The proof to this statement is given below.  

Consider the total spin correlations of the two spin pairs, S-S' and S-S'', where 

|S|=|S'|=|S''|. As to the coordinate system shown in Figure 3-5-8, the spin 

correlations of both S-S' and S-S'' are zero along the Z direction because S has a zero 

projection on Z axis. So the discussion can be restricted to the X-Y plane. The 

projections of S' and S'' in X-Y plane are denoted as S'p and S''p, respectively. In order 

to show the angles between S, S', and S'' more clearly, spin S1 is drawn at the starting 

point of S' and S'' and is parallel to S. 

Figure 3-5-9 shows the X-Y plane, where S, S1, S'p and S''p are plotted, S1 is parallel 

to S, and β is the angle between S1 and S'p. Without loss of generality, the angle 

between S1 and S' is assumed as α. α and β are also shown in Figure 3-5-6. cosα and 

cosβ are carrying the same sign. 
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Figure 3-5-8 Spin vectors S, S', S'', and their projections on axis X, Y and Z. The two 

Fe3+ ions belong to different sublattices. S'' is generated by a rotation of S' by 180˚ 

around the direction of S. S1 is parallel to S but not a real spin, which has been 

drawn to show the relation between S, S', and S''. 

 

 

Figure 3-5-9 Spin vector S and the projections of S' and S'' in X-Y plane, Sp' and Sp''. 
S1 is parallel to S. 
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If cosβ ≠ 0, |S'p| and |S''p| can be expressed as follows, 

                    p p
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cos cos
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The projections of S, S', and S'' on X and Y axis are 
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From Eq. (3.5.6), the average an and bn for correlations of spin pairs S-S' and S-S'' are  
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and,  

 

 

 

 

                                                               

 

(3.5.14) 

 

In case of cosβ = 0, spin S is perpendicular to S' and S'' (cosα = 0). The averaged an 

and bn for spin pairs S-S' and S-S'' are both zero. Therefore the averaged an and bn can 

also be expressed as Eqs. (3.5.13) and (3.5.14), respectively. 

Obviously, when α = 0 (two spins are parallel), the two equations derived above 

become Eq. (3.5.10). It means I can unite the expressions for spin correlations of spins 

( ) ( ){ }
( ) ( )( ){ }

( ) ( )( )

2 2
p p

2 2 2

2 2 2

2 2 2

1
2
1 2 cos cos cos cos 2 cos sin
2
1 cos2 cos cos cos 2 cos sin
2 cos

1 cos2 cos 2cos cos 2 cos sin
2 cos

cos 2cos sin

nb

ψ ψ β ψ ψ β α ψ

α ψ ψ β ψ β α ψ
β

α ψ ψ β α ψ
β

α ψ

′ ′ ′′ ′′= ⋅ − ⋅ + ⋅ − ⋅

′ ′′= ⋅ + + ⋅ − −

⎧ ⎫
= + + − −⎨ ⎬

⎩ ⎭
⎧ ⎫

= ⋅ −⎨ ⎬
⎩ ⎭

= −

x x y y x x y yS S S S S S S S

S S S S S

S S

S S

S

2 2

{ }ψ



3.5 Diffuse Neutron Scattering with Polarization Analysis of {Mo72Fe30} 

73 
 

within the same sublattice and spins from different sublattices. Once the angle α 

between S and S' is fixed, the average spin correlations of spin pairs S-S'' and S-S'' 

depend only on the vector of the origin, S. Of course it doesn’t matter how many 

vectors of S' there are, as long as S'' is achievable by rotating S' by 180˚ with respect 

to the direction of S.  

 

3.5.3.4.    Numerically‐averaged Spin Correlations for {Mo72Fe30} 

Employing Eq. (3.5.13) and Eq. (3.5.14) to calculate the spin correlations of 

{Mo72Fe30} within the three sublattice model, the mean an and bn are as follows: 

( )

2

2 2

1 ( 1)sin
2
1 ( 1) 2cos sin
2

n

n

a S S

b S S
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= − +

= − + −
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and 
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ψ ψ

= +

= + −
     for spins in the same sublattice,         (3.5.16) 

where S = 5/2 is the spin quantum number of Fe3+ ions. Obviously, the spin pair 

correlations in the three-sublattice model of {Mo72Fe30} depend only on ψ, namely the 

vector of the spin at the origin.  

It should be noticed that actually every molecule in the sample could possess a 

specific ground state within the three-sublattice spin model. Therefore I simulated 

the spin correlations of {Mo72Fe30} within an individual molecule and then take a 

numerical average over all molecules. The Fe3+ ion at the origin is chosen arbitrarily. 

The numerical simulation is performed for a number of different spin vectors 

randomly laid at the origin, i.e., a collection of different spin ground states of 

{Mo72Fe30} molecule. The numbers of the random vectors of the origin spin used in 

the simulation are 30, 100, 250, 1 000, 10 000, 65 000, and 250 000.  
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Figure 3-5-10 Simulations of spin pair correlations for {Mo72Fe30} within the 

three-sublattice model. The curves correspond to the simulations with different 

numbers (indicated by various colors) of random vectors of the origin spin. 

 

As shown in Figure 3-5-10, a satisfactory degree of convergence has already been 

achieved for 1000 random vectors of the origin spin in my simulation. The averaged 

spin correlations for 250 000 random vectors of the origin spin are plotted in Figure 

3-5-11 as a blue line, which is quite close to the measured profile of the magnetic 

diffuse scattering (red circles in Figure 3-5-11). Both the pronounced peak at ~ 0.70 

Å-1 and the broad feature at ~ 1.60 Å-1 are well reproduced in the simulation. The 

dashed green line in Figure 3-5-11 represents the 91% scaled simulation curve, which 

agrees better with the experimental data since 91% of the magnetic scattering was 

observed in our measurements at DNS. 
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Figure 3-5-11 Magnetic diffuse scattering at 1.5 K in absolute units for {Mo72Fe30} (red 

circles); simulation of the averaged spin pair correlations for {Mo72Fe30} within the 

three-sublattice spin configuration model (blue line). Green dashed line: 91% scaled 

simulation curve. 

 

3.5.3.5.    Simplified Method to Simulate Spin Correlations 

  In the above calculation of spin-pair correlations for the three-sublattice model, 

one has to integrate ψ over the space. Considering Eqs. (3.5.5), (3.5.13) and (3.5.14), 

the angular integration of ψ omits the trigonometric functions containing ψ in the 

final spin correlations. Hence, if the vectors of two spins can take any orientation whilst 

keeping a constant angle between them, the final result of the spin-pair correlations depends 

only on the distance and the relative angle of the two spins.  

  From Eqs. (3.5.5) and (3.5.6), the term with bn arises from the directional nature of 

the magnetic neutron scattering. But as discussed above, the spin correlations of 

{Mo72Fe30} within the three-sublattice model depend only on the distance and the 

relative angle of the spins. This means the interrelationship between spin correlation 

and spin direction can be neglected, so that the term with bn can be omitted from Eq. 

(3.5.5) [99]. If bn = 0 in Eq. (3.5.6) and consider <Sz·S'z>n = 0, then we have  

22
3n n nn

a ′ ′ ′= ⋅ = ⋅ = ⋅y y x xS S S S S S ,              (3.5.17) 
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Thus a more simplified equation to calculate spin-pair correlations of {Mo72Fe30} 

molecule is given below. Taking the powder average and neglecting the possible 

relationship between spin correlation and spin orientation, the differential magnetic 

scattering cross section in the quasi-static approximation can be described in terms of 

the Fourier transform of the spin pair-correlation function [47], 

                
22

mag 2
02

d 2 sin( ) ( )
d 3 r

r

e QrQ F Q
mc Qr

σ γ⎛ ⎞
= ⋅⎜ ⎟Ω ⎝ ⎠

∑ S S ,          (3.5.18) 

where S0 and Sr are the atomic spin vectors at the origin and the nuclear lattice 

position r. 
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Figure 3-5-12 Comparison of the simulation results of the spin correlations for-three 

sublattice model using the numerically-averaged model (blue line and see Section 

3.5.3.2-4) and the simplified model (green line and see Section 3.5.3.5). Red circles: 

Magnetic diffuse scattering at 1.5 K in absolute units for {Mo72Fe30}. 

 

The spin pair-correlation function given by Eq. (3.5.18) depends only on the atomic 

distance r and the relative angle between S0 and Sr. The simulation using Eq. (3.5.18) 

is carried out for the three-sublattice model of {Mo72Fe30}, and is compared with the 

simulation using the numerically-averaged model introduced in Section 3.5.3.2-4 

along with the measured profile of magnetic diffuse scattering in Figure 3-5-12. It can 

be seen that the simulation using the simplified model nearly coincides with the one 
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using the numerically-averaged model. The tiny deviations between them are due to 

the approximation used in the simplified model, which omits the bn term in Eq. 

(3.5.5). The result of the simplified model proves that the bn term contributes little in 

the spin correlations of {Mo72Fe30}. This is a surprising result that the spin correlations 

of a 3D spin structure like {Mo72Fe30} can be simulated simply by ignoring the 3D structure 

itself if the spins can rotate freely on their positions whilst keeping relative angles constant, 

owing to the fact that only the relative angles and the atomic distances matter in the 

simulation. {Mo72Fe30} has been found certainly to be an ideal system to investigate 

this effect for three reasons: first, the magnetic ground state can be characterized by a 

rigid three-sublattice spin model which allows the spins to rotate with a constant 

relative angle of 120˚ between the spin sublattices; second, the molecular-magnet 

nature of {Mo72Fe30} plays an important role because it confines the spin correlations 

within individual molecules; third, {Mo72Fe30} molecule possesses highly symmetric, 

icosidodecahedral spin structure which makes a direct comparison with the 

measured magnetic cross section possible since no average among the different spin 

positions is needed.  

 

3.5.4    Discussion 

  In Section 3.5, the spin correlations of {Mo72Fe30} have been investigated both 

experimentally and theoretically. The diffuse neutron scattering with polarization 

analysis on {Mo72Fe30} revealed clear short-range spin correlations below 20 K. The 

simulations were carried out based on the three sublattice spin model for {Mo72Fe30}. 

The spin correlations were first simulated by integrating all possible ground state 

spin configurations within the three-sublattice model, which agree well with the 

measured magnetic scattering cross section. A simplified spin correlation function 

was also used to calculate the spin correlations of {Mo72Fe30} within the 

three-sublattice model, which ignored the possible relationship between spin 

correlation and spin orientation. The simplified function nearly coincided with the 

result given by the numerically-averaged method. It has been found that all the 

simulation results are in reasonable agreement with the magnetic scattering cross 

section of {Mo72Fe30} obtained at 1.5 K by means of polarized neutron scattering.  

A more general conclusion from the present investigation is the spin pair 

correlations depend only on the distance and the relative angle of the two spins in 

the spin pair if the vectors of the two spins can take any orientation whilst keeping a 
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constant angle between them. The direct consequence of employing this effect to the 

case of {Mo72Fe30} is that the spin correlations of this 3D spin structure can be simply 

calculated by considering the distances and the relative angles of the spins only, and 

ignoring the complex 3D structure itself. Hence, it can be concluded that the 

three-sublattice spin configuration can explain the magnetic diffuse neutron 

scattering from {Mo72Fe30} successfully. The spin correlations measured from this 

large, spin-frustrated magnetic system arise mainly from the individual molecules, 

due to the intrinsic properties of {Mo72Fe30} as a molecular magnet.  

  It must be noted here that all the theoretical simulations in this section are limited 

to a rigid three-sublattice spin configuration of classical S = 5/2 Fe3+ spins. The 

division of the three sublattices from 30 Fe3+ ions is not unique and the simulations in 

this section cannot distinguish the different versions because they possess the same 

spin correlation functions [100]. 

 

 

3.6    Summary 

  The aim of Chapter 3 is to determine the nature of the magnetic ground state of the 

spin-frustrated molecular magnet {Mo72Fe30}. {Mo72Fe30} is large and fascinating 

molecular magnet with highly symmetric icosidodecahedral spin structure. The 

magnetic structure of {Mo72Fe30} was investigated by means of DC magnetic 

susceptibility, specific heat, inelastic neutron scattering and polarized neutron 

scattering measurements. No long-range magnetic order has been detected at all 

investigated temperatures. DC magnetic susceptibility showed that the 

nearest-neighbor Fe3+ ions are antiferromagnetically coupled with an effective 

exchange constant Jeff ≈ 0.11 meV. Two low-lying magnetic excitations at ~ 0.09 meV 

and ~ 0.64 meV were identified by analyzing two Schottky anomalies in the specific 

heat data. Based on the theoretical prediction of the quantum rotational band model, 

the former excitation is assigned to the intraband energy gaps within the ground 

state levels, while the latter one to the interband splitting between the ground state 

and the first excited state levels. The inelastic neutron scattering measurements on 

{Mo72Fe30} gave no clear evidence for magnetic excitations due to the high 

background. The diffuse neutron scattering with polarization analysis on {Mo72Fe30} 

show clear short-range spin correlations. The spin correlations collected at 1.5 K 
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agree well with the simulations of the Fourier transform of the spin pair-correlation 

function using the three-sublattice spin configuration model. The spin correlations 

were found to be localized within individual molecules, which is reasonable for 

{Mo72Fe30} as a molecular magnet. A more general conclusion drawn from the present 

investigation is that the spin pair correlations depend only on the distance and the 

relative angle of the two spins in the spin pair if the vectors of the two spins can take 

any orientation whilst keeping a constant angle between them.  

  In conclusion, it is found that the three-sublattice model can explain the presented 

experiments well, in terms of both the magnetic excitations and spin correlations. The 

three-sublattice spin model is therefore a good approach to the magnetic ground 

state of {Mo72Fe30}. 
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4.1    Introduction to {V15As6} 

 

  Single molecule magnets (SMMs) have attracted much attention because of their 

novel properties such as single-molecule hysteresis [8, 15] and quantum tunneling of 

the magnetization [12, 15, 16, 101]. Two of the best known examples are {Mn12} [102] 

and {Fe8} [12]. An important character of these systems is that they possess high spin 

ground state S = 10 and a potential energy barrier to the reorientation of the magnetic 

moment, which makes SMMs potential candidates for massive magnetic data storage. 

Besides the high-spin SMMs, the polyoxovanadate compound 

K6[V15As6O42(H2O)]·8H2O [103], {V15As6} for short, exhibits also magnetization 

hysteresis behavior of purely molecular origin and quantum tunneling but with an 

low-spin S = 1/2 ground state and no evident potential energy barrier to the 

reorientation of the magnetic moment [104]. {V15As6} possesses interesting magnetic 

and electronic properties and potential use for quantum computing [23].  

 

4.1.1    Three‐spin Approximation of {V15As6} 

  The {V15As6} compound crystallizes in trigonal crystal system with space group 

R 3 c and lattice parameters a = 14.029 Å, α = 79.26˚ and Vcell = 2632 Å3 [103]. Each 

unit cell contains two V15 clusters and the magnetic interaction between the spins of 

near-neighbor clusters is negligible. The ball-and-stick representation of {V15As6} is 

shown in Figure 4-1-1 [23]. The 15 V4+ ions of spin S = 1/2 form a quasi-spherical 

structure with layers of different magnetizations: a large central V3 equilateral spin 

triangle is sandwiched by two smaller V6 nonplanar hexagons [23, 103]. The 15 spins 

are coupled by antiferromagnetic superexchange interaction through different 

pathways [23, 104, 105-108].  

In principle, the discussion on this molecule should be addressed to all 15 spins 

(Hilbert space dimension: 215). However, considerable simplifications can be made. 

In a first static approximation, the couplings between the central spin triangle and 

the hexagons cancel each other due to the strong spin frustration in the molecule 

[109]. The two V6 hexagons are rather stiff due to the large antiferromagnetic 

exchange interactions, which are large enough to exclude a significant contribution of 

the hexagons to the net magnetism even at comparably high temperature [23]. The 

magnetic properties of {V15As6} are therefore governed by the central, equilateral V3 
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triangle, i.e., the so-called three spin model of {V15As6}. 

 

 

Figure 4-1-1 Left: Ball-and-stick representation of {V15As6} (green, V; light blue, As; 

red, O). The central V3 triangle is highlighted by green area. Right: Sketch map of the 

V4+ spin arrangement at low temperatures with various exchange constants. The 

strongly coupled spin pairs in hexagons are highlighted by yellow lines. [Picture 

taken from P. Kögerler, B. Tsukerblat and A. Müller, Dalton Trans. 39 (2010) 21] 

 

  In this model, each spin hexagon consists of three strongly coupled spin pairs with 

exchange constant J ~ -800 K. The spin pairs are coupled to each other with exchange 

constant J' ~ -150 K. The three spins on the central triangle are weakly and indirectly 

coupled to each other, in the sense that each spin of the central triangle is coupled to 

the two nearest spin pairs (one from the upper hexagon and the other from the lower 

hexagon) with exchange constants J1 ~ -150 K and J2 ~ -300 K. This means the 15 spins 

can be divided into three five-spin groups with a resultant spin S = 1/2 for each 

group. Hence in fact, the three-spin model involves all 15 spins and therefore the 

Hilbert space dimension remains 215, instead of 23 for the system with three spins. 

The exchange constants are shown in the right panel of Figure 4-1-1 [110].  

  The three-spin model was proposed to describe the low-temperature spin model of 

{V15As6}, and successfully predicted the low-lying magnetic excitation spectrum [110]. 

The ground state involves two spin doublet states (S = 1/2) slightly shifted from each 

other by slight deviations from the trigonal symmetry of the cluster [106], and a spin 

quartet excited state (S = 3/2), as shown in Figure 4-1-2 (a). These low-lying states 
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are well isolated from the remaining quasi-continuum of spin levels above the S = 

3/2 excited state, as shown in Figure 4-1-2 (b). 

The symmetry lowering of the cluster lifts the degeneracy of the spin doublet 

ground state (S = 1/2) leading to a first order zero-field splitting Δ0 (plus small 

second order correction) [32, 105-108]. And the splitting in the quartet excited state (S 

= 3/2) belongs to a second-order effect caused by mixing S = 3/2 and S = 1/2 spin 

multiplets. Figure 4-1-2 (a) shows the Zeeman effect to these two low-lying states 

[23].  

 

 

Figure 4-1-2 (a) Field dependence of the splitting of the magnetic sublevels. Δ0 

indicates the splitting of the two ground-state doublets; Δ is the energy gap between 

the S = 1/2 ground state and the low-lying excited state; (b) Zero-field energy 

pattern of {V15As6} as a function of the total spin S. The ground state (S = 1/2) and 

the low-lying excited state (S = 3/2) are indicated in the box. [Pictures taken from P. 

Kögerler, B. Tsukerblat and A. Müller, Dalton Trans. 39 (2010) 21; B. Tsukerblat, A. 

Tarantul and A. Müller, Physics Letters A 353 (2006) 48] 

 

The novel magnetic structure of {V15As6} has resulted in more than 60 publications 

of both experimental and theoretical aspects. The staircase-like feature of the 

adiabatic magnetization vs. applied in-plane field at low temperatures has been well 

explained by the three-spin model of {V15As6} [111]. Quantum oscillations have been 

observed from {V15As6}, suggesting that {V15As6} could be a promising candidate to 

study the quantum coherence and a possible model system to investigate quantum 

information processing [32]. Inelastic neutron scattering measurements observed 
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several field-dependent transitions and provided a comprehensive understanding of 

the low-lying spin states, which showed that the zero-field splitting between the S = 

1/2 ground state doublet is due to the symmetry lowering of the cluster [106, 112], 

rather than the Dzyaloshinskii-Moriya (DM) interactions [113].  

 

4.1.2    Motivation 

  Besides being a promising candidate to study quantum tunneling or quantum 

coherence at nanoscale, {V15As6} also represents a quantum model for geometrical 

frustration at the molecular level. However, small irregularities (scalene distortion in 

this case) remove part of the frustration and result in a stabilized ground-state with a 

gap. The three-spin model has been established to approach the magnetic ground 

state of {V15As6}, and been supported by extensive experimental studies, including 

static magnetic susceptibility [110, 114], EPR [108, 115, 116], inelastic neutron 

scattering [106, 112, 117], and so on [23]. But no specific heat on {V15As6} has been 

reported. In this chapter, I present the low-temperature field-dependent specific heat 

measurements on nondeuterated {V15As6} to identify the low-lying spin states, and 

polarized neutron scattering measurements to study the spin correlations of 

deuterated {V15As6}.  

 

 

4.2    Magnetic Properties of {V15As6} 

   

The magnetic susceptibility of {V15As6} was measured using a Superconducting 

Quantum Interference Device (SQUID) magnetometer. Figure 4-2-1 shows the molar 

magnetic susceptibility M/H and the inverse susceptibility of {V15As6} measured 

from 2 K to 300 K under a probing field of 500 Oe. As expected, there is no magnetic 

phase transition within the investigated temperature range. At high temperatures 

around 300 K, the inverse susceptibility doesn’t follow the Curie-Weiss law, 

suggesting that strong spin coupling persists upon warming the sample to room 

temperature. This is consistent with the strong coupling (J ≈ -800 K) found between 

the spin pairs in hexagons [114, 118].  
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Figure 4-2-1 Magnetic susceptibility M/H and inverse susceptibility of {V15As6} 

measured with a probing field of H = 500 Oe. 
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Figure 4-2-2 Temperature dependence of the effective moment of {V15As6}. 
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  Figure 4-2-2 shows the temperature dependence of the effective moment of 

{V15As6}, which is calculated in terms of Eq. (3.2.2). The effective moment of {V15As6} 

keeps increasing to ~ 3.8 μB upon warming to 300 K, while the effective moment of 15 

noninteracting V4+ spins (S = 1/2) is 6.7 μB. This indicates that strong 

antiferromagnetic coupling persists until at least room temperature. The effective 

moment increases sharply as temperature increases from 2 K to 20 K, and then meets 

a plateau at ~ 2.9 μB. This is consistent with the three-spin model because the three 

spins on the central triangle are weakly coupled (J0 = -2.5 K [104]) at low temperature 

and decoupled at high temperature.  

