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CHAPTER 1. MULTIFERROIC COMPOUNDS

1.1 Introduction

One of the promising approaches to create novel materials is to combine different physical

properties in one material to achieve rich functionality. The early attempts to combine

(ferro)magnetic and ferroelectric(FE) properties dates back to 1960s [1–3]. Materials

combining these ferroic properties [4] were later on called multiferroics [5]. In general,

multiferroics are the compounds in which at least two of the following phenomena are

coupled: ferroelectricity, magnetic ordering or ferroelasticity (figure1.1). In recent years

with rapid growth of information technology one of the key issues is being the necessity of

production of storage media (like hard drives) with higher data density. The discovery of

the giant magnetoresistance effect significantly promoted magnetic memory technology

and was a revolution in the field of magnetoelectronics or spintronics. Currently either

ferroelectric or ferromagnetic materials are used for data storage media. If instead a

multiferroic (with both magnetic and ferroelectric ordering) could be used in memory

devices, it would add an extra dimension to the field of data storage resulting in an

increase of the data density. In addition, the possibility to switch the magnetic state by

an electric field pulse in multiferroic devices can lead to a reduced power consumption.

From the physical point of view multiferroics present an extremely interesting class

of systems and problems. Such as, what are microscopic conditions, and sometimes

constraints which determine the possibility to combine in one system both magnetic

and ferroelectric properties. This turned out to be a quite nontrivial question, and

usually in ‘conventional’ systems, these two phenomena tend to exclude one another

which is the main cause for the scarcity of magnetoelectric multiferroics. The scarcity of

ferromagnetic ferroelectric is now well understood to result from the contra-indication

between the conventional mechanisms for cation off-centering in ferroelectrics (which

requires formally empty d orbitals), and the formation of magnetic moments (which

usually results from partially filled d orbitals) [6]. This makes the presence of magnetism

and ferroelectricity simultaneously chemically exclusive. Despite this fact, more than

100 compounds that exhibit the magnetoelectric effect have been discovered [6–12].

In the present work we have synthesized and studied crystal and magnetic properties

of several multiferroic compounds via macroscopic and microscopic measurements.

A better knowledge of crystal and magnetic structures is a key to understand the
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1.2 Magnetoelectric multiferroics

underlying physics in multiferroics, which could help to design efficient materials for the

applications. In present chapter we give a brief introduction to multiferroics, restricting

our attention to single–phase multiferroic compounds exhibiting (anti)ferromagnetism

and ferroelectricity simultaneously.

Figure 1.1: Relationship between ferroelectricity (polarization P and electric field E), magnetism
(magnetization M and magnetic field H), and ferroelasticity (strain ε and stress σ). Multiferroics
are the materials in which at least two of these order parameters are coupled and a mutual control
is possible (Taken from Spaldin et al [13]).

1.2 Magnetoelectric multiferroics

In recent years, there has been a renewed interest in the coexistence and interplay of

magnetism and electrical polarization. So called magnetoelectric (ME) multiferroics

(simply referred as multiferroics here on) are presently attracting considerable attention

[6–10, 14]. There exist several different classes of multiferroics [9], a very interesting

type being the recently discovered [15–19] systems in which ferroelectricity appears only

in certain magnetically ordered states, typically, although not necessarily, spiral ones

[10]. Some of them are multiferroic in zero magnetic field, while others develop an

electric polarization only if a magnetic field is applied [20–22]. These compounds belong

to different crystallographic classes, and although some general rules governing their

behavior are already established [10], there is as yet no complete or general understanding
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CHAPTER 1. MULTIFERROIC COMPOUNDS

of the origin of multiferroic behavior. Even though their electric polarization P is

usually not large, one can easily influence it by comparatively weak magnetic fields or

electric switching of magnetization (M). It is this electric ‘switching’ of M which makes

multiferroics potentially very useful in device applications. In the present trends in device

miniaturization and high-density data storage, an integration of multifunctions into one

material system has become highly desirable. Emerging from the extensive applications

of magnetic and ferroelectric materials, it is natural to pursue a new generation of

memories and sensing/actuating devices tailored by materials that combine magnetism

and ferroelectricity in an effective and intrinsic manner as shown in figure 1.2.

One way to enhance the magnetoelectric response in single-phase compounds

significantly is to make use of strong internal electromagnetic fields in the

components with large dielectric and magnetic susceptibilities. It is well known that

ferroelelectric/ferromagnetic materials have the largest dielectric/magnetic susceptibility,

respectively. Ferroelectrics with ferromagnetism, i.e. ferroelectro-magnets [2], would be

prime candidates for an enhanced magnetoelectric effect. Except for the coexistence

of ferroelectricity and ferromagnetism, materials with strong coupling between primary

ferroelastic and ferromagnetic order parameters, in the class of ferromagnetic martensitic

systems, were also studied about 10 years ago [23].

1.2.1 The origin of multiferroicity

The ME effect, meaning magnetic (electric) induction of polarization P (magnetization

M), was first confirmed in 1959 − 1960 theoretically by Dzyloshinsky [25] and

experimentally by Astrov [26]. Since then several magnetic materials have been

demonstrated to show this effect [27]. In general magnetoelectric effect describes the

coupling between electric and magnetic fields in matter (i.e. induction of magnetization

(M) by an electric field (E) or polarization (P ) generated by a magnetic field (H)).

Thermodynamically, the ME effect can be understood within the Landau theory

framework, approached by the expansion of free energy for a magnetoelectric system,

i.e.

F
(

~E, ~H
)

= F0 − P s
i Ei −Ms

iHi −
1

2
ε0εijEiEj −

1

2
µ0µijHiHj − αijEiHj

−1

2
βijkEiHjHk −

1

2
γijkHiEjEk − ..., (1.1)
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1.2 Magnetoelectric multiferroics

Figure 1.2: A schematic of the ferroelectricity and ferromagnetism integration as well as the
mutual control between them in multiferroics. Ideal multiferroics would offer an excellent
ferroelectric polarization and ferromagnetic magnetization (polarization-electric field hysteresis
and magnetization-magnetic field hysteresis) and also high quality polarization-magnetic field
hysteresis and magnetization-electric field hysteresis (Reproduced from Tokura et al [24]).

where F0 is the ground state free energy and subscripts (i, j, k) refer to the three

components of a variable in spatial coordinates. Ei and Hi are the components of the

electric field ~E and magnetic field ~H, respectively; P s
i and Ms

i are the components of

the spontaneous polarization ~P s and magnetization ~Ms; ε0 and µ0 are the dielectric and

magnetic susceptibilities, βijk and γijk are the third-order tensor coefficients and, most

importantly, αij is the component of tensor α̂. The tensor α̂ corresponds to induction of

polarization by a magnetic field or of magnetization by an electric field which is designated

as the linear magnetoelectric effect. The rest of the terms in the preceding equations

correspond to the high-order magnetoelectric effects parameterized by tensors β and

γ [7]. The differentiation of equation (1.1) leads to the polarization

Pi (E,H) =
∂F

∂Ei
= P s

i + ε0εijEj + αijHj +
1

2
βijkHjHk + γijkHiEj + ..., (1.2)

and to the magnetization

Mi (E,H) = − ∂F

∂Hi
=Ms

i + µ0µijHj + αijEj + βijkHjEi +
1

2
γijkEjEk + ..., (1.3)
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CHAPTER 1. MULTIFERROIC COMPOUNDS

1.2.2 Different routes to multiferroicity

Unfortunately, the ME effect in single-phase compounds is usually too small to

be practically applicable. A breakthrough in terms of the giant magnetoelectric

effect was achieved in composite materials; for example, in the simplest case

the multilayer structures composed of a ferromagnetic piezomagnetic layer and a

ferroelectric piezoelectric layer [7, 28–30]. Other kinds of magnetoelectric composites

including co-sintered granular composites and column–structure composites were also

developed [31–33]. In the composites, the ME effect is generated as a product property of

the magnetostrictive and piezoelectric effects, which is a macroscopic mechanical transfer

process. A linear ME polarization is induced by a weak a.c. magnetic field imposed

on to a d.c. bias magnetic field. Meanwhile, a magnetoelectric voltage coefficient up

to 100 Vcm−1Oe−1 in the vicinity of electromechanical resonance was reported [7]. A

complete introduction to the magnetoelectric effects in composite materials can be found

in articles by Fiebig [7] and Nan et al [28]. Despite of apparently bad compatibility of

magnetism and ferroelectricity, we now know many systems in which these properties

coexist. In the following sections we give a brief overview of few of the possible ways to

combine magnetism and ferroelectricity in single–phase materials. A detailed overview

of classification of multiferroics based on the mechanism underlying the ME phenomena

can be found in references [7, 34, 35].

1.2.2.1 Independent system

One of the simplest approach, conceptually, to combine ferroelectricity and magnetism

is to synthesize multiferroics with two structural units functioning separately for the

ferroelectricity and magnetism. One of the first and well known examples are borates,

such as GdFe3(BO3)4, which contain ferroelectricity active BO3 groups and magnetic

ions Fe3+ [36, 37]. In addition to multiferroicity, these materials exhibit interesting

optical properties. Boracites, such as Ni3B7O13I, are also in this category [38, 39].

Few other to mention in the same category are Fe3B7O13Cl and Mn3B7O13Cl. All the

above mentioned compounds are non-perovskite compounds. First attempts to prepare

perovskite multiferroics were made by Russian scientists. They proposed to mix both

transition metal (TM) ion with d electrons and ferroelectrically active TM ions with d0

configurations at B–sites. The idea was that the magnetic ions and d0–shell TM ions

separately favor a magnetic order and a ferroelectric order. The typical compound is

6



1.2 Magnetoelectric multiferroics

PbFe0.5Nb0.5O3 (PFN) in which Nb5+ ions are ferroelectrically active and Fe3+ ions are

magnetic, respectively. The coupling between magnetic and ferroelectric order in this kind

of multiferroic is very week because these two order parameters originate from different

kinds of ions, hence the name independent multiferroic materials. In addition to PFN,

other multiferroics falling in this category of AB1−xB
′
xO3, such as PbFe0.5Ta0.5O3 [40] and

PbFe0.5W0.5O3 [41] which also showed weak magnetoelectric coupling.

1.2.2.2 Ferroelectricity induced by lone-pair electrons

In the magnetic perovskite structure oxides and related materials, multiferroism is most

commonly achieved by making use of the stereochemical activity of the lone pair on the

large (A-site) cation to provide the ferroelectricity, while keeping the small (B-site) cation

magnetic. The ions with lone–pair of electrons, such as Bi3+ and Pb3+, always locate at

A-site in an ABO3 perovskite structure. This allows TM ion to locate at B-site so that the

incompatibility for TM ions to induce magnetism and ferroelectricity is partially avoided.

The typical examples are (and the most widely studied) BiFeO3 and BiMnO3 where B–site

ions contribute to the magnetism and the A–site ions via the lone pair mechanism lead

to the ferroelectricity. In these compounds, Bi3+ ions with two electrons in a 6s orbit

(lone pair) shift away from centrosymmetric positions with respect to the surrounding

oxygen ions, favoring the ferroelectricity. BiMnO3 is unique, in which both M and P

are reasonably large and is one of the exceptional multiferroic offering both ferroelectric

and ferromagnetic orders [42, 43]. BiMnO3 is another well-known multiferroic material

because is it one of the few multiferroics with both ferroelectricity and magnetism above

room temperature. BiFeO3 is well-known because it is one of the few multiferroics with

both ferroelectricity and magnetism above room temperature. The ferroelectric Curie

point is TC ∼ 1103 K and the antiferromagnetic Néel temperature is TN ∼ 643 K, while

weak ferromagnetism at room temperature can be observed due to a residual moment in a

canted spin structure [44, 45]. The high ferroelectric Curie point usually refers to a large

polarization since other typical ferroelectrics with such Curie points have a polarization

up to about 100 µCcm−2. In recent studies on high quality single crystals of BiFeO3

polarization of about 60 µCcm−2 were obtained [46, 47].

In addition to BiMnO3 and BiFeO3 several other multiferroics were studied in same

category. For example, PbVO3 in which multiferroism is facilitated with lone-pair

ion, Pb2+ [48], which is very similar to conventional ferroelectric material, PbTiO3.

7



CHAPTER 1. MULTIFERROIC COMPOUNDS

Another example, Cu2OSeO3, which is another lone pair containing material, exhibits

the coexistence of piezoelectricity and ferrimagnetism but unfortunately no spontaneous

polarization was measured. It exhibits significant magnetocapacitance effects below

ferromagnetic Curie temperature ∼ 60 K [49, 50]. This is because Cu2OSeO3 is metrically

cubic down to 10 K but the ferrimagnetic ordering reduces the symmetry to rhombohedral

which excludes the spontaneous ferroelectric lattice distortion. Similar effects were also

observed in SeCuO3 [51].

1.2.2.3 Geometrically driven ferroelectricity in hexagonal manganites

In the ferroelectrics referred in last two sections, the driving force for the ferroelectricity

is structural instability towards the polar state associated with electronic pairing.

Such ferroelectrics were coined as ‘proper’ ferroelectrics. In contrast to this class of

ferroelectrics, in some other ferroelectrics the polarization develops as the by–product of

a complex lattice distortion. This class of materials, together with all other ferroelectrics

with their polarization originating from by–product of order configurations, were coined

as ‘improper’ ferroelectrics. Hexagonal manganites RMnO3 with R the rare–earth

element (Ho–Lu, or Y), fall into the latter category, and are often cited as typical

examples that violate the d0 − ness rule.

YMnO3 is one of the first compounds in this class of multiferroics which is a

well–known multiferroic system with a ferroelectric Curie temperature TC = 950 K and

an antiferromagnetic Néel temperature TN = 77 K. In YMnO3 paramagnetic phase

(centrosymmetric) to ferroelectric phase (non–centrosymmetric) is characterized by

buckling of the layered MnO5 polyhedra accompanied by displacement of the Y ions

which lead to net electric polarization. A schematic of crystal structure of YMnO3

in paraelectric and ferroelectric phases is presented in figure 1.3. We expect a similar

behavior in near FE Curie temperature of recently synthesized metastable hexagonal

DyMnO3. In addition we also observe magnetoelastic effect which further indicates a

strong spin-phonon coupling. We present our findings in chapter–6.

From density functional calculations Van Aken et al [52] showed that the polarization

mechanism is driven entirely by electrostatic and size effects, in contrast to the usual

changes in chemical bonding associated with ferroelectric phase transition in perovskite

oxides. As neither Y3+ nor Mn3+ has a lone pair of electrons, lone pair stereochemical

activity can not be the driving force for ferroelectricity in YMnO3. Only other possible

8



1.2 Magnetoelectric multiferroics

Figure 1.3: Schematic of a MnO5 polyhedra in (a) Paraelectric and (b) Ferroelectric phases.
The number indicate the bond lengths in Å and the arrows indicate atomic displacements with
respect to the centrosymmetric structure. (Taken from [52]).

chemical mechanism is ligand–field hybridization. As one can notice from figure 1.3(b)

that Mn ions remain close to the center of their oxygen cages, it is highly unlikely that

they re-hybridize with the surrounding oxygen anions during phase transition. Instead,

long–range dipole–dipole interactions and oxygen rotations both cooperate to drive the

system towards the stable ferroelectric state. Indeed , the Y–OP (where OP ) off-centre

displacements are quite distinct from the small displacements driven by chemical activity

found in conventional ferroelectric perovskites, and represent a completely different

mechanism for ferroelectric distortion. For RMnO3 such as HoMnO3, in addition to the

complex Mn spin structure, usually R3+ ions also carry their own spin that is non-collinear

with the Mn spins. The FE phase of HoMnO3 appears at the Curie point TC = 875 K

and possesses P63cm symmetry with polarization P = 5.6 µCcm−2 along the hexagonal

c-axis [53–56]. One of the most fascinating effects with hexagonal RMnO3 is the magnetic

phase control by an electric field, as demonstrated in HoMnO3. Few more candidates in

this category are YbMnO3 [57], InMnO3 [58, 59] and (Lu/Y)CrO3 [60–62]. However,

9



CHAPTER 1. MULTIFERROIC COMPOUNDS

the detailed mechanism of FE in these compounds remains a puzzle. For instance, more

recently it was proposed that in YCrO3 local non−centrosymmetry accounts for the small

value of polarization observed in spite of the large A-cation off-centering distortion [60, 61].

In chapter 3–4 we present our investigations on one such compound, HoCrO3.

1.2.2.4 Ferroelectricity induced by spiral spin-order

In all the above mentioned multiferroics the magnetoelectric coupling is rather weak as

the ferroelectricity and magnetism basically originate from different ions or subsystems.

There are few exceptional compounds in which ferroelectricity induced directly by the spin

order, meaning that an intrinsic magnetoelectric coupling occurs between the ferroelectric

and magnetic order parameters.Two mechanisms are being considered to understand such

a magnetoelectric effect:

1. Symmetry consideration

The inter-exclusion between ferroelectricity and magnetism originates not only

from the d0-ness rule, but also from the symmetry restriction of two types of

order. Ferroelectricity needs the broken spatial-inverse symmetry and usually

invariant time reverse symmetry. In contrast, the broken time-reversal symmetry

is the prerequisite for magnetism. Consequently, a multiferroic system requires the

simultaneous breaking of the spatial-inversion and time-reversal symmetries. The

ME coupling between polarization and magnetization is derived from this general

symmetry argument [25, 63, 64]. In this class of multiferroics, in general, two or

more competing magnetic interactions can induce the spin frustration and the spiral

(helical) spin symmetries simultaneously, thus establishing the ferroelectric order.

2. Microscopic mechanism

In addition to the symmetry argument mentioned above, a microscopic mechanism

responsible for ferroelectricity in magnetic spiral systems is required. Till date it

remains unclear whether the spiral spin order (spiral SDW) is a prerequisite for

generating ferroelectricity. It was predicted that the acentric dislocated SDW may

also drive a ferroelectric polarization [64]. Currently, three theories on microscopic

aspect of magnetoelectric coupling in magnetic spiral multiferroics have been

proposed: the inverse Dzyaloshinskii-Moriya (DM) model [65–67], the spin current

model (KNB model) [68], and the electric current cancelation model [68].

10



1.3 Aims of research

Considerable research has been carried out recently on TbMnO3 and related

manganites where spin frustration causes sinusoidal antiferromagnetic ordering. Large

magnetocapacitance and ME effects are observed in TbMnO3 due to the switching of

the electric domains by the magnetic field [69]. DyMnO3 shows similar properties [70].

Wolframite MnWO4 is another most studied compound in this class of materials [71–74].

This is the first example of the ferroelectric polarization flop induced by magnetic fields in

transition-metal oxide systems without rare-earth 4f moments. In chapter–7, we present

our studies on the effect of doping on the frustrated spin structure of MnWO4.

1.3 Aims of research

The general motivation behind the research in this thesis is to understand the crystal

and magnetic structures which in turn give a clearer idea for magnetoelectric coupling in

several multiferroics. In magneto ferroelectrics there are still aspects of the mechanisms

giving rise to ferroelectricity that are not fully understood. In the present work we study

the structural and magnetic properties of few magnetoelectric multiferroics.
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CHAPTER 2. THEORETICAL BACKGROUND AND EXPERIMENTAL METHODS

2.1 Synthesis of polycrystalline powders and growth

of single crystals

2.1.1 Solid state reaction route

All the samples used in the present work were prepared by conventional solid state

synthesis technique. This technique involve heating (not melting !) mixtures of two

or more solids to form a desired solid phase product. Unlike gas phase and solution

reactions, the limiting factor in solid-solid reactions is usually diffusion. The diffusion

process can be described by Fick′s laws which can be used to solve for the diffusion

coefficient, D. To obtain good rates of reaction the diffusion coefficient has to be larger

than 10−12 cm2/s. The diffusion coefficient increases rapidly with temperature as the

melting point is approached. This concept leads to Tamman’s rule [75]: Extensive reaction

will not occur until the temperature reaches at least 2/3rd of the melting point of one or

more of the reactants.

The rates of solid state reactions are controlled by two factors:

(1) The area of contact between reaction solids: To maximize this one should use the

starting reagents with large surface area, which can be achieved by fine milling of starting

reagents (precursors).

(2) The rate of diffusion: This can be increased by increasing the temperature.

Steps in conventional solid state synthesis:

1. Selection of appropriate starting materials: Fine grain powders should be chosen to

maximize surface area. In most of the cases well defined composition is also very crucial.

In the present work we used high purity precursors in their oxide forms, for example, to

prepare HoCrO3 (Chapter 3) we used Ho2O3(99.99%) and Cr2O3(99.999%) as precursors,

the values in the brackets indicate the purity.

2. Weigh out and mix starting materials together: Starting materials in appropriate

stoichiometric ratio should be weighed very precisely on an electronic balance. Then

they are mixed in an agate mortar and pestle or in a ball mill (for large preparations).

An organic solvent such as isopropanol can be used optionally to facilitate better mixing
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of precursors.

3. Pelletize: Pelletizing the mixed precursors can enhance the intimate contact of

reactants and it also minimizes contact with the crucible. An organic binder can be

used for a better binding. For some of the preparations we used 10% solution of (by

weight, in water) polyvinyl alcohol with chemical formula (C2H4O)n.

4. Select sample container: For the selection of containers one should consider the

reactivity of the sample container with precursors used for the synthesis, strength, cost

and durability. One can chose from a variety of sample containers made of, (a) ceramic

refractories such as Al2O3 or ZrO2/Y2O3, (b) Precious metals such as Pt, Au, Ag and Ir

and (c) SiO2, Mo, W etc (mostly as sealed tubes). We used Al2O3 and Pt crucibles for

the sample preparation during the course of present work.

5. Heat treatment: Factors influencing the choice of temperature include Tamman’s rule

and potential for volatilization. For example in the case of HoCrO3 the precursors Ho2O3

and Cr2O3 are having melting temperatures 2360 ◦C and 2435 ◦C, respectively. Applying

Tamman’s rule, precursors should be heated to 1575 ◦C for a substantial reaction to

occur. Keeping in mind the volatile nature of Cr2O3 we heated the precursors to only

1200 ◦C. Though this procedure took longer time for the complete reaction, we could

prepare good quality stoichiometric HoCrO3. Precursors were also preheated at 1000 ◦C

before the main sintering process, to prevent volatilization. The atmosphere during the

reaction is also critical, one should consider a variety of gaseous atmospheres (air, O2,

H2/Ar etc) based on whether oxidizing conditions or reduction conditions are required

for the preparation of a particular compound.

6. Verification of phase purity (powder diffraction).

7. Improvement: if reaction is incomplete the steps from 4 were repeated until desired

phase product is obtained.

2.1.2 Crystal growth by optical floating zone technique

Crystal growth using optical floating zone (OFZ) technique has been extensively used to

grow a variety of bulk crystals, particularly single crystals of metal oxides with very high

melting temperatures [76, 77]. The group of materials for which OFZ growth technique

has been mostly used are those termed as functional oxides, which find applications

in lasers, electronic and optical devices, catalysts, solid oxide fuel cells, memory and
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CHAPTER 2. THEORETICAL BACKGROUND AND EXPERIMENTAL METHODS

magnetic devices and as multiferroic and superconducting materials. The basic idea

of OFZ technique is that either ellipsoidal or parabolic mirror(s) (or a combination of

both) is used to focus the light from halogen or xenon lamp(s) onto a vertically held rod

shaped sample to produce a molten zone, which is then moved along the sample in order

to grow a single crystal. The greatest advantage of the OFZ technique is the fact that

no crucible is necessary and that both congruently and incongruently melting materials

can be grown.

The growth of single crystals by OFZ can be broadly classified in to two stages.

1. Preparation of polycrystalline feed rod: This process starts with the synthesis of the

compound, for instance as described in the previous section. Then the polycrystalline

material is filled tightly in to a latex tube homogenously with out any voids. Then it was

evacuated, sealed (tied) and pressed in a hydrostatic press. Usually the tube is pressed

at approximately 2000 kg/cm2. We used few drops of polyvinyl alcohol (PVA) binder to

avoid breaking of rods. After pressing the rod, the latex tube is cut and removed and

the sample rod is heated slowly up to 700 ◦C to remove all the binder and then sintered

at 1400 ◦C for about 10 hours to achieve higher density. The final product will be a rod

of about 8− 10 cm in length with a diameter of ∼ 6− 8 mm. A small hole of 1 mm was

drilled along the diameter at one end of the rod. A thin platinum wire is thread through

the hole to make a loop. Another short sample rod is prepared, the same way as feed

rod, which can be used as seed for the growth in case there is no single crystal available

for the growth to start with.

2. Growth of single crystal: The OFZ furnace used for the growth is shown in

figure 2.1(a) (model FZ-T-10000-H-VI-VPO from Crystal System Inc., Japan). It is

equipped with four halogen lamps which can deliver a total power of 4kW, situated

inside the growth chamber which is shown in the figure 2.1(b) (lamps can be changed to

attain powers up to 6 kW). A schematic diagram of the growth chamber is presented

in figure 2.1(c), where only two lamps are shown for simplicity. The lamps are situated

at one of the foci of the hemi-ellipsoidal mirrors. The feed rod is hung freely from the

upper shaft and the seed rod which is tied to a ceramic tube is fixed to the lower shaft

in such a way that their tips meet at the second foci of the hemi-ellipsoidal mirrors.

Both rods are carefully aligned to lie coaxially at the center of one of the foci of the

hemi-ellipsoidal mirrors. A quartz tube is fitted around the seed and feed rods, which

enables one to maintain a desired atmosphere by passing a regulated gas (Air, Ar, N2 etc).
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2.2 Powder X-ray diffraction

The growth process is started by melting the tips of polycrystalline rods touching

them carefully by slowly bringing them closer and establishing a molten zone called

floating zone between the bottom of the feed rod and top of the seed rod. Once the

zone is created it is moved upwards (either by moving the mirrors up or by moving the

seed and feed rods simultaneously down). During this process the melt crystallizes on

the seed rod by melting the feed forming crystallites which eventually results in a single

grain (single crystal). The growth chamber as seen in the CCTV during a growth and a

schematic view of seed and feed rods and different stages in the (single) crystal formation

are presented in figure 2.1(d). In this figure it can be noted that after touching the

feed and seed rods the diameter of the crystallized part is decreased drastically over few

millimeter to centimeter length (by carefully tailoring the growth-rate, power of the lamp,

seed-feed rotation rates etc). This is done to achieve a selective growth of single grain

by getting rid of multiple grains which were seeded in the early stages after touching.

This technique is called necking. It increases the chances of obtaining a single crystal

drastically. During the growth the feed and seed rod are rotated in apposite directions.

The rate of rotation is important as it is responsible for a pattern of forced convection

flows within the zone and – as a result – mixing of the material, for the shape of the

crystallization front (solid–liquid interface), and for the defects resulting from it [77].