 

 

4.3    Specific Heat of {V15As6} 

   

The heat capacity of {V15As6} has been determined by means of the method as 

described in Section 3.3. A small plate-like crystal with a flat surface and of about 1 

mg was used in the heat capacity measurements.  

  The temperature dependence of the specific heat under zero external magnetic 

field is plotted in Figure 4-3-1 within the temperature range 70 mK to 260 K. There is 

no long-range magnetic phase transition within the investigated temperature range, 

which is expectable for {V15As6} as a molecular magnet. For the sake of clarity, the 

data are also plotted in log-log scale in the inset of Figure 4-3-1. Obviously, there are 

two humps at ~ 0.1 K and ~ 1.5 K respectively, which are of Schottky-like shape and 

may reflect the low-lying magnetic excitations of {V15As6}.  

Lacking of a non-magnetic reference, the lattice specific heat of {V15As6} cannot be 

determined precisely. The following discussion will focus on the low-temperature (T 

< 6 K) region, where the low-lying magnetic excitations locate and the lattice specific 

heat is insignificant. In order to study the magnetic specific heat, the measurements 

were performed at various fields of 0, 0.05, 0.5, and 8 Tesla. The field-dependent 

molar specific heat of {V15As6} is shown in Figure 4-3-2. 
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Figure 4-3-1 Temperature dependence of the specific heat of {V15As6} under zero 

external magnetic field. Inset: data in log-log scale. 

 

  As shown in Figure 4-3-2, there are two humps below 3 K under external fields of 

0, 0.05 and 0.5 Tesla. Both humps change with the external fields, indicative of the 

magnetic origin of them.  

The lattice contribution to the total specific heat within the temperature range 70 

mK to 6 K is described by one Debye term with cubic dependence on temperature, 

which is 

                               
3

D
Debye 3

D

234
=

r T
C R

Θ
.                     (4.3.1) 

In Eq. (4.3.1), R is the gas constant, ΘD is the Debye temperature, rD is the number of 

atoms per molecule and is taken as 80 for {V15As6}.  

The two magnetic humps are fitted with the Schottky model for multi-level 

systems, since both the three-spin model (see Figure 4-1-2 (a)) [23] and the inelastic 

neutron scattering [106, 112] show that the magnetic excitation spectrum of {V15As6} 

is described by discrete spin levels. The multi-level Schottky term has already been 

derived in Chapter 3 (see Eq. 3.3.7) as the following form, 



4.3 Specific Heat of {V15As6} 

89 
 

      
( ) ( ) ( )

( )

2
2

B B B

Sch 22 2
B

B

exp / exp / exp /

exp /

i i i i i
i i i

i
i

k T k T k T
RC
k T

k T

ε ε ε ε ε

ε

⎡ ⎤
− − − −⎢ ⎥⎣ ⎦=

⎡ ⎤
−⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑
,  (4.3.2) 

where εi is the energy of spin level i. Two multi-level Schottky terms are used in the 

fit to account for the two magnetic humps, respectively. 

Based on the energy spectrum (Figure 4-1-2 (a)) predicted for the three-spin model, 

it is straight to assign the hump at ~ 0.1 K to the intraband Schottky effect of the 

ground state and the one at ~ 1.5 K to the interband Schottky effect between the 

ground state and the first excited state. A detailed description of the fitting procedure 

applied to the data for every field is given below: 

A. Data for zero external field. The hump at ~ 1.5 K is fitted with one energy gap   

(Δ4). And the hump at ~ 0.1 K is fitted with two energy gaps (Δ0 and Δ1), which 

was supposed to be fitted with one energy gap according to the energy spectrum. 

But as shown in Figure 4-3-3, the fit with two gaps to the hump at ~ 0.1 K is 

much better than the one with only one gap. The discussion to this result will be 

given latter.  

B. Data for 0.05-Tesla external field. The hump at ~ 0.1 K is fitted with two gaps (Δ0 

and Δ1). The hump at ~ 1.5 K is fitted with one gap (Δ4), because the Zeeman 

splitting of the excited spin states is so small under 0.05 T that the fit is not able 

to separate the different gaps between the ground state and the first excited 

state.  

C. Data for 0.5-Tesla external field. The hump at ~ 0.1 K is fitted with three gaps (Δ0, 

Δ2 and Δ3). The hump at ~ 1.5 K is also fitted with three gaps (Δ4, Δ5 and Δ6). 

D. Data for 8-Tesla external field. The broad hump above 3 K is fitted with two gaps 

of ~ 0.61 and ~ 2.08 meV, and a small one-gap (~ 0.11 meV) Schottky term is 

added to account for the magnetic heat capacity at ~ 0.3 K. But the fit to the 

8-Tesla data probably doesn’t reflect the nature of the Schottky anomalies 

because the energy spectrum is significantly disturbed by this large field and it is 

hard to decide the levels involving in the multi-level Schottky term. 
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Figure 4-3-2 Temperature dependence of the specific heat of {V15As6} under 0, 0.05, 

0.5 and 8 Tesla. Lines: corresponding total fits. Data and fitting curves are plotted in 

log-log scale. 
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Figure 4-3-3 Comparison of the two ways to fit the Schottky anomaly ~ 0.1 K. 

 

  The best fits according to the above rules A – D are plotted in Figure 4-3-2. The 

Debye temperatures obtained from all fits is 186 ± 20 K, which is actually hard to be 

determined precisely in the fit to the low temperature specific heat only. The main 

purpose of the analysis here is to study the low-lying magnetic excitations, and as 

shown in Figure 4-3-2, the two Schottky components in the fitting results are 

dominant and affected very little by the cubic phonon term. Thus I can safely carry 

out the analysis on the Schottky anomalies without a precise determination of the 

Debye temperature. The energy gaps obtained from the fits to the data of 0, 0.05 and 

0.5 Tesla are summarized in Table 4-3-1, along with those determined by INS 

measurements under the corresponding fields [106, 112]. As already discussed before, 

the Schottky anomalies at ~ 0.1 K in the data for 0 and 0.05 T are fitted with two 

energy gaps, namely Δ0 and Δ1 in Table 4-3-1. Δ0 is in quantitative agreement with 

the value of the splitting (~ 0.035 meV) between the ground-state spin doublets 

found in INS. However, the fit with a single gap (~ 0.035 meV) is inadequate to 
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reproduce the Schottky anomaly at ~ 0.1 K, as shown in Figure 4-3-3. Another gap Δ1 

must be involved to achieve a good fit. Δ1 is only about 0.016 meV, which is too low 

to be identified in the INS measurements due to the high background at small energy 

transfer. Actually even the gap Δ0 ~ 0.035 meV found in INS measurements was 

obtained by a subtracting procedure, whose accuracy was not good enough for a 

quantitative analysis [112]. When applying a 0.05 T external field, the ground state 

doublets should split because of the Zeeman effect. But the splitting under this field 

is so small that the fit of specific heat data cannot tell the fine structure of the Zeeman 

levels. The gap Δ0 obtained from 0.05 T data should be adopted as an average gap 

between the ground state doublets. As shown in Table 4-3-1, this gap remains almost 

the same up to 0.5 T within the accuracy of the fit, consistent with the energy 

spectrum in Figure 4-3-4. As to the gap Δ1, one possibility of its origin is the splitting 

of the lowest ground state doublet. But this cannot explain why Δ1 exists at zero 

external field. Another possibility is that the gap Δ1 could be an artifact introduced in 

the fit. As shown in Figure 4-3-2, though the specific heat has been measured down 

to 70 mK, I did not retrieve the complete low-temperature part of the Schottky 

anomaly at ~ 0.1 K under 0 and 0.05 T external field. The limit of the data could 

possibly lead to the gap Δ1 in the fit. Hence the gap Δ0 is assigned to the splitting of 

the ground-state spin doublets and the origin of the gap Δ1 remains unclear. 

 

Table 4-3-1 Energy gaps obtained from the fits to the specific heat (SH) data of 

{V15As6} under 0, 0.05 and 0.5 Tesla external magnetic field. The results of inelastic 

neutron scattering (INS) under the corresponding fields are listed for comparison. 

The details for INS results can be found in Refs. [106] and [112]. 

 

Gap 

Field  

Δ0 

(meV) 

Δ1 

(meV) 

Δ2 

(meV) 

Δ3 

(meV) 

Δ4 

(meV) 

Δ5 

(meV) 

Δ6 

(meV) 

0 

(T) 

SH 0.041(5) 0.015(3) -- -- 0.313(12) -- -- 

INS 0.035 -- -- -- 0.33 -- -- 

0.05 

(T) 

SH 0.039(4) 0.012(3) -- -- 0.310(11) -- -- 

INS -- -- -- -- -- -- -- 

0.5 

(T) 

SH 0.031(4) -- 0.070(8) 0.096(7) 0.287(13) 0.352(14) 0.480(20) 

INS -- -- 0.063 0.090 0.268 0.332 0.418 
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Figure 4-3-4 Low-lying energy spectrum of {V15As6} within the three-spin model and 

the Zeeman splitting of the spin levels. The assignment of the energy gaps obtained 

by specific heat measurements is indicated by the arrows. Insets: fine structures of 

the ground-state spin doublets and the excited spin quadruplets. 

 

As to the analysis on the specific heat data for 0.5 Tesla, the resultant energy gaps 

are basically consistent with those revealed by INS under 0.5 Tesla, except that INS 

did not detect the gap Δ0 between the ground-state spin doublets. The energy gaps 

obtained by the specific heat measurements are drawn in Figure 4-3-4. The energy 

spectrum in Figure 4-3-4 is based on the three-spin model [108, 119] and INS [106, 

112] results. It can be seen that the energy gaps obtained in specific heat 

measurements are consistent with both the theoretical prediction and the direct 

spectroscopic observation using INS method.  

As a summary of Section 4.3, the specific heat of {V15As6} was measured down to 

70 mK under 0, 0.05, 0.5 and 8 Tesla external magnetic field. By analyzing the 

multi-level Schottky anomalies in the specific heat data for various fields, several 

spin levels have been determined which are in agreement with the results of inelastic 

neutron scattering measurements and the three-spin model. Therefore the specific 

heat measurements on {V15As6} provide strong and complimentary support to the 

three-spin model for {V15As6}.
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4.4    Diffuse Neutron Scattering with Polarization Analysis on {V15As6} 

   

In order to get further insight into the nature of the spin model for {V15As6}, diffuse 

neutron scattering with polarization analysis was performed to measure the possible 

spin correlations in {V15As6}. But in this case, the spin correlations are difficult to 

measure because each V4+ ion is carrying S = 1/2 only. And as aforementioned in 

Section 4.2 the spin pairs in the V6 hexagons are strongly coupled with J ~ 800 K, 

which cause a loss of the magnetic scattering intensity even at room temperature. I 

cannot retrieve all the magnetic cross section by heating the sample to reach the pure 

paramagnetic phase, because heating {V15As6} will drive the crystal water molecules 

away and then alter the crystal structure or even the magnetism. Measurements 

below 2 K may have a chance to observe some spin correlations.  

 

4.4.1    Experimental Details 

  The {V15As6} polycrystals were synthesized according to the method described in 

Ref. [103]. The sample was deuterated to minimize attenuation and incoherent 

scattering from hydrogen atoms. 6 grams of sample was sealed in a copper holder in 

a helium atmosphere. Polarized neutron scattering measurements were carried out 

on the diffuse neutron scattering instrument DNS [95] at the FRM II research reactor. 

The measurements were performed with incident wave length 4.74 Å and 2.36 Å, 

using an orange-type liquid helium cryostat and a dilution cryostat, respectively. The 

nuclear coherent, spin-incoherent and magnetic scattering components were 

separated simultaneously with the xyz-polarization method in the spin-flip and 

non-spin-flip channels, as already described in Chapter 2 and Chapter 3. The flipping 

ratio correction was made by the reference measurements on a NiCr alloy. The 

background was measured from an empty sample can and subtracted from the raw 

data. A vanadium standard was measured to obtain the absolute scattering cross 

section of the sample.  

 

4.4.2    Experimental Results and Discussion 

  The polarized neutron scattering measurements were first performed on 

deuterated {V15As6} polycrystals at 1.8 K with incident wavelength of 4.74 Å. Figure 

4-4-1 shows the Q dependence of the nuclear coherent (black circles), spin-incoherent 
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(green circles) and magnetic scattering (red circles) components separated by means 

of xyz-polarization method. The Q range was covered from 0.23 to 2.3 Å-1. The nearly 

constant spin incoherent scattering intensity suggests a successful separation by 

xyz-polarization analysis. The magnetic scattering is rather weak, which is plotted in 

absolute unit in Figure 4-4-2.  
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Figure 4-4-1 Nuclear coherent (black circles), spin-incoherent (green circles) and 

magnetic (red circles) scattering components of {V15As6} at 1.8 K. 

 

As shown in Figure 4-4-2, there is no clear sign for any long-range or short-range 

magnetic order in {V15As6} at 1.8 K. The scattering profile basically reflects a 

paramagnetic form factor. The pure paramagnetic form factor of one free V4+ ion (S = 

1/2) is plotted in Figure 4-4-2 by the solid line, which is higher than the experimental 

scattering cross section per V4+ ion. The total differential magnetic cross section 

within the experimental energy window of DNS is determined by integration over 

the scattering vector Q range using Eq. (3.5.4). It is found that only 57% of the total 

magnetic cross section expected from the pure paramagnetic phase of {V15As6} has 

been observed at 1.8 K within the energy and Q window of DNS. The dashed line in 

Figure 4-4-2 represents the 57%-scaled paramagnetic form factor of V4+ [96], 

consistent with the measured magnetic differential cross section. 
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Figure 4-4-2 Magnetic scattering cross section in absolute unit at 1.8 K. Solid and 

dashed lines are the full and 57%-scaled pure paramagnetic form factor of V4+ ion, 

respectively. 

   

  In order to detect the spin correlations of {V15As6}, the polarized neutron scattering 

was then performed with shorter wavelength and at lower temperature using 

dilution cryostat. The upper panel of Figure 4-4-3 shows the nuclear coherent, 

spin-incoherent and magnetic components separated from the total scattering 

measured at 60 mK with incident wavelength 2.36 Å. Obviously a larger Q range is 

now accessible from 0.2 to 4.3 Å-1. The separation is not ideal probably due to the 

high background.  

The magnetic differential cross section at 60 mK in absolute unit is plotted in the 

lower panel of Figure 4-4-3, which is too noisy to analyze quantitatively. The 

relatively high intensity of magnetic scattering above 1.6 Å-1 is due to the imperfect 

separations caused by the strong nuclear coherent scattering at this Q range. But it is 

hard to tell whether there exist short-range spin correlations at 60 mK because of the 

limited quality of the data. Latter work on another sample at DNS showed that the 

instrument was not in good condition when working with wavelength 2.36 Å. This 

could be the reason for the bad quality of the data in this experiment. 
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Figure 4-4-3 Upper panel: nuclear coherent, spin-incoherent and magnetic 

components of {V15As6} at 60 mK. Lower panel: magnetic scattering cross section in 

absolute unit with pure paramagnetic form factor of V4+ ion. 

 

  In this section, the diffuse neutron scattering with polarization analysis on 

deuterated {V15As6} has been measured with 4.74 Å at 1.8 K, and with 2.36 Å at 60 

mK. No long-range or short-range magnetic order can be identified. The magnetic 

differential scattering cross section basically reflected the paramagnetic form factor of 

V4+, while the loss of magnetic cross section could be explained by the strong 

spin-pair coupling in the V6 hexagons in {V15As6} molecule. Besides the intrinsic 

weak magnetic scattering, the imperfect working condition of the instrument might 

have raised the background and then covered the spin correlations that were 
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supposed to be observed. 

 

 

4.5    Summary 

   

The magnetic properties and structure of {V15As6} has been investigated by 

magnetic susceptibility, specific heat and polarized neutron scattering. No 

long-range magnetic phase transition has been detected from room temperature 

down to 60 mK. The low-lying magnetic excitation spectrum determined by the 

specific heat study gave strong and complimentary support to the three-spin model 

of {V15As6}. No clear spin correlations have been observed in the polarized neutron 

scattering measurements. But the loss of magnetic scattering cross section suggested 

strong spin coupling in the system, consistent with the strong spin-pair couplings in 

V6 hexagons predicted by the three-spin model. Therefore, the present work supports 

that the three-spin model could be a good approach to the magnetic structure of 

{V15As6}. 
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5.1    Introduction 

   

Spin frustration, as an important concept in magnetism, plays the key role in many 

novel and interesting magnetic phenomina [37, 48, 120, 121]. In general, spin 

frustration occurs when the spin system cannot minimize its total energy by 

minimizing all the spin-pair interactions simultaneously. Spin-frustrated magnetic 

structures were first discovered and investigated six decades ago [38]. Two of the 

well-know spin-frustrated structures are the Ising model on the antiferromagnetic 

triangular lattice [43] and the Heisenberg helical structure [40, 122, 123]. However, 

spin-frustrated magnetic systems started to attract extensive attention about two 

decades later in the context of spin glasses [39, 124]. Spin glass is a fundamental and 

universal form of magnets, whose formative ingredients are belived to be spin 

frustration and disorder in the system [42]. Besides the long-range ordered ferro-, 

ferri-, and antiferro- magnetic phase, spin glass in frozen state constitutes a new state 

of co-operative or collective magnetism [42]. Great efforts have been dedicated to 

explore the fundamental science in the spin glass systems, because of the novel 

experimental phenomena and new theoretical concepts discoved. In spite of the 

experimental and theoretical accumulations for decades, the nature of the spin-glass 

transition and the spin-glass state is still controversial [125, 126]. A “pass” research 

topic it might be, spin glass remains an intriguing and challenging field for solid 

state physists. 

 

5.1.1    Brief Introduction to Spin Glasses and Pyrochlore Magnets 

What is a spin glass? There is no precise and universal definition for spin glass. A 

working definition can be cited from Ref. [42] as follows: “A spin glass is a random, 

mixed-interacting, magnetic system characterized by a random, yet co-operative, 

freezing of spins at a well-defined temperature Tf below which a highly irreversible, 

metastable frozen state occurs without the usual long-range spatial magnetic order”. 

And how to classify any material as a spin glass? A magnetic material could 

probably be a spin glass if it exhibits a collection of characteristic properties listed 

below [125, 127]. These properties will be discussed in the later sections of this 

chapter. 
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(i) In the low-field AC susceptibility measurements, a cusp appears at a 

spin-glass temperature Tf, which is dependent on the measuring frequency. 

(ii) In neutron scattering measurements below Tf, there is no magnetic Bragg 

scattering observed, demonstrating the absence of long-range magnetic order.  

(iii) In the field dependent magnetization measurements below Tf, a magnetic 

hysteresis loop can be observed. 

(iv) Irreversibility occurs. The temperature dependence of the zero-field-cooled 

(ZFC) and field-cooled (FC) magnetization split below Tf.  

(v) Below Tf, the remanent magnetization decays very slowly with time. 

(vi) The magnetization below Tf is history dependent in the sense that the 

sample possesses higher magnetization after a FC procedure than after a ZFC 

procedure, and slowly relaxes between these states upon field change.  

(vii) In the magnetic specific heat, there is no sharp anomaly at Tf. A broad peak 

exists at around 1.3 Tf. 

(viii) Aging effect and nonresonant hole-burning (NSHB) [128, 129]. 

  In order to create a spin glass phase, two essential prerequisites must be fulfilled 

[42]. The first one is disorder, which can be either site disorder with a distribution of 

distances between the magnetic ions, or bond disorder with varying 

nearest-neighbor interactions. The second one is frustration, which creates a 

degenerate, metastable frozen ground state for a spin glass.  

  The first examples of spin glass were discovered in the family of dilute alloys of 3d 

transition metal impurities in a noble metal, including the well-known archetypal 

systems of CuMn and AuFe [130, 131]. These site-random metallic spin glasses are 

also called canonical spin glass, where non-magnetic metal dissolves the magnetic 

element such as Mn, Fe, Eu, etc, introducing a random apportionment of distances 

between the magnetic species. Together with the oscillating 

Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, spin glass transition occurs, 

which makes positional disorder the basic and first ingredient of a potential spin 

glass. As to magnetic frustration, it alone is not sufficient to generate a spin glass 

state. Just consider an antiferromagnetic triangular lattice. It is spin frustrated, but 

doesn’t exhibit co-operative freezing transition. Therefore frustration has to be 

accompanied with disorder to generate a spin glass, while disorder is believed to be 

the basic requirement for the spin glasses [42]. 