The crystal growth rate (the rate at which the zone is moved), the rotation rate and the

gas flow rate all are optimized experimentally for each material. As grown hexagonal

DyMnO3 single crystal is shown in figure 2.1(e).

2.2 Powder X-ray diffraction

2.2.1 Theoretical background

A precise knowledge of the crystal structure is essential for interpretation of the physical

properties. Powder diffraction with x-rays has played a vital role in the structural

characterization of materials over the last four decades. We can as well say that powder

diffraction techniques have had an impact in most of the major developments in the field

of functional materials during recent years: high temperature superconductors, fullerenes,

giant magnetoresistance (GMR) materials, multiferroics are a few to mention. Laboratory

powder X-ray diffraction (PXRD) is the most widely used X-ray diffraction technique for
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Figure 2.1: (a) The optical floating zone furnace FZ-T-10000-H-VI-VPO, (b) inside view of the
growth chamber: at the center two rods can be seen fixed to upper and lower shaft and fixed with
a quartz tube. Four halogen lamps and hemi-ellipsoidal mirrors are also seen (two on the back,
one on the left and other on the right side). Note that the front mirrors are moved apart for a
better view. (c) schematic diagram of the growth chamber (A-atmosphere, Z-floating zone), (d)
the growth chamber as seen in CCTV during a growth and a schematic of the growth process
and (e) as grown hexagonal DyMnO3 single crystal.
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2.2 Powder X-ray diffraction

characterizing materials. As the name suggests, the sample will be taken in the form of

powder, consisting of fine grains of single crystals called crystallites. The term powder

means that the crystallites are randomly oriented in the sample. The diffraction process

is described by well known Bragg′s law, given by:

2dhkl sin θ = λ (2.1)

Where dhkl is the distance between the parallel lattice planes with Miller indices (hkl),

θ is the angle between the lattice planes and X-rays (neutrons) of wavelength λ and n

is an integer number. From Bragg’s law, for a fixed wavelength λ, for all θ and d values

satisfying the above equation, i.e., when the product 2d sin θ is equal to an integral

multiple of the incident wavelength λ, an intensity maximum occurs due to constructive

interference of the scattered beam. A pictorial illustration of Bragg’s law is presented in

figure 2.2. Thus when the 2–D diffraction pattern is recorded, it shows concentric rings

(Debye–Scherrer lines) of scattered intensities corresponding to various dhkl–spacings in

the crystal lattice. The positions and intensities of the peaks are used to identify the

underlying structure of the material.

atomic planes in a crystal

d 

Bragg's law

n =2d sin

d sin

2

D
etector

2d sin

Condition for constructive
intereference is:

Figure 2.2: Illustration of Bragg’s law

To calculate the line intensities in a powder pattern let us consider a diffracting

material of volume dV small enough that the absorption can be neglected, composed of

a very large number of randomly oriented tiny crystals. A Debye–Scherrer line of indices

hkl is produced by reflection on all the crystal planes having the same spacing dhkl. The

number of the lattice planes which are equivalent (with equal d–spacing) due to crystal
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symmetry is called the multiplicity factor n and depends on the nature of the lattice and

on the indices hkl. If a crystal gives rise to a Debye–Scherrer line with indices hkl, the

normal to the lattice plane (hkl) must make an angle (π/2)− α with the direction (S0)

of the incident rays, the angle α being within the region of reflection, or very close to the

Bragg angle θ. The probability that the normal is within (π/2)−α and (π/2)−α+dα of

S0 is cosα dα/2. Since there are n equivalent normal directions, the total volume of the

crystal having a normal to a plane hkl in this direction is (ndV/2) cosα dα or, since α is

very close to θ, (ndV/2) cos θ dα. If I(α) is the energy reflected per second by the plane

(hkl) for the angle of incidence α, the total energy diffracted per second by the volume

dV in the ring hkl is

Φ =
ndV

2
cos θ

∫

I (α)dα (2.2)

This is the energy which is reflected by the single crystal of volume ndV/2 cos θ

crossing the reflection position at an angular velocity ω = 1. The expression (2.2) can be

rewritten with Qhkl, the reflecting power per unit volume for the hkl reflection, thus

Φ =
ndV

2
cos θ QhklI0 (2.3)

For an ideal powder without texture the energy Φ is distributed uniformly over all the

Debye-Scherrer ring. At a distance r from the sample, the length of this ring is 2πr sin 2θ

and the diffracted energy per second and per unit length of the ring is therefore

I =
Φ

2πr sin 2θ
=
I0QhklndV

8πr sin θ
. (2.4)

Where I is the power diffracted per unit length of a Debye-Scherrer line at a distance r

from the sample, I0 is the intensity per unit area of the incident beam, θ is the Bragg

angle (λ = 2dhkl sin θ) and the value of Qhkl, the reflecting power per unit volume for the

hkl reflection from a small crystal is given by [78]

Qhkl = r2e
λ3

sin 2θ

1 + cos22θ

2

1

V 2
e

F 2
hkl. (2.5)

Where re is electron radius, Fhkl =
n
∑

i=1

fi exp [−2πi (hxi + kyi + lzi)] is the structure

factor for the lattice plane (hkl) (in case of cubic crystal) with scattering factor fi for

the ith atom and Vc is unit cell volume of the crystal.

The factor λ3/ sin 2θ comes from the integration of the intensity over the sharp
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2.2 Powder X-ray diffraction

peak in the region of a node for given experimental conditions. It is called Lorentz factor.

The term (1 + cos22θ)/2 is the polarization factor. This is valid only if incident

beam is unpolarized. For a beam of unspecified polarization the calculation is made by

decomposing the beam into two separate beams whose electric vectors are respectively

perpendicular and parallel to the plane of the incident and scattered rays, and in the

proportions k|| and k⊥. This occurs when a crystal monochromator is used for the incident

beam. If α is the reflection angle at the monochromator crystal, the two components of

the reflected ray which are polarized in the directions parallel and perpendicular to the

plane of incidence vary as 1 and cos22α, and their relative intensities are

k|| =
1

1 + cos22α
, k⊥ =

cos22α

1 + cos22α
.

This modifies equation (2.5) as follows, according to Thomson formula [78],

Qhkl = r2eF
2
hkl

λ3

V 2
e sin 2θ

1 + cos22α cos22θ

1 + cos22α
. (2.6)

Further more, it should be noted that equation (2.5) was deduced by neglecting

thermal agitation. But the atoms vibrates about their theoretical mean positions with

an amplitude which increases with temperature. One of the effects of thermal agitation

is to reduce the intensity of the selective reflections. We must therefore multiply the

reflecting power as given by equation (2.5) by a coefficient D which is less than unity; this

is called the Debye or temperature factor. The value of D decreases with temperature

and with s = (2 sin θ/λ). The effect can be important for larger values of θ, even at room

temperature.

Now substituting the value of Qhkl from equation (2.6) in equation (2.4) D we can

write the power diffracted per unit length of Debye-Scherrer line at r as:

I = I0r
2
e

1 + cos22θ

2

1

16πrsin2θ cos θ
λ3F 2

hkln
1

V 2
c

DdV. (2.7)

The equation (2.7) is valid only if the crystallites in the powder sample are small so

that there are no extinction phenomena and if their orientations are perfectly isotropic. If

the crystallites are large enough, absorption becomes significant and one must integrate

over the volume, taking the absorption into account. The intensity is then given by

equation (2.7), where dV is replaced by the effective volume. In a transmission camera
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with a thin sample of thickness a, the effective volume is

S

µρ
[

1− cosα
cos(2θ−α)

]

[

exp

{ −µρa
cos (2θ − α)

}

− exp

{−µρa
cosα

}]

, (2.8)

Where S is the cross section of the incident beam, µ is absorption coefficient, ρ is the

density of the material and α is the incident angle. This applies to the case where a

monochromator is used [79]. When α = θ the above equation simplifies to

Sa

cos θ
exp

(

− µρa

cos θ

)

. (2.9)

The optimum thickness of the sample is am = cos θ/µρ which reduces the incident

intensity by a factor of 1/e, or about 1/3.

2.2.2 Experimental technique

Powder diffraction data can be collected using either reflection or transmission geometry.

All the PXRD patterns described in this thesis were collected in transmission geometry

using a Huber diffractometer operating with Cu-Kα radiation and equipped with a G670

Guinier camera with integrated imaging plate detector. In contrast to the Guinier

cameras with old wet film technique which took measurement times from hours to days,

with the new image plate detection method the desired data can be acquired within few

minutes. Another advantage of this new diffractometer is the amount of sample required

for the measurement of only a few milligrams. A schematic view of powder diffractometer

setup with Guinier geometry is presented in figure 2.3.

Finely powdered samples were spread on a thin polythene film (commercially available

from Huber) by mixing with a small amount of isopropanol to increase adhesion over

an area of about 10 × 20 mm. Isopropanol also helps to spread the sample powder

homogeneously. During the exposure the sample oscillates horizontally in it’s plane

at about 1 Hz and an amplitude of 10 mm to obtain better powder-averaged-data by

compensating intensity variations caused by differently oriented crystallites in the powder

sample. In addition to imaging plate, the housing of the G670 camera contains the laser

recording unit with photomultiplier and pre-amplifier as well as the halogen deleting lamp.

After the intensity data is read out from a laser recording unit which outputs digitized 2θ

vs. Intensity data. Before the next measurement, intensity data on the detector is erased

with halogen deleting lamp. A typical 2D diffraction pattern as seen on the detector with
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Debye Scherrer line and powder diffraction pattern of the integrated intensities of Debye

Scherrer lines is presented in figure 2.4. The profiles of the PXRD data were analyzed by

Rietveld method (Appendix B) [80] using the FullP rof software [81].

Figure 2.3: A schematic view of the powder diffractometer set up with Guinier geometry
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Figure 2.4: A typical powder diffraction pattern (continuous line) obtained by integrating the
intensities of Debye–Scherrer lines (bottom strip) along 2θ.
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2.3 Neutron scattering

2.3.1 Theoretical background

The fundamental scattering processes underpinning neutron diffraction are different from

those in X-ray diffraction and so whilst the two techniques are in many ways analogous,

neutron and X-ray diffraction patterns obtained from a given sample differ substantially.

In many ways, these differences serve to make the two techniques complementary;

however, neutron powder diffraction has many advantages and can provide many types of

information not readily obtained in other ways. X-rays interact primarily with electrons.

On the other hand, neutrons are non charged subatomic particles having a mass (m) of

1.0087 atomic mass units (1.675 × 10−27 kg), spin 1/2 and a magnetic moment (µn) of

−1.9132 nuclear magnetons. These properties of the neutrons give rise to two principal

modes of interaction which are different from those of X-rays.

Since neutrons have no charge, their nuclear interaction with matter is short ranged.

As a result of this small interaction probability, neutrons can penetrate deep into

condensed matter. Moreover, the interaction between the neutron and atomic nuclei

involve complex nuclear interactions between the nuclear spins and magnetic moments.

For this reason, there is no general trend throughout the periodic table of an atom’s

ability to scatter neutrons. This is quite unlike the X-ray atomic scattering factor which

increases with atomic number. In addition, nuclear dependence of neutron scattering

allows isotopes of the same element to have considerably different scattering lengths for

neutrons, so that isotopic substitution can be employed.

The second mode of interaction is the magnetic dipole interaction between the

magnetic moments associated with unpaired electron spins in magnetic samples and the

nuclear magnetic moment of the neutron. As a result spin-up and spin-down electrons

’look’ different to neutrons. Hence, when a sample becomes magnetic, new peaks can

appear in the neutron diffraction pattern. The position and amplitude of the magnetic

Bragg peaks can be used as a measure of the direction and strength of the magnetic

moments, hence neutron scattering can be used to determine the arrangement of the

atomic magnetic moments in a magnetically ordered system. The magnetic neutron

scattering technique is the most direct method available for determining the details of

the magnetic structure of a sample.

Thermal neutrons for condensed matter research are usually obtained by slowing down

24



2.3 Neutron scattering

energetic neutrons by means of inelastic collisions in a moderating material containing

light atoms. Most of the slow neutrons thus produced will have kinetic energies of the

order of kBT where T is the moderator temperature, typically about 300 K for thermal

neutrons, and kB is Boltzmann’s constant. If one considers the wave nature of the neutron,

it can be described by a wavelength λ given by

λ =
h√

2mkBT
. (2.10)

where h is Planck’s constant and m is the mass of the neutron. For the equation (2.10),

temperature value of T ≈ 300 K corresponds to the wavelength λ ≈ 2 Å (2 × 10−8cm),

a distance comparable to the mean atomic separation in a solid or dense fluid. So called

thermal neutrons are therefore ideally suited to resolve the atomic structure as well as

the magnetic structure of condensed matter.

2.3.2 Scattering formulae

The neutron scattering intensity from magnetic materials is a superposition of both

nuclear and magnetic scattering. In order to be able to separate magnetic scattering

from nuclear scattering and to extract information about the magnetic structure and spin

dynamics, it is important to understand the basic principles of both processes. The theory

of neutron scattering has been discussed in detail in several books [82–85]. In the present

section we summarize some of the more useful formulae for interpreting experimental

measurements on crystalline solids.

Consider a monoenergetic neutron beam described by wave vector ki and flux Φ(ki),

incident on a sample (scatterer). The rate at which they are scattered by a sample is given

by the product Φ(ki)σ, where σ is the scattering cross section. In a neutron scattering

experiment, we are interested in the rate at which neutrons are scattered into a given solid

angle element dΩf , in the direction of the wave vector kf , with a final energy between

Ef and Ef + dEf . This rate is given by the product of Φ(ki) and the double-differential

cross section, d2σ/dΩfdEf . It is conventional to express the double differential scattering

cross section as a sum of coherent and incoherent parts:

d2σ

dΩfdEf
=

d2σ

dΩfdEf

∣

∣

∣

∣

coh

+
d2σ

dΩfdEf

∣

∣

∣

∣

inc

(2.11)
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The coherent part provides information about the cooperative effects among different

atoms, such as elastic Bragg scattering or inelastic scattering by phonons or magnons

and the incoherent part is proportional to the time correlation of an atom with itself and

provides information about individual particle motion, such as diffusion.

Figure 2.5: Geometry for scattering experiment

2.3.2.1 Fermi’s Golden Rule and Born approximation

A neutron acts as a very weak perturbation of the scattering system. When a neutron

scatters, it can cause a transition of the sample from one quantum state to another, but

it does not modify the nature of the states themselves. As a consequence, the differential

scattering cross section can be obtained from Fermi’s Golden Rule. Let V represent the

interaction operator for the neutron with the sample, then, if the initial and final states

are labeled by quantum number λi and λf , the differential cross section is

d2σ

dΩfdEf

∣

∣

∣

∣

λi→λf

=
kf
ki

( mn

2π~2

)2

|〈kfλf |V | kiλi〉|2δ (~ω + Ei − Ef ) . (2.12)

It should be noted that, in the derivation of equation (2.12) the spin states of sample and

neutrons are not considered. Because the effective interaction is weak, the interaction

matrix element can be evaluated using the Born approximation, treating the incident and

outgoing neutrons as plane waves:

〈kfλf |V | kiλi〉 = V (Q)

〈

λf

∣

∣

∣

∣

∣

∑

l

eiQ·rl

∣

∣

∣

∣

∣

λi

〉

, (2.13)
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where scattering Q = kf − ki is the scattering vector, rl are the coordinates of the

scattering centers (assumed here to be identical) and

V (Q) =

∫

dr V (r) eiQ·r. (2.14)

For nuclear scattering, the nuclear potential is essentially a delta function in r, so

V (Q) =
2π~2

mn
b, (2.15)

where b is the nuclear scattering length.

In a scattering experiment, one generally averages over initial states and sums over

all final states. If P (λi) is the statistical weight factor for initial state |λi〉, then

d2σ

dΩfdEf
=
kf
ki

∑

λi,λf

P (λi)

∣

∣

∣

∣

∣

〈

λf

∣

∣

∣

∣

∣

∑

l

eiQ·rl

∣

∣

∣

∣

∣

λi

〉∣

∣

∣

∣

∣

2

δ (~ω + Ei −Ef ) . (2.16)

By assuming scattering from a sample with only one type of atom and one isotope with

scattering length b, Van Hove [86] showed that the equation (2.16) can also be expressed

as,
d2σ

dΩfdEf
= N

kf
ki
b2S (Q, ω) , (2.17)

where

S (Q, ω) =
1

2π~N

∑

ll′

∫ ∞

−∞

dt
〈

e−iQ·rl′(0)eiQ·rl′(t)
〉

e−iωt, (2.18)

N is the number of nuclei, t is time, the angle brackets 〈...〉, denote the average over initial
states. The scattering function depends on the momentum and energy transferred from

neutron to the sample, and not on absolute values of ki and kf . It contains information

on both the positions and motions of the atoms comprising the sample. The goal of

most neutron scattering experiments is to measure S(Q, ω) and thereby determine the

microscopic properties of the system under investigation.

2.3.2.2 Coherent vs. incoherent scattering

Consider a monatomic sample containing isotopic nuclei with different scattering lengths.

The isotopes of the same element have different scattering lengths. Furthermore, for

an isotope with a nuclear spin, the scattering length varies depending on whether the

neutron and nuclear spins are parallel or antiparallel. Let us suppose that rth distinct
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isotope or nuclear spin state has scattering length br and occurs with frequency cr. If

there are no correlations between nuclear positions and scattering length, then scattering

which depends on the relative positions of the atoms will depends only on the average

(or coherent) scattering length, given by,

b =
∑

r

crbr. (2.19)

The average coherent cross section per atom is then

σcoh = 4π
(

b
)2
. (2.20)

The random fluctuations in scattering lengths of different sites will not contribute to

collective scattering, but only to incoherent scattering. The total scattering cross section

is given by,

σscat = 4π
∑

r

crb
2
r = 4πb2, (2.21)

so, using σinc = σscat − σcoh, the incoherent cross section per atom is given by

σscat = 4π
(

b2 − b
2
)

= 4π
(

b− b
)2
. (2.22)

Most elements have significant coherent cross sections, but there are few examples, such

as hydrogen and vanadium, for which the incoherent scattering is large and dominant.

The incoherent cross section is zero only for single isotopes with zero nuclear spin.

2.3.2.3 Coherent nuclear scattering

The differential cross section associated with only coherent scattering can be written as,

d2σ

dΩfdEf

∣

∣

∣

∣

coh

= N
kf
ki

σcoh
4π

S (Q, ω) . (2.23)

The above formula applies when the sample consists of a single element. More generally,

one must include the site-dependent scattering lengths in the scattering function S (Q, ω).

The scattering function was expressed in a more plausible way by Van Hove [86] using

the definition of the atomic density operator:

ρQ (t) =
∑

l

eiQ·rl. (2.24)
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Using the above expression we can rewrite equation (2.18 ) as

S (Q, ω) =
1

2π~N

∫ ∞

−∞

dt e−iωt 〈ρQ (0)− ρQ (t)〉. (2.25)

It is clear from the above equation that the scattering function is the Fourier transform

of the time-dependent pair-correlation function.

2.3.2.4 Elastic nuclear scattering (Bragg diffraction)

For coherent, elastic nuclear scattering, we consider the time average of the density

operator, so that

S (Q, ω) = δ (~ω)
1

N

〈

∑

ij

eiQ·(ri−rj)

〉

. (2.26)

In case of an infinite Bravais lattice, this becomes

S (Q, ω) = δ (~ω)
(2π)3

v0

∑

G

δ (Q−G) . (2.27)

where v0 is the unit-cell volume and the vector G are reciprocal-lattice vectors. The

coherent, elastic cross section is then

dσ

dΩ

∣

∣

∣

∣

el

coh

= N
(2π)3

v0

(

b
)2∑

G

δ (Q−G) . (2.28)

The above equation describes the scattering from a perfectly rigid lattice. In reality, the

fluctuations of the atoms about their equilibrium positions cause some reduction of the

Bragg intensities. Let u be the instantaneous displacement of an atom from its mean

position r. Averaging of the phase factor exp(−iQ ·r) in equation (2.26) results in an

extra factor in equation (2.28) equal to exp(−2W ), known as the Debye-Waller factor,

where for small displacements,

W =
1

2

〈

(Q · u)2
〉

. (2.29)

Since there are three degrees of freedom for the atomic displacement in a crystal (along

three crystallographic directions) for a cubic crystal

〈

u2x
〉

=
〈

u2y
〉

=
〈

u2z
〉

= 1
3

〈

u2
〉

, (2.30)
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so that

W = 1
6
Q2

〈

u2
〉

. (2.31)

The above equation (2.31) can be expressed in more convenient notation in terms of

scattering angle and incident wavelength as

W = B sin2 θ/λ, (2.32)

with B typically assumed to be isotropic. It follows that

B =
8π2

3

〈

u2
〉

. (2.33)

So far our calculations were limited to the case of Bravais lattice. Now, let us consider

a lattice with more than one atom per unit cell. If the jth atom within the unit cell

occupies the position dj , then the coherent elastic differential cross section generalized to

dσ

dΩ

∣

∣

∣

∣

el

coh

= N
(2π)3

v0

∑

G

δ (Q−G) |FN (G)|2, (2.34)

where,

FN (G) =
∑

j

bje
iG·dje−Wj (2.35)

The static nuclear structure factor FN (G) = FN (hkl) contains information on the

atomic positions dj within a unit cell and the mean-square displacements
〈

u2jx
〉

. In

crystallography, the standard approach is to measure structure factors for a large number

of reflections and to fit a model for the atomic parameters to the results. The square of

the nuclear structure factor can be obtained from a scan through a Bragg peak.

Consider a neutron scattering measurement on a single crystal using a monochromatic

incident beam of wavelength λ. For a reflection (hkl) in the scattering plane, with

scattering angle θ relative to the diffracting lattice planes, the diffracted beam is deflected

by 2θ with respect to the incident beam. If a detector is placed near 2θ, and then

measurements are made as the crystal is rotated through the reflection, the area under

the peak (integrated intensity) is given by

I = A
λ3|FN (hkl)|2
v20 sin 2θ

, (2.36)
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where A is a constant that depends on the incident flux, the sample volume and the

counting time. If these factors are fixed in a series of measurements, then A is simply an

overall scale factor. For a large single crystal, the diffracted intensity for strong reflections

will eventually saturate, so that the integrated intensity is no longer proportional to |FN|2.
The precise relationship between the intensity and |FN|2 will depend on the nature and

shape of the crystal. A formula that is useful for modeling the measured intensities is

I sin 2θ =
α1

∣

∣F calc
N

∣

∣

2

1 + α2

∣

∣F calc
N

∣

∣

2 , (2.37)

Where F calc
N is the calculated structure factor, and α1 and α2 are adjustable parameters.

For the case of polycrystalline sample (with randomly oriented grains), the orientation

of the sample is irrelevant, and a Bragg peak is measured by rotating the detector or from

a fixed array of detectors covering large 2θ range. In this case, the appropriate formula

formula for the integrated intensity is

I = A
mhklλ

3
∣

∣F calc
N

∣

∣

2

v20 sin θ sin 2θ
, (2.38)

Where mhkl is the multiplicity of the reflection (hkl). The multiplicity is the number

of equivalent permutations of the indices hkl. For example, the multiplicity of (100)

reflection from a cubic crystal is 6 because (100), (100), (010), (010), (001) and (001) are

equivalent reflections in cubic system and all deflected along same 2θ direction adding up

6 times to the intensity of (100).

2.3.2.5 Coherent magnetic scattering

The cross section for the magnetic scattering can be obtained by taking into account

the neutron spin state and the magnetic interactions in equation (2.16) [87]. It depends

not only on initial and final wave vectors of the neutron, but also on the corresponding

neutron spin states, Si and Sf , with S = σ/2. Generalizing equation (2.16) with the

inclusion of neutron spin state and the magnetic interaction, the differential cross section

can be written as

d2σ

dΩfdEf

∣

∣

∣

∣

sisf

=
kf
ki

∑

i,f

P (λi)

∣

∣

∣

∣

∣

〈

λf

∣

∣

∣

∣

∣

∑

l

eiQ·rlU
sisf
l

∣

∣

∣

∣

∣

λi

〉∣

∣

∣

∣

∣

2

δ (~ω + Ei − Ef) . (2.39)
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The quantity U
sisf
l is the atomic scattering amplitude from the spin state si to sf for

atomic site l,

U
sisf
l = 〈sf |bl − plS⊥l · σ +BlIl · σ| si〉 , (2.40)

where b is the nuclear coherent scattering amplitude, B is the spin-dependent nuclear

amplitude, and I is the nuclear spin operator. The quantity S⊥ is the magnetic interaction

vector given by [88, 89],

S⊥ = Q̂×
(

S× Q̂
)

,

= S− Q̂
(

Q̂ · S
)

, (2.41)

where Q̂ is a unit vector along Q. It should be noted that from the above expression,

only the component of S perpendicular to Q contributes to the scattering amplitude.

2.3.2.6 Magnetic structure determination from neutron scattering

Neutrons scatter from the magnetization density of an atom. The magnetization density

comes from the contributions due to spin angular momentum and also from orbital

angular momentum. The scattering cross section is obtained from the Fourier transform

of the magnetization density. For spin-only moment we have

M (Q)/µB = gSf (Q), (2.42)

with g = 2. Let Φ(r) is the radial wave function corresponding to the unpaired spin, then

f (Q) =

∫ ∞

0

dr r2j0 (Qr) |Φ (r)|2 ≡ 〈j0〉 , (2.43)

where j0 (Qr) is a spherical Bessel function of order 0 ignoring aspherical effects. The

orbital moment can be included in a simple form, provided that Q is much smaller than

the inverse of the mean radius of the wave function for the unpaired electrons [90]. In

this case,

M (Q)/µB = 2 〈j0〉S+(〈j0〉+ 〈j2〉)L, (2.44)

where L is the angular moment vector.

Some transition-metal ions exhibit small orbital moments, with the consequence that

the Landé splitting factor g differs slightly from its spin-only value of 2. In such a case
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the form factor as in equation (2.42) is given by

f (Q) = 〈j0〉+
(

g − 2

2

)

〈j2〉 . (2.45)

For the case of rare-earth ions, the orbital moment is generally unquenched. So in this

case, we have to consider angular moment J resulting from S and L. Within the given

states of J, one has

2S = gSJ, (2.46)

L = gLJ, (2.47)

L+ 2S = gJ, (2.48)

where

gS =
J (J + 1)− L (L+ 1) + S (S + 1)

J (J + 1)
, (2.49)

gL =
J (J + 1) + L (L+ 1)− S (S + 1)

2J (J + 1) ,
(2.50)

and g = gS + gL. Thus in the scattering formula one should replace gS with gJ and the

form factor is given by

f (Q) = 〈j0〉+
gL
g

〈j2〉 . (2.51)

The values of 〈jn〉 have been tabulated for magnetic ions by Brown [91]. The coherent

elastic differential cross section for magnetic scattering from a magnetically ordered

crystal is given by

dσ

dΩf

∣

∣

∣

∣

el

coh

= NM
(2π)3

vM

∑

GM

δ (Q−GM)|FM (GM)|2, (2.52)

where FM, the static magnetic structure factor, is given by

FM (GM) =
∑

j

pjS⊥e
iGM·djeWj . (2.53)

The subscript M indicate that VM and NM refer to the volume of the magnetic unit cell

and the number of such cells in the sample respectively; the sum in equation (2.53) is over

all the sites within the magnetic unit cell. Except for the case of ferromagnetic ordering,

the magnetic unit cell is typically larger than the chemical unit cell. This leads to a new
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reciprocal-lattice vector GM. The relation between the integrated intensity of a magnetic

Bragg peak and |FM (hkl)| is same as that for nuclear scattering, i.e., by substituting

|FM| for FN in equation (2.36) and (2.38).

2.3.2.7 Inelastic magnetic scattering: Crystal field excitations

Inelastic magnetic neutron scattering can originate either from single particle excitations

like crystal-field excitations or collective excitations like spin waves. Spin waves occur

when strong exchange coupling between nearby spins leads to a collective behavior. In the

opposite limit one can consider the case when strong interactions with the electrostatic

crystalline field of neighboring ions dominate and lead to energy levels with zero or small

dispersion. The electrostatic and spin-orbit interactions lift the degeneracy of the unfilled

4fn configuration of rare-earth ions and give rise to the J-multiplets. Inelastic neutron

scattering is a powerful technique to determine the positions of energy levels and the

matrix elements of the transitions between them. Transitions between these levels can

be observed with inelastic neutron scattering if the symmetry allows magnetic dipole

transitions between the states involved. The cross section for such process can be derived

as:

d2σ

dΩdE
=

1

Nm

(

kf
ki

)

(γre)
2
∑

αβ

(

δαβ − Q̂αQ̂β

)

|f (Q)|2e−2W

× 1

Z

∑

λiλf

e−Ei/kBT
〈

λi
∣

∣µ+
α

∣

∣λf
〉

〈λi |µβ| λf〉δ (E + Ei − Ef) , (2.54)

where α and β stand for x, y, z and δαβ is the Kronecker delta. re and Nm are the

classical electron radius and number of magnetic ions, respectively. Z is the partition

function
∑

λi
e−Ei/kBT .

For rare-earth compounds, simple models for the crystal field based on charged point

ions may give a good description of the results obtained if appropriate values are taken

for the ionic charges and the moments of the radial wave functions of the magnetic

ions. In inelastic neutron scattering investigations one faces the problem of distinguishing

between crystal-field excitation peaks and phonon peaks. In such cases one can check

the Q dependence of the intensity of the inelastic peak. The intensity of phonon peak is

usually proportional to Q2 whereas the intensity of the crystal field excitations decreases

with Q according to |f (Q)|2.

34



2.3 Neutron scattering

2.3.3 Experimental techniques

In an elastic neutron scattering experiment, elastically scattered neutrons produce a

strong Bragg reflection when the scattering vector is equal to a reciprocal lattice vector.

These reflections can be studied in samples by a number experimental methods, including

(i) rotating crystal and measuring the scattering from a monochromatic beam, looking

for strong reflections, (ii) using a range of incident wavelengths (the Laue method) and

(iii) measuring the diffraction of monochromatic neutrons from a powder sample. In

this section we briefly describe a neutron powder diffractometer and a single crystal

diffractometer and also a time-of-flight spectrometer used for inelastic neutron scattering

measurements.

2.3.3.1 Elastic neutron powder diffractometer

All the neutron powder diffraction (NPD) measurements presented in this thesis were

carried out with the high resolution neutron powder diffractometer SPODI at research

nuclear reactor FRM II, Garching, Germany. The instrument layout of SPODI is similar

to that of the powder diffractometer D2B located at Institut Laue-Langevin (ILL),

Grenoble, as shown in figure 2.6.

The diffractometer SPODI is equipped with the monochromator consisting of 17

Ge(551) single crystals. The orientation (551) was used to obtain neutrons of wavelength

1.549 Å. The distance between the monochromator and sample position is 5 m and

that from sample position to detectors is 1.12m. The detector array consists of 80 3He

position sensitive detector tubes with fixed collimators of 10′ horizontal divergence located

in front of each detector. The multi-detector of SPODI spans an angular range of

2Θ = 160◦. As each detector covers 2◦ the data collection is performed via stepwise

positioning of the detector array to obtain a diffraction pattern of desired stepwidth

∆ (2Θ). For example, a typical step-width of ∆ (2Θ) = 0.05◦ requires the number of steps

N =2◦/∆(2Θ) = 40. The measured diffraction patterns will be smeared Debye-Scherrer

rings. A concept based on the combination of Monte Carlo (MC) simulations and

empirical approximation methods was used to reverse the smearing [92]. This was done by

deconvolution and then summing up along the rings, including the corrections for different

arc lengths, resulting in conventional one-dimensional diffraction patterns suitable for

Rietveld-refinement programs, which was treated later by using the program FullP rof

to determine the nuclear and magnetic structures of the sample under study.
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Figure 2.6: Instrument layout of a typical modern neutron powder diffractometer. Taken
from [93].

2.3.3.2 Elastic single crystal neutron diffractometer

Single crystal neutron scattering measurements presented in this thesis were carried

out on the instruments D9 and D23 at ILL. The diffractometer D9 is a four-circle hot

neutron diffractometer with a possible wavelength range 0.35− 0.85 Å. The wavelength

of neutrons is among the shortest available for diffraction at any reactors in the world.

A copper crystal is used as a monochromator in transmission geometry using (220)

planes. The instrument is placed on a Tanzboden floor allowing a continuous choice of

wave-lengths in the range from 0.35 − 0.85 Å. In order to suppress λ/2 contribution

several resonance filters are available (0.48 Å, 0.55 Å, 0.7 Å, and 0.84 Å). In its standard

’four-circle’ geometry (figure 2.7) the sample holder is an Eulerian cradle with offset

χ-circle. D9 is equipped with a small two-dimensional position sensitive area detector,

programs are available on-site for the intensity integration using this system [94]. A

displex cryostat with the J-T stage or a 4-circle He-flow cryostat can be used for the

temperature dependent measurements down to 2 K.
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Figure 2.7: (a) Instrument layout of the hot neutron four-circle single crystal diffractometer D9
at ILL, Grenoble, (b) Description of the experimental geometry showing four possible degrees of
rotation. Reproduced from [94].

Figure 2.8: Instrument layout of the thermal neutron two-axis single crystal diffractometer D23
at ILL, Grenoble. Reproduced from [95].

The instrument D23 is a double-monochromator thermal neutron two-axis

diffractometer for single crystals with a lifting detector mounted in an arc. The incident

wavelength range is 1 − 3Å. The instrument layout of D23 is presented in figure 2.8.

It can support large sample environments and is characterized by a high flux and low

background. It is dedicated for the determination of magnetic structures, magnetic phase

diagrams and magnetization density maps. A standard orange cryostat can be used for

measurements in the temperature range 1.5 − 300 K. There is also possibility to use
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vertical or horizontal cryomagnets as per requirement.

2.3.3.3 Inelastic neutron scattering with a time-of-flight (TOF) spectrometer

The inelastic neutron powder scattering presented in this thesis were measured on the

time-of-flight instrument FOCUS at the spallation neutron source SINQ, Paul Scherrer

Institut (PSI), Villigen. FOCUS is a time-and-space focusing time-of-flight spectrometer

for cold neutrons. By means of a vertically converging neutron guide the size of the

white beam is reduced and then chopped by a pre-selector (disc) chopper. A horizontally

and vertically focusing monochromator (18cm × 18cm) with variable curvature in both

directions focuses the beam through a Fermi-chopper on the sample (w × h = 3.5cm ×
5cm). For incident wavelengths larger than 4 Å a Be-filter is used together with the

first chopper to suppress higher order contamination. The disc chopper also acts as

anti-overlap chopper. The scattered neutrons pass a 2.5 m flight distance through a radial

collimator and an argon filled flight box before being detected in three banks of totally 375

3He counter tubes of rectangular shape. The scattering angle covers a range from +10◦ to

+130◦. The distances neutron–guide to monochromator and monochromator to sample,

are both variable such that the spectrometer can be operated either in time focusing (TF)

or monochromatic focusing (MF) mode, hence being suited for quasi- elastic or inelastic

scattering, respectively. It is also equipped with a 2D-multidetector in the angular range

between −5◦ to−24◦. The sample space is reserved for standard cryostats, ovens, pressure

cells etc [96, 97]. In a time-of-flight spectroscopy experiment, neutron from the reactor

or a spallation source strike a crystal monochromator which is oriented at an angle θM

to the initial beam direction. Those with wave length

λ0 = 2dM sin θM, (2.55)

where dM is the spacing between reflecting planes in the monochromator, are Bragg

reflected in the direction of the sample. The monochromatic beam, characterized by

energy E0 and wave vector k0, is then pulsed by a chopper placed at a known distance

LCS from the sample. An array of detectors is arranged at a fixed distance LSD from

the sample, and scattered neutrons arrive at the detectors at times determined by their

scattered energies E. The time of flight from the chopper to one of the detectors is simply

tCD = tCS + tSD = τ0LCS + τLSD. (2.56)
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Here tCS and tSD are the times-of-flight of the neutron from chopper to sample and sample

to detector, respectively, and τ0 and τ are the reciprocal velocities of the neutron before

and after scattering, respectively. From equation 2.56 one can determine τ , E and the

energy transfer

~ω = Ef − Ei, (2.57)

may be determined from tCD if λ0 is known. Given the angle between the incident (ki)

and scattered (kf) neutron wave-vectors, the wave-vector transfer

Q = kf − ki (2.58)

is readily calculated.

Figure 2.9: Instrument layout of the time-of-flight spectrometer FOCUS at, SINQ, PSI, Villigen.
Reproduced from [98].

The basic quantity measured in a TOF experiment is a set of intensities I(φi, tj) for

nD detectors located at scattering angles φi(i = 1, 2, ...nD), in nt time channels centered at

times tj(j = 1, 2, ...nt) relative to an appropriate start time. Typically, measurements are

made for the sample of interest and an ′′empty container′′, and in some cases additional

measurements are performed on empty vanadium can in order to establish calibration

constants for the data analysis. The conversion of the raw data to a differential scattering

is straight forward, but corrections for instrumental resolution, and for multiple scattering

effects must be dealt with carefully. The final result is the scattering function S(Q, ω)

within the region of (Q, ω) phase space accessed in the experiment.
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3.1 Introduction

The rare earth orthochromites RCrO3, where R is a rare earth element or yttrium,

all crystallize in an orthorhombically distorted perovskite structure with four formula

units per unit cell [99–101]. The compound HoCrO3 (HCO), in conformity with

other rare earth orthochromites, crystallizes in an orthorhombically distorted perovskite

structure. The exchange coupling between the Cr3+ nearest neighbors is predominantly

antiferromagnetic and these ions order magnetically at a Néel temperature of TN =

140 K [102]. It has been reported that cooperatively induced ordering of Ho3+ spins

occurs at 12 K [102, 103]. Later it was confirmed that no cooperative ordering of Ho3+

spins takes place down to 1.5 K [104]. Our specific heat measurements also confirm

that no cooperatively induced ordering occurs at temperatures as low as 100 mK. The

coexistence of ferroelectric and magnetic orders in rare-earth orthochromites was first

reported by Subba Rao et al. [105]. Based on the dielectric studies it was reported that

some of the heavy rare earth chromites RCrO3 (R=Ho, Er, Yb, Lu) compounds undergo a

ferroelectric transition in the temperature range 439−485 K [62]. The polarization-electric

field hysteresis loops of these compounds are similar to those of leaky dielectrics and are

comparable to the hysteresis loop in YCrO3 [106]. Heavy rare earth chromites, like YCrO3

show low values of polarization and therefore are considered to be weakly ferromagnetic.

The coexistence of both electric and magnetic orders will lead to possibility of

multiferroic nature of these heavy rare earth chromites of the formula RCrO3 with R=Ho,

Er, Yb, Lu and Y. A good deal of attention on the possible multiferroic properties of

this family of compounds is given only recently [62, 106]. The temperatures associated

with transition from paraelectric to ferroelectric state and paramagnetic to canted

antiferromagnetic state as a function of rare-earth ionic radii in several heavy rare-earth

chromites is presented in figure 3.1 [62].

To study the multiferroic properties it is very important to understand the nature

of both magnetic and ferroelectric orders. Based on the theoretical calculation,

Sahu et al. [62], predicted that the local magnetic ordering can induce local

non-centrosymmetry and weak ferroelectric polarization in these materials. Authors

have used density functional theory to study the possibility of broken inversion symmetry

leading to a small polarization (less than 0.35 µC cm−2). Their studies showed (a)
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Figure 3.1: Variation of the rroelectric (FE) transition temperature (open circles) and magnetic
transition temperature (closed squares) in the heavy rare-earth chromites. Here PE, PM and
CAFM represents paraelectric, paramagnetic and canted antiferromagnetic states, respectively.
Taken from [62].

the existence of ferroelectric instability in the cubic structure, (b) its dependence on

magnetic ordering, and (c) the small but non-zero values of polarization. It was found

that in case of YCrO3, Cr atoms are off centered in a disordered manner leading to local

non-centrosymmetry, although the the average crystal structure is centrosymmetric [60].

Though the origin of the off-centering displacement of the Cr atoms in YCrO3 is not

clear, the small value of displacement and the local character of the non-centrosymmetry

in YCrO3 could explain the small value of the polarization observed in this material

(2 µC cm−2 at 300 K). Similar type of local non-centrosymmetry was expected to give

rise to ferroelectricity and related phenomena in other materials as well.

Despite of the fact that the magnetic structures of RCrO3 compounds have been

studied for decades during 1960s and 1970s by various macroscopic and microscopic

techniques, owing to the complex nature of exchange interactions between two magnetic

sublattices, there are several contradicting reports. We took up the compound HoCrO3

for our study of magnetic ordering in this family of compounds. This chapter is aimed

to describe the synthesis and characterization of this compound by means of laboratory

PXRD, magnetization and specific heat measurements. These techniques will provide a
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good idea of the crystal structure and also the nature of the magnetic structure, which

can be better understood eventually with microscopic measurements such as neutron

scattering.

3.2 Experimental

Polycrystalline HCO was synthesized by solid state reaction of Ho2O3(3N) and Cr2O3(4N)

in stoichiometric ratio. The precursors were mixed intimately and subsequently heat

treated at 1100 0C for 48 h. Then, the material was reground and annealed again

at 1200 0C for 24 h. The phase purity of the synthesized powder sample was then

confirmed by powder x-ray diffraction with Cu-Kα (λ = 1.54059 Å) radiation, using

a Huber x-ray diffractometer (Huber G670) in transmission Guinier geometry. The

PXRD data was collected on finely ground samples. The profiles of the PXRD data

were analyzed by Rietveld method (Appendix B) [80] using the FullP rof software [81]

and confirmed the formation of a single phase. The powder is then pressed into pellets

and sintered at 1000 0C for 10 h for further magnetic and thermal characterization.

Magnetic measurements were conducted on pressed-sintered pellets in a commercial

(Quantum Design) superconducting quantum interference device magnetometer (SQUID)

in the temperature range 2 − 300 K. Specific heat measurements were performed using

a physical property measurement system (Quantum Design) in the temperature range

100 mK-290 K.

3.3 Results

3.3.1 Crystal Structure

The rare-earth chromites crystallize in the perovskite structure of the type ABO3. The

basic perovskite structure is similar to that of BaTiO3, where the Ti
3+ ion is at the B–site

and Ba3+ is at the A–site. In the case of chromites, the rare-earth ion occupies the A–site

while Cr is at the B-site surrounded by oxygen forming an octahedra. Due to mismatch

between the ionic radii of the cations at A and B sites, a structural distortion takes

place that results in buckling of the CrO6 octahedron. As a consequence of the lattice

distortions, the symmetry of ideal perovskite structure is lowered. Such a distortion of

perovskite structure is governed by Goldschimdt’s tolerance factor rule [107]. According
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to this rule, the cubic perovskite structure is stable only if the tolerance factor (tG) defined

as,

tG =
< rA > + < rO >√
2 (< rB > + < rO >)

(3.1)

is nearly equal to unity. Here, < rA >, < rB > and < rO > represent the average

ionic radii of respective elements. As tG decreases, symmetry of the crystal structure also

reduces. Limiting values for the tolerance factor have been determined through many

experiments. For example, Hines [108] suggested (solely by analysis of the tolerance

factor) that the perovskite will be cubic if 0.9 < tG < 1.0 (figure 3.2(a)), and orthorhombic

if 0.75 < tG < 0.9 (figure 3.2(b)). If the value of tG drops below 0.75 the compound has

been seen to adopt an hexagonal ilmanite structure (FeTiO3) [108].

Using Shannon-radii values for the ions [109] in equation 3.1, the value of tG for HCO

is found to be ∼ 0.866, thus the expected distortion-type is orthorhombic. As expected,

the compound HoCrO3 is an orthorhombically distorted perovskite. It belongs to the

space group D16
2h −Pbnm and has four formula units per unit cell [99–101]. The Rietveld

refinement results of room temperature PXRD data is presented in figure 3.3, and the

results are tabulated in table 3.1. The graphical representation of the crystal structure

is presented in the inset of figure 3.3.

    (a)      (b)  

Figure 3.2: Clinographic view of the octahedra in (a) cubic (ideal) and (b) orthorhombic
(distorted) perovskite.
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Figure 3.3: PXRD pattern and Rietveld refinement results for HoCrO3 at 300 K. Red circles
mark the data points, black line represents calculated pattern and blue line represents the
difference. The bars below the patterns denote the position of Bragg peaks. Inset is the graphical
representation of the crystal structure of HoCrO3.

Table 3.1: Lattice parameters, atomic positions, and discrepancy factors of HoCrO3 obtained in
the Rietveld refinement of PXRD pattern at 300 K with λ = 1.54059 Å. The values inside the
brackets are the standard deviations.

Atoms Wyckoff positions x y z

Cr 4b 0.5 0 0

Ho 4c −0.0168(8) 0.0655(5) 0.25

O1 4c 0.1026(8) 0.4664(8) 0.25

O2 8d −0.3054(6) 0.3055(6) 0.0497(4)

Unit Cell Dimensions

a = 5.2463(1) Å b = 5.5177(8) Å c = 7.5412(8) Å V = 218.276(8) Å3

Discrepancy Factors

Rp = 3.98% Rwp = 5.53% Rexp = 3.06% χ2 = 3.27

The refined lattice parameters at 300 K are a = 5.2463(5) Å, b = 5.5177(8) Å and

c = 7.5412(9) Å. Previous structural studies on HCO report the orthorhombic structure

D16
2h − Pbnm with similar values for the lattice parameters [110]. The temperature
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Figure 3.4: The temperature dependence of lattice parameters (a) a, (b) b, (c) c/
√
2 and (d)

unit cell volume (V ). Vertical dashed line corresponds to the magnetic ordering temperature.
Inset in each panel is the first derivative of corresponding lattice parameter.

dependence of lattice parameters was obtained from the analysis of several PXRD

patterns obtained in the temperature range 10 − 300 K, the results are presented in

figure 3.4. In the temperature range of interest no structural transitions were observed.

But, surprisingly, all the cell parameters and unit cell volume showed an anomaly

close to magnetic transition temperature ∼ 142 K. This can be clearly seen in the

first derivative of lattice parameters with respect to temperature, around the transition

temperature, shown as insets in figure 3.4. We believe that the anomalous change in

lattice parameters and the unit cell volume indicates the presence of magnetoelastic

effect in this compound. To the best of our knowledge magnetoelastic effect has not been

reported in RCrO3 family so far and this is the first observation of this phenomenon in

HoCrO3. Magnetoelastic effects in this compound will be discussed in detail in the next

chapter based on neutron powder diffraction measurements.
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3.3.2 Magnetization

The field-cooled (FC) and zero field-cooled (ZFC) dc magnetization curves measured with

an applied magnetic field of 2 Oe presented in figure 3.5(a) show a bifurcation around

142 K. It is attributed to the magnetic ordering of Cr3+ sub-lattice [103, 104]. The

thermal evolution of reciprocal susceptibility calculated from the FC magnetization curve

(figure 3.5(a)) is presented in figure 3.5(b). The inverse susceptibility follows Curie-Weiss

law above the transition temperature and there is a marked deviation below the ordering

temperature. From a Curie-Weiss fit of the magnetic susceptibility, the Weiss temperature

Θ is found to be −28.8(6) K and the effective moment is found to be 11.15 ± 0.02 µB.

By considering the theoretical values 3.87 µB for Cr3+ (for the spin only S = 3/2) and

10.63 µB for Ho3+ (J = 8) and assuming that the total effective magnetic moment is

given by µtotal =
[

µ2
eff(Cr

3+) + µ2
eff(Ho

3+)
]1/2

, we expect a total magnetic moment of

11.31 µB. Susceptibility was also measured in the high temperature regime (300− 900 K,

figure 3.5(c)) which follows Curie-Weiss law and gives similar values as above for Weiss

temperature and effective moment.

Magnetic hysteresis measured at 2 K and 300 K is presented in figure 3.6(a). The

hysteretic behavior of HCO below transition temperature indicates the presence of weak

ferromagnetism. At 300 K it does not show any hysteresis. In figure 3.6(b) several

isothermal magnetization curves are presented, each measured after a zero field-cooled

cycle from 200 K, well above the transition temperature (142 K) to remove any remnant

magnetization in the sample. Two distinct features can be seen in virgin curves as broad

dips, denoted by arrows in figure 3.6(b). A possible origin of these features could be

field induced spin reorientation of Cr3+ and/or Ho3+ magnetic sublattice. By taking

the derivative of isothermal magnetization, the two critical-fields associated with field

induced phase transition, HC1 (lower critical field) and HC2 (upper critical field) were

obtained at different temperatures as shown in figure 3.6(c). The H − T phase diagram

thus obtained is presented in figure 3.6(d). From the H − T phase diagram it is clear

that only HC2 is temperature dependent and decreases with an increase in temperature

from, ∼ 1.38 T at 2 K to ∼ 1.05 at 50 K, above this temperature HC2 is temperature

independent. On the other hand in the whole temperature range HC1 is found to be

constant with a value of ∼ 0.7 T. The nature of these field induced phase transitions

should be elucidated by single crystal neutron scattering measurements.
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Figure 3.5: (a) DC magnetization of HoCrO3 at applied field of 2 Oe. (b) A Curie-Weiss
law fit to inverse susceptibility measured at 2 Oe deviates significantly below the transition
temperature.(c) A Curie-Weiss law fit to the inverse susceptibility data at an applied field of
100 Oe in high temperature region.

3.3.3 Specific heat

The variation of specific heat (CP ) of HoCrO3 with temperature is presented in figure 3.7.

The low temperature part of specific heat can be well appreciated in the log-log plot as

shown in the inset of figure 3.7. The direct inspection of specific heat curve evidences

the presence of three main contributions or features: (1) A sharp increase in specific heat

below 2 K with a maxima at ∼ 0.3 K, due to anomalously large hyperfine interaction

between the electronic and nuclear spins of 165Ho3+ leading to a nuclear-Schottky

specific heat (CN). (2) The electronic Schottky contribution (CSchottky) from thermal

depopulation of the ground 5I8 multiplet of Ho3+ with a maxima at ∼ 7 K. The

thermal population of an energy level εi which can arise due to removal of orbital or

spin degeneracy. It is proportional to the Boltzmann factor exp(-εi/kBT ), where T is

the temperature and kB is the Boltzmann’s constant (kB = 1.38 × 10−23J/K). In most

crystalline solids one of the main contribution to the low temperature specific heat

is from the crystalline electric field (CEF) that lifts the degeneracy in the electronic
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and Hc2 and (d) A tentative H − T phase diagram obtained from the derivative plots in (c).

energy levels (εi). From the Boltzmann factor it is clear that the largest contribution

to the Schottky heat capacity CSchottky occurs at temperature where kBT is comparable

with εi. Quantitative estimates of CSchottky can be made in terms of the Boltzmann

factors. (3) The λ like anomaly with a peak at T ≈ 142 K, due to the magnetic ordering

of the Cr3+ moments. To find the different possible contributions to CP a detailed
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analysis was performed in two steps. First the CP was modeled in the temperature range

0.1 6 T 6 30 K as described in the section 3.3.3.1 and then in the temperature range

2 6 T 6 290 K which is described in the section 3.3.3.2.
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Figure 3.7: Specific heat of HoCrO3, CP measured at zero magnetic field. Inset, CP in double
logarithmic scale, three distinct features in the specific heat are discernible.

3.3.3.1 Hyperfine interactions

The specific heat below ≈ 30 K has two broad features with maxima around ∼ 0.3 K

and ∼ 6.5 K. From the low temperature specific heat measurements of Holmium metal

it was found that anomalously large hyperfine interaction between the electronic and

nuclear spins for Ho commonly leads to a nuclear specific heat Schottky anomaly with

a maxima at ≈ 0.3 K. Hyperfine interactions have been studied for many years by

various methods [111]. These techniques for studying hyperfine interactions in magnetic

materials, such as Mössbauer effect, nuclear specific heat, nuclear magnetic resonance,

angular correlation of γ-rays interaction of polarized neutrons with polarized nuclei,

provide improved understanding of the electronic magnetism and also nuclear magnetism.

In this section, the study of hyperfine interactions in HoCrO3 by low temperature specific

heat measurements will be presented.

The nuclei in many rare-earth metals find themselves in a strong effective magnetic

field, Heff [112, 113] which arises from several sources: (1) The magnetic moments of
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other rare-earth ions will produce a field of 1 to 2 T. (2) Polarization of conduction

electrons by the 4f electrons will cause an effective field which, from the measurement of

hyperfine interactions in the 3d metals, can be estimated as 20 to 40 T. (3) The orbital

angular momenta of the 4f electrons produce a large field at the nucleus of the same

atom. This field is of several hundred tesla. (4) The spin angular momenta of the 4f

electrons also cause an effective field at the nucleus. This field is about one tenth of

that caused by the orbital angular momenta. (5) Polarization of the inner shell electrons

by the spins of the 4f electrons may also produce an effective field at the nucleus. The

magnitude of this field can be estimated from electron spin resonance experiments; the

estimates are about 30 T. The main contribution to Heff in case of Ho thus comes from

the orbital angular momenta of 4f electrons [114].

In addition to Heff a considerable electric field gradient, parallel to Heff because

of strong coupling between the spin and orbital, can also be expected at the nucleus.