  In contrast to the above conventional wisdom about spin glass, some pyrochlore 
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magnets seemly exhibit spin-glass-like behaviors without obvious chemical disorder 

[132-136]. The so-called pyrochlore lattice is a network of corner-sharing tetrahedra, 

as discussed in Section 1.2. When antiferromagnetism is combined with magnetic 

pyrochlores, geometrical magnetic frustration is often expected from these 

tetrahedra-based structures and leads to unusual physical properties, attracting 

intensive research interest [137]. The antiferromagnetism on pyrochlore lattice was 

first considered by P. W. Anderson, who predicted high ground-state degeneracy 

and no long-range order at any temperature for Ising spins [138]. J. Villain made 

basically the same conclusion for the Heisenberg spin case [139]. The best-studied 

family of pyrochlore magnets by now is the cubic pyrochlore oxides with a general 

chemical formula A2B2O7 [137], which have dominated much of the literature due to 

a wide variety of interesting, unusual ground states observed, such as spin glasses 

[132, 133, 140], spin liquids [141-143], and spin ices [144, 145]. Of particular interest is 

the exploration of magnetic monopole excitations in the spin-ice material Ho2Ti2O7 

[146-149]. Furthermore, it is a somewhat surprising result that spin-glass-like 

behavior has been observed in a few examples of pyrochlore magnets which are 

periodic, chemically ordered within the sensitivity of diffraction methods while the 

received wisdom generally assume that the formation of a spin-glass phase requires 

chemical disorder in addition to competing (or frustrated) interactions [42, 125, 

132-136, 150]. The origin of this spin-glass-like behavior in some magnetic 

pyrochlores has been the subject of an intense debate and is still not completely 

understood [151, 152]. It was found that quantum fluctuations in the spin 

interactions play an important role in this glassy behavior [153-156]. On the other 

hand, although little evidence for site disorder among the cations or for significant 

vacancy concentrations on the oxygen sites was found in the spin-glass pyrochlore 

Y2Mo2O7 [157, 158], a subtle nonrandom distortion of the Mo sublattice was revealed 

by means of X-ray-absorption fine-structure (XAFS) measurement and nuclear 

magnetic resonance (NMR) investigation, which could lead to the spin-glass-like 

behavior in this material [159, 160]. Recently, J. E. Greedan et al. reported the neutron 

diffraction and neutron pair distribution function (NPDF) analysis on Y2Mo2O7 and 

found that the principal source of disorder is associated with the Y-O1 atom pairs 

rather than the Mo-Mo pairs, in disagreement with the result of XAFS measurement 

[161].  
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5.1.2    Introduction to Pyrochlore Antiferromagnet Na3Co(CO3)2Cl 

  Recently, a new spin-frustrated compound Na3Co(CO3)2Cl was discovered whose 

structure features a three-dimensional anionic backbone of Co2+ carbonate that 

accommodates the sodium and chloride ions (see Figure 5-1-1 (a)). Magnetic Co2+ 

ions are located at the corners of a network of corner-sharing tetrahedra, i.e., 

pyrochlore lattice, as shown in Figure 5-1-1 (b). The nearest-neighboring Co2+ ions 

are antiferromagnetically coupled, which leads to a high degree of magnetic 

frustration (see Sections 5.3 and 5.6). In Figure 5-1-1 (c), the nearest-neighboring Co2+ 

ions are drawn together with the -O-C-O- bridges between them. All the -O-C-O- 

bridges are identical, indicative of a single exchange constant J between the nearest 

neighboring Co2+ ions. 

The synthesis procedures of Na3Co(CO3)2Cl are summarized as follows. A mixture 

of CoCl2·6H2O (5.9 g, 0.025 mol), 1,10-phenanthroline (10.0 g, 0.05 mol), Na2CO3 (2.5 g, 

0.025 mol), ethanol (72 mL) and water (6 mL) were stirred in the air for 10 min and 

then transferred to a 110 mL Teflon-lined autoclave, which was heated to 160 oC for 

96 h, followed by cooling to room temperature with a rate of 5 oC/h. The resulting 

pink polycrystalline products were washed by large amount of ethanol/water, 

yielding 3.0 g (85 %). Elemental analysis showed very little contaminations by other 

transition metal ions (less than 0.01%). 

 

5.1.3    Motivations 

  Na3Co(CO3)2Cl is a new pyrochlore magnetic system that has never been studied 

before. As its predecessors in the family of magnetic pyrochlores, Na3Co(CO3)2Cl is 

expected to possess novel magnetic properties. A thorough study on Na3Co(CO3)2Cl 

may extend the knowledge on the physics of pyrochlore magnets. In this chapter, the 

crystal and magnetic structure of Na3Co(CO3)2Cl is investigated in detail by means of 

various experimental techniques, including X-ray powder diffraction, neutron 

powder diffraction, DC and AC susceptibilities, specific heat, inelastic neutron 

scattering and diffuse neutron scattering with polarization analysis. Novel and 

interesting magnetic properties of Na3Co(CO3)2Cl will be presented in this chapter. 
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Figure 5-1-1 (a) Crystal structure of Na3Co(CO3)2Cl (Co: cyan spheres; Na: light gray 

spheres; O: red spheres; C: dark gray spheres; Cl: green spheres).  (b) Pyrochlore 

lattice of Co2+ ions (cyan spheres). The corner-sharing Co2+ tetrahedra are 

highlighted by red color. (c) One Co2+ tetrahedron with the -O-C-O- bridges between 

nearest neighbors. 
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5.2    X‐ray Powder Diffraction of Na3Co(CO3)2Cl 

   

X-ray single-crystal diffraction shows that Na3Co(CO3)2Cl crystallizes in cubic 

structure with space group F d 3  (#203) and lattice constant a = 13.9959(5) Å at 123 

K. The x-ray powder diffraction (XRPD) spectrum was measured to evaluate the 

purity of the powder sample synthesized for other measurements. The XRPD 

patterns were recorded on Huber diffractometer with Cu Kα1 radiation (30 - 40 kV, 10 

- 20 mA, λ = 1.54059 Å). Data were collected in steps of 0.005˚ over the range of 23˚ ≤ 

2θ ≤ 100˚ at 300 K. Structural parameters were determined from the Rietveld 

refinement [162] using the Fullprof suite [117]. The XRPD profiles were modeled 

using the Gaussian shape function. The refined parameters included scale factors, 

zero shifts, lattice constants, atomic positions, isotropic and anisotropic thermal 

parameters. Actually the refinement of the XRPD pattern with full isotropic model 

was as good as the present one. However when analyzing the neutron powder 

diffraction data (see Section 5.3), the use of anisotropic thermal parameters yielded a 

significantly better refinement than the one with full isotropic thermal parameters. 

The XRPD pattern of Na3Co(CO3)2Cl is shown in Figure 5-2-1, together with the 

calculated pattern and the difference between them.  

In the Rietveld refinement of crystal structure, the best agreement between the 

XRPD data and the structural model has been found with Co occupying the (16c: . .3 ) 

(0, 0, 0) site, Na (48f: 2..) (0.125, y, 0.125), O (96g: 1) (x, y, z), C (32e: .3.) (x+0.25, -x, 

x+0.25), and Cl (16d: . .3 ) (0.25, 0.25, 0.5). Co and C atoms were refined with an 

isotropic model for the thermal movement. The Na, O and Cl sites were modeled 

with anisotropic model using anisotropic atomic displacement parameters as: Na (u11, 

u22, u33, u12 = u23 = 0, u13), O (u11, u22, u33, u12, u23, u13), and Cl (u11 = u22 = u33, u12 = -u23, u12 

= -u13). The refined structural parameters are summarized in Table 5-5-1 in Section 

5.5. 

Rietveld refinement of the XRPD pattern confirmed that Na3Co(CO3)2Cl powder 

sample has a F d 3  (#203) space group with a = 14.0435(8) Å at room temperature. 

No additional reflections can be found, indicating a single phase of the sample. The 

analysis of XRPD data will be discussed in Section 5.5 combined with the neutron 

powder diffraction data. 
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Figure 5-2-1 Experimental (Obs), calculated (Cal) and difference (Obs-Cal) X-ray 

powder diffraction (XRPD) patterns obtained at 300 K with the Rietveld refinement. 
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5.3    Magnetic Measurements of Na3Co(CO3)2Cl 

   

For the first step to approach the novel magnetic behavior of Na3Co(CO3)2Cl, static 

and dynamic magnetic measurements were performed, as being presented in this 

section. 

 

5.3.1    DC Magnetization 

  The DC magnetization measurements were carried out using a Superconducting 

Quantum Interference Device (SQUID) magnetometer. Zero-field-cooled (ZFC) and 

field-cooled (FC) DC magnetization curves of Na3Co(CO3)2Cl were measured from 2 

K to 320 K under various probing fields. In a typical ZFC measurement, the sample 

was cooled down from room temperature without external magnetic field and then 

the magnetization was measured with a probing field. The FC magnetization data 

were collected while the sample was cooled down under an external field. Here M/H 

is defined as the DC susceptibility χdc. The temperature dependence of the ZFC 

susceptibility χdc(ZFC) and the FC susceptibility χdc(FC) is plotted in Figure 5-3-1 (a). The 

DC susceptibilities were measured with a probing field of 100 Oe. For the sake of 

clarity, the low-temperature part of the temperature dependence of the ZFC and FC 

susceptibilities is shown in Figure 5-3-1 (b).  
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Figure 5-3-1 (a) ZFC (blue circles) and FC (red circles) DC susceptibilities of 

Na3Co(CO3)2Cl within temperature ranging from 2 K to 320 K under a probing field 

of 100 Oe. (b) Low-temperature part (2 K < T < 30 K) of the temperature dependence 

of the susceptibilities. Ta: temperature of the maximum of the hump in the ZFC 

susceptibility at around 4 K; Tb: inflection temperature; Tirr: irreversibility 

temperature of the ZFC and FC susceptibility curves. Inset of (a): the temperature 

dependence of inverse susceptibility with the best fit of Curie-Weiss law (red line). 

Inset of (b): temperature dependence of the differential ZFC susceptibility.  
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As seen in Figure 5-3-1 (b), the ZFC and FC susceptibilities diverge below an 

irreversibility temperature Tirr ≈ 21.4 K. There is a hump in ZFC susceptibility at 

around 4 K whose peak temperature is defined as Ta. And an inflection temperature 

appears at Tb ≈ 17 K, which can be seen more clearly by the sharp dip in the 

temperature dependence of the differential ZFC susceptibility as plotted in the inset 

of Figure 5-3-1 (b). The origin of the kinks at Ta and Tb will be discussed later in this 

section.  

  The temperature dependence of the inverse ZFC susceptibility 1/χdc(ZFC) within the 

temperature range 2 to 320 K is shown in the inset of Figure 5-3-1 (a). The data above 

200 K can be well fitted by the Curie-Weiss law (red line), yielding a Curie-Weiss 

temperature ΘCW = -33.8 ± 5.2 K and a Curie constant C = 3.5 ± 0.6 emu·K/Oe/mol. 

The negative value of ΘCW shows dominant antiferromagnetic coupling between Co2+ 

ions. In a mean-field approximation with nearest-neighboring interactions only, the 

Curie constant and the Curie-Weiss temperature are given respectively [163], by 

                    
2

B

9
8 3
NC
k
μ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

eff  and CW
B

3 ( 1)
2 3
zJS S

k
Θ

⎡ ⎤+
= ⎢ ⎥

⎣ ⎦
.                (5.3.1) 

Here μeff is the effective moment of the Co2+ ion, J is the exchange constant among 

the nearest neighbors, and z is the number of nearest neighbors and is taken as 6. It is 

then estimated that μeff = 5.3 ± 0.4 μB and J = 0.26 ± 0.05 meV. 

The effective moment per Co2+ extracted from the DC susceptibility measurement 

exceeds the spin-only value of 3.87 μB for Co2+ in high spin state (S = 3/2), consistent 

with what has been reported in the literature [164, 165]. The excess magnetic moment 

of Co2+ above the theoretical prediction of the spin-only value is due to the 

spin-orbital coupling contribution as often reported for Co2+ ions in octahedral 

crystal field environments [164, 165]. 

  The divergence between the ZFC and FC susceptibilities is indicative of collective 

spin behaviors, such as spin glass, superparamagnet, cluster glass, etc. In order to 

determine the nature of the magnetism of Na3Co(CO3)2Cl, more magnetic 

measurements are needed. 
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Figure 5-3-2 ZFC (circles) and FC (squares) susceptibilities for various probing fields. 

Insets: temperature-dependent differential ZFC susceptibilities. 
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Figure 5-3-2 shows the temperature dependence of ZFC and FC susceptibilities 

under various probing fields. The kink at the inflection temperature Tb (~ 17 K) 

decreases and finally disappears with increasing probing fields. But this inflection 

temperature Tb is field-independent as shown in the insets of Figure 5-3-2. This 

inflection temperature Tb may reflect the onset of some kind of long-range collective 

behavior of the Co2+ spins. The hump at Ta (~ 4 K) in the ZFC susceptibility gradually 

shifts to lower temperature with increasing magnetic fields. In order to identify 

whether the hump at Ta is a spin-glass freezing temperature, the field dependence of 

Ta is investigated in terms of de Almeida-Thouless (AT) line [166]. Within the 

mean-field approximation, de Almeida and Thouless suggested a critical line in the 

plane spanned by the variables temperature and magnetic field for Ising spin glasses 

with infinite-range random interactions. The AT line can be observed near the 

freezing temperature and plausibly associates the onset of irreversibility of spin 

glasses on macroscopic time scales [150]. 

The AT line can be obtained by plotting the reduced temperature θa = Ta/Tc versus 

probing field H. Tc is the Curie temperature of the material, while for a spin-glass 

system Tc should be replaced by the zero-field spin-glass transition temperature Tg. 

The reduced temperature θa scales with H as the following expression [166], 

                                AT
a

g

1 nC H
T

θ ∝ − ⋅ .                        (5.3.2) 

Here CAT is a constant and Tg = 4.5 K (given later in the AC susceptibility results). 

The field dependence of the reduced temperature θa is plotted in Figure 5-3-3. The 

best fit with Eq. (5.3.2) yields n = 0.59 ± 0.05. In canonical spin glass systems the 

mean-field theory predicts n = 2/3 [166, 167], which is close to the n value given in 

our results. At a large field of 10000 Oe, a deviation from the AT-line is observed in 

Figure 5-3-3, in agreement with what has been reported that deviations from the 

AT-line may happen in some spin glasses under large magnetic fields [168, 169]. 
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Figure 5-3-3 Field dependence (black squares) of the reduced temperature θa 

obtained in ZFC susceptibilities under various probing fields. Red line: the best fit in 

terms of Eq. (5.3.2) (see text). 

   

The analysis of the field dependence of Ta shows that the hump at Ta probably 

stems from a spin-glass-like freezing process. Now the downshift of Ta with 

increasing magnetic fields makes sense because higher magnetic fields suppress the 

energy barriers and thus reduce the freezing temperature. The inflection temperature 

Tb shows no field dependence, which seems to be associated with a long-range 

collective magnetic behavior.  

  More insight into the magnetic phase of the frozen state of Na3Co(CO3)2Cl was 

obtained by measuring the field dependent magnetization M(H). The measurements 

were performed within the field range -7 T ≤ H ≤ 7 T at 2, 6 and 20 K after the sample 

was zero-field-cooled. All the curves have been measured first from 0 to 7 T, then 

from 7 T to -7 T, and finally from -7 T to 7 T. The low-field part of M(H) curves are 

shown in Figure 5-3-4 (a). The full M(H) profile at 2 K is shown in Figure 5-3-4 (b). 
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Figure 5-3-4 (a) Field-dependence of the magnetization M(H) of Na3Co(CO3)2Cl at 2 

K (red line), 6 K (blue line) and 20 K (green line). (b) M(H) at 2 K with H up to 7 T. 

 

  As shown in Figure 5-3-4 (a), the M(H) curve for 2 K (< Tg) exhibits a clear 

hysteresis loop, whose coercivity decreases with increasing temperature. At 6 K there 

still a little coercivity left. At 20 K the M(H) curve becomes linear. Lack of 

ferromagnetic long-range order, the hysteresis behavior at 2 K originates from the 

competition between the external magnetic field and the peculiar local anisotropy, 

which is expectable for spin glass systems below the freezing temperature. In Figure 

5-3-4 (b), the magnetization was measured up to 7 Tesla at 2 K. No saturation can be 
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obtained within the range of applied field. For a spin glass below freezing 

temperature, there are randomly-distributed energy barriers for rotating cluster 

moments away from their anisotropy-pinned frozen orientation. The external field 

has to overcome these energy barriers before the various clusters can align with 

respect to the field direction and reach the saturation of the spins [42]. Here the 

nonattainment of spin saturation, as well as the hysteretic magnetization at 2 K, is 

consistent with a spin-glass-like behavior in Na3Co(CO3)2Cl. 

Below the spin-glass freezing temperature Tg, the spin dynamics of a spin-glass 

system should be characterized by a non-equilibrium, highly irreversible, metastable 

frozen state rather than a conventional long-range magnetic order. As one of the 

most intriguing properties in spin glasses, non-equilibrium spin dynamics of 

spin-glass phase has been often studied by an age-dependence of the magnetic 

response, namely the so-called memory effects [170-174]. When the spin glass is 

cooled from a high temperature above Tg to a low temperature below Tg, the initial 

state is not thermodynamically stable and will relax to a more stable state with less 

susceptible equilibrium. This approach to more stable states depends strongly on the 

thermal history of the system within the spin-glass phase, which can be represented 

by the memory effect of magnetization. In a typical memory effect protocol, the 

sample is zero-field-cooled from room temperature (well above Tg) to the base 

temperature (2 K in this case), and then a small DC field h is applied and the 

reference ZFC magnetization is measured from the base temperature to room 

temperature. After switching off the DC field h, the sample is ZFC again from room 

temperature to a waiting temperature Tw (Tw < Tg), where the sample is kept for a 

waiting time tw. After this waiting time tw, the sample cooling is subsequently 

resumed down to the base temperature and then ZFC magnetization is measured 

again with DC field h from the base temperature to room temperature. During the 

isothermal holding time tw, the magnetization relaxes to a lower value due to the 

rearrangement of the spin orientations towards the more equilibrium state. The 

approach of the spin configuration to the equilibration at the holding temperature 

corresponds to the aging process of the spin-glass system. If the system is cooled 

further, new aging process starts (rejuvenation effect). But the previous aging process 

is “remembered” by the spin glass and retieved when the system is reheated. This 

phenomenon is known as memory effect.  

  The memory effect was observed in Na3Co(CO3)2Cl. Before measuring the memory 
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effect of Na3Co(CO3)2Cl, the SQUID magnetometer was digaussed and a zero field in 

sample position was achieved using the ultralow field option on SQUID. The lowest 

temperature which could be reached in my measurements was 2 K. It was hard to 

observe a full memory effect since the temperature interval between the base 

temperature and the spin-glass-like transition temperature Tg (~ 4.5 K) was rather 

small. So two waiting temperatures, 4.5 K and 5.5 K, were chosen to leave enough 

temperature interval on the low-temperature side of Tw. Following the 

aforementioned experimental procedures, the reference ZFC magnetization and the 

waiting curves with waiting temperatures 4.5 K and 5.5 K were collected with a DC 

field h = 100 Oe. The memory effect at these two waiting temperatures were 

evidenced by the difference curves between the reference and the waiting 

magnetization data, as shown by the red (Tw = 4.5 K) and blue (Tw = 5.5 K) lines in 

Figure 5-3-5. Another waiting curve was taken at Tw = 11 K for comparison, as 

shown by the black line in Figure 5-3-5. The waiting time in three waiting procedures 

is 3000 s.  
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Figure 5-3-5 Memory effect observed in the ZFC magnetization measurements of 

Na3Co(CO3)2Cl. The magnetization difference ΔM is plotted corresponding to three 

waiting temperatures, Tw = 11 K (black), 4.5 K (red) and 5.5 K (blue). 
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  As shown in Figure 5-3-5, the difference curves for Tw = 4.5 K (red line) and Tw = 

5.5 K (blue line) exhibit a dip at ~ 4.6 K and ~ 5.3 K, respectively. Taking into account 

the 0.25 K temperature step in the measurements, these two dips represent a clear 

memory phenomenon, which is due to the spontaneous arrangement of the magnetic 

moment configuration towards the more stable and less susceptible equilibrium 

when the system is kept unperturbed at constant temperature Tw. Observing 

memory phenomenon at Tw = 5.5 K may suggest that the spin freezing process 

already starts above Tg = 4.5 K, which is also consistent with the small hysteresis loop 

detected in the field dependence of magnetization at 6 K (see Figure 5-3-4 (a)). But at 

11 K there is definitely no memory effect observed because the difference curve for 

Tw = 11 K is basically flat. The major spin-glass freezing process should happen 

around Tg = 4.5 K, which is determined by AC susceptibility measurements (given in 

next section), since in Figure 5-3-5 the memory effect at ~ 4.5 K is more prominent 

(bigger dip) than that at ~ 5.5 K. Therefore the spin-glass phase of Na3Co(CO3)2Cl is 

more evidenced by the investigation of spin dynamics spanning the spin freezing 

temperature Tg in light of the memory effect, which was observed by retrieving the 

semi-equilibrated state due to the waiting procedure at constant temperature around 

the spin-glass freezing temperature. 

 

5.3.2    AC Susceptibility 

  Spin glass behavior is usually studied by the AC susceptibility and the spin-glass 

temperature can be accurately determined by the frequency dependence of real or 

imaginary components [42, 174]. AC susceptibility technique is espetially important 

for spin glasses, since the driving field hac can be sufficiently small (about a few 

Oersteds) and the magnetic susceptibility χ is measured by taking the derivative 

əM/əh at angular frequency ω varying over a rather large frequency range. The 

dynamics of spin glasses can accordingly be studied over a large time scale.  

  The AC susceptibility measurement of Na3Co(CO3)2Cl was performed with an AC 

amplitude of μ0hac = 10 Oe at the frequencies 25 ≤ f ≤ 104 Hz after ZFC from room 

temperature. The temperature dependence of the real component of the AC 

susceptibility χ′ at different frequencies is plotted in Figure 5-3-6. The inflection point 

in DC magnetization at Tb ≈ 17 K appears to be a peak in AC susceptibilities for all 

frequencies, and its peak position is frequency-independent, indicating this peak is 

not due to a spin-glass transition. The broad peak at around 4 K displays clear 
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frequency dispersion. The temperature Tm at the maximum of this broad peak shifts 

to higher values as the frequency increases. The spin-glass-like transition is then 

evidenced by fitting the frequency dependence of the peak temperature to a critical 

power law [42, 174, 175], 

                                * m

g

1
zv

T
T

τ τ
−

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
,                        (5.3.3) 

where τ = (2πf)-1, τ* is the relaxation time of individual particle moment, Tg is the static 

glassy transition temperature and zv is dynamic critical exponent. The best fit in 

terms of Eq. (5.3.3) is shown in the inset of Figure 5-3-6, yielding Tg = 4.5(4) K, τ* = 

10-10.7(5) s and zv = 8.4(6). For the sake of clarity, the inset of Figure 5-3-6 is plotted in 

the style of log(τ) vs. log(Tm/Tg-1). The value of zv holds good in the range between 4 

and 12 found in the spin glass materials [42, 175]. The value of relaxation time τ* = 

10-10.7(5) s locates also in the characteristic range, 10-8-10-12 s, usually derived for 

canonical spin glass [42, 175].  
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Figure 5-3-6 Temperature dependence of the real AC susceptibility component χ′ of 

Na3Co(CO3)2Cl with an AC amplitude hac = 10 Oe at frequencies 25 ≤ f ≤ 10000 Hz. 

The y-axis corresponds to the data of 25 Hz. In order to see the frequency 

dependence clearly, the data of other frequencies are scaled by multiplying a factor. 

Inset: frequency dependence of the freezing temperature Tm with the best power-law 

fit (red line). 
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Spin frustration is always expected from pyrochlore antiferromagnets [137]. The 

frustration parameter, f = |ΘCW|/Tg ≈ 7.7 [37], attributes Na3Co(CO3)2Cl to the family 

of spin frustrated magnets. 

Another important factor used for quantitatively characterizing a magnetic glassy 

transition is the frequency shift K, which gives the relative variation of the peak 

temperature Tm with the angular frequency ω and often offers a good criterion for 

distinguishing a canonical spin glass from a superparamagnet. The frequency shift K 

is defined as (ΔTm/Tm) per decade ω as follows [42, 174] 

                                 m

m

1
log
TK

T ω
Δ

=
Δ

.                        (5.3.4) 

Using Eq. (5.3.4), the frequency shift K of Na3Co(CO3)2Cl is estimated to be about 0.04, 

much smaller than the values for superparamagnets and close to those observed in 

spin glasses [42]. 

  Another way of presenting the AC susceptibility data is to illustrate the 

relaxation-time distribution using the so-called Cole-Cole or Argand representation, 

where the AC susceptibility data can be plotted in the complex plane as χ′ versus χ′′ 

[42, 174, 176, 177]. In the Cole-Cole model the complex AC susceptibility, χ = χ′ – i χ′′, 

is expressed as [177, 178] 

                             ( )
0

1( )
1

S
S

ci α

χ χχ ω χ
ωτ −

−
= +

+
,                    (5.3.5) 

where χ0 and χs are the isothermal (low frequency) and adiabatic (high frequency) 

susceptibilities, τc is the characteristic relaxation time and α reflects the 

polydispersivity of the system. In spin glass systems one expects values of α near to 1. 

Decomposing Eq. (5.3.5) into its real and imaginary parts, one has [179, 180] 

          0 sinh[(1 ) ln( )]( ) 1
2 cosh[(1 ) ln( )] cos[(1 / 2)(1 ) ]

S c
S

c

χ χ α ωτχ ω χ
α ωτ α π
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− + −⎝ ⎠

,      (5.3.6) 
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S

c

χ χ α πχ ω
α ωτ α π

⎛ ⎞− −′′ = ⎜ ⎟
− + −⎝ ⎠

,         (5.3.7) 

where ω = 2πf. Then the Cole-Cole plot, namely the imaginary part χ′′ as a function of 

the real part χ′, can be expressed in the following form [178, 181], 
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For a monodisperse ensemble of spin clusters with exactly one relaxation time, the 

Cole-Cole plot displays a semicircle with the center on the χ′ axis. But for spin glass 

systems, this semicircle is flattened to an arc shape due to the large distribution of 

relaxation times.  
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Figure 5-3-7 Cole-Cole plots of susceptibility χ′′ vs. χ′ for Na3Co(CO3)2Cl at 2.2 K (red 

circles), 3.2 K (blue squares) and 4.2 K (green triangles). The solid lines are the 

corresponding best fits with Eq. (5.3.8).  

 

  As shown in Figure 5-3-7, the Cole-Cole plots at 2.2 K, 3.2 K and 4.2 K are all 

flattened semicircles. As the temperature increases from 2.2 K to 4.2 K, namely 

approaches to the freezing temperature Tg, the Cole-Cole plot shifts upward and 

becomes more flattened, which is due to the strong polydispersivity and infinitely 

broad distribution of the relaxation times as T approaches Tg [42, 174]. The 

flattened-shape semicircles of the Cole-Cole plots indicate that Na3Co(CO3)2Cl is a 

spin-glass-like system rather than a superparamagnet. 

As a summary of Section 5.3, the static and dynamic magnetic properties of 

Na3Co(CO3)2Cl have been extensively investigated by means of DC and AC 

susceptibility measurements. Two kinks were found in the low-field susceptibility 

measurements at ~ 17 K and ~ 4 K respectively. The former one exhibits no 

frequency dependence in the AC susceptibility measurements and no field 

dependence in DC magnetization measurements, and thus is temporarily attributed 

to an onset temperature for a long-range collective magnetic behavior. As to the later 

one, various methods were employed to discover its nature. In DC magnetization 
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measurements, the field dependence of this peak follows the AT line, consistent with 

a spin-glass-like freezing. Clear hysteresis loop can be seen in the field dependence of 

magnetization at 2 K. Memory effect was observed around 4 K. In AC susceptibility 

measurements, the hump at ~ 4 K exhibits clear frequency dependence, which can be 

fitted with a critical power law. The obtained fitting parameters are consistent with 

the corresponding values of canonical spin-glass systems. The spin-glass-like 

transition temperature of Na3Co(CO3)2Cl is then determined to be Tg = 4.5(4) K. The 

value of frequency shift and the flattened-shape semicircles of the Cole-Cole plots 

indicates that the spin freezing at Tg is of spin-glass-like origin rather than a 

superparamagnetic blocking. Therefore Na3Co(CO3)2Cl is suggested to be a 

spin-glass-like system by the static and dynamic magnetic characterizations. 

 

 

5.4    Specific Heat of Na3Co(CO3)2Cl 

   

The specific heat of Na3Co(CO3)2Cl has been measured using a Quantum Design 

Physical Property Measurement System (PPMS) equipped with a liquid helium 

cryostat and a dilution cryostat. Relaxation method was applied to extract the heat 

capacity values [85, 86]. Unable to synthesize a crystal by now, Na3Co(CO3)2Cl 

powder was compressed with a load of 10 kbar pressure and a piece of compressed 

plate of 0.2 mm thickness and 1 mg mass was used for heat capacity measurements.  

  Figure 5-4-1 shows the temperature dependence of the specific heat measured 

from Na3Co(CO3)2Cl in zero external field within the temperature range 90 mK to 220 

K in linear-linear scale (a) and log-log scale (b). Without a non-magnetic reference 

material, it is difficult to determine the lattice specific heat precisely. However a 

simple Debye model may describe the lattice specific heat Clattice nicely as shown by 

the red line in Figure 5-4-1, which is expressed in the conventional form [87], 

                 ( )

3 4/
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e
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∫ ,                 (5.4.1) 

where s is the number of atoms per formula unit, R is the ideal gas constant, and ΘD 

is the Debye temperature. The best fit with the Debye model yields a Debye 

temperature of ΘD = 380 ± 20 K. 
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Figure 5-4-1 Temperature dependence of the specific heat of Na3Co(CO3)2Cl under 

zero external magnetic field with the best fit of a simple Debye model (red line) in 

linear-linear scale (a) and log-log scale (b). Inset of (a): the low temperature part (90 

mK to 19 K) of the specific heat. Blue line in (b): fit with the hyperfine interaction. (c) 

The low temperature part (90 mK to 19 K) of the magnetic specific heat at 0 T. 
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In order to see the low-temperature anomalies clearly, the total and magnetic 

specific heat below 19 K is plotted in the inset of Figure 5-4-1 (a) and Figure 5-4-1 (c), 

respectively. The magnetic specific heat is obtained by subtracting both the lattice 

contribution Clattice and the hyperfine contribution Chf (given below) from the total 

specific heat. The most striking features in this region are the hump at ~ 5 K and the 

sharp lambda-shape peak at 1.5 K. The hump at ~ 5 K should be due to the 

spin-glass-like transition at Tg = 4.5(4) K, since spin-glass systems normally exhibit a 

broad maximum in magnetic specific heat with the peak temperature Tmax ≈ 1.3 Tg 

[42]. In the specific heat of canonical spin glasses, the broad maximum above Tg 

shows a slow decrease with increasing temperature and an upward shift with 

increasing external field [42]. The total and magnetic specific heat of Na3Co(CO3)2Cl 

under various external magnetic fields is shown in Figure 5-4-2 (a) and (b), 

respectively. The hump at ~ 5 K shifts to higher temperature and smears out as 

external magnetic field increases, which is consistent with the behavior found in 

canonical spin glasses. The sharp peak at 1.5 K is attributed to a phase transition into 

long-range antiferromagnetic order. The Néel temperature of Na3Co(CO3)2Cl is then 

determined to be 1.5 K. Unfortunately, it is not applicable to carry out a precise fit to 

these two anomalies. First they are too close to be fitted separately. Second the hump 

at ~ 5 K associates to the spin-glass-like freezing of Co2+ spins so that a Schottky-type 

magnetic specific heat model is inappropriate since a probability distribution of 

energy splitting rather than several well-defined energy gaps, has to be considered 

for a spin glass [136, 182, 183]. 

Below 0.25 K, the specific heat of Na3Co(CO3)2Cl shows a clear upturn that can be 

attributed to the high-temperature tail of the theoretical hyperfine contribution due 

to the nonzero magnetic moments of 59Co nucleus. The hyperfine interaction gives 

rise to a Schottky specific heat anomaly with the high temperature tail given by [184] 

                            
( ) 2

n N hf
hf

B

1
3

I I g HC R
k T
μ+ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,                 (5.4.2) 

where I = 7/2 is the nuclear spin of 59Co with 100% natural abundance, gn is the 

nuclear g factor, μN is the nuclear magneton and Hhf is the effective hyperfine field. 

The fit using Eq. (5.4.2) was performed to the specific heat data below 0.25 K, where 

the hyperfine contribution became overwhelming as compared to the lattice and 

electronic spin contributions. The best fit is shown as the blue line in Figure 5-4-1 (b) 
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and yields an effective hyperfine field in Na3Co(CO3)2Cl, Hhf = 250(10) kOe. 
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Figure 5-4-2 Temperature dependence of the total (a) and magnetic (b) specific heat 

of Na3Co(CO3)2Cl under external fields of 0, 2, 4 and 6 Tesla.  

   

As shown in the inset of Figure 5-4-1 (a) and more clearly in Figure 5-4-1 (c), the 

specific heat of Na3Co(CO3)2Cl exhibits a very small hump at ~ 17 K, whose position 
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coincides with the inflection temperature observed in DC and AC susceptibility 

measurements. Again this small hump in specific heat is temporarily attributed to 

the onset of a long-range collective magnetic behavior in Na3Co(CO3)2Cl.  
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Figure 5-4-3 Magnetic entropy (black spheres) for Co2+ cations estimated by 

integrating Cm/T from 0.07 K to 35.5 K, along with the magnetic specific heat Cm (red 

spheres) at 0 T. Value of Rln(4) is indicated by the dashed line. Tg = 4.5 K is the 

spin-glass-like transition temperature. 

 

  The magnetic entropy at the spin-glass freezing temperature has been used to 

evaluate the frozen-in magnetic degrees of freedom [42]. The magnetic entropy Sm, as 

a function of temperature is shown in Figure 5-4-3, which can be expressed by the 

following thermodynamic relationship, 

                              
( )m

m 0
( )

T C T
S T dT

T
′

′=
′∫ ,                    (5.4.3) 

where Cm(T′) is the magnetic specific heat and obtained by subtracting the lattice 

specific heat Clattice and the hyperfine specific heat Chf from the total specific heat. At 

the spin-glass-like transition temperature Tg = 4.5 K, the magnetic entropy is ~ 3.3 J 

mol-1 K-1. Considering the total magnetic entropy Rln(4) = 11.5 J mol-1 K-1 expected for 

an S = 3/2 system, ~ 70% of the magnetic degrees of freedom are already frozen 
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above Tg. Only ~ 30% of the expected magnetic entropy is recovered at the freezing 

temperature, in agreement with the values for other canonical spin glasses [42]. 

  As a summary of this section, the specific heat studies on Na3Co(CO3)2Cl give the 

following results: (i) Likely, there is a long-range magnetic phase transition at 1.5 K; 

(ii) The nuclear hyperfine contribution to the specific heat was observed owing to the 

relatively large nuclear magnetic moment of 59Co in a appropriate hyperfine field; (iii) 

The possible onset of long-range spin collective behavior gives rise to a small hump 

at ~ 17 K; (iv) The broad maximum at ~ 5 K is associated with the spin-glass-like 

freezing process; (v) Only 30% of the total magnetic entropy has been recovered at 

the spin-glass-like freezing temperature Tg = 4.5 K, in agreement with the values 

obtained in canonical spin glasses. 

 

 

5.5    Neutron Powder Diffraction of Na3Co(CO3)2Cl 

   

In order to determine the crystal structure more precisely and detect possible 

defect structures, we performed neutron powder diffraction (NPD) measurements on 

Na3Co(CO3)2Cl. Neutron powder diffraction data for the refinement of the crystal 

structure were collected on the high-resolution diffractometer SPODI [185] at FRM II 

research reactor (Garching, Germany). A Ge (551) monochromator was used to 

produce a monochromatic neutron beam of wavelength 1.5483(7) Å. The 

Na3Co(CO3)2Cl sample in powder form was filled in a thin-wall vanadium container 

and then mounted in top-loading closed-cycle refrigerator. Collection of neutron 

powder diffraction data was performed at various temperatures of 3.7, 6, 12, 14, 16, 

30, 50, 100, 150, 200, 250, and 300 K. The Fullprof package [117] was used for the 

Rietveld refinement [162] of the crystal structure of Na3Co(CO3)2Cl. The experimental 

NPD patterns (black circles) for 3.7 K and 30 K are shown in Figure 5-5-1 (a) and (b), 

respectively, together with the Bragg positions (green short lines), the calculated 

patterns (red lines) and the differences (blue lines) between the experimental and 

calculated patterns. The difference profile obtained by subtracting the experimental 

pattern for 3.7 K from the one for 30 K is plotted as the black line shown in Figure 

5-5-1 (c).  
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Figure 5-5-1 Experimental (Yobs), calculated (Ycalc) and difference (Yobs-Ycalc) 

neutron powder diffraction (NPD) patterns obtained at 3.7 K (a) and 30 K (b) with 

the Rietveld refinement. The green short lines indicate the positions of the Bragg 

reflections. (c) Difference pattern between the data for 3.7 and 30 K. 
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As shown in Figure 5-5-1 (a) and (b), the calculated patterns are in good agreement 

with the experimental ones. From the difference (black line in Figure 5-5-1 (c)) of the 

experimental data for 3.7 K and 30 K, there is no sign for any long-range or 

short-range magnetic order existing between these two temperatures. The absence of 

long-range magnetic order above 3.7 K is expected since the spins freeze randomly 

when crossing the spin-glass transition temperature Tg = 4.5 K [42, 150]. And the 

inflection temperature Tb = 17 K is thus confirmed not to be the onset of long-range 

magnetic order. The present NPD experiment could not be performed below 1.5 K, 

where a long-range magnetic phase transition is indicated in specific heat data. The 

long-range magnetic order of Na3Co(CO3)2Cl at 1.5 K will be discussed in Section 5.6. 

The NPD measurements show no indication of short-range spin order either because 

the short-range spin correlations might be too weak to be separated from the 

background (see Section 5.6). Note that as shown in Figure 5-5-1 (a) and (b), the 

background increases at low angles, just where magnetic scattering could be visible 

due to the form factor behavior. Showing no trace for magnetic scattering, the 

analysis of neutron powder diffraction data was focused on the determination of the 

average crystal structure of Na3Co(CO3)2Cl. 

  In the Rietveld refinement of crystal structure, the best agreement between the 

NPD data and the structural model has been found when Co has been modeled 

occupying (16c: . .3 ) (0, 0, 0) site, C occupying (32e: .3.) (x+0.25, -x, x+0.25), Cl 

occupying (16d: . .3 ) (0.25, 0.25, 0.5), O occupying (96g: 1) (x, y, z) and Na occupying 

(48f: 2..) (0.125, y, 0.125). The occupancies of all atoms are set to 1, because the change 

of occupation numbers is less than 10% if they are refined. Considering the 

experimental accuracy, all the atomic sites are refined with full occupation. Though 

Co sublattice displays a fully ordered pyrochlore, displacement on Na sites is 

obvious in the sense that the y position slightly deviates from -0.125 as expected for 

the ordered phase. The Co and C atoms are refined with isotropic model. Use of 

anisotropic atomic displacement parameters (ADP) on Na, O and Cl sites results in a 

significant improvement of the residuals of the refinement, especially at higher 

temperatures. The best fits to NPD patterns for 3.7 K, 30 K and 300 K are obtained 

with structure parameters and the reliability factors listed in Table 5-5-1, where the 

corresponding parameters for XRPD at 300 K (see Section 5.2) are also given for 

comparison. Due to symmetry constraints, the anisotropic atomic displacement 

parameters for Na, O and Cl sites were modeled as: Na (u11, u22, u33, u12 = u23 = 0, u13), 
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O (u11, u22, u33, u12, u23, u13), and Cl (u11 = u22 = u33, u12 = -u23, u12 = -u13). The refined 

isotropic and anisotropic atomic displacement factors for the NPD measurements at 

all 12 temperatures are listed in Table 5-5-2 (a), (b). Figure 5-5-2 (a)-(c) illustrate the 

crystal structure in a-b, b-c and a-c planes with thermal-motion probability ellipsoids, 

which are derived from anisotropic temperature factor parameters. In Figure 5-5-3, 

the refined isotropic and anisotropic atomic displacement factors are plotted as a 

function of temperature.  

 

(a)                                     (b) 
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Figure 5-5-2 Crystal structure in a-b, b-c and a-c planes with thermal-motion 

probability ellipsoids, according to the obtained anisotropic atomic displacement 

parameters. 
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Figure 5-5-3 Temperature dependence of the refined isotropic and anisotropic 

atomic displacement factors of Na3Co(CO3)2Cl. Lines are just guides to the eye.  

 

The anisotropic temperature factors can indicate static disorder, an essential 

ingredient for the spin glass behavior apart from magnetic frustration. At the lowest 

temperature the sequence of mean atomic displacement factors follows ueq(Na) ≥ 

ueq(Cl) ≥ ueq(C) ≥ ueq(Co), whilst the weight of constituents in Na3Co(CO3)2Cl (usually 

inversely proportional to the mean amplitude of thermal vibrations) reads as mNa < 

mC < mCl < mCo, which might indicate some static atomic disorder on chlorine site. 

In Figure 5-5-4 the temperature dependence of the volume of the unit cell is 

plotted and it is modeled following the Grüneisen approximation for the zero 

pressure state, where the effects of thermal expansion are considered to be equivalent 

to elastic strain [186]. The temperature dependence of the volume of unit cell can be 

expressed as V(T) = γU(T)/K0 + V0, where γ is Grüneisen parameter, K0 is the bulk 

modulus and V0 is the hypothetical cell volume at 0 K. The internal energy U(T) is 

given under the Debye approximation by 

                      D
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where N is the number of atoms per unit cell, kB is the Boltzmann constant and θD is 

the Debye temperature. The best fit to the data yields γ/K0 = (1.88 ± 0.03) × 10-9 Pa-1, 
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θD = 394.6 ± 3.5 K, V0 = 2737.99 ± 0.02 Å3.  
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Figure 5-5-4 Temperature dependence of the unit cell volume of Na3Co(CO3)2Cl. The 

red line is the best fit with the Debye model as described in the text. 

 

As shown in Figure 5-5-4, no discontinuity can be seen in the temperature 

dependence of cell volume, indicative of no crystallographic phase transition over 

the investigated temperature range within the resolution of the present NPD 

experiments.  

  The positional displacement on Na sites can be interpreted with the local crystal 

environment of Na atoms. Each Na atom is surrounded by four oxygen atoms and 

two chlorine atoms. In Figure 5-5-5, the displacement of Na atomic position obtained 

from the refinement is shown as the orange sphere, while the Na position in ordered 

phase is shown as the gray sphere. The Na atom is “dragged” from the 

ordered-phase position towards the chlorine atoms. This is reasonable since chlorine 

anions possess more electron affinity than oxygen anions and therefore Na cations 

are attracted more by the chlorine anions, resulting in a positional displacement on 

Na sites. How this displacement influence the magnetism of Na3Co(CO3)2Cl is not 

clear. This displacement appears to be an average effect as discovered by the present 

NPD investigation. It could introduce fluctuations to the bond distances and serve as 

another important ingredient (i.e., disorder) of the spin-glass-like transition in 

Na3Co(CO3)2Cl, in addition to the spin frustration. But the determination of the 
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average crystal structure presented in this section cannot provide evidence for such 

disorder, which has to be identified by means of local probing methods, such as 

extended x-ray-absorption fine structure (EXAFS), nuclear magnetic resonance 

(NMR), and neutron pair distribution function (NPDF) analysis. 