Bleaney and Hill [115] write the Hamiltonian for hyperfine interactions in the form

H

kB
= a′Iz + P

[

I2z − 1
3
I (I + 1)

]

(3.2)

Where a′ is magnetic hyperfine constant which is a measure of the strength of the

hyperfine interaction, viz., the magnetic moment associated with the 4f electrons. P

is the quadrupolar coupling constant. The field is applied in the z direction. Since the

projection Iz can take 2I + 1 values i.e., −I,−I + 1, ...I, the hyperfine specific heat CN

will be a Schottky type specific heat, associated with the 2I + 1 hyperfine levels.

Due to hyperfine interaction the holmium nucleus with a spin I = 7/2 (the only stable

isotope of holmium is 165Ho) will have 2I + 1 = 8 possible spin orientations relative to

effective field Heff . The energies εi/kB of various nuclear spin states, i.e. the eigenvalues

of the Hamiltonian in equation (3.2) are

εi
kB

= a′i+ P
[

i2 − 1
3
I (I + 1)

]

(3.3)

Where i = −7/2, − 5/2, ...., 5/2, 7/2. Information about a′ and P can be obtained

by measuring the heat capacity at sufficiently low temperatures. In case of holmium,

the quadrupolar coupling contribution is small and can be neglected [116]. Therefore for

P ≈ 0 the above equation can be written as,

εi
kB

≈ a′i (3.4)

52



3.3 Results

The specific heat in the temperature range 100 mK-30 K is modeled by taking into

consideration the contributions from nuclear specific heat CN , an electronic Schottky

term CSchottky and a lattice term CLattice. Thus at low temperatures the CP of HCO is

given by

Cp = CN + CSchottky + CLattice (3.5)

Where CN and CSchottky are given by the general expression for an n-level Schottky specific

heat term give by [117]:

CSchottky =
R

T 2

∑

i

∑

j

(∆2
i −∆i∆j) exp [− (∆i +∆j) /T ]

∑

i

∑

j

exp [− (∆i +∆j) /T ]
(3.6)

In this expression, ∆i = εi/kB. To calculate nuclear specific heat CN a Schottky curve

for eight energy levels at εi/kB ≈ a′i, where i = −7/2,−5/2, ...5/2, 7/2 must be used. To

calculate the electronic Schottky specific heat CSchottky, a simple two level Schottky term

with energy splitting εs/kB is used, as the contribution from higher energy terms is

negligible in this temperature range. In this temperature range the lattice contribution

is expressed by a single Debye term. At low temperatures, when T << ΘD, the Debye

specific heat can be represented by well-known Debye T 3 − law as [117],

CDebye = R
234rDT

3

Θ3
D

= β3T
3 (3.7)

Where, rD is the number atoms per molecule and ΘD is the Debye temperature.

The fit results are given in figure 3.8 (a). From the fit the values of a′, εs/kB and ΘD

are found to be, 0.2615(6) K, 16.00(5) K and 318(2), respectively. The effective magnetic

field at the holmium nuclei can be computed by writing [114],

a′ =
µHeff

kBI
(3.8)

Where, µ = 4.17 µN for 165Ho and µN is the nuclear Bohr magneton (µB = 9.274 ×
10−24 J/T). The Heff is found to be 600(3) T. From equation 3.4 we can calculate the

energy difference between two adjacent nuclear levels as ∼ 20.68 µeV. The entropy, SN

associated with the nuclear specific heat was calculated by the numerical integration of
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Figure 3.8: (a) Double logarithmic plot of specific heat, CP measured at zero magnetic field
(circles) plotted along with fit results. Different contributions to the total specific heat, Cp are
also shown. (b) A plot of CN/T vs. T and the entropy associated with the nuclear specific heat,
SN obtained by the numerical integration of CN/T (shaded region). The horizontal dashed-line
corresponds to the theoretical value of the entropy.

CN/T . The SN is given by the expression,

SN (T ) =

T
∫

0

(

CN

T ′

)

dT ′ (3.9)

The CN/T vs. T and the computed SN are presented in figure 3.8(b). The value of SN

reaches the expected value ∼ 17.2 Jmol−1K−1 consistent with Rln 8 = 16.9 Jmol−1K−1 at
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∼ 4 K.

3.3.3.2 High temperature specific heat (2 6 T 6 290 K)

The total specific heat (Ctotal) in the temperature region 2− 290 K is fitted assuming the

contributions from CSchottky, CLattice and electrons CLinear. A good fit to the experimental

data is achieved by considering contributions from a Debye term (CDebye) and an Einstein

term (CEinstein) to the lattice term (CLattice). The specific heat associated with the

magnetic ordering of Cr3+ and Ho3+ moments, (Cm) resulting in lambda like transition

with a maximum at ∼ 142 K and tail extending to ∼ 60 K. It is obtained by subtracting

Ctotal from the experimental data (CP ). The magnetic entropy Sm associated with Cm is

obtained by the numerical integration of Cm/T . The Ctotal and Cm in the temperature

range 2− 290 K can be written as [117, 118],

Ctotal = CSchottky + CLattice + CLinear

CLattice = CDebye + CEinstein

Cm = CP − Ctotal

(3.10)

Where, CSchottky is given by equation 3.6 and,

CDebye = 9rR/x3D

∫ xD

0

x4ex/(ex − 1)2dx (3.11)

CEinstein = 3rR
∑

i

ai
[

x2i e
xi
/

(exi − 1)2
]

(3.12)

CLinear = γT (3.13)

In these expressions, R is the gas constant, xD = ~ωD/kBT , xi = ~ωE/kBT , kB is

Boltzmann constant, γ is the coefficient of linear term and r is the number of atoms

in unit cell. The linear coefficient is usually attributed to charge carriers, and is

proportional to the density of states at the Fermi level. But HCO is insulating, hence

the appearance of a linear term in the specific heat must be more carefully interpreted.

The fit results are shown in figure 3.9(a). The values of Debye temperature (ΘD) and

two Einstein temperatures (ΘE1,E2) obtained from the fit are 802(27) K, 602(19) K and

171(2) K respectively. The two Einstein terms are related to minimal and maximal

phonon energies in the perovskites [119, 120].

Based on optics [121], magnetization and magnetic susceptibility [104], specific
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Figure 3.9: (a) Specific heat, CP measured at zero magnetic field (circles) plotted along with fit
results. Different contributions to the total specific heat, Ctotal are also shown. (b) The Cm/T
vs. T and the magnetic entropy , Sm obtained by the numerical integration of Cm/T (shaded
region). The horizontal dashed-line corresponds to the theoretical value of the entropy.

heat [122], elastic neutron diffraction [123] and inelastic neutron scattering (INS) [124]

experiments five electronic Schottky levels were observed with fifth level being at ∼ 272 K.

To calculate CSchottky, a Schottky curve for five energy levels is used which contribute to

CSchottky below 300 K. The ground energy level is assumed to be zero i.e., ε1/kB = 0.

From the low temperature specific heat analysis where a simple two level Schottky model

was used to calculate CSchottky, the energy splitting was found to be 16.00(5) K which we

fixed as ε2/kB in the present calculations. The higher energy levels are taken from the
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inelastic neutron scattering measurements and fixed to be, ε3/kB = 121 K, ε4/kB = 179 K

and ε5/kB = 272 K [124]. The value of γ from the fit is 3.9(6) mJmol−1K−2. The value

of γ is comparable to 5 − 7 mJ/mol/K2 which is associated with conduction electrons

in some doped manganites [125–128]. HCO is an insulator so the linear specific heat

is not associated with the conduction electrons, thus the origin of linear term should

be interpreted with caution. A similar observation was made in insulator LaMnO3+δ

in which a large value of γ ≈ 20 mJ/mol/K2 was found. This was attributed to the

thermal excitations of, although localized but closely spaced electron levels [129]. In

BaVS3 it was found that the low temperature specific heat consists of a linear term

with γ = 15.7 mJ/mol/K2 in spite of absence of conduction electrons [130]. This was

interpreted as due to spin wave excitations for a one-dimensional antiferromagnet, in

which the spin ordering in the insulator state is not simple but may be due to frustration

effects. Another insulator with large γ value (41.5 mJ/mol/K2) is the layered manganite

La2.3YCa0.7Mn2O7 [131]. This was attributed to magnetic phase separation in the

system. Neutron diffraction studies of manganite samples have shown that many of

the hole-doped manganites become mixtures of ferromagnetic and antiferromagnetic (or

canted antiferromagnetic) phases. Thus the compound La2.3YCa0.7Mn2O7 expected to

segregate into a mixture of ferromagnetic and antiferromagnetic phases with unconnected

ferromagnetic clusters embedded in an antiferromagnetic matrix. In such situation

the bulk heat capacity associated with the sample would include a large electronic

contribution to the heat capacity associated with the ferromagnetic clusters which are

metallic, but the electrical behavior of the sample would be insulating due to the lack of

a percolating conducting path. Most plausible explanation for the large linear term in

the heat capacity of HCO is a situation similar to La2.3YCa0.7Mn2O7. In later chapter we

show that in HCO, Cr orders canted-antiferromagnetically with a small canting angle

along crystallographic c–direction and Ho orders canted antiferromagnetically within

ab–plane with a weak ferromagnetic component along a–direction. We propose that

a competition between antiferromagnetic and ferromagnetic ordering in this compound

might lead to a large electronic contribution. It is also noteworthy that a linear variation

of the low temperature specific heat is claimed to be a common feature of spin glasses with

short range magnetic order [132]. It was found from our neutron scattering experiments

(discussed later) that in HCO a short range ordering due to spin fluctuations was observed,

which could also be another reason for the presence of linear term in bulk specific heat of

HCO. After subtracting the contributions, CLattice and CLinear from CP the magnetic

57



CHAPTER 3. STRUCTURAL, MAGNETIC AND THERMAL PROPERTIES OF HoCrO3

specific heat Cm is obtained which can be seen as the deviation from the total fit

in figure 3.9(a) in the temperature range 60 − 180 K. The magnetic entropy, Sm was

calculated by the numerical integration of Cm/T using the expression (3.9). The Cm/T

versus T and computed Sm is presented in figure 3.9(b).

3.4 Discussion

HCO was synthesized by solid state reaction method and Rietveld analysis of PXRD

patterns, using FullP rof suit confirmed phase purity of the prepared polycrystalline

samples. HCO crystallizes in distorted perovskite type structure which is consistent

with expected crystal structure based on Goldschimdt’s tolerance factor rule. The

unit-cell parameters verify the relationship, a < c/
√
2 < b which is a characteristic of

O-type orthorhombic structure. A buckling of the network of octahedra corresponding to

co-operative rotation about a [110]-axis leads to the O-type orthorhombic structure. The

clinographic view of the CrO6 octahedra in HoCrO3 can be seen in the inset of figure 3.3.

In case of orthorhombic RMnO3 ( R= La, Pr, Nd, Sm, Eu, Gd, Tb and Dy), in addition

to the distortion due to buckling of the MnO6 octahedron a second distortion also arises

because of Jahn-Teller effect. This is because the Mn3+ in RMnO3 with four unpaired

electrons in d-orbital which will be in high spin state is Jahn-Teller active, on the other

hand Cr3+ in chromites with three unpaired electrons in d-orbital is Jahn-Teller inactive.

Following, the contribution due to Jahn-Teller effect to the lattice distortion from the

ideal cubic perovskite structure in RCrO3 is ruled out. The temperature dependence of

lattice parameters shows an anomaly at the magnetic transition temperature indicating

the existence of magnetoelastic effect in this compound. A qualitative analysis of

magneto-elastic effect will be presented in the next chapter.

From the ZFC and FC magnetization measurements the magnetic transition

temperature is found to be 142 K is in agreement with the earlier reports [103, 104].

Above this temperature the inverse susceptibility follows the Curie-Weiss law with a

Curie temperature, Θ = −28.8(6) K, the negative sign of Θ indicates the presence of

antiferromagnetic exchange interactions. The effective moment is found to be 11.15(2) µB

this figure is very close to the expected theoretical total effective moment value, µtotal =

11.31 µB, suggesting the ground states of both Cr3+ and Ho3+ ions are those of the free

ions. From the isothermal magnetization curves two field induced phase transitions are

found, characterized by HC1 and HC2. AnH−T phase diagram was constructed as shown
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in figure 3.6(c) which shows three magnetic phases defined in terms of applied magnetic

field (H) as: (1) 0 ≤ H ≤ HC1, (2) HC1 < H < HC2 and (3) HC2 ≤ H . It was found

that in the temperature range 2−50 K, HC2 decreases with increase in temperature from,

∼ 1.38 T at 2 K to ∼ 1.05 at 50 K, above ∼ 50 K it is unchanged. On the other hand

it was found that HC1 is independent of temperature with a constant value, ∼ 0.7 T.

The observation of field induced phase transitions indicate possible complex magnetic

interactions in this compound. Based on optical studies, field induced spin-orientation

was reported in case of ErCrO3 [133, 134]. Detailed magnetization and neutron scattering

experiments on single crystals of HoCrO3 are necessary to shed light on the nature of

field induced transitions.

From the analysis of measured specific heat in the temperature range 0.1 6 T 6 30 K,

the values of a′, εs/kB and ΘD are found to be, 0.2615(6) K, 16.00(5) K and 318(2)

respectively. The value of εs/kB = 16.00(5) is consistent with earlier reports based on

specific heat measurements [103], optical absorption Zeeman spectroscopy [121]. The

value of a′ from our analysis is slightly smaller compared to the value found in metallic

Ho, a′ ≈ 0.31 − 0.32 [114, 135, 136], in inter-metallic HoCo2, a
′ ≈ 0.31 [137] and in

paramagnetic salts, a′ ≈ 0.31 [135]. Using the value of a′ in equation 3.8 the hyperfine

field, Heff is found to be 600(3) T. In an early report [103] authors have calculated

hyperfine field ∼ 700 K, from the heat capacity measurement above 2 K, where one can

measure the high temperature tail of the nuclear Schottky specific heat. It should be noted

that the authors have used for 165Ho, µ = 3.31 µN instead of 4.17 µN. With this right value

their results will give a value, Heff ≃ 550 T. The observed discrepancy is attributed to the

insufficient data used in [103], which rendered an approximate but not an accurate value of

hyperfine field. The energy difference between two adjacent nuclear levels due to hyperfine

fields is found to be ∼ 20.68 µeV. From the inelastic neutron scattering measurements it

should be possible to observe these energy levels, directly with an inelastic peak around

∼ 20.68 µeV. Similar observation were made in spin-ice compound Ho2Ti2O7 which shows

a nuclear Schottky peak around 0.3 K [138] which was later observed in inelastic neutron

scattering measurements as a peak at ∼ 26 µeV [139]. The nuclear entropy SN reaches a

maximum value of ∼ 17.2 J/mol/K at ∼ 5 K. The theoretical value of entropy for 165Ho

with nuclear spin I = 7/2 is calculated as Rln(2I + 1) = Rln(8) ≃ 17.29 J/mol/K; it is

denoted as an horizontal dashed-line in figure 3.8(b). An excellent agreement between

the experimental SN with the theoretical value suggests that only contribution to the low

temperature peak in the specific heat is from the nuclear Schottky term due to hyperfine
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interactions.

From the analysis of specific heat measured in the temperature range 2 6 T 6 290 K,

the values of Debye temperature (ΘD) and two Einstein temperatures (ΘE1,E2) obtained

from the fit are 802(27) K, 602(19) K and 171(2) K, respectively. The value of γ

from the fit is 0.0039(6) J/mol/K2. The linear coefficient γ is usually attributed to

charge carriers, and is proportional to the density of states at the Fermi level. However,

transport measurements showed that HoCrO3 is insulating, so the linear term in the

specific heat must be interpreted carefully. The contribution from the linear term is

attributed to the presence of canted AFM and FM ordering in this compound [131, 140]

or due to magnetic fluctuations [132]. The experimental magnetic entropy value reaches a

maximum of ∼ 34 J/mol/K. The theoretical value of Sm was calculated by assuming the

contributions due to ordering of both Cr3+ (S = 3/2) and Ho3+ (J = 8) moments, i.e.,

R ln(17) +R ln(4) ≃ 35.08 J/mol/K, denoted as a horizontal dotted line in figure 3.9(b).

The experimental Sm is very close (∼ 97%) to the theoretical magnetic entropy. An

excellent agreement of experimental and theoretical values of Sm ensures the reliability of

analysis of experimental specific heat data to ascertain various contributions to the total

specific heat.

3.5 Conclusions

We have prepared high quality polycrystalline HoCrO3 by solid state reaction method.

Polycrystalline HCO is then characterized by means of x-ray powder diffraction,

magnetization and heat capacity measurements. From structural analysis we could

establish the consistency of observed crystal structure and theoretical predictions based

on Goldschimdt’s tolerance factor rule. The dc magnetization measurements confirmed

the ordering temperature of Cr3+ ions and also presence of antiferromagnetic exchange

interactions in this compound. Isothermal magnetization measurements indicated

presence of two possible field induced phase transitions, based on this observation a

tentative H − T phase diagram was constructed which still needs to be scrutinized by

detailed single crystal magnetization and neutron scattering measurements. The strength

of hyperfine interactions in terms hyperfine field constant (a′) and effective field (Heff)

were calculated from the low temperature specific heat. We could also calculate the value

of hyperfine splitting energy and entropy (SN) associated with nuclear hyperfine specific

heat (CN), which is in excellent agreement with the theory. From the lattice contribution
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to the total specific heat obtained from high temperature specific heat analysis we deduced

the energies associated with Debye and Einstein modes. The magnetic entropy (Sm)

associated with the magnetic specific heat (Cm) was obtained, which confirmed the

ordering of both Cr3+ and Ho3+ in the temperature range 60 − 142 K. The agreement

of experimental value of Sm with the theoretical value established the self consistency of

our high temperature specific heat analysis.
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CHAPTER 4. MAGNETIC ORDERING AND MAGNETOELASTIC EFFECT IN HoCrO3

4.1 Introduction

The magnetic properties of orthoferrites and orthochromites have extensively studied

about four decades ago by magnetization, specific heat, optical absorption spectroscopy

and neutron scattering methods [102, 141–143]. All kinds of magnetic structures in the

orthorhombic perovskites can be well-described in connection with the crystal symmetry

under the notation developed by Bertaut [144]. In most cases the collinearly ordered

spins are along a or c axis of the Pbnm cell. However, the coupling between the magnetic

moment on the rare earth (RE) and the spins on Cr3+ is responsible for an easy axis

rotation below TN in some orthochromites [142]. The exchange coupling between the

magnetic moments of the Cr3+ nearest neighbors is predominantly antiferromagnetic

and these compounds order magnetically at Néel temperatures TN between 100 and

300 K. In many ways the properties of the RCrO3 compounds are similar to those of the

isomorphic RFeO3 series [145]. However there are several important differences that make

the orthochromites better candidates for a study of the effects of rare earth-transition

metal couplings in oxides: (1) the transition metal ordering temperatures are a factor of

two to six lower in the orthochromites; (2) the magnitude of the rare earth-transition

metal coupling is, generally, at least twice as great in the orthochromites as in the

orthoferrites; and (3) since S = 3
2
for Cr3+ (whereas S = 5

2
for Fe3+), to a first (single-ion)

approximation, Cr3+ spin-systems will not have four-fold anisotropy terms. The first two

points noted above indicate that the influence of the rare earth-transition metal coupling

should be roughly an order of magnitude greater in the RCrO3 than in the RFeO3 series,

while the third implies that this coupling plays a decisive role in determining the character

of spin reorientation phase transitions in the orthochromites.

Based on neutron powder diffraction (NPD) studies Bertaut et al. [102] reported that

the spin configuration of Cr3+ ions in HoCrO3 is, in Bertaut notation, (Gxz86
◦) at 80 K

and (Gz) at 4.2 K and Ho spin configuration was reported to be (Fx;Cy). This means

at 80 K Cr magnetic moments order in a canted antiferromagnetic configuration with

main spin direction along c with a weak ferromagnetic component along a. At 4.2 K

the moments are bound to c axis without any ferromagnetic component. On the other

hand Ho exhibits canted antiferromagnetic ordering with spins in ab-plane. Hornreich

et al. reported, based on single crystal magnetization studies, the spin configuration of
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Cr sublattice in whole temperature range below TN to be Gz. In an another report

based on NPD studies, Shamir et al. [143] calculated the Cr spin configuration to be

(Gz;−Cy,−Fx) in whole temperature range below TN and ordering of Ho moments was

found to be −Cy,−Fx; further the authors assume that the canting angles of both Cr

and Ho sublattices are constant versus temperature. It should be noted that the NPD

studies [102, 143] were limited by the resolution and limited data, and the calculations

were performed based on the intensities of limited number of magnetic peaks.

In this chapter we present our investigations on the magnetic structure and

magnetoelastic effects of HoCrO3. To determine spin configurations of Cr and Ho

sublattices and their evolution with temperature in HCO we have performed high

resolution NPD measurements in temperature range 3 − 300 K. We found Cr spin

configuration to be (Gz;Cy, Fx) and that of Ho to be (Cy, Fx) in the entire temperature

range below TN. We have also found that the canting angles of both Cr and Ho moments

are not constant as function of temperature. The temperature dependence of ordered

moments of both Cr and Ho ions were treated with mean field theory. We also report for

the first time the presence of magnetoelastic or magnetovolume effect in this compound.

From our powder x-ray diffraction measurements we have found that lattice parameters

and unit cell volume (V ) in HCO undergoes an anomalous change around the magnetic

ordering temperature TN. From the analysis of NPD data, we present the qualitative

treatment of magnetoelastic effect of V and show that the change in unit cell volume ∆V

due to the magnetoelastic effect is proportional to the magnetic moment of the Cr ion.

4.2 Experimental

To determine the magnetic ordering of Ho and Cr ions in HCO, several NPD patterns

were acquired in the temperature range 3 − 300 K. About 15 g of polycrystalline

powder sample was used in the NPD measurements using the high-resolution powder

diffractometer, SPODI at the research reactor FRM II, Garching. The powder sample

was held in a vanadium cylinder of diameter 8 mm with helium exchange gas. A vertical

focussing monochromator, consisting of 17 Ge(551) crystals was used to achieve neutrons

of wavelength 1.549Å. Both crystal and magnetic structures were refined from the NPD

data using FullP rof .
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4.3 Results and discussion

4.3.1 Magnetic ordering

4.3.1.1 Experimental results

The thermal evolution of a part of NPD patterns and integrated intensities of typical

Bragg peaks (1 0 0), (0 1 1) and (1 0 1) are shown in figure 4.1(a)-(d). Strong changes

occur around TN = 142 K, which corresponds to the magnetic transition. Below this

temperature, an intensity of magnetic origin grows at (1 0 0) and (0 1 1) Bragg positions,

where the nuclear reflections are forbidden by the Pbnm symmetry, and the intensity

of the (1 0 1) peak strongly increases due to an additional magnetic contribution. All

peaks can be indexed within the orthorhombic space group Pbnm and propagation vector
−→
k = (0 0 0). The temperature dependence of (1 0 0) and (1 0 1) Bragg peaks strongly

differ from each other. The (1 0 0) peak remains rather weak down to about 25 K then

strongly increases below. In contrast, (1 0 1) peak increases abruptly below 142 K. These

variations suggest that (1 0 0) and (1 0 1) peaks are controlled by Ho and Cr ordering,

respectively, with the (0 1 1) Bragg peak involving contributions from both orderings.

Further the shape of the curve (figure 4.1(b)), the temperature dependence of (1 0 0),

mainly the concavity is characteristic of induced ordering owing to the strong Ho-Cr

coupling in HCO as expected in most of orthochromites [142].

A temperature induced spin reorientation (SR) transition was observed in several

isomorphous RE, orthoferrites [145] and orthochromites [133, 141]. There is, however,

a significant difference between orthoferrites and orthochromites. To a first (single-ion)

approximation, Fe3+ ions, with S = 5
2
, can have single-ion four fold anisotropy term

while Cr3+ ions, with S = 3
2
, cannot. In the absence of a four fold anisotropy term

it is well known [146] that any SR phase transition will be abrupt rather rotational

character. That is, as the temperature is varied SR occur by an essentially discontinuous

process, wherein the antiferromagnetic axis of the spin system jumps abruptly from one

crystallographic axis to another rather than by a continuous and gradual rotation over

a finite temperature interval. The temperature dependence of integrated intensities of

magnetic Bragg peaks presented in figure 4.1(b-d) is monotonic in the temperature range

3-142 K with no abrupt change in intensity confirming the absence of any temperature

induced spin reorientation transitions in HoCrO3.
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Figure 4.1: (a) Temperature variation of part of the diffraction pattern of HoCrO3, few Brag
reflections are indexed. (b)-(d) integrated intensities of the (1 0 0), (0 1 1) and (1 0 1) reflections
(lines are guides for the eyes).

4.3.1.2 Symmetry considerations

The possible magnetic configurations with symmetry isomorphic to D16
2h − Pbnm i.e.,

under the assumption that the magnetic and crystalline unit cells are identical, were

defined by Wollan and Koehler [147] and by Bertaut [144]. It should be noted that space

group Pbnm (cab) is different setting of Pnma (abc)(#62) [148]. The determination of

magnetic structures from NPD data is often carried out by trial and error. A great deal

of time is wasted in the examination of structures that are in fact symmetry forbidden.

The technique of Representation Analysis (RA) [149–151] based on group theory, reduces

the time burden by allowing the determination of all the spin configurations compatible

with the crystal symmetry. RA allows determination of the allowed magnetic structures

that can result from a second order magnetic phase transition, given the crystal

structure before the transition and the propagation vector of the magnetic ordering. To

determine the possible magnetic arrangements based on symmetry considerations, it will
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be convenient to consider the crystal structure of HCO with Ho and Cr sublattices as

shown in figure 4.2, the nonmagnetic oxygen ions having been omitted for simplicity.

The Cr ions lie on the undistorted positions relative to the orthorhombic cell and the Ho

ions are slightly removed from the special positions by an amount parameterized by the

numbers u and v. The coordinates of the Ho and Cr sites, numbered 1− 4 in figure 4.2,

are given in table 4.1. The values of u and v are found to be −0.0168(8) and 0.0655(5)

respectively in HCO at room temperature (see table 3.1 in previous chapter).

Figure 4.2: Ho and Cr sublattices and crystallographic unit cell of HoCrO3.

Table 4.1: Positions of Ho3+ and Cr3+ ions in the perovskite structure as indicated in figure 4.2.

Ho sites (4c) Cr sites (4b)

(1) u, v, 1
4

(1) 1
2
, 0, 0

(2) ū, v̄, 3
4

(2) 1
2
, 0, 1

2

(3) 1
2
+ u, 1

2
− v, 3

4
(3) 0, 1

2
, 1
2

(4) 1
2
− u, 1

2
+ v, 1

4
(4) 0, 1

2
, 0

Considering the spin components of four in-plane nearest neighbors as indicated in

figure 4.2, four possible ordering patterns can be realized. These patterns are called basis

functions (BFs). For these basis functions we use the symbols: F (++++), G(+−+−),
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C(+ +−−) and A(+− −+) corresponding to the well known Bertaut’s notations [149].