 

 

Figure 5-5-5 Local crystal environment of Na atom. Red spheres: O atoms; Green 

spheres: Cl atoms; Orange sphere: shifted Na position obtained from the refinement; 

Gray sphere: Na position in the ordered phase. The atomic distances are given in 

unit of Å. 

 

  As a summary to this section, the average crystallographic structure of 

Na3Co(CO3)2Cl has been determined. No evidence for long-range magnetic order can 

be seen in the neutron powder diffraction measurements from room temperature 

down to 3.7 K, consistent with the spin-glass-like transition at Tg = 4.5 K. Excellent 

refinements to the data have been obtained without introducing any magnetic 

contribution. Though Co sublattice displays a fully ordered phase, positional shift 

has been detected on Na sites, which could possibly lead to fluctuations in bond 

distances and trigger the spin-glass-like behavior in this system. But this possible 

disorder in bond distances requires hard proof from local probing experiments. 

Possible static atomic disorder could also exist on chlorine site. Within the 

experimental resolution of the present NPD measurements, no change in the crystal 

structure has been found below and above 17 K. This suggests that the anomaly at 17 



Chapter 5. Spin-frustrated Pyrochlore Antiferromagnet Na3Co(CO3)2Cl 

132 
 

K in magnetic susceptibility and heat capacity measurements might not be due to 

additional effects such as orbital order. But more experiments are needed to confirm 

this. 

 

 

 

Table 5-5-1 Lattice parameters and reliability factors as determined by Rietveld 

refinements of the neutron powder diffraction (NPD) data at 3.7, 30 and 300 K, and 

the X-ray powder diffraction (XRPD) data at 300 K (see Section 5.2). The error bars 

are statistical errors given by the Fullprof program. The bound coherent scattering 

length for the elements in Na3Co(CO3)2Cl are: bNa = 3.63 fm, bCo = 2.49 fm, bC = 6.646 

fm, bO = 5.803 fm, bCl = 9.577 fm [187].  

 

 

 

 

 

 

 

   NPD   XRPD 

 3.7 K 30 K 300 K 300 K 

a=b=c (Å) 13.9898(1) 13.9898(3) 14.0433(1) 14.0435(8) 

α=β=γ (Å) 90 90 90 90 

V (Å3) 2738.011(21) 2738.011(22) 2769.551(29) 2769.705(26) 

Na y/b -0.1510(5) -0.1510(3) -0.1502(2) -0.1502(7) 

O x/a -0.0243(6) -0.0243(7) -0.0230(9) -0.0223(3) 

y/b 0.6469(8) 0.6469(3) 0.6469(9) 0.6459(1) 

z/c 0.5165(3) 0.5165(8) 0.5158(1) 0.5165(4) 

C x/a 0.0326(5) 0.0326(5) 0.0327(7) 0.0328(9) 

Reliability factors (%): 

Rwp 6.75 6.87 7.09 10.6 

Rp 7.06 7.29 8.32 14.1 

RB 1.77 1.81 1.90 5.51 

χ2 0.871 0.893 0.665 2.84 
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Table 5-5-2 (a) Isotropic atomic displacement factors uiso×10-3 Å2 for Co and C atoms, 

and the anisotropic ones uij×10-3 Å2 for Na, O, and Cl atoms in Na3Co(CO3)2Cl at 3.7, 

6, 12, 14, 16, and 30 K. 

 

 

 

 

 

 

 

 

 

 

T (K) 3.7 6 12 14 16 30 

uiso(Co) 0.138(25)  0.111(25)  0.191(25)  0.114(25)  0.091(24)  0.097(24) 

uiso(C) 0.245(8) 0.240(8) 0.240(8) 0.229(8) 0.258(8) 0.227(8) 

u11(Na) 0.55(8) 0.70(8) 0.55(8) 0.61(8) 0.62(8) 0.60(8) 

u22(Na) 0.48(7) 0.51(7) 0.47(7) 0.50(7) 0.47(7) 0.48(7) 

u33(Na) 0.67(7) 0.68(7) 0.73(7) 0.64(7) 0.70(7) 0.79(7) 

u13(Na) 0.14(6) 0.19(6) 0.19(6) 0.13(6) 0.12(6) 0.17(6) 

u11(Cl) 0.58(2) 0.58(2) 0.55(2) 0.59(2) 0.57(2) 0.60(2) 

u12(Cl) 0.18(3) 0.15(3) 0.18(2) 0.16(3) 0.13(2) 0.16(3) 

u11(O) 0.39(4) 0.26(4) 0.35(4) 0.33(4) 0.39(4) 0.33(4) 

u22(O) 0.33(3) 0.33(3) 0.36(3) 0.29(3) 0.35(3) 0.36(3) 

u33(O) 0.49(4) 0.55(4) 0.47(4) 0.52(4) 0.43(4) 0.51(4) 

u12(O) -0.20(2) -0.17(2) -0.17(2) -0.14(2) -0.17(2) -0.18(2) 

u13(O) 0.08(2) 0.10(2) 0.09(2) 0.10(2) 0.04(2) 0.08(2) 

u23(O) -0.06(2) -0.04(2) -0.05(2) -0.03(2) 0.00(2) -0.07(2) 
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Table 5-5-2 (b) Isotropic atomic displacement factors uiso×10-3 Å2 for Co and C atoms, 

and the anisotropic ones uij×10-3 Å2 for Na, O, and Cl atoms in Na3Co(CO3)2Cl at 50, 

100, 150, 200, 250, and 300 K. 

 

 

 

 

 

 

 

 

T (K) 50 100 150 200 250 300 

uiso(Co) 0.149(25) 0.236(27) 0.270(28) 0.370(31) 0.550(34) 0.648(36) 

uiso(C) 0.264(8) 0.326(8) 0.361(8) 0.448(9) 0.558(9) 0.657(10) 

u11(Na) 0.66(8) 0.84(9) 0.98(9) 1.13(10) 1.41(11) 1.64(11) 

u22(Na) 0.64(7) 0.74(8) 0.93(8) 1.22(9) 1.43(10) 1.64(11) 

u33(Na) 0.81(7) 0.86(7) 1.06(8) 1.39(8) 1.80(9) 2.03(10) 

u13(Na) 0.25(7) 0.25(7) 0.02(7) -0.05(8) -0.14(8) -0.22(9) 

u11(Cl) 0.69(2) 0.92(2) 1.27(3) 1.64(3) 2.08(3) 2.61(4) 

u12(Cl) 0.21(3) 0.39(3) 0.55(3) 0.71(4) 0.86(4) 1.11(5) 

u11(O) 0.37(4) 0.45(4) 0.63(4) 0.73(5) 0.89(5) 1.19(6) 

u22(O) 0.36(3) 0.40(3) 0.53(3) 0.63(4) 0.81(4) 0.92(4) 

u33(O) 0.58(4) 0.72(4) 0.86(4) 1.16(5) 1.50(5) 1.73(6) 

u12(O) -0.15(3) -0.20(3) -0.26(3) -0.24(3) -0.32(3) -0.45(3) 

u13(O) 0.08(2) 0.11(3) 0.13(3) 0.10(3) 0.13(3) 0.11(3) 

u23(O) -0.05(2) -0.05(3) -0.11(3) -0.08(3) -0.16(3) -0.23(3) 
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5.6    Polarized Neutron Scattering of Na3Co(CO3)2Cl 

   

As discussed in Sections 5.3 and 5.4, clear collective magnetic behavior has been 

observed in Na3Co(CO3)2Cl. At low temperatures the spins should become 

antiferromagnetically correlated. Therefore spin correlations are normally expected 

from such spin systems, which can appear as a modulation of the differential 

scattering cross section in a neutron scattering experiment. But the NPD 

measurements showed no indication of short-range spin correlations, because the 

spin correlations may be too weak to be separated from the background. In the heat 

capacity measurements, a long-range mangetic phase transition has been detected at 

1.5 K. The lowest temperature reached in the NPD measurements was 3.7 K. Thus no 

long-range magnetic order was observed in NPD data presented in Section 5.5. In 

order to detect the short-range spin correlations and the long-range magnetic order 

in Na3Co(CO3)2Cl, diffuse neutron scattering with polarization analysis was 

performed at DNS, FRM II.  

 

5.6.1    Experimental Details 

  The polarized neutron scattering measurements were carried out on the neutron 

spectrometer DNS [95] at FRM II, equipped with a 4He closed cycle cryostat and a 

dilution-insert cryostat, allowing a temperature range between 60 mK and 300 K. 

Approximately 5 g of sample was used for the polarized neutron scattering 

measurements. When using the 4He closed cycle cryostat and the dilution-insert 

cryostat, the sample was sealed in an aluminum holder and a copper holder, 

respectively. During the mounting procedure, the sample and the holder were kept 

in a helium atmosphere. The energy of the incident neutron beam was 3.6 meV 

(corresponding to a wavelength of 4.74 Å). The structure factor was determined 

within the scattering vector range of 0.16 < Q < 2.30 Å-1. Within the quasistatic 

approximation, the nuclear coherent, spin-incoherent and magentic scattering cross 

sections were separated simultaneously with the xyz-polarization method in the 

spin-flip (SF) and non-spin-flip (NSF) channels [73]. The background subtraction, 

flipping ratio correction and data normalization were carried out using similar 

methods as discussed in Section 3.5.  
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5.6.2    Experimental Results and Discussion 

Figure 5-6-1 shows the nuclear coherent (black circles), spin-incoherent (green 

circles) and magnetic (red circles) components of the total scattering from 

Na3Co(CO3)2Cl at 3.3 K by means of xyz-polarization analysis on DNS. The 

spin-incoherent scattering intensity is constant, suggesting a successful separation of 

the different scattering contributions. Obviously, the magnetic contribution is very 

weak as compared to the nuclear and spin-incoherent scattering, and could hardly be 

seen without polarization analysis. The gaps in the spin-incoherent and magnetic 

components are due to the inperfect separations caused by the strong Bragg peaks at 

those positions.  
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Figure 5-6-1 Nuclear coherent (black circles), spin-incoherent (green circles) and 

magnetic (red circles) contributions to the total diffuse neutron scattering from 

Na3Co(CO3)2Cl at 3.3 K separated by xyz-polarization analysis on DNS. 

 

Figure 5-6-2 shows the differential magnetic cross section, dσ/dΩ, extracted from 

the total scattering cross section at 0.05, 3.3, 10, 30, 200, and 300 K. There is no trace of 

long-range magnetic order down to 3.3 K, consistent with the neutron powder 

diffraction measurements. At 50 mK, long-range magnetic order is evidenced by 

clear magnetic Bragg peaks superposed on the magnetic diffuse scattering, 

confirming that the sharp peak at 1.5 K in specific heat can be attributed to a 
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magnetic phase transition into a long-range ordered antiferromagnetic structure. In 

Figure 5-6-2, the differential magnetic cross sections are plotted in absolute unit 

which were determined by calibration against the spin-incoherent scattering of a 

known mass of vanadium standard. The scattering cross section at 300 K agrees well 

with the 73%-scaled pure paramagnetic form factor of Co2+ (S = 3/2) ion. Without 

energy analysis option, the magnetic scattering data taken on DNS are actually 

integrated within the energy-transfer window of DNS. The overall energy scale of 

the magnetic exchange in this system extends to about 3 meV (see Section 5.7), which 

is basically covered by the energy window (3.6 meV) of DNS. The loss of the 

magnetic scattering intensity is attributed to the limitation of the energy window of 

DNS.  
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Figure 5-6-2 Temperature evaluation of the differential magnetic cross section. The 

x- and y- axis correspond to the data of 200 and 300 K. The data at other 

temperatures are to scale and displaced vertically by 0.2 b sr-1 per Co atom for clarity. 

The solid line indicates the 73%-scaled paramagnetic form factor of Co2+ ion (S = 

3/2). 

 

  The total differential magnetic cross section obtained at each temperature is 

determined by integration over the investigated range of scattering vector magnitude 

Q, shown as the black squares in Figure 5-6-3. The total differential magnetic cross 
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section of pure paramagnetic Co2+ ions is given, ignoring the Debye-Waller term, by 

Eq. (3.5.4). Thus the total magnetic cross section of spin-only paramagnetic Co2+ ions 

within the investigated Q range can be determined as 4.69 b sr-1 per Co atom.  
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Figure 5-6-3 Temperature dependence of the total magnetic scattering cross section 

integrated over the Q range 0.4 < Q < 2.3 Å-1. The dashed line marks the spin-only 

limit for paramagnetic Co2+ (S = 3/2) ions. 

   

As shown in Figure 5-6-3, the magnetic cross section at 300 K covers ~ 73% of the 

spin-only limit for paramagnetic Co2+ ions in high spin state (S = 3/2), while the 

magnetic cross sections at 3.3 K covers ~ 95% of the spin-only limit. The increase of 

measured magnetic cross section upon cooling can be attributed to the contribution 

from unquenched orbital moment of Co2+ ions. The magnetic cross section at 50 mK 

exceeds the spin-only cross section for Co2+ ions, confirming the contribution from 

orbital moment. The effective magnetic moment obtained at 50 mK is then 

determined as 4.2 μB per Co, much lower than the effective moment obtained by 

means of magnetic susceptibility measurements (see Section 5.3). The use of powder 

sample with a dilution insert could be the reason for this. Though helium exchange 

gas and a copper holder were used in the DNS measurements, I found the thermal 

equilibrium had not been achieved during the experimental time. The sample was 
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kept at 50 mK for 3 days and the magnetic Bragg peaks were seen to evolve 

gradually with observing time. The spectrum for 50 mK shown in Figure 5-6-2 is 

derived from the last 12-hour measurement, possessing the most prominent 

magnetic Bragg peaks. So the effective moment determined from the magnetic cross 

section at 50 mK should be less than the one calculated from high-temperature 

susceptibility measurements. 

The effect of the magnetic short-range order will be discussed first, which can be 

seen as a modulation of the differential scattering cross section in Figure 5-6-2. The 

strong reduction of the magnetic cross section below Q ≈ 0.9 Å-1 indicates the 

existence of a strong antiferromagnetic component in the spin correlations, in 

agreement with the aforementioned susceptibility measurements of Na3Co(CO3)2Cl, 

which show dominating antiferromagnetic coupling between Co2+ ions and 

deviations from the Curie-Weiss law below ~ 200 K.  

  The data collected at 3.3 K (below the spin-glass-like transition temperature and 

above the long-range magnetic ordering temperature) was used for theoretical 

analysis of the short-range spin correlations, shown as the red circles in Figure 5-6-4. 

The differential magnetic scattering cross section of Na3Co(CO3)2Cl can be calculated 

with the formula given by I. A. Blech and B. L. Averbach for the differential 

scattering cross section of spin pairs, which, already in powder average, can be 

written as [99] 
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where γe2/mc2 and F(Q) have been introduced in Eq. (3.5.4), and it is assumed that an 

arbitrary reference Co2+ ion is correlated to N surrounding Co2+ shells with 

occupation number cn and shell radius rn. an and bn are related to the probability of 

finding spin pairs with parallel components and expressed as follows [99], 
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Here, 0 ⋅ n n
S Sα α  is the average correlation of the α-direction component of the nth 

shell to the corresponding component of the origin spin. Denote 0= ⋅n n n
A x xS S  and 

0= ⋅n n n
B y yS S . Then Eq. (5.6.1) becomes 

22
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Due to the glassy nature of this system at 3.3 K, a precise simulation of the spin 

correlation function is not feasible because no specific spin model can be followed. 

An analytical study was carried out by attempting a least-square fit with Eq. (5.6.3) to 

the magnetic differential scattering cross section obtained at 3.3 K. The best fit was 

achieved with two Co2+ shells, namely cn = 6, 12 for n = 1, 2, shown as the blue line in 

Figure 5-6-4. If the higher-order shells (n > 2) were included, the corresponding An 

and Bn were so small that the correlations between the origin and the n > 2 shells can 

be neglected. The fitting results are summarized in Table 5-6-1, where the 

parameters for the fit with both one-shell and two-shell models are listed. In both 

fitting models, the values of A1 and B1 are both negative, indicating the nearest 

neighboring Co2+ ions are antiferromagnetically coupled. Weak ferromagnetic 

coupling is found among the next nearest neighbors (A2, B2 > 0). Though the fit with 

two shells is a little better than that with one shell, the improvement is insignificant. 

Furthermore, A2 and B2 are quite small as compared with A1 and B1, indicative of 

dominating nearest-neighboring correlations. I therefore conclude that in 

Na3Co(CO3)2Cl the spin model can be characterized by short-range spin correlations 

over the antiferromagnetically coupled nearest neighbors down to at least 3.3 K. 

 

Table 5-6-1 Fitting parameters using the one-shell and the two-shell models for the 

differential magnetic cross section of Na3Co(CO3)2Cl obtained at DNS.  

 

 

 
 A1 B1 A2 B2 χ2 

One shell -0.15(3) -0.06(1) – – 0.838 

Two shells -0.14(3) -0.05(1) 0.04(2) 0.01(1) 0.849 
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Figure 5-6-4 Differential magnetic scattering cross section at 3.3 K in absolute units 

(red circles) with the best fit (blue line) in terms of Eq. (5.6.4) among the nearest 

neighbors. 

 

  As to the long-range magnetic order of Na3Co(CO3)2Cl below 1.5 K, it is not 

feasible to give a precise determination of the magnetic structure based on the 

existing neutron scattering experiments. Only two clear magnetic Bragg peaks have 

been observed at 1.27 and 1.50 Å-1, as superpositions of the 2 2 0 and 1 1 3 nuclear 

Bragg peaks, respecitively. This may suggest a q = 0 antiferromagnetic ordered 

structure. Two further magnetic peaks are observed at 1.93 and 2.03 Å-1, which are 

strongly effected by the 1 3 3 nuclear reflection and could actually be parts of one 

magnetic Bragg peak. However, the heat capacity measurements show that 

Na3Co(CO3)2Cl undergoes a long-range magnetic phase transition at 1.5 K, and the 

polarized neutron scattering confirms a long-range magnetic order below 1.5 K. This 

is an interesting phenomenon that Na3Co(CO3)2Cl enters an ordered (or partially 

ordered) magnetic phase upon cooling from its spin-glass-like freezing temperature 

of 4.5 K. This scenario may be understood as a result of the intriguing phenomenon 

known as “order by disorder” [188] and has been observed from some other 

pyrochlore antiferromagnets [189-191]. Henley has shown that the frustrated 

face-centered-cubic antiferromagnets prefer to order into collinear structures at finite 

temerpatures [192]. Hence pyrochlore magnet tends to choose an ordered collinear 
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structure because the entropy favors the ground state with the greatest density of 

low-energy excitations. Based on the meanfield theory, no long-range order should 

exist for the pyrochlore lattice with only nearest-neighbor antiferromagnetic 

interactions. But long-range order may occur if a finite next-nearest-neighbor 

exchange interactions is considered [190]. Hence, the weak ferromagnetic coupling 

between the next-nearest neighbors as indicated in the fit of diffuse magnetic neutron 

scattering may play an important role for the system to order (or patially order) 

below 1.5 K. Also, a low-T structural distortion could lead to a magnetic phase 

transition. A strong Ising-like anisotropy in connection with magneto-elastic 

coupling could give rise to such structural distortion. It should be mentioned here 

that the 2 2 0 and 1 1 3 magnetic reflections indicated in Figure 5-6-2 have also been 

observed in pyrochlore antiferromagnets R2Ru2O7 (R = Y, Nd) [191]. But a confident 

determination of the long-range magnetic order of Na3Co(CO3)2Cl requires a detailed 

neutron powder diffraction study below 1.5 K, which will be a task beyond this 

thesis. 

  As a summary to this section, the short-range magnetic order was clearly 

evidenced by the spin correlations found in the diffuse neutron scattering with 

polarization analysis. The analysis on the magnetic diffuse scattering confirmed that 

the spin structure of this system is characterized by short-range spin correlations 

dominated by antiferromagnetically coupled nearest neighbors, down to at least 3.3 

K. The ferromagnetic coupling between the next-nearest neighbors is weak, which 

may be a mechanism for the magnetic order below 1.5 K besides the thermal and/or 

quantum fluctuations via an order-by-disorder mechanism, or structual distortion 

due to magneto-crystalline coupling and strong Ising-like anisotropy. Consisdent 

with the heat capacity measurements, the system enters a long-range magnetic order 

phase below 1.5 K. But a precise determination of the long-range ordered magnetic 

structure requires neutron powder diffraction study below 1.5 K in the future. 
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5.7    Inelastic Neutron Scattering of Na3Co(CO3)2Cl 

   

Spin dynamics of spin glass materials, especially the dynamics of spin-freezing 

process, has been considerably studied by inelastic neutron scattering (INS) 

technique [193-198]. Inelastic neutron scattering provides a rather unique probe of 

collective spin excitations, since INS has the capability to probe spatial correlations of 

magnetic moments as well as their dynamical properties. A wide spectral 

distribution of relaxation times was revealed in the INS measurements on 

conventional metallic spin glasses such as CuMn [193]. For T >> Tg one expects 

time-dependenct strong magnetic fluctuations in spin glass system, where inelastic 

neutron scattering is suitable for the investigation of spin dynamics because the 

energy broadening of the scattered neutrons is a direct measure of the spin relaxation 

rates [199]. Inelastic neutron scattering has also been utilized to search for possible 

spin waves in the frozen state of spin glasses. No evidence for spin-wave excitations 

has been found in the conventional metallic spin glasses by now [42, 150]. In EuxSr1-xS 

for x = 0.51, where the system exhibits a crossover from ferromagnetic to spin glass 

behavior, some broad spin-wave profiles were observed and attributed to the 

random-field effect due to the coupling of ferromagnetic and spin-glass order 

parameters by Maletta et al. [200].  

Though clear spin-glass-like behavior in Na3Co(CO3)2Cl has already been observed 

in aforementioned characterizations like magnetic susceptibility and specific heat, a 

complete study still requires the exploration of spin dynamics as a function of both 

energy and momentum transfer over the reciprocal space. In this section, the result of 

the inelastic neutron scattering investigation of Na3Co(CO3)2Cl over a wide 

temperature range from 3.5 K to 300 K is presented to shed more light on the spin 

dynamics of this system.  

 

5.7.1    Experimental Details 

  The inelastic neutron scattering measurements were performed on the same 

Na3Co(CO3)2Cl powder sample as used in the polarized neutron scattering in Section 

5.6. The INS spectra were recorded using the multi-chopper high-resolution 

time-of-flight spectrometer TOFTOF [201] at FRM II in Garching, Germany. TOFTOF 

covers scattering angles ranging from -15˚ to 140˚. The incident wavelength was 4.2 Å, 
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allowing an investigated Q range from 0.2 to 3.0 Å-1. The chopper rotation frequency 

was set to 14 000 rpm, resulting in an instrumental resolution of about 130 μeV full 

width at half maximum (FWHM) at zero energy transfer. A detail introduction to 

TOFTOF will be given in Appendix C. About 5 g of Na3Co(CO3)2Cl powder was 

sealed in a hollow-cylinder aluminum sample holder under helium atmosphere. 

Data were collected at temperatures of 3.5, 15, 50, and 300 K using a closed cycle 

cryostat. The instrumental resolution function of the spectrometer was determined 

by the measurement at 250 K on a vanadium standard, as shown in Figure 5-7-1. The 

background was determined by a measurement from an empty sample holder at 3.5 

K. The raw data were treated by subtracting the scattering from the empty sample 

can and normalizing to the vanadium scan.  
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Figure 5-7-1 I(E) at Q = 0.92 Å-1 measured from the vanadium standard at 250 K with 

incident wavelength 4.2 Å. 

 

5.7.2    Experimental Results and Discussion 

Figure 5-7-2 shows the contour plots of the INS spectra of sample scan (a)-(d) 

measured at 3.5, 15, 50, and 300 K, and the empty can (e) measured at 3.5 K. The 

spectrum of the empty can has not been subtracted in the INS spectra in Figure 5-7-2 

(a)-(d). 
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Figure 5-7-2 INS spectra of the sample scans at 3.5 (a), 15 (b), 50 (c) and 300 K (d), 

and the empty-can scan at 3.5 K (e). 
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All data shown in Figure 5-7-2 have been normalized to vanadium standard. The 

high scattering intensities at zero energy transfer are the elastic scattering 

contributions. The negative and the positive energy transfers correspond to the loss 

and the gain of neutron energy in the scattering events, respectively. As shown in 

Figure 5-7-2 and Figure 5-7-3, the measurements on the sample and the empty can 

suffer from the background from the detectors, which appears as the two peaks at 

energy transfer E ~ -0.5 meV and ~ -0.8 meV. The spectrum of empty can is taken as 

the background, which is difficult to be subtracted properly from the sample scans. 

Figure 5-7-3 (a) and (b) show the I(E) spectra at constant Q = 0.92 Å-1 for the sample 

scan and the empty can scan, respectively. After the background subtraction, the 

resultant INS spectrum of the sample is shown in Figure 5-7-6 (d).  
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Figure 5-7-3 INS spectra of the sample scan (a) and empty can (b) scan at Q = 0.92 Å-1. 
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Figure 5-7-4 shows a contour plot of the dynamic structure factor S(Q, ω) of 

Na3Co(CO3)2Cl. The red riff at around zero energy transfer consists of elastic 

incoherent scattering component and nuclear Bragg reflections. The first seven 

nuclear Bragg peaks correspond to reflections (111) at 0.78 Å-1, (022) at 1.27 Å-1, (113) 

at 1.49 Å-1, (222) at 1.55 Å-1, (004) at 1.80 Å-1, (133) at 1.96 Å-1, and (224) at 2.20 Å-1, 

consistent with the neutron powder diffraction of Na3Co(CO3)2Cl. Besides the central 

elastic scattering components, additional magnetic scattering is shown as the colors 

from green via yellow to red above the blue background, indicating of increasing 

intensities. The magnetic intensity extends over an energy-transfer range up to about 

3 meV and reflects the overall energy scale of the magnetic exchange, which is in 

reasonable agreement with the Curie-Weiss temperature of 33.8 K as determined in 

the susceptibility measurements. At low temperature T = 3.5 K, magnetic scattering 

intensity is dominated by the neutron energy-loss process. As the temperature 

increases, the scattering intensity transfers into the neutron energy-gain direction. 

The Q-dependence of magnetic scattering indicates a modulation around the 

magnetic form factor. At high temperature of 300 K which is well above the 

Curie-Weiss temperature ΘCW = 33.8 K and the divergence temperature from the 

Curie-Weiss law at ~ 200 K, quasielastic magnetic scattering for a purely 

paramagnetic state is expected. Below T = 50 K, inelastic component starts to develop. 

At T = 3.5 K, there is likely a spin-wave-like profile centering around 0.8 Å-1, which is 

rather broad but still visible by comparing the difference of the low-Q regions in 

plots for 3.5 K and 15 K. 
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Figure 5-7-4 Contour plot of the dynamic structure factor S(Q, ω) of Na3Co(CO3)2Cl 

at 3.5, 15, 50, and 300 K. Magnetic intensity in logarithmic scale is coded with colors 

from blue to red to indicate increasing intensities. 
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  The magnetic nature of the scattering intensity at non-zero energy transfer is 

evidenced by studying the Q-dependence of dynamic structure factor S(Q, ω) at 

constant ω. Figure 5-7-5 shows a cut of S(Q, ω) after summing over the energy 

transfer range -1.02 ≤ E ≤ -0.98 meV in the data for 3.5 K. The modulating 

Q-dependence of magnetic scattering is indicative of short-range spin correlations. 

As already discussed in Section 5.6, the Q dependence of magnetic scattering is fitted 

in terms of Eq. 5.6.4 with A1 = -0.09(1), B1 = -0.07(1), A2 = 0.01(1), B2 = 0.02(1), namely 

dominating antiferromagnetic spin correlations among the nearest neighbors and 

weak ferromagnetic spin correlations among the next nearest neighbors. The fitting 

result is plotted in Figure 5-7-5 by the red line. Hence it is confirmed that the 

scattering intensity at non-zero energy transfer observed in TOFTOF data can be 

attributed to the magnetic contribution. 
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Figure 5-7-5 Q dependence of the magnetic scattering integrated within the energy 

transfer range -1.02 ≤ E ≤ -0.98 in TOFTOF data for 3.5 K, together with the best fit 

(red line) using Eq. 5.6.4. 

 

  Hereafter, I examine the line-shape and temperature dependence of the magnetic 

component by considering the following general expression for the dynamic 

structure factor S(Q, ω, T), which is proportional to the imaginary part of the 
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generalized susceptibility 

               ( ) 1
B( , , ) 1 exp( / ) ( , , )S Q T k T Q Tω ω ω χ ω− ′′= − −h h .           (5.7.1) 

The first term is the detailed balance factor representing the difference in the 

scattering function on the neutron energy gain and loss side due to the thermal 

population. Exponential spin relaxation results in a Lorentzian-shape quasielastic 

line of width Γ, 

      0 2 2
( , )( , , ) ( , )

( , )
Q TQ T Q T
Q T

Γχ ω χ
ω Γ

′′ =
+

.                (5.7.2) 

At high enough temperature, the dynamic structure factor is well described by a 

single quasielastic Lorentzian. Upon cooling collective magnetic excitations give rise 

to inelastic signals due to the increasing magnetic correlations. The low-T inelastic 

signals can be fitted with a damped harmonic oscillator model multiplied by the 

detailed balance factor [202-204] 

               
( ) ( ) B

DHO DHO
2 /22 2

DHO DHO

1( , )
1 k T

AS Q
e ω

ωΓ
ω

ω ω ωΓ
−=

−− +
h ,           (5.7.3) 

which corresponds to a double Lorentzian with oscilattor strength ADHO, eigen- 

frequency ωDHO and linewidth ΓDHO. 

  In inelastic scattering measurements the experimental magnetic scattering 

represents the convolution between the resolution function R(Q, ω) of the instrument 

and the pure magnetic signals of the sample. Thus the following relation should be 

used to fit the experimental structural factor 

                         exp ( , ) ( , ) ( , )S Q S Q R Qω ω ω= ⊗ ,                 (5.7.4) 

where R(Q, ω) has been determined by the vanadium scan. The energy resolution as 

determined by the vanadium scan is only about 0.13 meV, which is at least five times 

smaller than the typical FWHM of the quasielastic components and inelastic 

components in the present measurements. Therefore, the instrumental resolution 

function was neglected in the following fitting precedure of the data. 
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Figure 5-7-6 Dynamic structure factor S(Q, ω) of Na3Co(CO3)2Cl for constant wave 

vector transfer Q = 0.92 Å-1 at various temperatures. 
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Figure 5-7-6 shows the cuts of S(Q, ω) for constant Q = 0.92 Å-1 at the investigated 

temperatures. The central elastic peak is fitted with a single Gaussian function (blue 

dashed line), whose width corresponds to the energy resolution of TOFTOF. The 

quasielastic component is fitted with a single Lorentzian function given by Eq. (5.7.2), 

multiplying a detailed balance factor. The inelastic component is fitted with two 

Lorentzian functions as described by Eq. (5.7.3), which are centered at ±ωd and 

multiplied by the detailed balance factor.  

The quasielastic and inelastic components are shown by the green dashed lines in 

Figure 5-7-6. The red lines in Figure 5-7-6 represent the sum of quasielastic and 

inelastic components. At 300 K, the quasielastic intensity can be described by a single 

Lorentzian. No inelastic component is observed. Upon cooling the system to 50 K, 

which is above the Curie-Weiss temperature but below the deviation temperature 

from Curie-Weiss law, a single Lorentzian cannot represent the data well. Additional 

inelastic components have to be involved to yield a good fit as shown in Figure 5-7-6. 

It can be seen that at 50 K the quasielastic component still dominates the INS 

spectrum and only weak inelastic component is need to account for the 

broad-hump-like feature at around ±2 meV. As the temperature decreases to 15 K, 

the inelastic component increases significantly and becomes dominant. The linewidth 

of the quasielastic component decreases upon decreasing temperatures (see Figure 

5-7-7) and spectral weight of quasielastic component is transferred to the inelastic 

component of the collective magnetic excitations. At temperature T = 3.5 K < Tg, the 

quasielastic line shrinks into the elastic line within the instrumental resolution. The 

shrinking quasielastic component indicates a remarkable slowing down of the spin 

fluctuations. The quasielastic scattering contribution is considered to have vanished 

and the magnetic scattering becomes purely inelastic with an excitation energy of 

about 1.3 meV at Q = 0.92 Å-1 at 3.5 K. The fitting results are summarized in Figure 

5-7-7, where Γquasi and Γin represent the linewidth of quasielastic and inelastic 

components, and ωd is the excitation energy.  
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Figure 5-7-7 Temperature dependence of the linewidth and excitation energy of 

Na3Co(CO3)2Cl at Q = 0.92 Å-1. The black squares represent the quasielastic 

linewidth Γquasi. The red circles and the blue triangles show the linewidth Γin and the 

excitation energy ωd of the inelastic component. The dashed line marks the 

instrumental energy resolution Γres. 

 

  Unable to reach a temperature below the long-range magnetic ordering 

temperature TN = 1.5 K, the dynamic structure factor of Na3Co(CO3)2Cl was 

measured down to the spin-glass-like freezing temperature. The quasielastic 

magnetic scattering transferred into inelastic magnetic scattering at low temperatures. 

At 3.5 K, a magnonlike dispersion seemingly emanated from the elastic line, 

although the inelastic feature is rather broad. The excitation energies for various Q at 

3.5 K were investigated and the corresponding quasielastic and inelastic components 

(green lines) were plotted in Figure 5-7-8. The red lines in Figure 5-7-8 is the sum of 

quasielastic and inelastic components. The data in the range of -0.7 < E < 0 meV were 

excluded from the fitting consideration due to the high back ground in this energy 

region, which results in the deviations between the data and the fitting results. The 

linewidth of the quasielastic components are comparable to the instrumental 

resolution. 
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Figure 5-7-8 INS spectra for 3.5 K at various Q, along with the fit to the inelastic (red 

line) and the elastic (blue dashed line) components. 
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  In Figure 5-7-8, the excitation energy of the inelastic component exhibits a Q 

dependence. Similar to the fits as shown in Figure 5-7-6, the INS spectra for 3.5 K at 

various Q are fitted with one Gaussian function to account for the elastic scattering, 

one Lorentzian function given by Eq. (5.7.2) for the quasielastic scattering, and a 

damped harmonic oscillator model given by Eq. (5.7.3) for the inelastic scattering. 

The linewidth (Γin), position (ωd), and intensity (Iin) of the inelastic component are 

plotted in Figure 5-7-9 as a function of Q.  
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Figure 5-7-9 Q dependence of the linewidth (Γin), position (ωd), and intensity (Iin) of 

the inelastic components obtained by the fit to the INS spectrum for 3.5 K.  
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As shown in Figure 5-7-9, the excitation energy of the inelastic component is about 

1.54 meV at Q = 0.52 Å-1. As Q increases, the excitation shifts to lower energy and 

reaches a minimum at around Q = 0.9 Å-1. If Q increases further from 0.9 Å-1, the 

excitation shifts to higher energy. Basically the Q dependence of the excitation energy 

follows a spin-wave-like behavior. But besides this qualitative explanation to the Q 

dependence of the excitation energy, a reliable quantitative determination of the 

spin-wave excitation is difficult to be performed using the present data, because the 

measured magnetic response is rather broad and strongly affected by the multiple 

scattering from the aluminum sample can. And as shown in Figure 5-7-4, lower 

temperature is necessary to observe a clear spin-wave excitation from 

Na3Co(CO3)2Cl.  

As a summary of this section, the inelastic neutron scattering spectra of 

Na3Co(CO3)2Cl have been measured on TOFTOF at various temperatures. The 

overall energy transfer range of the magnetic scattering intensity is in reasonable 

agreement with the Curie-Weiss temperature, reflecting the strengh of the 

dominating magnetic exchange interactions. Above 3.5 K, no long-range magnetic 

order was detected as expected. But the system shows clear short-range magnetic 

order at low temperatures. The most intriguing result is that collective magnetic 

excitations were revealed at 3.5 K, which indicates that the freezing temperature Tg = 

4.5 K doesn’t correspond to a complete spin-glass freezing as expected in traditional 

metallic spin glasses [42, 150, 200]. The spin-wave-like dispersion indicated by the 

INS spectrum at 3.5 K is rather broad and not applicable for a reliable quantitative 

analysis, but may still serve as a first evaluation prior to the future neutron scattering 

measurements on this system at lower temperatures. Further inelastic neutron 

scattering measurements are needed to fully understand the magnetic excitations of 

Na3Co(CO3)2Cl. 

 

 

5.8    Summary 

 

In this chapter, a new spin-frustrated pyrochlore antiferromagnet Na3Co(CO3)2Cl 

is investigated in detail, which exhibits complicated magnetic behavior. The major 

results in this chapter is summarized as following:



5.8 Summary 

157 
 

1. The average crystal structure of Na3Co(CO3)2Cl has been determined by means of 

X-ray powder diffraction and neutron powder diffraction. Na3Co(CO3)2Cl 

crystallizes in cubic structure with space group F d 3 (#203). No structural phase 

transition has been found from 3.7 K to 300 K.  

2. DC and AC susceptibility measurements display two anomalies at ~ 4 K and ~ 17 

K. The former one is confirmed to be a spin-glass-like transition temperature by 

investigating its field-dependence and frequency-dependence. The latter one 

shows no frequency and field dependence. Its origin remains unclear, but is 

temporarily attributed to the onset of long-range collective magnetic behavior. 

The Co2+ ions are in high spin state S = 3/2. The nearest-neighbor Co2+ spins are 

antiferromagnetically coupled, leading to strong geometrical spin frustration in 

this pyrochlore magnet. The Curie-Weiss temperature and the effective exchange 

constant (nearest neighbors only) are determined as -33.8 K and 0.26 meV, 

respectively. 

3. The specific heat of Na3Co(CO3)2Cl shows a hump at ~ 5 K, consistent with the 

spin-glass-like transition at 4.5 K. A sharp peak in specific heat is observed at 1.5 

K, which is due to the long-range magnetic phase transition. 

4. No long-range magnetic order has been seen in the neutron powder diffraction 

measurements down to 3.7 K, consistent with the spin-glass-like transition at 4.5 

K. No change in the crystal structure has been detected at 3.7 K and 30 K within 

the resolution of the presented neutron powder diffraction measurements, 

indicating that the inflection temperature 17 K may not associate with additional 

effects such as an orbital order. Though Co sublattice displays a fully ordered 

pyrochlore lattice, positional shift has been detected on Na sites. Possible static 

atomic disorder could exist on chlorine site. Local probing techniques will be 

needed to identify the possible disorder existing in this system. 

5. Polarized neutron scattering investigations show that significant spin correlations 

build up below 30 K (≈ -ΘCW). The analysis of spin correlations indicates that the 

spin structure of this system is characterized by short-range spin correlations 

dominated by antiferromagnetically coupled nearest neighbors, down to at least 

3.3 K. Magnetic Bragg peaks observed at 50 mK indicate that Na3Co(CO3)2Cl 

enters a long-range magnetic order (or partial order), consistent with the specific 

heat measurements. 

6. Inelastic neutron scattering reveals also clear spin correlations at low 
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temperatures. Quasielastic scattering dominates the INS spectra above 50 K. The 

fast decrease of quasielastic scattering from 15 K to 3.5 K accompanys with a 

development of inelastic component. Collective magnetic excitations have been 

observed at 3.5 K, which indicates that the freezing temperature T = 4.5 K doesn’t 

correspond to a complete spin-glass freezing as expected in traditional metallic 

spin glasses.  

Now the magnetism of Na3Co(CO3)2Cl can be explained as follows. At high 

temeratures (T > 200 K), the spins are basically paramagnetic. As the temperature 

decreases below 200 K, deviation from the Curie-Weiss law occurs. Spin correlations 

start to develop around -ΘCW ≈ 30 K (or a little higher than 30 K). At 17 K, some kind 

of long-range collective magnetic behavior happens, which could make some of the 

spins of the system enter a pre-order state. But the whole system does not display 

any long-range magnetic order detectable by neutron scattering methods. As the 

temperature decreases further, the spin fluctuations slow down quickly. The spins, 

those are excluded in the pre-order state, experience a spin-glass-like freezing into 

the directions selected by local anisotropy at about (or a little higher than) 4.5 K, but 

this spin freezing may not be complete in the sense that the spins may still be 

dynamic with respect to the frozen directions. If the temperature keeps decreasing 

below the spin-glass-like freezing temperature, either an order-by-disorder 

mechanism driven by the thermal and/or quantum fluctuations or structual 

distortion due to magneto-crystalline coupling and strong Ising-like anisotropy, 

triggers a long-range magnetic order (or partial order) of this spin system. 

More investigations are certainly needed to determine the magnetism of 

Na3Co(CO3)2Cl precisely. The ordered state in zero and applied fields is interesting to 

study by means of neutron scattering and muon spin-relaxation experiments. The 

origin of the inflection temperature 17 K may be discovered by neutron scattering 

and magnetization measurements in very detail. In conclusion, the magnetism of 

spin-frustrated pyrochlore antiferromagnet Na3Co(CO3)2Cl has been investigated 

and discussed in this chapter. The understanding to the complicated magnetic 

behaviors of this system benefits the research on spin-frustrated pyrochlore magnets. 

Further study is worthy to be performed on Na3Co(CO3)2Cl and related systems. 
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  In this thesis，geometrical spin frustration has been extensively studied in both 

molecular-based spin cluster and infinite pyrochlore lattice. Topology of the crystal 

structures proves to be essential to form the exotic magnetic properties in these 

materials. Short-range magnetic order exists generally in these materials below their 

Curie-Weiss temperatures, as evidenced by the spin correlations measured using 

diffuse neutron scattering with polarization analysis method. The observed 

short-range spin correlations remain rather localized. In spin-frustrated molecular 

magnet {Mo72Fe30}, spin correlations are confined in individual molecules and no 

long-range magnetic order has been observed even down to 60 mK, due to the 

relatively large intermolecular distances. The simulation based on a frustrated 

three-sublattice spin model can successfully reproduce the short-range spin 

correlations in {Mo72Fe30}. In case of magnetic pyrochlore Na3Co(CO3)2Cl, the spin 

correlations are dominated by antiferromagnetic coupling between nearest neighbors. 

A long-range magnetic order is achieved at 1.5 K in Na3Co(CO3)2Cl because of the 

mechanism of order-by-disorder or structual distortion due to magneto-crystalline 

coupling and strong Ising-like anisotropy. Therefore the interplay between spin 

frustration and lattice constraints leads to different magnetic behaviors in different 

systems.  