A schematic view of BFs is presented in figure 4.3.

Figure 4.3: Schematic representation of four basis functions, F , G, C and,
A (Refs. [147] and [144]). The (+)-spin means moment parallel to a particular direction,
(-)-spin means antiparallel to same direction. The numbers corresponds to ionic sites as
indicated in figure 4.2

For the present case the symmetry calculations were carried out using the program

BasIreps. First the magnetic propagation vector was determined by using the program

k− search which is included in the FullP rof suit. The propagation vector was found to

be
−→
k = (0 0 0). The details of the representation analysis using the program BasIreps

is presented in appendix C.1. The representation analysis leads to four possible spin

configurations for Cr at 4b Wyckoff positions and eight spin configurations for Ho at 4c

Wyckoff position. RA is based on the Landau thermodynamic theory of a second-order

phase transition [152] and involves the systematic decomposition of a magnetic

representation (MR) Γ of the little group Gk into irreducible representations (IRs) [153].

The spin configurations of all possible IRs are presented in table 4.2.

When a simultaneous ordering of both the Cr and Ho systems is considered, only

ordering modes belonging to the same representation can couple together. It should be

noted that this restriction depends on the assumption that the magnetic and crystalline

unit cells are identical, and the ordering has not been accompanied by a distortion

lowering the symmetry. From PXRD results presented in previous chapter it was found

that HCO undergoes only iso-structural distortion at the magnetic ordering temperature.

Following the reasons above, it is clear from the table 4.1 that there are only four allowed
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Table 4.2: Possible magnetic structures consistent with space group Pbnm and propagation

vector
−→
k = (0 0 0) for Cr at 4b and Ho at 4c Wyckoff positions. The atomic positions are

defined according to Cr1 : (0.5, 0, 0), Cr2 : (−0.5, 0, 0.5), Cr3 : (1.0, 0.5, 0), Cr4 : (0, 0.5, 0.5),
Ho1 : (−0.018, 0.0657, 0.25), Ho2 : (0.018,−0.0657, 0.75), Ho3 : (0.4821, 0.4343,−0.25) and Ho4 :
(0.5179, 0.5657, 0.25). (u, v, w) and (p, q, r) are the (x, y, z) components of magnetic moments
of Cr and Ho, respectively.

Atoms at 4b Wyckoff position

IRs Cr1 Cr2 Cr3 Cr4 Spin modes Magnetic
(Bertaut notation) space group

Γ1 [u, v, w] [−u,−v, w] [u,−v,−w] [−u, v,−w] (Ax, Gy, Cz) Pbnm

Γ3 [u, v, w] [−u,−v, w] [−u, v, w] [u,−v, w] (Gx, Ay, Fz) Pb′n′m

Γ5 [u, v, w] [u, v,−w] [u,−v,−w] [u,−v, w] (Fx, Cy, Gz) Pbn′m′

Γ7 [u, v, w] [u, v,−w] [−u, v, w] [−u, v,−w] (Cx, Fy, Az) Pb′nm′

Atoms at 4c Wyckoff position

IRs Ho1 Ho2 Ho3 Ho4 Spin modes Magnetic
(Bertaut notation) space group

Γ1 [0, 0, r] [0, 0, r] [0, 0,−r] [0, 0,−r] (0, 0, Cz) Pbnm

Γ2 [p, q, 0] [−p,−q, 0] [p,−q, 0] [−p, q, 0] (Ax, Gy, 0) Pbnm′

Γ3 [0, 0, r] [0, 0, r] [0, 0, r] [0, 0, r] (0, 0, Fz) Pb′n′m

Γ4 [p, q, 0] [−p,−q, 0] [−p, q, 0] [p,−q, 0] (Gx, Ay, 0) Pb′n′m′

Γ5 [p, q, 0] [p, q, 0] [p,−q, 0] [p,−q, 0] (Fx, Cy, 0) Pbn′m′

Γ6 [0, 0, r] [0, 0,−r] [0, 0,−r] [0, 0, r] (0, 0, Gz) Pbn′m

Γ7 [p, q, 0] [p, q, 0] [−p, q, 0] [−p, q, 0] (Cx, Fy, 0) Pb′nm′

Γ8 [0, 0, r] [0, 0,−r] [0, 0, r] [0, 0,−r] (0, 0, Az) Pb′nm

spin configurations in which both Cr and Ho belong to same MR viz., Γ1, Γ3, Γ5 and

Γ7. Landau theory predicts that only one of the four above mentioned MRs is realized

at the phase transition [153]. Further, simulation of neutron powder diffraction patterns

was performed using the program FullP rof for all four allowed spin configurations. The

results of the simulations for three important magnetic reflections, (1 0 0) , (0 1 0) and

(0 0 1) is presented in table 4.3. Simulations show that the magnetic reflection (0 0 1)

is allowed only in MRs Γ1 and Γ3 hence will produce a peak with finite intensity. But

as NPD data collected at 3 K (figure 4.4) does not show any intensity corresponding to
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(0 0 1), Γ1 and Γ3 representations can be excluded. Now, out of two remaining possible

MRs, Γ5 and Γ7, (0 0 1) is an allowed magnetic reflection only in Γ5 which can be seen

in the experimental data presented in figure 4.4, also (0 1 0) magnetic reflection which

has a finite intensity in Γ7 is not present in the experimental data. Hence from symmetry

analysis along with the simulations of diffraction patterns of all four allowed MRs will

lead to the conclusion that the MR in HCO is, unambiguously, Γ5 (Pbn
′m′). Hence, in the

refinement of crystal and magnetic structures we used space group Pbnm and magnetic

representation Γ5 (Pbn′m′), respectively.
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Figure 4.4: NPD data collected at 3 K along
with the magnetic peak positions obtained
by simulations using FullProf for different
IRs.

IRs Magnetic reflections

(0 0 1) (0 1 0) (1 0 0)

Γ1

√ √ √

Γ3

√ √ √

Γ5 × × √

Γ7 × √ ×

Table 4.3: Simulation results which shows
whether the magnetic reflections (0 0 1),
(0 1 0) and (1 0 0) are allowed (marked as

√
)

or not (marked as ×) in a given irreducible
representation allowed by symmetry.

4.3.1.3 Magnetic structure refinement

The Rietveld refinement of the crystal and magnetic structures from the NPD data

yielded structural parameters and the ordered magnetic moments of Cr and Ho ions.

The NPD patterns and results of Rietveld refinement of the data collected at 300 K,

100 K and 3 K is presented in figure 4.5 and the results are tabulated in table 4.4. An

example of an input file used for the refinement of 3 K data using FullP rof is given in

appendix C.2. The lattice parameters obtained from the refinement of 300 K data are in

good agreement with the ones obtained from PXRD measurements. From the refinement

we found that for Cr spin configuration is (Fx, Cy, Gz) and that of Ho is (Fx, Cy, 0) in
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Figure 4.5: NPD data and Rietveld refinement results for HoCrO3 at (a) 300 K, (b) 100 K
and (c) 3 K. Red circles mark the data points, black line represents calculated pattern and blue
line represents the difference. The bars below the patterns denote the position of nuclear and
magnetic Bragg peaks. Few typical Bragg peaks are indexed.
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Table 4.4: Structural and magnetic data corresponding to simultaneous crystal and magnetic
structure refinement performed at several characteristic temperatures (data presented only for
magnetic ions).

Temperature

300 K 100 K 3 K

a (Å) 5.2472(1) 5.2393(1) 5.2388(1)

b (Å) 5.5193(1) 5.5137(1) 5.5134(1)

c (Å) 7.5414(1) 7.5282(2) 7.5270(1)

V (Å3) 218.406(8) 217.474(9) 217.406(6)

Atoms

Cr Biso (Å2) 1.08(5) 0.69(4) 0.70(4)

mx, my, mz (µB) – 0.4(2), 0.9(1), 2.18(6) 0.10(4), 0.08(2), 2.61(4)

mCr (µB) – 2.40(8) 2.63(4)

α(◦) – 25(5) 7(11)

Ho

Biso (Å2) 0.92(1) 0.62(2) 0.69(2)

mx, my (µB) – 0.6(1), 0.4(1) 3.64(3), 7.01(3)

mHo (µB) – 0.7(1) 7.90(3)

β(◦) – 60(8) 27.5(2)

Discrepancy factors

χ2 2.61 3.10 1.95

Rp (%) 6.88 3.97 4.78

Rwp (%) 5.81 5.93 5.11

Rmag (%) – 3.97 1.95

the whole temperature range below TN. This result is in contrast to reported structure

by Bertaut et al. [102], who predicted spin configuration of Cr at 4.5 K to be (Gz). Our

results also contradicts the magnetic structure reported by Hornreich et al. [104] who,

based on single crystal magnetization studies, predicted the spin configuration of Cr

sublattice in whole temperature range below TN to be Gz. Though our results support

the magnetic structure determined by Shamir et al. [143], in contrast to their assumption
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we have found that the canting angles of both Cr and Ho moments are not constant as

function of temperature. The thermal variation of canting angles α of Cr moments and β

of Ho moments are presented as insets in figure 4.7(a) and (c), respectively. The canting

angles are represented pictorially in figure 4.7(e) and (f). The thermal variation of Cr3+

and Ho3+ magnetic moments derived from neutron data is shown in figure 4.7(a) and (c).

The thermal variation of Ho moment value has an unusual shape, with an upward

curvature in a large temperature range. The refined magnetic structure of HCO at 3 K

is presented in figure 4.7(d).

The magnetic structure of HCO was also refined with only z-component of Cr

magnetic moment. A comparison of magnetic R-factors (Rmag) for the refinements with

x, y and z components of Cr magnetic moments (mxyz
Cr ) and with only z-component

(mz
Cr) is presented in figure 4.6. At all temperatures Rmag for the refinements with mxyz

Cr

is smaller than that for refinements with mz
Cr. It should also be noted that at higher

temperatures the difference between values of Rmag corresponding to the refinements

with (mxyz
Cr ) and (mz

Cr) increased. This is because at higher temperatures the canting

angle between Cr magnetic moment is increased with temperature which can be seen in

the inset of figure 4.7(a).

We applied the molecular field model in order to compute the temperature
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Figure 4.6: Comparison of magnetic R-factors (Rmag) obtained from the Rietveld refinement
of NPD data. mxyz

Cr corresponds to the refinement in which all x, y and z components of Cr
magnetic moments are set as free parameters and mz

Cr corresponds to the refinement with Cr
moments only along z-axis.
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dependence of ordered magnetic moments. We first computed temperature dependence

of the Cr3+ moment by self-consistent mean-field calculation using the Brillouin function

B3/2
for S = 3/2 and a molecular-field constant λ0 representing Cr-Cr exchange. The

standard formula has to be slightly modified because the saturated Cr moment of

msat = 2.62(5) µB is lower than the theoretical value, gS µB = 3 µB. So we used the

following expression [154]:

mCr(T ) = msatB3/2

[

gµBSλ0mCr(T )

kBT

]

(4.1)

Where B3/2
is Brillouin function for spin only value S = 3/2 and λ0 is molecular-field

constant. In general, for an angular moment J , the Brillouin function given by,

BJ(T ) =
2J + 1

2J
coth

(

2J + 1

2J
T

)

− 1

2J
coth

(

T

2J

)

(4.2)

For Cr3+, due to quenching of orbital angular moment, we have J = S = 3/2. Both msat

and λ0 were varied as free parameters in the least square fitting procedure. A good fit

of the experimental data is obtained with msat = 2.62(5) µB and λ0 = 37.1(7) T/µB.

The result of fitting is shown as a solid line in the figure 4.7(a). The observed saturated

magnetic moment per Cr3+ ion value msat ≈ 2.62(5)µB at T = 60 K is lower than the

expected value of 3 µB indicating the presence of spin fluctuations down to temperatures

as low as 3 K.

As mentioned before, the temperature dependence of order parameter for the Ho

moment is quite unusual. The concave curvature of the order parameter may be explained

with ground state quasi-doublet crystal field levels, split by an exchange field [155, 156]

exerted by Cr sublattice ordering. The non-Kramer’s Ho3+ ions in HCO are at the

positions of local point symmetry m (Schoenflies symbol, C1h )which typically leads to

singlet ground-state. Thus the ground multiplet of Ho3+ ion, 5I8, split into 17 singlets

by the crystalline field via 3d − 4f exchange interactions. From the reported neutron

scattering results [157] and our specific heat studies presented in section (3.3.3), it should

be noted that the first crystal electric-field (CEF) level (∼ 16 K) is well separated from

the next level (121 K). When two singlets are close enough and sufficiently isolated from

other level they may be treated as pseudo or accidental doublet [158, 159]. At low

temperatures only the ground-state doublet is appreciably populated because the energy

difference between first CEF level and next CEF level is large. Taking into account only
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Figure 4.7: (a) The observed moment of Cr+3 (dots) and the molecular-field calculation (solid
line). (b) A power-law fit to the temperature dependence of Cr ordered moment (c) Observed
moment of Ho+3 and molecular-field calculation (solid line). Inset of (a) and (c) shows
the temperature variation of canting angle of Cr+3 ordered moment about crystallographic
c-direction (α) and the temperature dependence of canting angle of Ho+3 ordered moment about
crystallographic b-direction (β), respectively. (d) Graphical representation of the canting angles
α and β about crystallographic axes. (e)-(f) Graphical representation of the magnetic structure
of HoCrO3 at 3 K. The non-magnetic oxygen ions were excluded for clarity.
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the ground-state doublet (accidental doublet), in case of HCO, and a splitting ∆(T ). we

can write [155, 156]:

mHo (T ) =
gJµB

2
tanh

[

∆(T )

2kBT

]

(4.3)

where, ∆ (T ) = gJµBB
eff
Cr (T ) is the splitting of the ground state doublet by the effective

field (Beff
Cr ) produced by the Cr sublattice. gJ is the Landé g factor of the free Ho3+

and µB is the Bohr magneton. The effective field should be proportional to the ordered

magnetic moment of Cr, and can be written as: Beff
Cr (T ) = B0[(TN − T ) /TN]

β. The

values of TN and β were obtained by fitting the order parameter, the ordered moment

(mCr) of Cr sublattice using power law fit:

mcr(T ) = m0

[

TN − T

TN

]β

. (4.4)

The least-square fit gave m0 = 3.63(9) µB, TN = 142.3(8) K and β = 0.36(2). The results

of the fitting are presented in figure 4.7(b).

We fitted the temperature dependence of Ho magnetic moments using the

equation (4.3) by writing ∆(T ) in terms of Beff
Cr (T ) along with the values, TN = 142.3(8) K

and β = 0.36(2). The fit result is shown as a solid line in figure 4.7(c). From the fitting we

obtained the value of B0 = 25(2) T and the corresponding ∆(T = 0) = 1.8(3) meV. The

value of ∆ = 1.8(3) meV is comparable to the ground state splitting of Ho crystal field

levels in HCO, measured using inelastic neutron scattering (INS), 1.65 meV [157] and

the value obtained from our specific heat measurements, 1.379(4) meV. We calculated

molecular-field constant λ1 associated with Cr-Ho exchange interactions, using the

expression Beff(T ) = λmCr(T ) [155]. Using the value of saturated magnetic moment

msat ≈ 2.62 µB the value of B0 ≈ 25 we get λ1 ≈ 9.5 T/µB.

The unusual upward curvature comes from the tanh function with a small argument,

with the molecular-field constant λCr−Ho (= λ1 ) being much smaller than λCr−Cr (= λ0).

With this model, a small ordered Ho moment should persist up to TN = 142 K.

From this analysis it can be concluded that the Ho ions orient in a non-vanishing

net molecular field through Ho–Cr exchange and also Cr–Cr exchange interactions

are much higher than the Ho–Cr exchange in this compound. In large number of

intermetallic compounds it was found that 4f − 4f exchange interactions are negligible.

The non–interaction of RE moments should be understood as relative weakness of the

RE-RE exchange interaction in such compounds [160]. Thus, a peculiar hierarchy of
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CHAPTER 4. MAGNETIC ORDERING AND MAGNETOELASTIC EFFECT IN HoCrO3

exchange interactions takes place in 3d− 4f magnetic material, which can schematically

expressed as (3d − 3d) ≫ (3d − 4f) ≫ (4f − 4f) ≈ 0. This fact enables us to regard

the 3d subsystem (Cr) that orders due to its internal forces, as something external with

respect to the RE (Ho). Then from the view point of the 4f electrons the 3d − 4f

exchange can be presented as the action of an exchange field produced by the ordered 3d

subsystem. Following the above discussion in HCO, Ho-Ho exchange interactions could

be neglected compared to strong, Cr–Cr and Ho–Cr exchange interactions.
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Figure 4.8: The variation in background with temperature, showing the overall decrease in
low-angle paramagnetic scattering with decreasing temperature (see text). The solid lines are
guides to eyes.

As discussed earlier, to check the existence of possible spin fluctuations in the form

of short range ordering we carefully analyzed the low-angle region of NPD pattern. The

low-angle paramagnetic scattering decreases significantly from 300 to 3 K (figure 4.8). The

plots in figure 4.8 were obtained by subtracting the calculated (Rietveld refined) pattern,

with out a background correction, from the observed data at each temperature. A weak

broad peak centered near a d-spacing of ∼ 4.4 Å (2θ ≈ 20◦ and Q ≈ 1.41 Å−1) indicating

the presence of short range order, the presence of this peak even at 19 K indicates that

short-range correlations persist into the long-range-ordered regime. Furthermore, position

of the broad peak coincides with the magnetic reflection (1 0 1) which corresponds to
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the ordering of Cr ions (4.1). This indicates that the the origin of short range ordering

is being the spin fluctuations in the Cr sublattice, which can also be understood as the

reason for the significantly smaller saturated moment value of Cr ions determined from

the refinement. The temperature dependence of the peak and the overall background

gives a clear idea of their origin. The overall background changes slightly with decrease in

temperature from 173 to 19 K, on the other hand, the broad peak diminishes significantly

below 60 K where the Cr magnetic moments reach saturation value, though a broad

feature is perceivable down to 3 K. A quantitative analysis of short range ordering is not

possible from the present data due to high noise level. Single crystal neutron diffraction

measurements can shed light on this phenomena.

4.3.2 Magnetoelastic effect

Figure 4.9 shows the temperature variation of the lattice parameters and the unit cell

volume determined from the Rietveld refinement of NPD data. As the temperature

decreases, all three lattice parameters decrease and show an abrupt change at TN ≈
142 K. Changes in lattice parameters a and c around magnetic ordering temperature

are smaller compared to b and unit cell volume (V ). The unit cell volume therefore

also decrease abruptly at TN. The anomalous behavior of the temperature variation of

lattice parameters and unit cell volume is due to the magneto-elastic effect associated

with the antiferromagnetic transition at the Néel temperature. In order to study the

spontaneous magnetostriction it is necessary to determine the temperature variation of

the lattice parameters and the unit cell volume in the absence of magnetism. One way

to determine the background temperature variation of the lattice parameter and unit cell

volume is to extrapolate the paramagnetic high temperature data to low temperature

by fitting with a polynomial function [161]. This method works approximately in some

cases but in general involves some uncertainty. Alternatively, one can use the Grüneisen

approximation for the zero pressure equation of state, in which the effects of thermal

expansion are considered to be equivalent to elastic strain [162]. Thus, the temperature

dependence of the volume can be described by V (T ) = γU(T )/B0 + V0, where γ is a

Grüneisen parameter, B0 is the bulk modulus and V0 is the volume at T = 0 K in the

absence of magnetoelastic effect. By adopting the Grüneisen approximation, the internal
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Figure 4.9: (a) The temperature dependence of lattice parameter b, inset (1) and (2) shows
the temperature dependence of lattice parameters a and c respectively. (b) The temperature
dependence of unit cell volume. The solid line is the fit of the Debye model as described in the
text. The vertical dashed line corresponds to TN.
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energy U(T ) is given by

U(T ) = 9NkBT

(

T

θD

)3 ∫ θD/T

0

x3

ex − 1
dx (4.5)

where N is the number of atoms in the unit cell, kB is Boltzmann’s constant and θD is the

Debye temperature. By fitting the unit cell volume of HCO in the paramagnetic state

we can get the physical parameters θD and V0. From the present fitting procedure it was

not possible to determine γ and B0 but the ratio of γ/B0 was set as variable and was

found to be 0.500(2) GPa. The result of the fit is shown as a solid line in figure 4.9(b).

The value of θD obtained from the fit was 507(38) K and V0 = 217.53(1) Å3. Note that

the fit line (figure 4.9(b)) deviates from the data at ∼ 142 K where the lattice constants

and the volume also reflects a marked change. This is inferred as a clear indication of

magnetoelastic or magnetovolume effects present in this system.

The excess change in the unit cell volume |∆V | due to magnetoelastic effect (exchange

striction) is plotted in the temperature range 60−140 K in figure 4.10(a). The inset shows

the temperature dependence of |∆V | in the temperature range 3− 173 K. The ∆V value

can be considered as the secondary order parameter. The solid line in figure 4.10(a) is a

result of the least-square power-law fit to the temperature variation of ∆V given by the

equation,

∆V = ∆V0

[

TN − T

T

]β′

(4.6)

From the least-squares fit we determined TN = 141.2(6) K and β ′ = 0.50(5). The critical

temperature obtained by this fit is about the same, within the error limits, as the Néel

temperature determined by fitting the ordered magnetic moment of Cr. We do not trust

the critical exponent thus determined due to the uncertainty in the determination of the

background, and also due to limited number of measurement points near the transition

temperature.

In order to check how the lattice strain ∆V couple to the order parameter it is

plotted against the ordered moment per Cr ion in the temperature range 19 − 135 K as

shown in figure 4.10(b). One expects the lattice strain ∆V due to the magnetoelastic

effect (exchange striction) to be proportional to the order parameter or ordered magnetic

moment [163]. It is clear from the figure 4.10(b), despite the large error bars the linear

relationship is fulfilled.
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Figure 4.10: (a) Temperature variation of |∆V |, which is obtained from the unit cell volume V
by subtracting the background by the method explained in the text. Solid line is the power-law
fit. The inset shows the ∆V in the temperature range 3 − 170 K. (b) ∆V versus Cr-ordered
moment in the temperature region 25− 135 K.

4.4 Conclusions

Neutron powder diffraction measurements were performed on polycrystalline HoCrO3

samples in the temperature range 3 − 300 K. From the Rietveld refinement of the data

we deduced the crystal and magnetic structures. The crystal and magnetic structures

are refined in the space groups Pbnm and Pbn′m′ respectively. Thermal variation of

magnetic moments confirms that spin configuration of Cr ion is (Fx, Cy, Gz) in the whole

temperature range. Despite the large error bars, the canting angle α was found to be

temperature dependent. The thermal variation of Ho ordered moment indicates the

induced type of magnetic ordering. The ordered moment of Cr increases abruptly below

the Néel temperature of 142 K and reaches a saturated value of 2.62(5)µB at around

60 K. The ordered moment of Ho ion on the other hand remains rather small down to
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25 K, below which it increases sharply. The thermal variation of the ordered moments

of both, Cr and Ho ions, can be modeled using mean field theory. The results of the

least squares fit of ordered moments using mean field theory gave the molecular field

constants, λ0 ≈ 37.1 T/µB and λ1 ≈ 9.5 T/µB, which confirms rather strong Cr-Cr

exchange significantly weak Ho-Cr exchange in this compound. From the fitting crystal

field splitting of the ground state accidental doublet by the effective field produced by

the Cr sublattice is, ∆ = 1.8(3) meV. This value is in agreement with reported values.

The small saturated moment, 2.67(1)µB per Cr ion hints to possible spin fluctuations.

This was confirmed by the observation of a short range ordering resulting in a broad peak

centering at the magnetic peak associated with Cr ordering. This observation still needs

to be scrutinized, with the help of single crystal neutron scattering experiments.

We also investigated the thermal variation of the lattice constants and unit cell volume

of HoCrO3. The results of the present investigation show that all lattice parameters and

unit cell volume exhibit an anomalous change near TN = 142 K due to magnetoelastic or

magnetovolume effect. From a qualitative analysis of the extra change in unit cell volume

∆V due to magnetoelastic effect, we established a linear relationship between ∆V and

magnetic moment of the Cr ion.
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5.1 Introduction

The concept of crystal field was first developed by Bethe in 1929 to study the effect of

surrounding ions on the electron distribution of a single magnetic ion on a lattice. The

ions and its surrounding ions were modeled as uniform spheres, their charges located at

a point in the center, with no overlapping of the charge distributions. The crystal field

was then defined as the effect of those charges on the central ion, calculated solely from

the coulomb interaction between the central and surrounding ions. Crystal field theory

(CFT) is the method of calculating the effect of crystal fields on physical properties of

the system. The crystal field interactions in rare-earth compounds are responsible for a

great variety of magnetic phenomena. In such compounds, magnetism is partially due to

the incompletely filled 4f shells.

A variety of experimental techniques were employed to study CF interactions. Most

commonly used techniques are heat capacity measurements, optical spectroscopy and

Inelastic Neutron Scattering (INS). INS has become the key tool to measure crystal-field

transitions. INS is by far the most unique and perhaps direct experimental method for

the determination of the CF interactions in RE compounds. CF interactions in HoCrO3

was studied by optics [121], magnetization and magnetic susceptibility [104], specific

heat [122], elastic neutron diffraction [123] and inelastic neutron scattering (INS) [124].

Based on these measurements five CF levels have been found at 1.65 meV (19.2 K),

10.4 meV (121 K), 15.5 meV (179 K), and 23.5 meV (272 K) lowest level being at 0 meV.

In the present chapter we present our investigations of HCO from INS. Our aim is to

study the lowest lying CF levels and also to investigate the presence of spin fluctuations

as indicated by our elastic neutron scattering measurements on HCO.

5.2 Crystal field calculation

5.2.1 Crystal field theory versus Ligand field theory

Crystal field theory is one of several chemical bonding models and one that is applicable

exclusively to the transition metal and lanthanide elements. CFT describes the origin

and consequences of interactions of the surroundings on the orbital energy levels of a

transition metal or lanthanide element. If the crystalline electric field effects are taken as

a perturbation on the appropriate free-ion wave functions and energy levels, the problem

becomes that of finding the perturbing Hamiltonian and its matrix elements. The energy
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levels in the crystal field can then be found from standard perturbation theory. Many

effects are neglected in this simple theory. A more general model of the field due to the

surrounding ions might include covalency effects, spatial distribution of charge allowing

for charge distribution overlap, and ligand bond strengths. The term ligand field theory

has been coined to describe the manner in which the physical properties of an ion in a

compound are influenced by all effects of the surrounding ions. CFT is then a limiting

case of ligand field theory which considers only electrostatic interactions.