  Besides experimental characterizations, simulations of short-range spin 

correlations have been carried out to approach the magnetic ground state of 

{Mo72Fe30}. The spin correlations of the frustrated three-sublattice spin model are 

calculated by numerical average of the spin correlations over all the molecules, i.e., 

all possible versions of the three-sublattice spin model. The simulation results are in 

reasonable agreement with the spin correlations measured by polarized neutron 

scattering at 1.5 K. Therefore the three-sublattice model is a good approach to the 

magnetic ground state of {Mo72Fe30}.  

  The magnetic excitations have been studied by means of both heat capacity and 

inelastic neutron scattering measurements. The low-temperature heat capacity 

method proves to be quite efficient in the determination of the low-lying magnetic 

excitations in molecular magnets whose low-lying energy spectra can be described 

by discrete rotational bands with well defined energy gaps. The validity of the 

quantum rotational band model for {Mo72Fe30} and the three-spin model for {As6V15} 

has been checked by comparing the energy gaps obtained in heat capacity 
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measurements with the theoretical predictions and the existing inelastic neutron 

scattering results. However, it’s not straightforward to explain the anomaly around 

the spin-glass-like freezing temperature in the heat capacity data of Na3Co(CO3)2Cl, 

because a continuous distribution of energy gaps, instead of discrete energy levels, 

should account for this anomaly. The temperature-dependent spin dynamics of 

Na3Co(CO3)2Cl was then investigated by means of inelastic neutron scattering, which 

reveals propagating modes below its spin-glass-like freezing temperature, rather 

than a complete spin freezing as what occurs in traditional spin glasses.  

  DC and AC susceptibility measurements are especially direct and valuable to 

determine the spin-glass-like transition in Na3Co(CO3)2Cl. They offer the 

opportunities to characterize collective magnetic behaviors within certain timescales 

in addition to those of neutron scattering measurements.  

  The average crystal structure of Na3Co(CO3)2Cl has been investigated in detail 

using X-ray powder diffraction and advanced neutron powder diffraction 

measurements. The determination of the crystal structure is mandatory prior to the 

analysis of magnetism. Possible positional disorder has been suggested, which could 

be essential for the formation of the spin-glass-like behavior in Na3Co(CO3)2Cl, in 

addition to the strong spin frustration in this material.  

  The research on the magnetic ground states of two molecular magnets, {Mo72Fe30} 

and {As6V15}, expends the knowledge on these molecular magnets and may benefit 

the study on similar molecular-based spin clusters. Having achieved a good 

understanding to the magnetic properties of these materials, future work on these 

materials will be to interlink such spin clusters in layered 3D or 2D networks, which 

would be a milestone for realizing quantum computation in molecular-based 

magnetic systems. 

  As to the magnetic pyrochlore Na3Co(CO3)2Cl, its complicated magnetic behavior 

has not yet been understood completely. More experiments are needed to determine 

the long-range magnetic order below 1.5 K and the origin of the inflection point at 17 

K. Though no applications are immediately evident for this material, it is worthy of 

more research to explain the remaining mystery in its magnetism. Magnetic 

pyrochlores always surprise the condensed matter physicists with exotic magnetic 

behavior and the interesting physics behind. 
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A.    Abbreviations 

2D  two dimensional  NPD  neutron powder diffraction 

3D  three dimensional  NPDF  neutron pair distribution function 

ACMS  AC/DC Magnetometry System  NSF  non spin flip 

ADP  Atomic displacement parameter  NSHB  nonresonant spectral hole-burning 

AT line  Almeida-Thouless line  ORNL  Oak Ridge National Laboratory 

BASIS  neutron backscattering spectrometer 
at ORNL 

 POM  polyoxometalate 

DNS  diffuse neutron scattering 
instrument at FRM II 

 PPMS Physical Property Measurement 
System 

EPR  electron paramagnetic resonance  QRB  quantum rotational band 

ESR  electron spin resonance  SF  spin flip 

FC  field cooled  SMM  single-molecule magnet 

FCC  face-centered cubic  SNS  spallation neutron source 

FRM II  Forschungsneutronenquelle Heinz 
Maier-Leibnitz 

 SPODI structure powder diffractometer at 
FRM II 

FWHM  full width at half maximum  SQUID superconducting quantum 
interference device 

ILL  Institut Laue-Langevin  TOF  time-of-flight 

INS  inelastic neutron scattering  TOFTOF time-of-flight spectrometer at FRM 
II 

JCNS  Jülich Center for Neutron Science  ULF  ultra low field 

LHe  liquid helium  XAFS  X-ray absorption fine structure 

MPMS  Magnetic Property Measurement 
System 

 XRPD  X-ray powder diffraction 

NMR  nuclear magnetic resonance  ZFC  zero-field cooled 
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B.    Example of the PCR File for Rietveld Refinement by Fullprof 

 
COMM Na3Co(CO3)2Cl  

! Current global Chi2 (Bragg contrib.) =     0.8706     

! Files => DAT-file: NaCo_1,  PCR-file: NaCo_1 

!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut 

   1   0   1  53   2   0   0   0   1   0   1   0   1   0   0   0   0   0   0 

! 

!Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 NLI Prf Ins Rpa Sym Hkl Fou Sho Ana 

   0   0   1   0   1   0   4   0   0   3  10  -2   0   0   0   1   0 

! 

!lambda1  Lambda2  Ratio  Bkpos   Wdt   Cthm    muR   AsyLim   Rpolarz ->Patt# 1 

 1.548286 1.548286 0.0000 10.000 20.0000 0.0000 0.2160 160.00   0.0000 

! 

!NCY  Eps  R_at  R_an  R_pr  R_gl  Thmin    Step    Thmax    PSD  Sent0 

  50  0.02 0.98  0.98  0.98  0.98  0.9500 0.050016 153.9000 0.000 0.000 

! 

!2Theta/TOF/E(Kev)   Background  for Pattern#  1 

        6.150     4217.686        0.000 

        8.900     3789.785        0.000 

       11.900     3510.444        0.000 

       14.700     3309.947        0.000 

       15.500     3291.139        0.000 

       19.800     3068.535        0.000 

       23.000     2966.908        0.000 

       23.750     2951.271        0.000 

       26.600     2877.879        0.000 

       30.700     2900.558        0.000 

       34.250     2761.814        0.000 

       37.200     2698.408        0.000 

       41.450     2645.822        0.000 

       43.750     2742.831        0.000 

       47.350     2632.780        0.000 

       50.800     2433.398        0.000 

       51.150     2437.282        0.000 

       54.850     2436.359        0.000 

       56.800     2375.534        0.000 

       61.950     2428.906        0.000 

       64.450     2394.211        0.000 

       66.100     2306.693        0.000 

       68.000     2299.038        0.000 

       71.050     2339.670        0.000 

       73.700     2302.182        0.000 
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       76.700     2347.278        0.000 

       79.550     2333.353        0.000 

       83.800     2247.333        0.000 

       85.000     2219.176        0.000 

       88.050     2251.674        0.000 

       92.100     2252.666        0.000 

       93.900     2260.809        0.000 

       96.700     2272.877        0.000 

       98.950     2269.698        0.000 

      101.900     2308.531        0.000 

      105.450     2245.314        0.000 

      109.350     2330.947        0.000 

      110.650     2273.973        0.000 

      114.300     2273.904        0.000 

      117.400     2351.795        0.000 

      118.050     2266.241        0.000 

      123.250     2386.778        0.000 

      123.300     2301.707        0.000 

      127.250     2372.658        0.000 

      130.700     2296.507        0.000 

      132.400     2338.142        0.000 

      136.600     2273.309        0.000 

      138.100     2315.909        0.000 

      142.500     2513.495        0.000 

      143.000     2315.436        0.000 

      147.950     2636.560        0.000 

      148.600     2438.570        0.000 

      153.650     2614.786        0.000 

!  

! Excluded regions (LowT  HighT) for Pattern#  1 

        0.00        6.10 

      153.95      180.00 

!  

! 

      28    !Number of refined parameters 

! 

!  Zero    Code    SyCos    Code   SySin    Code  Lambda     Code MORE ->Patt# 1 

  0.00216  21.0   0.00000    0.0  0.00000    0.0 0.000000    0.00   0 

!------------------------------------------------------------------------------ 

!  Data for PHASE number:   1  ==> Current R_Bragg for Pattern#  1:     1.77 

!------------------------------------------------------------------------------ 

Na3Co(CO3)2Cl                                                                                        

!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   5   0   0 0.0 0.0 1.0   0   0   0   0   0        232.345   0   5   0 
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! 

F d -3                   <--Space group symbol 

!Atom   Typ       X        Y        Z     Biso       Occ     In Fin N_t Spc 

/Codes 

!    beta11   beta22   beta33   beta12   beta13   beta23  /Codes 

Co     Co      0.00000  0.00000  0.00000  0.13776   0.16667   0   0   0    0               

                  0.00     0.00     0.00   100.50      0.00 

Na     Na      0.12500 -0.15105  0.12500  0.00000   0.50000   0   0   2    0               

                  0.00   111.00     0.00     0.00      0.00 

      0.00055  0.00048  0.00067  0.00000  0.00014   0.00000 

       121.00   131.00   141.00     0.00   151.00      0.00 

O      O      -0.02436  0.64698  0.51653  0.00000   1.00000   0   0   2    0               

                161.00   171.00   181.00     0.00      0.00 

      0.00039  0.00033  0.00049 -0.00020  0.00008  -0.00006 

       191.00   201.00   211.00   221.00   231.00    241.00 

C      C       0.03265  0.21735  0.03265  0.24469   0.33333   0   0   0    0               

                251.00  -251.00   251.00   260.50      0.00 

Cl     Cl      0.25000  0.25000  0.50000  0.00000   0.16667   0   0   2    0               

                  0.00     0.00     0.00     0.00      0.00 

      0.00058  0.00058  0.00058  0.00018 -0.00018  -0.00018 

       271.00   271.00   271.00   281.00  -281.00   -281.00 

!-------> Profile Parameters for Pattern #  1 

!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model 

 0.93684E-01   0.11782   0.00000   0.00000   0.00000   0.00000       0 

    11.00000    41.000     0.000     0.000     0.000     0.000 

!    U        V         W          X         Y       GauSiz   LorSiz Size-Model 

 0.030543  -0.032174   0.102065  0.000000   0.000000   0.000000   0.000000    0 

   91.000     81.000     71.000     0.000      0.000      0.000      0.000 

!     a          b         c        alpha      beta       gamma      #Cell Info 

  13.989807  13.989807  13.989807  90.000000  90.000000  90.000000                        

   31.00000   31.00000   31.00000    0.00000    0.00000    0.00000 

!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4   

  0.00000  0.00000  0.08150  0.01917  0.00000  0.00000 

     0.00     0.00    51.00    61.00     0.00     0.00 

!  2Th1/TOF1    2Th2/TOF2  Pattern # 1 

       6.100     153.900       1 
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C.    Methods and Instruments 

 

1. Diffuse neutron scattering spectrometer (DNS) [95, 205] 

The JCNS diffuse neutron scattering spectrometer (DNS) at FRM II is a versatile 

diffuse cold neutron scattering time-of-flight spectrometer with polarization analysis. 

DNS allows an unambiguous separation of nuclear coherent, spin incoherent and 

magnetic scattering contributions over a large range of scattering vector Q and 

energy transfer E. DNS has a compact design with only 80 cm distance from the 

sample position to the surrounding detectors, leading to modest energy resolution 

and relatively large neutron intensity.  

 

     

Figure C-1-1 Schematic view of DNS. [Pictures taken from W. Schweika, Polarized 

Neutron Scattering and Polarization Analysis in “Neutron Scattering: Lectures of the JCNS 

Laboratory Course”, Th. Brückel et al. (eds.), (Forschungszentrum Jülich GmbH, Jülich 

2010)] 

 

A schematic representation of DNS is given in Figure C-1-1. The incident neutron 

wavelength λ (2.4 < λ < 6 Å) is selected by a horizontally and vertically adjustable 

PG(002) double focusing monochromator. In order to perform time-of-flight 

spectroscopy a double-chopper system is installed between the monochromator and 
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the sample position. A polarizer using m=3 Schärpf bender-type focusing 

supermirrors is placed between the two choppers to generate polarized neutrons. A 

polarizing supermirror is commonly composed of one type of magnetic layers with 

aligned magnetization and non-magnetic layers with varying thickness. Neutrons 

with spins either parallel or antiparallel to the layer magnetization have different 

reflectivities in the supermirror regime: spins parallel to the layer magnetization 

have high reflectivity, while the antiparallel ones are transmitted or absorbed.  

Before being scattered by the sample, the polarized neutron beam has to be 

manipulated by the guide field to maintain the polarization direction. The guide field 

should be small enough not to influence the sample magnetization, but large enough 

to overcome the surrounding magnetic fields from the earth and other sources. 

The reversal of neutron polarization on DNS is realized by a π-flipper right after 

the chopper system. The π-flippers are used to reverse the polarization and to detect 

whether the sample causes spin-flip scattering. The homogeneous field of a long 

rectangular coil is often used for this purpose. As shown in Figure C-1-2, the coils 

generate a homogeneous field Hcoil perpendicular to the spin orientation and to the 

travel direction of the polarized neutron beam. The neutrons feel sudden changes of 

the field when enter and exit the coil. Inside the coil, the neutrons start to precess 

around the flipping field Hcoil. The polarization of the neutrons can be reversed by an 

angle of π through adjusting the current of the coil with respect to the geometry of 

the coil and the time of flight that neutrons spend inside the coil. 

 

 

Figure C-1-2 Principle of a neutron π-flipper. [Picture taken from W. Schweika, 

Polarized Neutron Scattering and Polarization Analysis in “Neutron Scattering: Lectures of 

the JCNS Laboratory Course”, Th. Brückel et al. (eds.), (Forschungszentrum Jülich 

GmbH, Jülich 2010)] 
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The sample position is surrounded by a set-up of three orthogonal Helmholtz coils, 

i.e., XYZ-coils. XYZ-coils generate the desired neutron polarizations, which are 

necessary for the polarization analysis. The field strength is large enough to enable 

an adiabatic rotation of the spin orientation, but small enough not to affect the 

sample magnetization. The z-coil is used to compensate the guide field at the sample 

position. After the scattering process and on the way to analyzers, the neutrons, 

which are brought into x- or y- direction in the scattering process, are reoriented by 

the xyz-coils back to the z direction. For the polarization analysis at z direction, no 

spin reorientation is needed to be done by the xyz-coils. 

Multi-detector arrays are used to record the scattered neutrons. Analyzers are 

placed between the sample and the detectors to detect a specific polarization 

direction of the scattered neutrons. For non-polarized neutrons, 128 units of position 

sensitive 3He detector tubes are available to cover scattering angles of 0 ≤ 2θ ≤ 135° in 

the horizontal plane. For polarized neutrons, 24 units of 3He detector tubes equipped 

with m = 3 supermirror polarization analyzers cover scattering angles of 0 ≤ 2θ ≤ 120°. 

The maximum momentum transfer Qmax that can be reached is 2.30 Å-1 for 

polarization analysis with an incoming wavelength of 4.74 Å.  

  DNS is ideal for the studies on complex spin correlations in highly frustrated 

magnets and strongly correlated electrons, as well as the structures of soft condensed 

matters such as the nanoscale confined polymers and proteins, via polarization 

analysis. The single-particle excitations, magnons and phonons can be investigated 

by single-crystal or powder time-of-flight spectroscopy. Uniaxial-, longitudinal- and 

vector- polarization analysis are practicable, ensuring wide applications of DNS in 

both hard and soft condensed matters.  

  Powder and polycrystalline samples have been used for the DNS measurements in 

this thesis. Three types of cryostats have been equipped, including close-cycle 

cryostat (Tmin ~ 3 K), orange cryostat (Tmin ~ 1.2 K) and dilution insert (Tmin ~ 20 mK). 

Cylinder aluminum sample holders were used for measurements with close-cycle 

cryostat. Hollow cylinder copper holders were used with orange cryostat and 

dilution insert. It should be mentioned that Al holders are better for orange cryostat 

actually. The sample mounting procedures were done in helium atmosphere. Figure 

C-1-3 shows the pictures of typical Al and Cu sample holders for DNS. The 

diameters of the sample holders could vary according to the sample properties, 

because the scattering probability should be kept below 10% to minimize the 



Appendix C. Methods and Instruments 

171 
 

multiple scattering events. The tail below the Cu holder in Figure C-1-3 is a tube to 

let helium gas flow through, which will be cut off and sealed after the air in the 

sample holder is driven out. A design of Cu holder for measurements with dilution 

insert is shown in Figure C-1-4.  

 

      

Figure C-1-3 Typical Al (left, diameter: 4 mm) and Cu (right, diameter: 9 mm) 

sample holders used for powder sample measurements on DNS. 

 

Besides the sample measurements, the empty sample can and a black body 

standard (Cadmium) are measured to account for the background. The measured 

intensities are normalized to the monitor counts. The scattering intensities of the 

sample are determined by subtraction of the signals from the empty can and the 

black body. If a cryostat is used in sample measurements, the background 

measurements are carried out with the cryostat.  

There is no incident beam polarizer or analyzer before the detector can work at 

100% efficiency. A small amount of impurity neutrons with wrong polarization 

directions always manage to arrive at the detectors. This effect is characterized by the 

so-called “flipping ratio”, which must be corrected for every detector by means of the 

scattering from an ideal isotropic incoherent scatterer, a NiCr alloy. The flipping ratio 

R is defined as I↑/I↓, where I↑ and I↓ are the background-corrected intensities with 

non-spin-flip and spin-flip scattering from NiCr alloy, respectively. The 

corresponding polarization is expressed as [206] 

                       
1 1
1 1NiCr

I I I / I RP
I I I / I R
↑ ↓ ↑ ↓

↑ ↓ ↑ ↓

− − −
= = =

+ + +
                (C.1.1) 
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Insert:            top view                            side view 

                                   
                                                                        

Lid:            bottom view                           side view 

                                  

 

 

 

 

 

 

                                                                        

Can:            top view                             side view 

 

 

 

 

 

 

 

 

 

 

Figure C-1-4 Design of the Cu holder for DNS with dilution insert. The unit of the 

values is mm. 
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The background-corrected intensities with non-spin-flip and spin-flip for the 

sample are I↑↑ and I↑↓, respectively. The non-spin-flip and spin-flip scattering 

intensities of the sample after the correction of finite flipping ratio are denoted as 

corrI↑↑ and corrI↑↓ . The background-corrected spin-flip and non-spin-flip scattering 

intensities of the NiCr alloy and the sample are plotted in Figure C-1-5, where the 

scattering intensity is shown as a function of the polarization [206].  

 

 

Figure C-1-5 Illustration of the non-spin-flip and spin-flip intensities I↑ and I↓ of the 

NiCr alloy, and the non-spin-flip and spin-flip intensities I↑↑ and I↑↓ of the sample, 

and the corresponding flipping-ratio-corrected intensities of the sample corrI↑↑ and 

corrI↑↓ . All the intensities have been corrected for the background. [Picture 

re-designed from O. Schärpf, The Spin of the Neutron as a Measuring Probe (Institute 

Laue-Langevin, 1996)] 

 

The correction of finite flipping ratio can then be done using simple rules of 

elementary geometry of proportionality [206].  

                          corr corrI I I I I↑↑ ↑↓ ↑↑ ↑↓+ = + =                      (C.1.2) 

                           
corr corrI I I I

I I I
↑↑ ↑↓ ↑↑ ↑↓

↑ ↓

− −
=

−
                      (C.1.3) 
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          ( ) ( ) 1
1

corr corr I I I I RI I I I I I I
RI I I I

↑↑ ↑↓ ↑ ↓
↑↑ ↑↓ ↑↑ ↑↓ ↑↑ ↑↓

↑ ↓ ↑ ↓

− + +
− = ⋅ = − = −

−− −
     (C.1.4) 

                         ( )1
1

corrI I I I
R↑↑ ↑↑ ↑↑ ↑↓= + −
−

                    (C.1.5) 

                         ( )1
1

corrI I I I
R↑↓ ↑↓ ↑↑ ↑↓= − −
−

                    (C.1.6) 

In the polarization analysis of DNS, the flipping ratio correction should be done in 

the three polarization directions x, y, z for every detector. In order to account for the 

effect of the measuring set-up for every detector, we define the polarization product 

Pn = PpolarizerPanalyzerFflipper for the nth detector, where Ppolarizer is the polarization efficiency 

of the polarizer, Panalyzer is the polarization efficiency of the analyzer and Fflipper is the 

flipper efficiency. The flipping ratio Rn for the nth detector can be determined as 

                                  n
n

n

I
R

I

↑

↓
= ,                            (C.1.7) 

by measuring the non-spin-flip and spin-flip scattering intensities of a NiCr alloy. 

Accordingly, the polarization product Pn for each detector can be given by 

                                1
1

n
n

n

RP
R

−
=

+
.                           (C.1.8) 

Replacing R in Eqs. (C.1.5) and (C.1.6) by Rn in Eq. (C.1.7), the correction for finite 

flipping ratio of the measured data from the sample can be done by using Eqs. (C.1.5) 

and (C.1.6). The measurement of NiCr alloy is performed with the same 

detector-bank positions as those used in the sample measurements, because the 

flipping ratio is not isotropic.  

  In order to determine the absolute scattering cross section of the sample, the 

measured intensities must be normalized to the scattering of a standard scatterer 

whose cross section and scattering behavior is well known [206]. In the DNS 

measurements, the measured scattering of the sample is normalized to the incoherent 

scattering of a known-mass vanadium standard, since vanadium is a nearly ideal 

incoherent scatterer with an incoherent scattering cross section of 5.08 barn and a 

coherent scattering cross section of only 0.0184 barn. Because the incoherent 

scattering is isotropic angularly, the measurement of vanadium standard can be 

taken at one or two detector-bank positions, which could save some beamtime. 
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Another important use of vanadium measurements is to correct the variation in the 

detector efficiency and the analyzer transmission.  