5.2.2 Point-charge model

It has been found that many results of ligand field theory depend largely on the symmetry

of the distribution of the ligand surrounding the central ions, and far less on the details

of the model. Therefore useful information can be obtained from simple point-charge

model using crystal field theory which includes all the information on symmetry of

the surrounding ligand. Consider a rare-earth (RE) ion in a solid. The 4f electrons

experience an electrostatic field potential VCF(
−→r ) which is set up by the surrounding

charge distribution ρ(
−→
Ri). The potential reflects the point symmetry of the RE ion. The

crystal field (CF) at RE ion is based on the electrostatic potential defined by

VCF (
−→r ) =

∑

j

ρ
(−→
Rj

)

∣

∣

∣

−→r −−→
Rj

∣

∣

∣

(5.1)

where ρ
(−→
Rj

)

denote the charge at the site
−→
Rj of the ith ligand ion. The CF Hamiltonian

i. e. the potential energy of all the 4f electrons of a RE ion in the crystalline electric field

(no external field) is then given by [164],

HCF = e
∑

i

VCF (~ri) (5.2)

The index i goes over the 4f shell. Usually for RE ions the spin-orbit energy is much larger

than the CEF energy. Therefore it is sufficient to consider the lowest J multiplets of the 4f

shell only. Limiting to the lowest multiplet results in drastic simplifications. According

to the Stevens operator equivalents HCF can be expressed in terms of polynomials

in Jα (α = x, y, z) operators [165]. They act on the 4f shell as a whole and not

on individual 4f electrons as do the polynomials in xi, yi, zi which appears in VCF(
−→ri ).
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The following rules hold for transforming an expression of the form f(xi, yi, zi) into an

equivalent one expressed in J operators. Replacing any polynomial in x, y, z by the

corresponding product of Jx, Jy, Jz can be written in a symmetrized form. The constants

of proportionality depend on the degree l of the polynomial and on L, S and J . They

include average 〈rl〉 over the 4f wave functions. For example [166],

∑

i

(

x2i − y2i
)

≡ αJ

〈

r2
〉 [

J2
x − J2

y

]

= αJ

〈

r2
〉

O2
2. (5.3)

∑

i

1

2

{

(xi + iyi)
4 + (xi − iyi)

4} ≡ βJ
〈

r4
〉 1

2

[

J4
+ − J4

−

]

= βJ
〈

r4
〉

O2
4. (5.4)

For Ho3+ we have listed S, L, J and the αJ , βJ , γJ as well as 〈rl〉(l = 2, 4, 6) in

tables (5.1) and (5.2), respectively. The resulting form for HCF is conventionally written

as

HCF =
∑

l,m

Bm
l O

m
l (5.5)

where Bm
l andOm

l are, respectively, CF parameters and Stevens operator equivalents [167].

Equation (5.5) gives rise to a decomposition of the (2J +1)–fold degenerate ground-state

multiplet into a series of crystal field states Γi with energies Ei. A complete list of the

Stevens operators Om
l was presented by Hutchings [166].

Table 5.1: Quantum numbers for spin(S), orbital(L) and total angular moment (J) and the
Landé g-factor (gJ) of the ground state multiplet of Ho3+ ion.

Number of

4f electrons S L J gJ

10 2 6 8 5/4

Few of the matrix elements of O0
2 = 3J2

z −j(j+1) for Ho3+ with J = 8 were calculated

as below:

[〈

−8
∣

∣J2
z

∣

∣− 8
〉]

− 8 (8 + 1) = 120
[〈

−7
∣

∣J2
z

∣

∣− 7
〉]

− 7 (7 + 1) = 75 and so on...
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Table 5.2: List of 〈rn〉 for n = 2, 4, 6, Stevens factors αj , βJ , and γJ for Ho3+ ion.

〈r2〉 (Å2 ) 〈r4〉 (Å4 ) 〈r6〉 (Å6) αJ × 102 βJ × 104 γJ × 106

0.2085 0.1081 0.1181 −0.222 −0.333 −1.30

The resulting matrix of O0
2 will be of the form,






















































































































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The crystal field calculations using point charge model were carried out using the

software package McPhase [168]. The non-Kramer’s Ho3+ ions in HCO are at the

positions of local point symmetry m (C1h ) which typically leads to singlet ground-state.

Thus the ground multiplet of Ho3+ ion, 5I8, split into 2J + 1 = 17 singlets by the

crystalline field via 3d − 4f exchange interactions. The 15 non zero crystal field

parameters (Bm
l ) for the point symmetry m are presented in table 5.3 [169].

Table 5.3: Non zero crystal field parameters corresponding to point symmetrym (C1h).

B0
2 B±2

2 B0
4 B±2

4 B±4
4 B0

6 B±2
6 B±4

6 B±6
6

+ ± + ± ± + ± ± ±

In a polycrystalline sample, neutron-scattering cross section for a CF transition i→ i′

(in units of b/sr/meV) at a temperature T is expressed in dipole approximation as [170]

d2σ (i→ i′)

dΩdE ′
=

k′

k
S (Q, ω)

= N
k′

k

(

~γe2

mc2

)

e−2W

∣

∣

∣

∣

1

2
gjF (Q)

∣

∣

∣

∣

2
exp (−Ei/kBT )

∑

j

exp (−Ej/kBT )

×
∑

α=x,y,z

2

3
|〈i |Jα| i′〉|

2

δ (Ei − Ei′ − ~ω) . (5.6)

Here k′/k is the ratio of the momenta of the scattered and the incident neutrons,

4π(~γe2/mc2) is the total magnetic cross section (= 3.65 barns), γ = gn/2~ (gn = 1.913)

is the gyromagnetic ratio of the neutron, and e2/mc2 = 2.82 fm is the classical electron

radius. Furthermore, z [=
∑

j exp (−Ei/kBT )] is the single ion partition function,
∑

α=x,y,z

|〈i |Jα| i′〉|2 is the sum of squares of the transition matrix elements of te angular

moment operator, and F(Q) is the magnetic form factor of Ho3+ ion. In order to compare

the cross section given in equation (5.6) to the experimental data, it was convoluted for

each transition i→ i′ by a Gaussian with an energy dependent linewidth.
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5.3 Experimental

Inelastic neutron scattering experiments were carried out with high–resolution

time–of–flight spectrometer FOCUS at the spallation neutron source SINQ at PSI

Villigen. The measurements were performed in the temperature range 1.5–200 K using

three different incident energies of 19.61, 10.245 and 3.45 meV. The scattered neutrons

were detected by an array of 3He counters covering a large range of scattering angles

10 ≤ Φ ≤ 130. The polycrystalline sample was enclosed in an aluminium cylinder

(12 mm diameter, ∼ 45 mm height) and placed into a He cryostat, several spectra were

collected in the temperature range 1.5 ≤ T ≤ 200 K. Additional experiments were

performed for the empty container as well as for vanadium to allow the correction of

the raw data with respect to background, detector efficiency, absorption, and detailed

balance according to standard procedures.

5.4 Results and discussion

5.4.1 Crystal field levels

Few typical INS spectra measured with incident neutron energies Ei = 19.61 meV

and Ei = 10.245 meV are presented in figure 5.2 and figure 5.3, respectively. For

the present results we corrected Q resolved raw–experimental data (left panels in

figures 5.2 and 5.3) for background scattering, detector efficiency, absorption and

self-shielding and transformed to intensity profiles (S(Q, ω)) on energy scale (right panels

in figures 5.2 and 5.3) using the software package DAVE (Data Analysis and Visualization

Environment) developed at the NIST Center for Neutron Research (NCNR) [171]. In

neutron spectroscopy if a spherical target is used, element sensitivities will be directly

proportional to those obtained by irradiation in an isotropic neutron field, i. e., one

in which the effects of scattering are negligible. The results obtained from any other

target shape needs to be corrected for self–shielding and absorption. Absorption

and self-shielding corrections compensate for absorption of neutrons by the sample

and neutrons that scatter more than once. The correction for background scattering

and detector efficiency were accounted by the measurements on empty sample holder

(aluminium cylinder) and an empty vanadium can. The self shielding corrections were

applied for the cylindrical shaped sample with the help of self–shielding factors calculated
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from the tools included in the software package DAVE.

INS spectra taken at 1.5 K exhibit three well-resolved inelastic peaks at energies

1.41(1), 10.10(2) and 15.50(2) meV which are presented in figure 5.1.
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Figure 5.1: INS spectra measured at 1.5 K with neutrons of incident energy Ei = 19.61 meV.
Three well resolved peaks at ε2, ε3 and ε4 are fitted using a gaussian peak function (shaded
regions).
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5.4 Results and discussion

Figure 5.2: Typical INS spectra (left panels) measured with incident energy Ei = 19.61 meV at
(a) 1.5 K, (b) 60 K, (c) 140 K, and (d) 180 K. Right panels are the intensity profiles obtained
by summing the intensities over whole Q range.
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Figure 5.3: Typical INS spectra (left panels) measured with incident energy Ei = 10.245 meV at
(a) 1.5 K, (b) 60 K, (c) 140 K, and (d) 180 K. Right panels are the intensity profiles obtained by
summing the intensities over whole Q range. A careful inspection of the data reveal a intensity
surge around Q = 1.4 Å−1 in (b), (c) and (d).
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5.4 Results and discussion

First we calculated CF parameters using point charge model by considering 8

nearest neighbor Cr ions and 12 oxygen ions as shown in figure 5.4. The energy level

diagram obtained from crystal field calculations using the point charge model and energy

eigenvalues are presented in figure 5.5. CF parameters thus obtained were used for the

least square fitting of INS spectra collected at 1.5 K (Ei = 19.61 meV) using the software

McPhase. The results of least squares fit are presented in figure 5.6. The program

McPhase is not able to calculate the smallest energy eigenvalue (ε2 = 1.41 meV) which is

shifted to zero because of the calibration freedom. From the reported neutron scattering

results [157] and our specific heat studies presented in section (3.3.3), it should be noted

that the first CEF level at ∼ 1.45 meV (∼ 16 K) is well separated from the next level

10 meV (110 K). When two singlets are close enough and sufficiently isolated from other

level they may be treated as pseudo or accidental doublet [158, 159]. Further more due

to low point symmetry of Ho3+ which results in 17 CF levels, the maximum energy range

covered in our measurements (∼ 18 meV), is very small. This leads the computation

of CF levels by Rietveld least squares fitting of INS spectra using point charge model

cumbersome.

Figure 5.4: The coordination of Ho3+ ion with nearest neighbors considered for CF calculations
using point-charge-model.
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Figure 5.5: The calculated energy levels obtained using the point charge model and experimentally
observed levels (see figure 5.1). The energy eigenvalues E(1)–E(16) expressed in meV, are the
results obtained from the point-charge model.
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Figure 5.6: INS spectra of HoCrO3 measured with incident energy Ei = 19.61 meV at 1.5 K.
The thick line indicate the results of CEF calculations.
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5.4 Results and discussion

The first three CF levels calculated using point charge model and the experimentally

observed values, ∼ 1.41 meV (≈ 17 K), ∼ 10.1 meV (117 K) and ∼ 15.5 meV (180 K) are

consistent with our heat capacity measurements and earlier reports [103, 121, 123, 124]

(see table 5.4). With increase in temperature additional inelastic peaks appeared which

are due to transitions between higher CF levels. A summary of all the inelastic peaks

observed and associated transition schemes are presented in figure 5.7. Though we could

reproduce the experimental data at 1.5 K fairly well, the simulation of high temperature

data was not possible. This we attribute to the low symmetry of Ho3+ and limited energy

range leading to inappropriate solutions during CF calculations.

Table 5.4: First three crystal filed levels (CFL) obtained from our heat capacity, neutron powder
diffraction (NPD), and inelastic neutron scattering (INS) measurements along with the reported
values (in meV).

CFL Specific heat NPD INS Reported

ε2 1.38(4) 1.8(3) 1.41 1.65 [104, 121, 122, 124]

ε3 10.42 – 10.1 10.4 [124]

ε4 15.42 – 15.5 15.5 [124]

5.4.2 Spin fluctuations

Our elastic NPD measurements indicated the presence of spin fluctuations well below

magnetic ordering temperature, with a broad hump like feature centered around magnetic

Bragg reflection (1 0 1) with Q ≈ 1.46 Å−1. The temperature evolution of integrated

intensities clearly indicates that major contribution to (1 0 1) magnetic reflection is

due to ordering of Cr magnetic moments (see figure 4.1). This suggests that the hump

like feature in elastic NPD is due to Cr spin fluctuations. A careful inspection of INS

spectra measured with incident energy Ei = 10.245 meV showed an increase in intensity

around Q ≈ 1.4 Å−1, above 20 K, confirming the presence of spin fluctuations (5.8(a)).

The temperature evolution of this peak was determined by summing all the intensities

along Q over the energy range 2.5 − 4.5 meV. The temperature evolution of this peak

is presented in figure 5.8(b). The integrated intensity of the peak decreases sharply

also the peak-center changes sharply around magnetic ordering temperature as shown

in figure 5.8(c). Further, the intensity decreases with temperature even below ordering

temperature till down 20 K. This is in agreement with our elastic neutron scattering
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Figure 5.7: Typical INS spectra of HCO at 1.5 K(black circles) and and 50 K(red circles)
measured with incident wavelengths Ei = 3.55 meV and Ei = 19.61 meV, respectively. Various
transitions are graphically represented on the left-hand side of the figure (blue arrows indicate
the transitions from ground state to one of the excited states, green and red arrows indicate the
transitions from one excited level to another higher level).

measurements in which we observed short range ordering well below the magnetic ordering

temperatures. Using Selyakov-Sherrer formula [172],

ξ ≈ λ

∆(2θ) cos θ
(5.7)

where λ = 2.826 Å is the incident wavelength (Ei = 10.245 meV). By rewriting

equation (5.7) with θ in terms of Q as θ = sin−1(λQ/4π) and ∆θ = sin−1(λ∆Q/4π),

where Q and ∆Q are, respectively, peak center and full width half maximum (FWHM) of

the peak, we calculated the correlation length of the fluctuations (ξ). The temperature

dependence of FWHM and ξ are presented in figure 5.8(d). Temperature evolution of ξ

closely resembles the ordered moment of Cr sublattice, which is clearly demonstrates

the existence of fluctuations in Cr sublattice magnetic moments. Above magnetic

ordering temperature the value of ξ was found to be constant, ≈ 9(1) Å which is the

next-nearest-neighbor distance. Below magnetic ordering temperature the correlation

length increase sharply and reaches a value of ≈ 50 Å close to 50 K. Where ordered

magnetic moments of Cr reached saturation (see figure 4.7(a)). Below 20 K further

increase in ξ was observed which is also the case of Cr ordered moments, but it is difficult
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Figure 5.8: (a) A part of inelastic neutron scattering measured at 60 K showing a intensity
maxima around ∼ 1.4 Å−1. (b) The temperature dependence of the peak aforementioned
obtained by summing the intensities over the energy range 2.5− 4.5 meV. (c) The temperature
dependence of integrated intensity and peak position and (d) the temperature dependence of full
width half-maxima (FWHM) and correlation-length ξ. Continuous lines are guides to the eyes
and vertical dotted line corresponds to the magnetic ordering temperature.

to discuss this due to insufficient data points.

5.5 Conclusions

Using point charge model we calculated CF level scheme for Ho3+ in HoCrO3. Three

energy levels observed in the data collected at 1.5 K were modeled from the CF parameters

obtained from point charge model. The observed energy levels are in good agreement

with those obtained from our specific measurements and also reported values [124]. Due

to lower symmetry of Ho3+ and limited data range we could not reproduce the high

temperature INS data using point charge model. Further we confirmed the presence

of magnetic fluctuations in HCO down to 20 K. A broad peak observed around Q ≈
1.4 meV. We calculated correlation length from FWHM using Selyakov-Scherrer formula.
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The temperature dependence of correlation lengths followed the Cr ordered moments

confirming Cr as the source of the short-range spin correlations.
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6.1 Introduction

Perovskite RMnO3, where R = Gd, Tb, Dy, have been identified as multiferroic materials

which exhibit coexistence of ferroelectricity and magnetism rendering them one of the

favorites of academic as well as technological research [173–175]. Among the compounds

mentioned above, DyMnO3 (DMO) is proved to be interesting because of the critical ionic

radius of Dy3+ and the small difference in Gibb’s free energy between orthorhombic and

hexagonal phases. DMO can be crystallized in orthorhombic as well as hexagonal crystal

symmetries, through tailored synthesis conditions [176], with orthorhombic structure

being the most favorable form under normal synthesis conditions. In the hexagonal

P63cm symmetry, Mn ions occupy 6c Wyckoff position and they are located in the

ab plane forming MnO5 bipyramidal polyhedra with oxygen ions at the corners of the

polyhedra. These polyhedra are separated along c axis by layers of R. The Mn3+ ions

in the basal plane of hexagonal structure form a frustrated magnetic lattice in the z = 0

and z = 1/2 planes that are stacked ABAB along z axis. A 120◦ spin structure results

below the Néel temperature from inherent frustration of the lattice. Low-dimensionality

of the Mn moments and the frustration leads to complex magnetic phenomena in RMnO3

(hRMnO3). In the case of hYMnO3, neutron diffraction studies [177, 178] have evidenced

the presence of strong spin fluctuations even above TMn
N = 75 K. The rare earth ions

in the hexagonal lattice have a complicated two-sublattice magnetic structure, which

can interact with the Mn3+ magnetic moment. The complex multi-sublattice effects

and their coupling leading to different magnetic phases in hexagonal multiferroics have

been reported [179]. hDMO is the only member in this family where manganese and

rare earth lattices are reported to order according to different magnetic symmetry

representations [180]. Specific heat studies have been judiciously employed to establish a

H −T phase diagram, signifying a tetracritical point, the cross-coupling between various

orders and different magnetic phases, of HoMnO3 [181]. In addition to the complex

magnetic ordering phenomena, some of the hexagonal manganites are reported to exhibit

giant magnetoelastic effect [182].

Most of the hexagonal manganites show only one high temperature transition

associated with 120◦ antiferromagnetic ordering of Mn moments in the ab plane. The

Mn ordering induces the rare earth sublattice to order in the same magnetic symmetry
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due to strong interaction between the sublattices [154]. Strikingly different from most of

the hexagonal manganites, our specific heat measurements reveal two high temperature

phase transitions in hDMO. Through second harmonic generation (SHG) studies on

hDMO it was found that Mn moments order with P6′3c
′m symmetry at high temperature

and below ∼ 5 K a phase transition to P63c
′m′ occurs [180]. Based on x-ray resonant

magnetic spectroscopy (XRMS) the high temperature magnetic symmetry of Dy moments

is reported to be P6′3cm
′ which is antiferromagnetic (AFM) and undergoes a phase

transition to ferrimagnetic (FIM), P63c
′m′ below 8 K [183].

The (hRMnO3) are ferroelectric (FE) below Tc ≈ 900 K [184] and antiferromagnetic

(AFM) below TN ≈ 80 K. (hRMnO3), which is classified as geometric multiferroic, is a

system where ferroelectric polarization arises from structural distortions [185]. A recent

study on YMnO3 revealed a giant magneto-elastic coupling below magnetic ordering

temperature in this compound associated with giant atomic displacements for every atom

in the unit cell [182]. The origin of multiferroic phenomenon was attributed to large

magneto-elastic coupling observed in this material. The hDMO exhibits ferroelectricity at

room temperature [186]. Similar to YMnO3 we expect hDMO to exhibit magneto-elastic

coupling below magnetic ordering temperature enhancing the ferroelectric polarization.

In this chapter we present our crystal and magnetic structural investigations on hDMO

through PXRD, magnetization, specific heat and neutron scattering studies.

6.2 Experimental results and discussion

6.2.1 Synthesis and growth of single crystals

For the growth of hDMO we used polycrystalline orthorhombic DyMnO3(oDMO) powder

prepared by conventional solid state route. Stoichiometric amount of precursors,

Dy2O3(99.9) and MnO2(99.9) was ball-milled about one hour, transferred into an alumina

crucible and then sintered in a furnace at 1100 ◦C for 12 hours. The mixture was mixed

once again in a ball-mill, pressed into pellets and sintered at 1200 ◦C for 48 hours. The

resulting compound was characterized by powder X–ray diffraction (PXRD) and found

to be oDMO, and the structure was refined with space group Pnma. The measured

PXRD pattern and Rietveld refinement results and the crystal structure are presented

in figure 6.2(a) and (b), respectively. The powder is then filled into a latex tube fitted

between two halves of a cylindrical steel tube (cut along diameter). Maximum care was
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taken to avoid any voids while filling, further the tube was evacuated, sealed and pressed

in a hydrostatic press. Then latex tube was carefully separated compact sample rod

was sintered at 1350 ◦C. Single crystals of hDMO were grown by optical floating-zone

method in an infrared furnace (FZ-T-10000-H-VI-VP). The growth is performed in argon

ambience with the pressure of 0.3 MPa and the growth rate is ∼ 5 mm/h. It should

be noted again that the starting material for the growth was oDMO, the growth in

the presence of oxygen-rich ambience lead to pure oDMO single crystals, whereas inert

atmospheres (N2 or Ar) lead to pure hDMO. As grown single crystals were cylindrical in

shape with dimensions 50mm× 5mm. The single crystals were oriented by X–ray Laue

method and cut into pieces of desired size for the further measurements.

Figure 6.1: (a) As grown hDMO crystal. (b) Typical oriented single crystals, arrows indicate
crystallographic c-axis. (c) X-ray Laue photograph taken in reflection mode during the crystal
orientation.

6.2.2 Structural properties

The PXRD patterns of pulverized crystals were performed with Cu Kα radiation (λ =

1.54059 Å) using the Huber X–ray diffractometer (Huber G670) with Guinier geometry.

Crystal structure refinement was performed by Rietveld method using the FullP rof . We

succeeded to obtain a pure hDMO phase by the application of pressure and using oxygen

deficient ambience. The PXRD pattern obtained at room temperature along with the

Rietveld refinement result is presented in figure 6.2(c). The crystal structure was refined

in P63cm space group (#185) and the refined lattice parameters are a = 6.185(1) Å
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and c = 11.469(4) Å and the unit cell volume, V = 379.58(4) Å3. The crystal structure

is presented in figure 6.2(d), hDMO is build from MnO5 bipyramids consisting of five

Mn–O bonds: Mn–O1 and Mn–O2 oriented along the crystallographic c-axis while Mn–O3

and a pair of Mn–O4 bonds lie within ab plane. From the previous studies on similar

hexagonal manganites it was reported that the main exchange path is the Mn–O–Mn

network on the ab plane [187, 188]. The O3 and O4 atoms are located close to the centers

of triangles formed by Mn atoms and the Mn–O3–Mn and Mn–O4–Mn bonds have nearly

120◦ in-plane antiferromagnetic super-exchange. Due to the difference in values of Mn–O3

and Mn–O4 bond lengths and Mn–O3–Mn and Mn–O4–Mn bond angles, the strength of

these interactions is slightly different from each other, and geometrical frustration effects

are partially lifted, leading to the appearance of the various triangular ordered AFM

arrangements in hRMnO3.

6.2.2.1 Magneto-elastic effect

To study the temperature evolution of crystal structure we collected PXRD patterns

in the temperature range 10 − 300 K. The temperature variation of lattice parameters

is shown in figure 6.3. Throughout the temperature range studied, DMO does not

undergo any structural phase transition, but shows clear anomaly in lattice parameter

and unit cell volume around ∼ 70 K. We later see that this temperature corresponds to

a magnetic ordering temperature, which indicates the presence of magneto-elastic effect

in this compound. A similar observation of giant magneto elastic effect was reported

in multiferroic hexagonal (Y1−xLux)MnO3, which shows giant atomic displacements and

variation in the lattice parameters below magnetic ordering temperature of Mn [182].

It was argued that in hexagonal manganites it is the large magneto-elastic coupling,

the primary origin of multiferroic phenomenon. We modeled thermal variation of unit

cell volume using Grüneisen approximation for the zero pressure equation of state,

in which the effects of thermal expansion are considered to be equivalent to elastic

strain [162]. Thus, the temperature dependence of the volume can be described by

V (T ) = γU(T )/B0 + V0, where γ is a Grüneisen parameter, B0 is the bulk modulus

and V0 is the volume at T = 0 K in the absence of magnetoelastic effect. By fitting the

unit cell volume of DMO in the paramagnetic state we can get the physical parameters

θD and V0. The result of the fit is shown as a solid line in figure 6.3(b). The value of θD

obtained from the fit was 269(15) K and V0 = 377.39(6)(1) Å3. Note that the fitted curve

deviates from the data at ∼ 70 K where the lattice parameters show anomalous changes.
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Figure 6.2: (a) PXRD patterns collected at room temperature and Rietveld refinement results
for oDMO, the discrepancy factors of refinement and indices of few Bragg peaks at lower angle
are also indicated. Red circles mark the data points, black line represents calculated pattern and
blue line represents the difference. The bars below the patterns denote the position of Bragg
peaks. (b) A clinographic view of refined orthorhombic crystal structure (Pnma). (c) Observed
PXRD pattern of hDMO at room temperature and the results of Rietveld refinement showing
octahedral MnO6 polyhedra. (d) A clinographic view of refined hexagonal crystal structure
(P63cm) indicating two different Wyckoff positions of Dy ion and also four different positions
of oxygen forming MnO5 bipyramids.

This is inferred as a clear indication of magnetoelastic or magnetovolume effects present

in this system.
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Figure 6.3: (a) The temperature dependence of lattice parameters a and c; the lines are guide
to eyes and (b) the temperature dependence unit cell volume (filled triangles). Solid line is the
fit of the Debye model as described in the text, vertical dashed line corresponds to TN. If not
shown, size of the error bars is comparable to the data markers.

6.2.3 Magnetic properties

Oriented single crystals of dimension ∼ 1 × 1 × 0.5 mm3 were used for magnetization

measurements. Magnetization versus temperature measurements under very small

magnetic fields were carried out in SQUID magnetometer. For ultra-low-field

measurements it is necessary to make sure that the remnant magnetization of magnet

of the SQUID magnetometer is negligibly small (< 0.05 Oe). This was achieved by the

Ultra Low Field option for the SQUID VSM which employs a fluxgate magnetometer and

modulation coil in the magnet to compensate trapped flux from the magnet.

The field-cooled (FC) dc magnetization curves measured with an applied magnetic

field of 2 Oe along crystallographic c direction presented in figure 6.4(a) show three

anomalies at, ∼ 65 K, ∼ 8.3 K and ∼ 5 K. The high temperature anomaly was attributed

to ordering of Mn sublattice. Due to large paramagnetic moment of Dy the transition
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Figure 6.4: (a) Field-cooled dc magnetization of hDyMnO3 at applied field of 2 Oe. Magnified
view of magnetization curves presented in (1) and (2) show two low temperature transitions
centered at 5 and 8.3 K and a broad anomaly centered at 64.6 K, respectively. (b) Curie-Weiss
law fit to inverse susceptibility measured with 100 Oe field in the high temperature region. Inset
of (b) is the temperature dependence of inverse susceptibility calculated from magnetization data
presented in (a), which shows a deviation from the Curie-Weiss law below TN, indicated by red
arrow.

is masked and can be seen as small change in the slope of magnetization. The low

temperature transitions at ∼ 8.2 K and ∼ 5 K were attributed to the low temperature

ordering of Dy and Mn, as reported by Nandi et al. [183] and Wehrenfennig et al. [180],

based on XRMS and SHG measurements, respectively. The thermal evolution of

reciprocal susceptibility calculated from the FC magnetization curve (figure 6.4(a)) is

presented in figure 6.4(b) as an inset. The inverse susceptibility follows Curie-Weiss

law above transition temperature and there is a marked deviation below the ordering

temperature. In the main panel of figure 6.4(a), the inverse susceptibility obtained

from the dc magnetization measured in the temperature range 325 − 675 K with an

applied field 100 Oe is presented. From Curie-Weiss fit of high temperature magnetic

susceptibility the Curie-Weiss temperature, Θ is found to be −95(3) K and the effective

moment is found to be 11.14 ± 0.2 µB. By considering the theoretical values 4.9 µB for

Mn3+ (for the spin only S = 2) and 10.63 µB for Dy3+ (J = 15/2) and assuming that

the total effective magnetic moment is given by µtotal =
[

µ2
eff(Mn3+) + µ2

eff(Dy3+)
]1/2

, we

expect a total magnetic moment of 11.67 µB. This figure is very close to the experimental

value, suggesting that the ground states for both ions are those of the free ion. The

negative paramagnetic temperature implies the presence of antiferromagnetic (AFM)
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exchange interactions. Because of the intrinsically frustrated nature of the triangular

lattice with antiferromagnetic interaction, the Mn S = 2 moments cannot order until

well below their Curie-Weiss temperatures. Therefore, the triangular lattice of the

Mn atoms exhibits geometrical frustration effects with so called frustration parameter,

f =| ΘCW | /TN, which is 65 K for hDMO.
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Figure 6.5: (a) Isothermal magnetization curves measured with field parallel (closed symbols)
and perpendicular (open symbols) to crystallographic c direction. (b) Magnified view of several
isothermal magnetization curves showing hysteresis. (c) The positive field cycle of hysteresis
curves of several isotherms showing the temperature dependence of the center of the hysteresis
loop which is indicated by dashed line. (d) M-T magnetic phase diagram obtained from the
magnetic isotherms (see text for details). Here FIM denotes ferrimagnetic and AFM denotes
antiferromagnetic ordering.
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Isothermal magnetization curves measured parallel and perpendicular to

crystallographic c direction are presented in figure 6.5(a). The hysteresis curves

show spontaneous magnetic moment along c direction at low temperatures which is

absent perpendicular to c direction. Hysteresis curves perpendicular to c defection

are characterized by that of an antiferromagnet. The isothermal magnetization curve

measured with field along c axis at 2 K, shows hysteresis with the center at 0 T,

indicating the existence of a state with a spontaneous magnetic moment of ∼ 1 µB/f.u.,

indicating the ferrimagnetic (FIM) type ordering of Dy moments (figure 6.5(b)). With

the increase in temperature above 7 K the center of the hysteresis loop is shifted to

higher field values indicating the field induced phase transition from AFM to FIM phase.

The critical field corresponding to the center of the hysteresis loop as indicated by a

dashed line in figure 6.5(c) was computed by taking derivative of the magnetization

curve. From the critical field values we have constructed a tentative H-T magnetic phase

diagram including the AFM–FIM transition of Dy which is presented in figure 6.5(d). It

should be noted from figure 6.5(c) that the field induced transition become more and

more dispersive with increase in field. This makes it very difficult to observe these field

induced transitions in specific heat measurements under applied magnetic fields, which

are discussed later. The critical fields obtained from our measurements are slightly larger

than the values reported by Ivano et al. [189].

6.2.4 Thermal properties

The specific heat, Cp, of hDMO in zero field is presented in figure 6.6(a). The data

reveal four phase transitions: (i) two high temperature transitions at ∼ 70 K and ∼ 64 K

and (ii) two low temperature transitions at ∼ 9.5 K and ∼ 5.3 K. For clarity, Cp around

low temperature and high temperature anomalies is plotted along with its derivative in

figure 6.6(b) and (c), respectively. First, we focus on the high temperature transitions.

In order to analyze the specific heat of hDMO, we employ a model where the total

specific heat consists of contributions from lattice that can be split into Debye and

Einstein terms, a linear term and a two-level Schottky term for rare earth ion. Thus:

Ctot = CDebye + CEinstein + CSchottky + Clinear

CDebye = 9rR/x3D

∫ xD

0

x4ex/(ex − 1)2dx (6.1)
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Figure 6.6: (a) The observed specific heat Cp of hDMO. A magnified view of Cp along with its
derivative around low and high temperature anomalies is presented in (b) and (c), respectively.
From (b) and (c) two low temperature transitions at ∼ 5.3 and ∼ 9.5 K and two high temperature
transitions at ∼ 64 and ∼ 70 K are discernible (indicated by dashed lines).

CEinstein = 3rR
∑

i

ai[x
2
i e

x
i /(e

x
i − 1)2] (6.2)

CSchottky = R
∑

i

wi

( ∆i

kBT
)2exp( ∆i

kBT
)

[1 + exp( ∆i

kBT
)]2

(6.3)

Clinear = γT (6.4)

where xD = hνD/kBT , xi = hνE/kBTi, ∆i is the Schottky energy, γ is the coefficient of

linear term and R is the universal gas constant.

The range of data for the fit was 10 ≤ T ≤ 55 and T > 130 K thereby excluding the

magnetic transitions. The results of the fit are presented in figure 6.7(a). The analysis

resulted in Debye temperature of ΘD
∼= 840(25) K, Einstein temperatures ΘE1

∼= 154(1)

K, ΘE2
∼= 622(18) K and Schottky energy ∆ = 55(1) K. A linear term in the total Cp

was essential for the faithful reproduction of low temperature part of the specific heat.

From the fit we obtained a large value of γ as 41(1) mJ/mol/K2 . In an earlier report,

a significant linear term in specific heat of hYMnO3 was attributed to the presence of

spin-glass or unconventional magnetic excitations [190]. Later, Tachibana et al, [191]

suggested that there is no intrinsic linear term in the specific heat study of YMnO3.

Similar behavior was reported in insulating BaVS3 with large linear contribution to the
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Figure 6.7: (a)The fit to observed Cp assuming the model described in the text. The combination
of a Schottky, Debye, two Einstein and linear terms is found to reproduce the experimental data
faithfully. (b) Plot of ∆Cm/T vs T and the entropy obtained by numerical integration (shaded
region)

specific heat, in which the spin ordering in the insulator state is not simple but may be

due to frustration effects [130]. In hDMO, however, a linear term was essential to obtain

a best fit, which could be attributed to possible spin-glass like ordering of frustrated

triangular Mn lattice as in the case of YMnO3. The value of gamma is strikingly close

to the value found in insulator layered manganite La2.3YCa0.7Mn2O7 with large γ value

(41.5 mJ/mol/K2) [131]. Thus in case of hDMO the large value of γ could also be due

to competition between magnetic ordering of Dy and Mn magnetic sublattices. The

linear contribution in the case of hDy0.5Y0.5MnO3 is slightly larger than (56 mJ/mol/K)

hDMO [192]. In hDy0.5Y0.5MnO3 the linear contribution was attributed to the high

degeneracy of disordered rare earth spins [129, 140]. The excess entropy (∆S) calculated

from the magnetic specific heat (∆Cp) of hDMO is presented in figure 6.7(b); the

experimentally estimated entropy is ≈ 8.6 J/mol/K. This value of entropy is diminished

in magnitude compared to the value expected for Mn3+ ion which is ∆S = Rln(2S + 1)

= 13.38 J/mol/K.

The low temperature specific heat of hDMO was analyzed by considering

contributions from the lattice term and a two-level Schottky term. The harmonic-lattice

approximation CLattice = B3T
3+B5T

5+B7T
7+ · · · is used to evaluate the lattice specific

heat [117, 193]. At low temperatures first two terms suffice to account for lattice specific

heat. Thus the low temperature specific heat can be modeled as,

ClowT = CSchottky + αT 3 + βT 5 (6.5)
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The results of the analysis of Cp at applied fields of 0 and 2 T are presented,

respectively, in figures 6.8 (a) and (b). The relevant physical parameters from the fit are

tabulated in Table 6.1. The Kramer’s Dy3+ ions in hDMO are at the trigonal symmetry

and, therefore, must have a doublet ground-sate [194, 195]. At low temperatures only

the ground-state doublet is appreciably populated because the energy difference between

the ground-state and the next crystal-field levels, in general, is large [195]. From XRMS

studies [183] it was shown that an exchange field produced by the ordering of Mn3+

sublattice causes a doublet splitting ∆(T ) of Dy crystal levels. As a starting value

for the estimate of ∆, we used the result from X–ray resonant magnetic scattering

(XRMS) experiments on hDMO (∆ = 5.8(8) meV ≈ 67(9) K) [183]. With the error

limits our experimental ∆ is in good agreement with the reported value [183]. In case of

hDy0.5Y0.5MnO3 a similar value for ∆ (60(5) K) was reported [192]. The θD obtained

from the low-temperature analysis is in excellent agreement with the value obtained by

fitting thermal variation of unit cell volume of hDMO using Grüneisen approximation

(269(15) K).

Table 6.1: Fit parameters derived from the analysis of low temperature specific heat of hDMO
at 0 and 2 T.

H(T) α (J/mol K4) β (J/mol K6) ΘD (K) ∆ (K)

0 4.3(1)× 10−4 −10.3(9)× 10−6 283(3) 58(1)

2 5.0(3)× 10−4 −16(3)× 10−6 268(6) 62(4)

The presence of two high temperature anomalies in specific heat measurement of

hDMO suggests independent ordering of Mn and Dy sublattice. This is in contrast to

most of other candidates of hRMnO3 family which show induced ordering of the rare

earth ion under the molecular field of Mn sublattice. This observation suggests that in

hDMO, Mn and Dy sublattice are weakly or not coupled which renders the possibility

for the different sublattices to order in different magnetic symmetries. Further, one can

notice in figure 6.8 that the low temperature anomalies attributed to low temperature

ordering of Dy and Mn are suppressed with the application of 2 T magnetic field. This

can be understood from the magnetic H−T phase diagram obtained from the isothermal

magnetization measurements (figure 6.5(d)). From the magnetic phase diagram it is clear

that above ∼ 1.4 T Dy will be in FIM phase at higher temperatures itself. The absence
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Figure 6.8: The fit to low temperature specific heat of hDMO at (a) 0 T and (b) 2 T. The
contributions from Schottky and lattice terms are also shown in both cases.

of another low temperature transition corresponding to re-ordering of Mn sublattice

implicates that the Mn sublattice too undergoes a field induced magnetic reordering

transition at elevated temperatures. This is consistent with reported results of SHG

experiments under magnetic field [180]. Since the reordering of 120◦ Mn spins will

not affect the magnitude of the magnetization, this transition was not observed in our

bulk magnetization measurements of hDMO, also it is not discernible in specific heat

measurements due to dispersive nature of the transition at high temperatures and large

contribution from lattice heat capacity.

6.2.5 Neutron scattering measurements

6.2.5.1 Symmetry considerations

All the symmetry allowed magnetic structures of rare-earth and Mn ions in hexagonal

manganites were computed by the theory of group representational analysis described by

Bertaut [144]. With the propagation vector k = 0, the little group Gk coincides with the

space group P63cm. According to Kovalev [196], Gk has six irreducible representations,

four, Γ1, Γ2, Γ3 and Γ4 are unidimensional and two, Γ5 and Γ6 are bidimensional. The

calculations were carried out using the program SARAh-Representation Analysis [197].

They involve first the determination of the space group symmetry elements g that leave

the propagation vector k invariant; these form the little group Gk. The magnetic
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representation of a crystallographic site can then be decomposed in terms of the

irreducible representations (IRs) of Gk:

ΓMag =
∑

ν

nνΓ
µ
ν (6.6)

where nν is the number of times that the IR, Γν of order µ appears in the magnetic

representation, ΓMag for the chosen crystallographic site.

In our case, the decomposition of Γ in terms of irreducible representations of Gk are:

for the Mn atoms,

Γ = Γ1 + 2Γ2 + 2Γ3 + Γ4 + 3Γ5 + 3Γ6 (6.7)

for the Dy(1) atoms (at site 2a),

Γ = Γ2 + Γ3 + Γ5 + Γ6 (6.8)

for the Dy(2) atoms (at site 4b),

Γ = Γ1 + Γ2 + Γ3 + Γ4 + 2Γ5 + 2Γ6 (6.9)

The IRs and basis vectors (BVs) corresponding to the Dy and Mn atoms are presented

in tables 6.2 and 6.3, respectively.

From table 6.2, IRs Γ1 , Γ2 , Γ3 and Γ4 are all having Dy moments aligned along c

direction, except, in Γ1 and Γ4 Dy(2a) has no ordered moment. According to magnetic

representation Γ5 and Γ6 the Dy moments are aligned in ab plane. Further, Γ2 and Γ5

correspond to ferromagnetic moments along the c direction and in ab plane, respectively.

All the IRs of Mn atoms presented in table 6.3 form 120◦ spin configurations within

ab plane were graphically demonstrated by Brown et al. [198] as in figure 6.9 reproduced

here. It can be easily conceived from figure 6.9 that in IRs Γ1 , Γ2 and Γ5 Mn of two

adjacent planes along z (z = 0 and z = 1
2
) are antiferromagnetically coupled, while in Γ3,

Γ4 and Γ6 the coupling is ferromagnetic.
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Table 6.2: Irreducible representations (IRs) and basis vectors (BVs) of Dy(1) and Dy(2) atoms
which occupy 2a and 4b sites, respectively. The directions are denoted by [ex ey ez], where ex
and ey are in basal ab plane forming an angle 120◦ between them and ez is parallel to the 6-fold
axis.

Dy(1) (2a) Dy(2) (4b)

Dy1 Dy2 Dy3 Dy4 Dy5 Dy6

IRs BVs











0

0

z





















0

0

z + 1
2





















1
3

2
3

z





















2
3

1
3

z





















1
3

2
3

z + 1
2





















2
3

1
3

z + 1
2











Moments in c direction

Γ1(P63cm) ψ1
1 – – [0 0 1] [0 0 1] [0 0 1] [0 0 1]

Γ2(P63c
′m′) ψ2

1 [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]

Γ3(P6
′
3cm

′) ψ3
1 [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]

Γ4(P6
′
3c

′m) ψ4
1 – – [0 0 1] [0 0 1] [0 0 1] [0 0 1]

Moments in ab plane

Γ5(P6
′
3) ψ5

1 [u v 0] [u v 0] [p q 0] [r s 0] [r s 0] [p q 0]

Γ6(P63) ψ6
1 [u v 0] [u v 0] [p q 0] [r s 0] [r s 0] [p q 0]
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Table 6.3: Irreducible representations (IRs) and basis vectors (BVs) of Mn atoms that occupies
6c site. The directions are denoted by [ex ey ez], where ex and ey are in basal ab plane forming
an angle 120◦ between them and ez is parallel to the 6-fold axis, ω = eiπ/3.

IRs BVs
Mn1 Mn2 Mn3 Mn4 Mn5 Mn6

(x, 0, 0) (0, x, 0) (−x,−x, 0) (−x, 0, 1
2
) (0, x, 1

2
) (x, x, 1

2
)

Γ1 ψ1
1 [1 2 0] [2 1 0] [1 1 0] [1 2 0] [2 1 0] [1 1 0]

Γ2 ψ2
1 [1 0 0] [0 1 0] [1 1 0] [1 0 0] [0 1 0] [1 1 0]

ψ2
2 [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]

Γ3 ψ3
1 [1 0 0] [0 1 0] [1 1 0] [1 0 0] [0 1 0] [1 1 0]

ψ3
2 [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]

Γ4 ψ4
1 [1 2 0] [2 1 0] [1 1 0] [1 2 0] [2 1 0] [1 1 0]

ψ5
1 [1 0 0] ω[0 1 0] ω∗[1 1 0] [1 0 0] ω[0 1 0] ω∗[1 1 0]

ω∗[1 1 0] ω[0 1 0] [1 1 0] ω∗[1 0 0] ω[0 1 0] [1 1 0]

Γ5 ψ5
2 [0 1 0] ω[1 1 0] ω∗[1 0 0] [0 1 0] ω[1 1 0] ω∗[1 0 0]

ω∗[1 1 0] ω[1 1 0] [0 1 0] ω∗[1 1 0] ω[1 1 0] [0 1 0]

ψ5
3 [0 0 1] ω[0 0 1] ω∗[0 0 1] [0 0 1] ω[0 0 1] ω∗[0 0 1]

ω∗[0 0 1] ω[0 0 1] [0 0 1] ω∗[0 0 1] ω[0 0 1] [0 0 1]

ψ6
1 [1 0 0] ω[0 1 0] ω∗[1 1 0] [1 0 0] ω[0 1 0] ω∗[1 1 0]

ω∗[1 0 0] ω[0 1 0] [1 1 0] ω∗[1 0 0] ω[0 1 0] [1 1 0]

Γ6 ψ6
2 [0 1 0] ω[1 1 0] ω∗[1 0 0] [0 1 0] ω[1 1 0] ω∗[1 0 0]

ω∗[1 1 0] ω[1 1 0] [0 1 0] ω∗[1 1 0] ω[1 0 0] [0 1 0]

ψ6
3 [0 0 1] ω[0 0 1] ω∗[0 0 1] [0 0 1] ω[0 0 1] ω∗[0 0 1]

ω∗[0 0 1] ω[0 0 1] [0 0 1] ω∗[0 0 1] ω[0 0 1] [0 0 1]
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Figure 6.9: Different possible magnetic arrangements of Mn spins in the hexagonal rare-earth
manganites as tabulated in table 6.3. Grey and black circles corresponds to z = 0 and z = 1

2
layers, respectively. Taken from [198].

6.2.5.2 Neutron powder diffraction

Neutron powder diffraction (NPD) patterns were collected on pulverized crystals at

high resolution neutron powder diffractometer SPODI, FRM II, Garching. Neutrons of

wavelength 1.5481 Å were used for the measurements of the powder samples filled in to a

vanadium can of diameter ∼ 5 mm. NPD patterns of three typical temperature are shown

in figure 6.10(a)-(c). It can be noted from the difference of diffraction patterns collected

at 3 K and 300 K, no acknowledgeable changes in intensity is observed below magnetic

ordering temperature expected due to magnetic ordering. This is due to strong neutron

absorption cross section of Dy, which is about 856 × 10−24cm2 for neutron wavelength

1.548 Å, also it has significantly large incoherent scattering cross section (54.4×10−24cm2).

The NPD data collected at 300 K along with Rietveld refinement results is presented

in figure 6.11. Refined structural parameters and discrepancy factors of the refinement

are tabulated in the table 6.4. The lattice parameters are similar to those obtained from

our PXRD measurements. Few spurious peaks are indicated by arrows are from the

aluminium sample environment during the neutron scattering experiment. Due to very

weak magnetic reflections no additional information on magnetic structure was obtained

from the refinement of low temperature NPD patterns.
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Figure 6.10: Low angle part of the neutron powder diffraction patterns collected at (a) 3 K, (b)
50 K and (c) 300 K. (D) The difference of diffraction patterns collected at 3 K and 300 K does
not show acknowledgeable changes in intensity.
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Table 6.4: Structural parameters obtained from the Rietveld refinement of 300 K NPD data.

Atoms Wyckoff positions x y z

Dy1 2a 0 0 0.2789(5)

Dy2 4b 0.3333 0.6666 0.2398(3)

Mn 6c 0.3363(3) 0 0

O1 6c 0.2920(6) 0 0.1415(7)

O2 6c 0.6245(9) 0 0.3452(2)

O1 2a 0 0 0.5011(9)

O2 4b 0.3333 0.6666 0.0601(3)

Unit Cell Dimensions

a = 6.1849(3) Å c = 11.4571(8) Å V = 379.562(6) Å3

Discrepancy Factors

Rp = 12.91% Rwp = 9.35% Rexp = 7.06% χ2 = 5.27

6.2.6 Single crystal neutron scattering measurements

Single crystal neutron scattering measurements were carried out in four circle hot neutron

diffractometer D9 and thermal neutron two-axis diffractometer D23 situated at ILL,

Grenoble. We scanned several crystal and magnetic Bragg reflections, as a function of

temperature. To reduce the absorption of neutrons we used a small sample of dimensions

∼ 2 × 2 × 4 mm3. Same sample was used for the measurements on both D9 and D23

instruments.

6.2.6.1 High temperature magnetic phases

From heat capacity measurements we had observed two high temperature anomalies

at, ∼ 70 K and ∼ 64 K and from XRMS measurements it was reported that Dy

orders with Γ3 symmetry at ∼ 68 K [183]. Also from SHG measurements the high

temperature magnetic ordering of Mn was reported to be Γ4 which takes place at ∼ 65 K.

From the magnetic phase diagram (figure 6.5) obtained from isothermal magnetization

measurements with field along c direction, a FIM phase was observed below 7 K, where

a spontaneous magnetization is present. This directional dependence confirms that this

120



6.2 Experimental results and discussion

magnetic phase corresponds to FIM or ferromagnetic (FM) ordering of Dy moments

along c, as the easy plane anisotropy of Mn spins restricts the moments strictly on the ab

plane [184, 199], which are thus dominated by the strong in-plane antiferromagnetic

superexchange interactions. This also means that IR Γ5 for Dy, with FM ordering

perpendicular to c doesn’t exist in any temperature region. Further the presence of

spontaneous magnetization only below ∼ 7 K indicates that above this temperature Dy

ordering is not FM or FIM. This rules out the possibility of IR Γ2 at high temperature

range. So the possible high temperature magnetic symmetries for Dy are Γ1, Γ3, Γ4 and

Γ6.

The temperature dependence of (101) integrated intensity of magnetic reflection is

presented in figure 6.12. The integrated intensity was fitted employing a power law as,

I = I0 ×
(

TN − T

TN

)β

. (6.10)

Where I0 is the intensity at 0 K. The fit results are presented in the inset of figure 6.12.

The values of TN and β obtained from the fit are 66.3(4) K and 0.8(1) respectively.

The ordering temperature thus found is close to one of the high temperature anomalies

observed in our specific heat measurement (64 K) and to the of value reported from the

SHG measurement (65 K), which is associated to the ordering of Mn sublattice in Γ4
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Figure 6.12: Temperature dependence of integrated intensity of magnetic reflections (101)
measured at D23. Inset is the integrated intensity of magnetic reflections (101) measured at
the instrument D9 (error bars are smaller than data markers), red curve is the result of power
law fit near the ordering temperature.
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symmetry [180]. But our specific heat data indicate another higher temperature anomaly

at ∼ 70 K. This we attribute to the ordering of Dy sublattice with Γ3 symmetry as

reported from XRMS studies [183]. This is the most unconventional ordering observed

only in hDMO in the family of hRMnO3 compounds usually, in which Mn orders first and

then induces rare-earth ordering with same magnetic symmetry, indicating strong 4f -3d

coupling. Our findings of weak or non-existent coupling between Dy and Mn sublattices

can be the answer to the question, why high temperature magnetic symmetries of Dy and

Mn are different in hDMO ? That said, we still need to understand the origin of such a

magnetic ordering.

6.2.6.2 Low temperature magnetic phases

From our discussions in previous section, possible IRs of Dy at low temperature are

Γ1 , Γ2, Γ4 and Γ6 . As already discussed in section 6.2.3 isothermal magnetization

measurements indicate FIM type of Dy ordering below ∼ 7 K with magnetic moments

along c–direction. To confirm this we measured thermal evolution of the magnetic

reflections (100) and (112) which shows a sharp increase in intensity below ∼ 7 K

(figure 6.13(a)-(b)). From the magnetic structure factor calculations based on all possible

IRs show that only Γ2 representation for Dy will have a finite magnetic intensity for

the (112) reflection. This confirms thats low temperature magnetic phase of Dy is Γ2
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Figure 6.13: Temperature dependence of integrated intensity of magnetic reflections (a) (100)
and (b) (112). Both are measured at D23. The inset shows a power-law fit to the integrated
intensity of (112) reflection.
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(FIM). From a power-law fit of temperature dependence of the magnetic reflection (112)

using equation (6.10) we obtained ordering temperature 7.2(5) K, the fit is presented as

inset of figure 6.13(b). This value is close to the anomaly observed in our magnetization

measurement, ∼ 8.3 K (figure 6.4(a)) and low temperature heat capacity measurements,

∼ 9.5 K (figure 6.6). Since the magnetic propagation vector is k = 0, it is difficult to

separate the magnetic contribution of Mn and Dy sublattices at low temperatures. For

the low temperature ordering of Mn, we sought to the reported SHG measurements

results which confirmed that Mn orders below 5 K with magnetic symmetry Γ2. This

is in good agreement with the anomalies observed in our heat capacity (∼ 5.3 K) and

magnetization (∼ 5 K) measurements.

6.3 Conclusions

Single crystals of hDMO were grown by optical floating zone technique starting from

orthorhombic polycrystalline material synthesized by solid state route. This was achieved

by tailoring the growth process in an oxygen deficient condition. Dc magnetization

measurements showed a high temperature transition (∼ 65 K) and two low temperature

transitions (∼ 8.3 K and ∼ 5 K). The crystal structure of the grown crystals was

determined from PXRD measurements. The thermal evolution of lattice parameters

showed anomalous changes below magnetic ordering temperature and we modeled

thermal variation of unit cell volume using Grüneisen approximation which confirmed

presence of giant magneto-elastic effect through spin-lattice coupling, which is thought

to be the origin of multiferroicity in these geometrically frustrated compounds. From

the Curie–Weiss fit of high temperature susceptibility, the calculated Curie–Weiss

temperature, Θ was found to be negative (−95(3) K) which implies antiferromagnetic

exchange interactions. Isothermal magnetization measurements indicate the presence

of a ferrimagnetic phase below ∼ 7 K under zero magnetic field with moments align

c–direction. A magnetic H–T phase diagram was constructed from the isothermal

magnetization curves measured at several temperatures. This indicates that, above the

critical ∼ 1.4 T field, applied along crystallographic c direction, FIM phase is stabilized

in whole magnetically ordered temperature range. Our specific heat measurements show

two high temperature (∼ 70 K and ∼ 64 K) and two low temperature anomalies (∼ 9.5 K

and ∼ 5.3 K). The observation of two independent high temperature anomalies confirms

123



CHAPTER 6. UNCONVENTIONAL MAGNETIC ORDERING IN HEXAGONAL DyMnO3

the independent ordering of Dy and Mn sublattices indicating a weak 4f–3d coupling in

hDMO. The low temperature anomalies observed in specific heat measurements are in

good agreement with those observed in magnetization measurements. We have modeled

the total specific heat by assuming the contributions from a Schottky term, a linear term

and lattice term comprising Debye and Einstein terms and the lattice specific heat. The

absence of both low temperature anomalies in the specific heat under the applied magnetic

field indicate that Mn also undergoes a field induced transition similar to Dy, which

is also supported by reported SHG results. From the single crystal neutron scattering

measurements the ordering temperature of high temperature phase of Mn was determined

(66.3(4) K), also the low temperature magnetic symmetry of Dy was confirmed to be

Γ2 with an ordering temperature of ∼ 7.2(5) K. This is in very good agreement with

our magnetization and specific heat measurements and also the reported XRMS results.