  Without the use of time-of-flight energy analysis, the measured scattering data are 

actually integrated over the entire energy range of DNS. On the energy-loss side, the 

energy range is limited by the incident neutron energy [206]. For example, most of 

the DNS experiments in this thesis used an incident wavelength of 4.74 Å, 

corresponding to the incident energy of 3.64 meV. Therefore 3.64 meV is the upper 

limit of the detectable energy range on the energy-loss side of DNS. On the 

energy-gain side, the limiting factors are the energy dependence of the transmission 

function T(ω) of the supermirror analyzers and the temperature factor from detailed 

balance behavior B(ω) [206]. The experimental magnetic scattering cross section is 

then given by [206-208] 

                   ( )( )max
2/iEexp

mag
mag

dd d T
d d

ω σσ ω λ ω
ω

=

−∞

⎛ ⎞
= Ω ⎜ ⎟⎜ ⎟Ω⎝ ⎠
∫ ∫

h
.          (C.1.9) 

T(λ) is the wavelength dependent transmission function of the supermirror analyzers, 

and 
2

mag

d
d d

σ
ω

⎛ ⎞
⎜ ⎟⎜ ⎟Ω⎝ ⎠

 is the double differential magnetic scattering cross section, which 

is proportional to F2(Q)Γ(Q,ω)k'/k. Γ(Q,ω) is the magnetization-magnetization 

correlation function between unit cells i and j, 

            ( ) [ ] ( ) ( ) ( ), exp exp 0i j i j
ij

dt i t i tΓ ω ω ⎡ ⎤= − ⋅ − ⋅⎣ ⎦∑∫Q Q R R S S .    (C.1.10) 

Γ(Q, ω) is related to the relaxation function R(Q, ω) via the detailed balance behavior 

B(ω) as 

                         ( ) ( )
B/, ,

1 k TQ R Q
e ω
ωΓ ω ω−=

− h

h
.                (C.1.11) 

Due to the fixed angular position of each detector and the large angular region 

covered by all the detectors, the experimental scattering cross section can be 

expressed approximately as [208] 

                  ( )( ) ( ) ( )max2 ( )~ ,exp
mag

Q

kf d T B R Q
k

ω ωσ ω λ ω ω ω
−∞

′
∑∫ .       (C.1.12) 

The incident neutron energy ħωi of DNS limits the measured cross section to the 
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contributions from energies E < ħωi. Considering the magnetic excitations of 

{Mo72Fe30} and Na3Co(CO3)2Cl are both low-lying (< 3 meV) (see Chapters 3 and 5), 

the energy integration of DNS is applicable for these two systems. The 

XYZ-difference method used on DNS has been discussed in Chapter 2.  

 

 

2. Neutron Backscattering Spectrometer (BASIS) [209] 

The JCNS neutron backscattering silicon spectrometer BASIS at the spallation 

neutron source SNS, Oak Ridge National Laboratory, USA, is a near-backscattering, 

crystal-analyzer spectrometer designed to provide extremely high energy resolution. 

The research on BASIS spans many scientific disciplines, from dynamics of water in 

organic and inorganic systems to ionic liquids to electronic and nuclear spin 

magnetism [210]. 

  Neutron backscattering spectroscopy is developed to investigate atomic or 

molecular motions on long time scales with energy resolutions of the order of μeV. 

The mean idea of neutron backscattering spectroscopy is to use Bragg angles of near 

90° with moderate collimation for beam monochromatization and analysis in order to 

achieve very high energy resolution [211]. The Bragg equation is given by 

                                  2 sindλ θ= .                         (C.2.1) 

Differentiate Eq. (C.2.1) and then we have 

                              cotd
d

λ θ θ
λ
Δ Δ

= + ⋅Δ ,                     (C.2.2) 

where Δλ/λ represents the relative width of the wavelength band for an ideally 

collimated beam, d is the lattice spacing and Δd/d is due to lattice strains, primary 

and secondary extinction, Δθ is the angular divergence of the beam. The 

backscattering geometry in reciprocal space is illustrated in Figure C-2-1. τ is the 

corresponding reciprocal lattice vector and expressed as 2π/d. Accordingly we have  

                                   
d
d

τ
τ
Δ Δ

= .                         (C.2.3) 

After being scattered by the sample, the beam becomes divergent. Define Δk as the 

difference between the modulus of the longest and shortest wave vector kmax and kmin. 

Based on the geometrical relation in Figure C-2-1, Δk is determined as [211] 



Appendix C. Methods and Instruments 

177 
 

              
( )max min 0

1 1
cos / 2

k k k k τ
θ ε τ

⎡ ⎤Δ
Δ = − = − +⎢ ⎥Δ +⎢ ⎥⎣ ⎦

.              (C.2.4) 

 

 

Figure C-2-1 Backscattering geometry in reciprocal space at θ ≈ 90°. [Picture taken 

from the review at http://www.ill.eu/sites/BS-review/HOME.html] 

   

  Since θ ≈ 90° and (Δθ/2+ε) is very small, Eq. (C.2.4) can be expanded to the first 

order and comes to 

                           
2

0

1
2 2

k
k

θ τε
τ

Δ Δ Δ⎛ ⎞≈ + +⎜ ⎟
⎝ ⎠

.                     (C.2.5) 

For the case of near backscattering ε < Δθ/2, Δλ/λ is given by  

                         
21

2 2
k
k

λ θ τε
λ τ
Δ Δ Δ Δ⎛ ⎞= = + +⎜ ⎟

⎝ ⎠
.                  (C.2.6) 

  A schematic view of BASIS is shown in Figure C-2-2 [212]. The necessary timing 

resolution is achieved from a design of the long initial guide of 84 m. As a 

TOF-backscattering spectrometer, bandwidth choppers are employed on BASIS to 

acquire the desired wavelength bands. The scattered neutrons from the sample are 

analyzed for energy and wavevector transfer by an array of silicon crystals in near 

backscattering geometry (θ = 88°). The Si (111) crystal analyzers reflect the neutrons 

with a very narrow energy distribution, resulting in an extremely high energy 

resolution of 2.2 μeV at the elastic peak and a Q-range from 0.1 to 2.0 Å-1. The filters 
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in front of the detectors remove the higher order Bragg reflections from the analyzer 

crystals. Upon using Si (311) analyzers, the energy resolution at elastic peak is 10 μeV 

and the Q-range can be extended to 0.6 < Q < 3.8 Å-1 [213].  

 

 

Figure C-2-2 Schematic view of BASIS. [Picture taken from K. W. Herwig, The Silicon 

Backscattering Spectrometer at SNS, presentation in “Workshop on Cold Neutron Chopper 

Spectrometer”, Nist, 2001.] 

 

 

Figure C-2-3 Schematic view of the sample/analyzer/detector geometry on BASIS. 

[Picture taken from K. W. Herwig, The Resolution Function of the High Resolution 

Backscattering Spectrometer at the Spallation Neutron Source, Oak Ridge National 

Laboratory, 2000] 

 

As shown in Figure C-2-3, the analyzer crystals are bent spherically and operated 

out of direct backscattering and can be rotated around the point (xc, yc) in the vertical 

dimension. The Bragg angle is given by 90°-β. Two of the flight paths from the 

sample to the detector are highlighted in green. The detector is tilted by an angle of α 
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to minimize the variations in the total flight path distances. Therefore, several 

parameters should be optimized, including the position of the detector, the detector 

tilt angle α, the radius rc and the center (xc, yc) of the rotation for the analyzers.  

  In case of the inelastic scattering using the Si(111) analyzers operating at 60 Hz 

(source frequency), the accessible energy resolution and the dynamic range are given 

in Figure C-2-4. The elastic resolution is as low as 2.2 μeV. The accessible inelastic 

range lies between -1.5 meV and +18 meV. The solid colored bands indicate the 

bandwidths that can be achieved. 

 

 

Figure C-2-4 (a) Inelastic resolution of BASIS using Si(111) analyzers. (b) Dynamic 

range of BASIS using Si(111) analyzers. [Pictures taken from K. W. Herwig, The 

Silicon Backscattering Spectrometer at SNS, presentation in “Workshop on Cold Neutron 

Chopper Spectrometer”, Nist, 2001.] 
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3. Time‐of‐Flight Spectrometer TOFTOF [201, 214, 215] 

  The TOFTOF spectrometer is a multi-disc chopper time-of-flight (TOF) 

spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz 

(FRM II). Direct TOF method is used on TOFTOF to select the incident neutron 

energy and determine the scattered neutron energy. A schematic presentation of 

TOFTOF is shown in Figure C-3-1.  

 

 

Figure C-3-1 Schematic view of TOFTOF spectrometer. View A is a layout of the 

sample chamber. [Picture taken from T. Unruh, J. Neuhaus and W. Petry, Nuclear 

Instruments and Methods in Physics Research A 580 (2007) 1414] 

 

  The outgoing neutrons from the moderator pass through an S-shaped curved 

neutron guide. The monochromatic neutron pulses are then achieved by seven high 

speed chopper discs in the primary spectrometer. The scattered neutrons are 

detected by the detectors, which are adjusted tangentially to the intersection lines of 

the Debye-Scherrer cones with the surface of a virtual sphere with a radius of 4 m 

around the center of the sample. The time-of-flight of the scattered neutrons from the 

sample to the detectors is measured and used for calculation of the neutron 

scattering spectra.  

  The TOF technique is useful as a low energy vibrational spectroscopic probe of the 

materials. The main idea of TOF method is to measure the time-of-flight of the 
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scattered neutrons from the sample to the detectors and thus determine their energy, 

as shown in Figure C-3-2. The incident neutron energy is selected by the rotation 

frequency of the Fermi chopper. Assume the distance between the chopper to the 

sample is Ri, the distance between the sample and the detector is Rf, and the 

incoming and outgoing neutron velocity is vi and vf, respectively. Then the neutron 

time-of-flight from the chopper to the detector is 

                                  fi

i f

RR
v v

τ = + .                        (C.3.1) 

The scattered neutron energy can be calculated as 

                                  21
2f n fE m v= .                       (C.3.2) 

 

 

Figure C-3-2 Illustration of TOF method. [Picture taken from Michael Monkenbusch, 

time-of-flight spectrometers, presentation] 

 

  By covering a large solid angle with detectors, one can measure the complete Q – ω 

space simultaneously using TOF method. But the consequence of the decoupling of 

energy and scattering angle is, one has to use neutron pulses with a short burst time 

(< 20 μs) and has to wait until all neutrons in one pulse arrive at the detector before 
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starting the next pulse. This is illustrated in Figure C-3-3.  

 

 

Figure C-3-3 Path-time diagram of TOF method. [Picture taken from Michael 

Monkenbusch, time-of-flight spectrometers, presentation] 

 

  After passing through the choppers and the monitor, the neutrons arrive at the 

sample and about 10% of them are scattered. The scattered neutrons enter the flight 

chamber and travel to the detectors. The flight chamber is filled with argon to avoid 

unwanted scattering by air molecules. The 3He detectors of TOFTOF are installed on 

eight racks, as shown in Figure C-3-1. The flight path between the sample and the 

detector is 4 m. The scattering angle 2θ ranges from 7.5 to 140°. The detectors are well 

shielded from each other and from the environmental neutrons. The numbers of 

neutrons detected by the detectors are saved in time-of-flight bins in the raw data 

files. 

  The energy resolution of TOFTOF can be changed continuously in a wide range 

from 5 μeV to 5 meV by variation of the chopper rotation frequency, according to the 

specific needs of the experiments. The energy resolution of TOFTOF can be well 

calculated in the form of the instrumental line width ΔE (FWHM) [201]. Figure C-3-4 

shows the ΔE of the elastic line as a function of the incident neutron wavelength λi, at 

several chopper frequencies.  
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Figure C-3-4 Energy resolution of TOFTOF spectrometer at several chopper 

frequencies (in rpm). [Picture taken from T. Unruh, J. Neuhaus and W. Petry, Nuclear 

Instruments and Methods in Physics Research A 580 (2007) 1414] 

 

  As shown in Figure C-3-5, the accessible dynamic range of TOFTOF changes with 

the incident wavelength also, which should be considered prior to the measurements. 

An appropriate chopper frequency could be decided after estimating the energy 

resolution and the dynamic range needed for the experiments.  

 

 

Figure C-3-5 Accessible dynamic range of the TOFTOF spectrometer for various 

incident neutron wavelengths in Å. [Picture taken from T. Unruh, J. Neuhaus and W. 

Petry, Nuclear Instruments and Methods in Physics Research A 580 (2007) 1414] 
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  The TOFTOF spectrometer offers a continuous wide spectrum of incident neutrons 

with relatively high intensity of 1010 n/(cm2s) at the sample position. The accessible 

dynamic range and the energy resolution of TOFTOF can be changed conveniently 

by varying the chopper frequencies from 1000 to 22,000 rpm. The extremely low 

background ensures a good signal to background ratio of TOFTOF. Therefore the 

TOFTOF spectrometer is a good choice for a wide range of investigations ranging 

from phonon density of states to low energetic magnetic excitations and from 

molecular diffusion and reorientations to internal vibrations of proteins [12]. 

 

 

4. Structure Powder Diffractometer (SPODI) [185, 216, 217] 

  The structure powder diffractometer SPODI at FRM II is dedicated for the 

crystallographic/magnetic structure determination with high Q-resolution using 

thermal neutrons. A picture and a schematic drawing of SPODI are shown in Figure 

C-4-1 (a) and (b). Several monochromator take-off angles between 90° and 155° can 

be employed. Different wavelengths can be achieved at a standard monochromator 

take-off angle of 155°, including λ = 1.549 Å (Ge(551), as used in Chapter 5), 2.537 Å 

(Ge(331)), and 1.111 Å (Ge(771)).  

 

     

Figure C-4-1 Picture (a) and schematic drawing (b) of SPODI. [Picture taken from R. 

Gilles et al., Physica B 276-278 (2000) 87] 

 



Appendix C. Methods and Instruments 

185 
 

  The detector system consists of 80 collimators and 80 3He detector tubes, covering 

a scattering angle of 160°. The detectors are position sensitive in vertical direction, 

allowing a large portion of Debye-Scherrer cone to be measured in two dimensions. 

The reference measurements on standard samples are taken to make efficiency 

correction and scattering angle correction for the collimator/detector pairs. The 

neutron counts as a function of detector height and scattering angle for each detector 

are included in the detector calibration. The measured two-dimensional data are 

integrated along the Debye-Scherrer rings to achieve the high-resolution diffraction 

patterns. The signal to noise ratio is improved by evacuating the beam path and well 

shielding from the environmental neutrons.  

  SPODI provides versatile sample environment devices, including the cold head 

cryostat (3.5-300 K), the “displex” cryostat (5-300 K), the high-temperature vacuum 

furnace (300-2100 K), high-pressure cell (up to 10 Gpa), and vertical magnet (7.5 

Tesla). SPODI has become one of the top-ranking powder diffractometers in the 

world owning to its excellent performances. 

 

 

5. Magnetic Property Measurement System (MPMS) [218] 

The Quantum Design MPMS sample magnetometer utilizes Superconducting 

Quantum Interference Device (SQUID) technology, combined with patented 

enhancements. MPMS measures the DC magnetization and the AC susceptibility of 

the materials with superior measurement sensitivity at large temperature and 

magnetic field ranges. The static magnetic property characterizations presented in 

this thesis have been performed on MPMS.  

  The modular MPMS design consists of a SQUID detection system, a precision 

temperature control unit, a sophisticated computer operating system, and a 

high-field superconducting magnet. A picture of MPMS is shown in Figure C-5-1. 

The temperature range is 1.9 < T < 400 K (the highest temperature is 800 K if an oven 

is installed). The magnetic field range is -7.0 < H < +7.0 Tesla. The controlling 

software, MPMS MultiVu, provides full automation and an easy, friendly user 

interface. 
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Figure C-5-1 Picture of Quantum Design MPMS. 

 

  The SQUID sensing loops of the SQUID detection system are configured as a 

highly balanced second-derivative coil set. The main idea of SQUID magnetometer is 

to separate two superconductors by thin insulating layers to form two parallel 

Josephson Junctions [219]. A schematic view of SQUID is shown in Figure C-5-2. If a 

constant biasing current is maintained in SQUID, the measured voltage is a periodic 

function of the change of the magnetic flux in the sensing loop. The period of the 

voltage variation corresponds to one flux quantum, 

                       15
0

2 2.0678 10
2e
πΦ −= = ×
h

 tesla·m2,               (C.5.1) 

where ħ is the reduced Plank constant and e is the elementary charge. The magnetic 

flux change in the sensing loop is then characterized by the counts of oscillations, 

which could be measured with great accuracy. Therefore SQUID becomes a standard 

method to detect incredibly small magnetic fields. The sample magnetic moment can 

be determined down to the order of 10-8 emu. 
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Figure C-5-2 Schematic view of SQUID. [Picture taken from an online introduction 

to SQUID at http://hyperphysics.phy-astr.gsu.edu/hbase/solids/squid.html#c3] 

 

  In this thesis, the samples for MPMS measurements are sealed in a gelatin capsule. 

A certain amount of cotton is put in the capsule to press the sample and avoid the 

shake of the sample. The capsule is then put in a drinking straw (lightweight 

homogeneous plastic tube). After adjusting the position of the capsule for an easier 

sample centering, the drinking straw is sealed with two spacers and connected to the 

sample rod. A mounted sample ready for measurements is shown in Figure C-5-3.  

 

 

Figure C-5-3 Mounted sample ready for SQUID measurements. 
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Before all the measurements, the Ultra Low Field (ULF) option is used to provide 

fully automated remanent field profiling and nulling. The ULF option is necessary 

for performing precise zero-field-cooled measurements. The background signal from 

the drinking straw and the capsule with cotton should be measured. The sample 

signal is obtained by subtracting the background from the raw data. 

 

 

6. Physical Property Measurement System (PPMS) [220] 

The Quantum Design PPMS is designed to measure a variety of physical 

properties of materials, such as heat capacity, magnetometry, electro- and thermal- 

transport properties. Figure C-6-1 shows a picture of PPMS. The two options, heat 

capacity and AC magnetometry system (ACMS), of PPMS used in this thesis will be 

discussed in this section. 

 

 

Figure C-6-1 Picture of Quantum Design PPMS, which is running heat capacity 

measurement equipped with a dilution insert.  
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6.1    Heat capacity on Quantum Design PPMS 

  The heat capacity measurement system on PPMS performs fully automated 

relaxation heat capacity measurements. The heat capacity is measured under a high 

vacuum. The data analysis is done by means of a two-tau model, where accurate 

simulations are performed to the heat flow between the micro-calorimeter platform 

and the sample (tau2) and the heat flow between the platform and puck stage (tau1).  

  The heat capacity can be measured as a function of temperature and magnetic field. 

Using the standard 3He cryostat, the temperature range of heat capacity is 1.9 – 400 K. 

In order to reach temperatures below 1.9 K, a 3He-4He dilution insert option is 

available, which allows the heat capacity to be measured from 50 mK to 4 K. The 

maximum field available is 9 Tesla. The resolution is 10 nJ/K at 2 K. 

  The mass of the samples for heat capacity measurements in this thesis is 1 < m < 5 

mg. The samples have a flat-plate shape with a smooth surface. The sample is 

mounted on the micro-calorimeter platform using a sample-mounting station, which 

is connected to a vacuum pump in order to prevent any damage to the puck. 

Apiezon N grease is used to increase the thermal conductivity between the 

micro-calorimeter platform and the sample. The background heat capacity of the 

micro-calorimeter and the Apiezon N grease is measured in an addendum run prior 

to the sample measurements and subtracted from the raw data of the sample 

measurements to acquire the absolute heat capacity of the sample. A picture of the 

sample mounting-station and the puck with the sample mounted is shown in Figure 

C-6-2.  

 

   

Figure C-6-2 (a) Sample-mounting station and (b) heat capacity puck with sample 

mounted and the radiation-shielding cap. 
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  At the bottom of the sample chamber, there is a 12-pin connector wired to the 

system electronics. This connector allows convenient access to flexible applications of 

PPMS. The puck with sample is inserted into the sample chamber using an inserting 

tool and plugged to this connector. Figure C-6-3 shows a schematic view of plugging 

the puck into the connector at the bottom of the sample chamber. As to the control of 

measurements, the PPMS MultiVu provides powerful software support, which 

automatically acquires, analyzes, and displays data.  

 

 

Figure C-6-3 Schematic view of plugging the puck into the connector at the bottom 

of the sample chamber of PPMS. [Picture taken from the user manual of PPMS, 

Quantum Design, Inc., USA] 

 

6.2    ACMS on Quantum Design PPMS 

  The AC susceptibility of materials can be measured in conjunction with the 

automated temperature and field control capability of PPMS. The temperature range 

of ACMS is 1.9 < T < 350 K. The frequency and field amplitude ranges are 10 Hz < f < 

10 kHz and 2 mOe < h < 15 Oe, respectively. The sensitivity of ACMS is 2×10-8 emu at 

10 kHz. The phase-locked technology is used to measure AC susceptibility in ACMS 

option. ACMS improves the signal-to-noise ratio by using high-speed digital filter. 

  The sample used for ACMS in this thesis is in powder form. The sample is 

mounted in a drinking straw following the same way as described in Appendix C. 5. 

The AC susceptibility measurements can be carried out conveniently using the PPMS 

MultiVu software. 
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Figure C-6-4 Pictured are the servo-motor, coil set, sample rod, and the drinking 

straw with the capsule containing sample, for ACMS measurements on PPMS. 
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