The ordering temperatures of Dy and Mn sublattices in DMO observed from different

measurements can be summarized as follows:

Dy ordering:

• Specific heat ⇒ Anomalies at ∼ 70 K and ∼ 9.5 K are attributed to high (Γ3) and

low (Γ2) temperature magnetic ordering of Dy, respectively (present work).

• Magnetization ⇒ 8.3 K(present work).

• XRMS ⇒ Dy orders with IR Γ3 at∼ 68 K and remains the same down to 8 K [200].

• Elastic neutron scattering ⇒ Orders with IR Γ2 below∼ 7 K (present work).

Mn ordering:

• Specific heat ⇒ Anomalies at ∼ 64 K and ∼ 5.3 K are attributed to high (Γ4) and

low (Γ2) temperature magnetic ordering of Mn, respectively (present work).

• Magnetization ⇒ Anomaly at 5 K is attributed to Mn ordering with IR Γ2 (present

work).

• Second harmonic generation ⇒ Mn orders with IR Γ4 at∼ 65 K and a transition to

IR Γ2 occurs below 5 K [180].

• Elastic neutron scattering ⇒ Orders at ∼ 66 K (present work).
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Figure 6.14: Summary of magnetic phase transitions in hDMO under zero magnetic field.

Magnetic phase transitions summarized above are graphically represented in figure 6.14.

From our PXRD, specific heat, magnetization and neutron scattering measurements

along with reported data based on SHG and XRMS, we systematically established the

nature of both high and low temperature ordering of Dy and Mn sublattices in hDMO.

We report an unconventional high temperature ordering of Dy ion which is unique among

hRMnO3 family. We propose that the ordering of Dy at higher temperature than Mn

could explain the observation of weak 4f -3d coupling leading to the different magnetic

symmetries of two sublattices in this compound.
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INCOMMENSURATE MAGNETIC

ORDERING IN Mn0.9M0.1WO4

(M=Co, Cu)
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7.1 Introduction

A typical feature of multiferroic materials undergoing a transition to a elliptic spiral

ferroelectric phase, is the existence of spectacular magnetoelectric effects, such as the

polarization flops observed in TbMnO3 [201] and orthorhombic DyMnO3 [202] or the sign

reversal of Py disclosed under magnetic field in TbMn2O5 [16]. The orientation of the

applied magnetic field with respect to the magnetic spins influence the stability range of

the spiral phase and the polarization-flop process. This property was recently illustrated

by remarkable magnetic field induced effects observed in ferroelectric phase of manganese

tungstate MnWO4 (MWO) in which applied field [71–73] induces a high-field polarization

flop transition [74]. In the present chapter we discuss the influence of chemical doping

on the elliptic spiral order of MWO.

MWO is made up of MnO6 octahedra with high-spin Mn2+ (d5) ions and WO6

octahedra with diamagnetic W6+ (d0) ions. Recently it was found that MWO exhibits

multiferroicity in which magnetism causes ferroelectricity, implying a strong coupling

between the two [18, 72, 203]. MnWO4 is one of the prototypical multiferroic material

exhibiting spin-current ferroelectricity [72]. It possesses a complex phase diagram with

3 antiferromagnetic phases below 14 K namely AF1, AF2 and AF3 at zero magnetic

field. AF2 is a ferroelectric (FE) phase, in which net polarization is along b axis

which can be flipped to a axis with the application of external magnetic field. This

is the first example of the ferroelectric polarization flop induced by magnetic fields in

transition-metal oxide systems without rare-earth 4f moments. Taniguchi et al. showed

that the stability of the magnetoelectric domain walls in a canted magnetic field plays a

key role in the directional control of the electric polarization flop phenomenon [74]. From

polarized neutron scattering measurements Sagayama et al. showed that an inverse effect

of Dzyloshinskii-Moriya interaction is the origin of the spontaneous electric polarization

in the spiral phase of MnWO4 [73].

Very recently it was found that the ferroelectric phase is completely suppressed in MWO

by doping 10% iron on Mn site, which can be again restored with the application

of a magnetic field. The absence of ferroelectricity (at zero field) in Mn0.9Fe0.1WO4

is explained by the increase of uniaxial spin anisotropy K [204]. Evidence for the

increase of K with Fe substitution was also derived from the results of neutron scattering

experiments [205]. It was observed in Mn1−x MxWO4 (M=Mg, Zn and x ≤ 0.3),

substitution of the nonmagnetic ions Mg2+ and Zn2+ for the magnetic ions Mn2+ result in
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very similar effects on the magnetic and dielectric properties of MWO. These substitutions

destabilized the non-polar magnetic structure AF1 of MWO but the AF3-to-AF2

magnetoelectric phase transition was not affected. This indicated that the nonmagnetic

dopants destroy neither the three-dimensional nature of magnetic interactions, nor the

spin frustration within each ‖ c–chain and between ‖ c–chains along the a–direction.

In most of the recently discovered multiferroics, the ferroelectric polarization can be

explained by the inverse Dzyaloshinski-Moriya effect [63, 206, 207], where the induced

electric polarization of a single pair of spins ~Si, ~Sj separated by a distance vector ~ri,j is

given by [206]

~PFE ∝ ~rij ×
(

~Si × ~Sj

)

. (7.1)

The required noncollinear magnetic structure may arise from strong frustration. Since

in addition the interaction, equation 7.1, is only a second order effect, the ferroelectric

polarization is rather small in these materials. In the REMnO3 [201, 208] series and in

MWO [18, 72, 203] the electric polarization is about two to three orders of magnitude

smaller than in a classical ferroelectric perovskite such as BaTiO3, hindering the

observation of electric-field-induced effects in the magnetic structure. Despite, it was

shown that it is possible in these chiral multiferroics to switch the magnetic order by the

application of an electric field at constant temperature. In the present chapter we present

our investigations on the effect of Co and Cu doping on the magnetic ordering of MnWO4.

7.2 Experimental

7.2.1 Synthesis

Polycrystalline powders of Mn0.9Co0.1WO4(MCoW) and Mn0.9Cu0.1WO4(MCuW) were

prepared by conventional solid state route. Stoichiometric amount of precursors,

W2O3(99.9), MnO2(99.9) and CuO(99.99) or Co3O4(99.99) were ground well with a

mortar and pestle, pressed into pellets and sintered in a furnace at 900 ◦C for 12 hours

in the presence of atmospheric air. The pellets were ground again, pressed into pellets

and sintered at 900 ◦C for 48 hours. The powder samples were characterized by powder

X–ray diffraction (PXRD) and no impurity phases were found [209].
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7.2.2 Crystal structure

Both compounds were found to crystallize in monoclinic structure and PXRD patterns

were refined with space group P2/c using FullP rof . The measured PXRD pattern

and Rietveld refinement results are presented in figure 7.1(a) & (b). The refined

crystal structure presented in figure 7.1(c) shows the clinographic view of the edge

sharing Mn(Co/Cu)-O6 bipyramidal polyhedra along c direction. The refined structure

parameters and discrepancy parameters are presented in table 7.1. The lattice constants

of both the compounds are comparable to that of parent compound MnWO4 [71], with

the exception that MCuW has significantly larger monoclinic distortion.

Table 7.1: Structural parameters obtained from the Rietveld refinement of room temperature
PXRD.

Mn0.9Co0.1WO4 Mn0.9Cu0.1WO4

Atoms x/a y/b z/c x/a y/b z/c

Mn,(Co/Cu) 1
2

0.6849(1) 1
4

1
2

0.6870(2) 1
4

W 0 0.18035(6) 1
4

0 0.18085(8) 1
4

O1 0.2133(5) 0.0980(4) 0.9499(6) 0.2095(5) 0.0895(5) 0.9518(7)

O2 1
4

0.3743(4) 0.3968(6) 1
4

0.3822(5) 0.3926(8)

Unit Cell Dimensions

a = 4.81475(1) Å, b = 5.75124(3) Å a = 4.81065(4) Å, b = 5.76265(5) Å

c = 4.99123(4) Å, V = 138.187(3) Å3 c = 4.98194(5) Å, V = 138.070(2) Å3

γ = 91.0654(4)◦ γ = 91.3731(5)◦

Discrepancy Factors

Rp = 9.17 %, Rwp = 9.3 % Rp = 11.1 %, Rwp = 11.2 %

Rexp = 3.25 %, χ2 = 4.17 Rexp = 3.05 %, χ2 = 5.57

7.2.3 Magnetic and thermal properties

The field-cooled (FC) and zero field-cooled (ZFC) dc magnetization curves measured

with an applied magnetic field of 1 kOe presented in figure 7.2(a) and (b) corresponds

to MCoW and MCuW, respectively. The thermal evolution of reciprocal susceptibility

calculated from the FC magnetization curves are presented figure 7.2(c) and (d). For
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Figure 7.1: PXRD patterns collected at 300 K and Rietveld refinement results for (a)
Mn0.9Co0.1WO4 and (b) Mn0.9Cu0.1WO4. (c) Clinographic view of the refined crystal structure,
grey boxes indicate crystallographic unit cells.

MCoW the inverse susceptibility follows Curie-Weiss law down to ∼ 30 K below which

it deviates from the fitted curve, showing a marked deviation below ∼ 13.5 K, which

corresponds to long range magnetic ordering of Mn2+ spins, TN. Inverse susceptibility

of MCuW follows Curie-Weiss law down to ∼ 80 K, below which it deviates from the

fitted curve and shows a marked deviation below ∼ 15 K which corresponds to TN. The

deviation of inverse susceptibility well above ordering temperatures in both compounds

indicates the presence of short-range spin fluctuations above TN which is more prominent

in the case of MCuW. From Curie–Weiss fit of the susceptibility data for MCoW, the

Curie-Weiss temperature (ΘCW) and effective moment (µeff) were found to be −79.6(1) K

and 5.97(7) µB, respectively, and for MCuW, ΘCW = −60.3(3) K and µeff = 5.4(1) µB.

The frustration parameter calculated as f = |ΘCW|/TN for MCoW and MCuW are, ∼ 5.9

and ∼ 4. In deed MWO has been known to be a moderately spin frustrated system

with the frustration parameter, f = |ΘCW|/TN ≈ 5, where ΘCW is approximately −75 K

and the Néel temperature TN = 13.5 K [203, 210]. Interestingly from our magnetization

measurements we found that Co doping increases and Cu doping reduces the geometric

spin frustration of MWO.

131



CHAPTER 7. INCOMMENSURATE MAGNETIC ORDERING IN Mn0.9M0.1WO4 (M=Co, Cu)

0 50 100 150 200 250 300
0.03

0.06

0.09

0.12

0.15

 

(d)

(c)

 

M
 (e

m
u/

g)

Temperature (K)

 zfc
 fc

(a)

-100 0 100 200 300
0

20

40

60

80

 

 

Mn
0.9

Co
0.1

WO
4

Mn
0.9

Co
0.1

WO
4

 

1/
 (O

e 
m

ol
/e

m
u)

Temperature (K)

 data
 fit

0 50 100 150 200 250 300
0.03

0.06

0.09

0.12

0.15

 

(b)
 

M
 (e

m
u/

g)

Temperature (K)

 zfc
 fc

-100 0 100 200 300
0

20

40

60

80

100

 

 

Mn
0.9

Cu
0.1

WO
4 Mn

0.9
Cu

0.1
WO

4
 

1/
 (O

e 
m

ol
/e

m
u)

Temperature (K)

 data
 fit

Figure 7.2: Zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves of (a)
Mn0.9Co0.1WO4 and (b) Mn0.9Cu0.1WO4, measured with an applied field of 1 kOe. (c) and
(d) are the dc susceptibility and Curie-Weiss fits for, Mn0.9Co0.1WO4 and Mn0.9Cu0.1WO4

respectively.

The thermodynamic signature of transition between different phases is usually

detected in distinct anomalies of the heat capacity, Cp(T ). Multiferroic materials with

a sequence of subsequent transitions may show more or less pronounced sudden change

of Cp. Specific heat measurements were performed on MCoW and MCuW pellets, using

a physical property measurement system (Quantum Design) in the temperature range

3–300 K. The variation of specific heat (CP ) with temperature is presented in figure 7.3 (a)

and (b) for MCoW and MCuW, respectively. The insets of figure 7.3 (a) and (b) clearly

indicates two anomalies. The high temperature anomaly in MCoW is believed to be

associated with TN (≈ 14.5 K) where Mn(Co) orders, transforming from a paramagnetic

(PM) state to a collinear spin sinusoidal state (AF3) as in the case of MWO. The second
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anomaly in this case at T2 (≈ 13.2 K) was attributed to transition from collinear AF3

state to incommensurate elliptical spiral phase (AF2′) phase [211]. The nature of the

phase transitions observed in the case of MCuW (≈ 14.6 K and ≈ 13.7 K) needs further

studies and will be discussed in later section based on our NPD measurements.
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Figure 7.3: Specific heat Cp of (a) MCoW and (b) MCuW.

7.3 Magnetic ordering

7.3.1 Experimental

To determine the magnetic ordering of Mn in Mn0.9M0.1WO4 , several NPD patterns

were acquired in the temperature range 3 − 150 K. About 5 g of polycrystalline powder

samples were used in the measurements using the high-resolution powder diffractometer,

SPODI, at the research reactor FRM II, Garching. The powder sample was held in

a vanadium cylinder of diameter 5 mm with helium exchange gas. Vertical focussing
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monochromator, consisting of 17 Ge(551) was used to achieve neutrons of wavelength

1.549Å. The magnetic structures were refined from the NPD data using the Rietveld

refinement with FullP rof . The input control files used for the refinement of all magnetic

phases presented in the following sections of this chapter are presented in the appendix F.

7.3.2 Magnetic structure refinement

The starting models for the magnetic structure refinement analysis are adopted from

the previous report by Lautenschläger et al [71]. The basis functions for the irreducible

representations for Mn2+ spins in MWO were calculated for the propagation vector k =

(kx,
1
2
, kz) from the group theory and summarized in table 7.2. It should be noted that

same set of basis vectors shown in table 7.2 can be applied to all of the magnetic phases

discussed in this chapter. For instance, one can obtain basis vectors for the commensurate

AF1 phase by taking kz = 1/2. In order to generate elliptical spiral with uniform pitches

along the c axis, one should use a set of basis vectors from either (τ 11 ,τ
2
2 ,τ

3
1 ) or (τ

1
2 ,τ

2
1 ,τ

3
2 ).

These two different sets of basis vectors produce spiral chains with opposite chirality from

each other, which cannot be differentiated by unpolarized neutron scattering.

Table 7.2: Basis vectors for the irreducible representations for axial mode at the Mn sites in
space-group P2/c for the propagation vector k = (kx,

1
2 , kz) (ψ = expπikz).

Position (1
2
, y, 1

4
) (1

2
,−y, 3

4
)

τ 11 (1, 0, 0) (ψ, 0, 0)

τ 21 (0, 1, 0) (0,−ψ, 0)
τ 31 (0, 0, 1) (0, 0, ψ)

τ 12 (1, 0, 0) (−ψ, 0, 0)
τ 22 (0, 1, 0) (0, ψ, 0)

τ 32 (0, 0, 1) (0, 0,−ψ)

7.3.2.1 Mn0.9Co0.1WO4

In figure 7.6 we present the observed and the calculated NPD intensities of MCoW in

two different phases: (a) PM, (b) AF2′. Due to temperature instability during the

measurement of NPD, AF3 phase, which is expected to occur in a narrow temperature

range of ∼ 1 K, could not be determined. As expected MCoW orders with magnetic
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7.3 Magnetic ordering

state AF2′ in the temperature range 3 − 13 K. In the case of MWO in the AF2 phase,

the orientation of the spin vector at r = (x, y, z) can be expressed as,
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Figure 7.4: Observed (Iobs) and calculated (Iobs) NPD profiles of Mn0.9Co0.1WO4 at, (a)
paramagnetic, and (b), (c) AF2′ phases, respectively. The discrepancy factors are also indicated.
The blue line indicates the difference between observed and calculated patterns, the top and
bottom vertical marks indicate nuclear and magnetic Bragg–peak positions.
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m (r) = p cos (2πk2 · r+ φ) + q cos (2πk2 · r+ φ) . (7.2)

where, p and q are perpendicular to each other, and the spiral becomes elliptical when

|p| 6= |q|.
The NPD patterns and Rietveld refinement results for temperatures, 150 K, 8 K and 4 K

are plotted in figure 7.6(a), (b), (c), and (d) respectively along with discrepancy factors.

The propagation vector is found to be k′
2 = (−0.220, 1

2
, 0.471) at both 8 K and4 K

which is in excellent agreement with the value reported based on single crystal neutron

scattering measurements [212]. It was found that with increasing doping concentration

the propagation vector is enlarged from the value k2 = (−0.214, 1
2
, 0.457) in the case

of MWO [211]. To compare our results we also measured NPD of parent MWO. In

figure 7.5(a) and (b) we present the spin structures of MWO in AF1 and AF2 phases,

respectively, and figure 7.5(c) indicates the spin structure of AF2′ phase of MCoW. It

can be noted that the spin spiral in AF2 phase of MWO is parallel to b axis. But in

AF2′ phase of MCoW the spin spiral is nearly perpendicular to b axis. This spin-flop

transition is accompanied by a subsequent flop of the ferroelectric polarization from b

to the a axis [212]. A careful inspection of 4 and 8 K data reveal the presence of a

magnetic peak around 2θ = 11◦, it is attributed to the commensurate propagation vector

k4 = (1
2
, 0, 0) as in the case of CoWO4 [213] which is referred as AF4 in the rest of the

paper.

Figure 7.5: Spin structures of MnWO4 obtained from Rietveld refinement of neutron diffraction
data, (a) at 5 K (AF1) and (b) at 10 K (AF2) and (c) Mn0.9Co0.1WO4 at 4 K (AF2′) where
spiral plane is parallel to a axis. The arrows represent the spins and the ellipse/circle indicate
their plane of rotation.
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7.3.2.2 Mn0.9Cu0.1WO4
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Figure 7.6: Observed (Iobs) and calculated (Ical) NPD profiles of Mn0.9Cu0.1WO4 at, (a)–(b)
paramagnetic, (c)–(f)AF3 phases, respectively. The discrepancy factors are also indicated. The
blue line indicates the difference between observed and calculated patterns, the top and bottom
vertical marks indicate nuclear and magnetic Bragg-peak positions. In (c) and (e) the NPD
profiles correspond to magnetic structure calculated according to magnetic representation Γ1

and, (d) and (f) according to Γ2 .

In figure 7.6(a)-(f) we present the observed and the calculated NPD intensities of

MCuW in two different phases: (a)-(b) PM and (c)-(f) AF3. Due to temperature

instability during the measurement of NPD, AF3 phase, which is expected to occur in

a narrow temperature range of ∼ 1 K, was not conclusive. In contrast to MCoW the

propagation vector in the case of MCuW in the temperature range 4 − 13 K is found

to be k3 = (−0.221, 1
2
, 0.495). The magnetic structure was refined in both possible

representations Γ1 and Γ2. The goodness of fit in the refinement (indicated as insets
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in figure 7.6(a)-(f)), with Γ2 representation is slightly better than the refinement with

Γ1 representation. Though it is tempting to conclude that the Γ2 representation is the

best model which represent the magnetic ordering in MCuW, we still need further single

crystal measurements for a conclusive result. The refined spin structures are presented

in figure 7.7, which shows a sinusoidal modulation along a axis. It should be noted

that the helical magnetic order is suppressed by replacing Mn2+ ion by Cu2+. This

result is similar to that of Mn0.9Fe0.1WO4 for which AF3 phase has a modulation vector

k3 = (−0.235, 1
2
, 0.49). In Mn0.9Fe0.1WO4 ferroelectric and helical magnetic orders were

suppressed which could be restored by the application of external magnetic fields [204].

The lack of ferroelectricity at zero magnetic field was explained by the increase of the

uniaxial anisotropy K. In contrast to Mn0.9Fe0.1WO4 where a transition from paraelectric

(PE) AF3 to AF1, that occurs around 12 K, MnCuW remains in AF3 phase down to

4 K. Due to the suppression of helical magnetic order we can rule out the existence

of ferroelectric phase in this compound in the temperature range 4 − 13 K under

zero applied magnetic fields. The modification of magnetic structures and recovery of

ferroelectric-helical phase needs to be scrutinized.

2

(c)(b)

c

b

b

a
(a)

b

c

1

Figure 7.7: (a)Sinusoidal modulation of magnetic moments of Mn0.9Cu0.1WO4 seen through
c–direction obtained from Rietveld refinement of neutron diffraction data, for z=1

4 (orange line)
and for z=3

4 (olive line) atoms. Grey box indicates the crystallographic unit cell. (b) and
(c) shows the orientation of the magnetic moments as seen through c–direction in Γ1 and Γ2

magnetic symmetries, respectively.
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7.4 Summary and Conclusions

In summary we have synthesized and studied the magnetic ordering in Mn0.9Co0.1WO4

and Mn0.9Cu0.1WO4. Rietveld refinement of room temperature PXRD patterns showed

that both compounds crystallize in monoclinic symmetry with space group P2/c.

Curie-Weiss temperatures calculated from dc magnetic susceptibility measurements

for MCoW and MCuW are −79.6(1) K and −60.3(3) K, respectively, indicating

antiferromagnetic correlations. The frustration parameter is ∼ 5.9 and ∼ 4 for MCoW

and MCuW, respectively. Specific heat measurements reveals two anomalies below≈ 15 K

in both compounds. The two anomalies in case of MCoW are at ≈ 14.5 K and ≈ 13.2 K

and in case of MCuW the anomalies are at ≈ 14.6 K and ≈ 13.7 K. The NPD results

of our studies on MCoW is in excellent agreement with earlier reports on the same

compound based on powder and single crystal neutron diffraction studies. The spin flop

transition of the elliptical spin plane from being parallel to b axis to nearly perpendicular

to b axis in MCoW is confirmed. This spin-flop transition due to doping of Co, in the

case of MCoW induces flop of the ferroelectric polarization from b to the a axis. This

result is a good example in which the direction of ferroelectric polarization of a magnetic

material can be controlled via chemical doping. The higher degree of distortion in the

crystal structure of MCuW can be understood by considering the crystal structure of

CuWO4 [214]. CuWO4 crystallizes in highly distorted triclinic structure. By doping Cu

on Mn sites in case of MWO the distortion is increased. On the other end, both MWO

and CoWO4, are iso-structural and hence Co doping on Mn site has least effect on the

structural distortions. Our studies on the doping effects clearly demonstrate that doping

on the Mn site acts like chemical pressure which changes the magnetic phase diagram,

analogous to observed field induced magnetic phase transitions in the parent compound,

MnWO4. Further detailed study of the nature of doping of Mn sites with various amount

of Cu, and also the effect of applied magnetic field on the magnetic ordering, would be

very interesting. We expect that such studies could lead to a better understanding of the

nature of interaction leading to complex magnetic ordering and ferroelectricity in this

class of multiferroics.
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Multiferroics are materials that display spontaneous ferroelectric and magnetic ordering

at the same time. Multiferroics are very promising candidate materials to be used in

high density data storage devices. A better understanding of crystal and magnetic

structure is a key to understand the underlying physics in multiferroics, which could

help to design efficient materials for application. In this thesis we present synthesis,

structural and magnetic investigations on two kinds of multiferroic materials. We present

our findings of geometrically frustrated multiferroics, polycrystalline orthorhombic

HoCrO3 (HCO) and hexagonal DyMnO3 (hDMO) single crystals in chapters–(3, 4, 5) and

chapter–6, respectively. We also presented our investigations on spin frustrated system,

Mn0.9M0.1WO4 (M=Co, Cu) in chapter–7. In the following sections we summarize our

main results and outlook of the of the present work.

8.1 Orthorhombic HoCrO3

One of the most important factors that influence materials investigation is the necessity

of high quality samples. In this chapter we present synthesis and macroscopic

characterization of multiferroic, orthorhombic HOCrO3 (HCO). Polycrystalline samples

were prepared by standard solid state reaction route. The quality of polycrystalline

samples (phase purity) was monitored by powder x-ray diffraction (PXRD) studies. Phase

pure samples were then subjected to thermal, magnetic and temperature dependent

x-ray diffraction studies. From the Rietveld refinement of PXRD we refined the crystal

structure in Pbnm symmetry. From the temperature dependence of lattice parameters,

it was found that HCO exhibits magneto-elastic (ME) effect. From magnetization

measurements we found the ordering temperature TN = 142 K. It was also shown that

HCO undergoes magnetic field induced phase transitions. From a detailed analysis of

specific heat data in the temperature 0.1 − 300 K we could separate contributions from

nuclear, electronic, lattice and magnetic specific heat. The nuclear contribution is due

to hyperfine interactions and was modeled using a 8–level nuclear Schottky term. The

hyperfine splitting energy and effective field (Heff) were determined as ∼ 20.68 K and

600 T, respectively. The electronic Schottky anomaly due to crystal field interactions

was modeled using a 5–level Schottky term. The calculated crystal field energy levels

are in good agreement with reported values. The lattice specific heat was modeled with
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8.1 Orthorhombic HoCrO3

one Debye term and two Einstein terms. By subtracting all the above contributions

we determined the magnetic specific heat in HCO. The nuclear and magnetic entropies

calculated are in good agreement with the theoretical values.

Further high resolution inelastic measurements can be performed to confirm

the hyperfine energy levels as determined from the low temperature heat capacity

measurements. Also single crystal magnetization and neutron scattering measurement

in the presence of magnetic field can be performed to understand the nature of field

induced phase transitions as indicated by magnetization measurements.

High resolution neutron powder diffraction (NPD) experiments were performed

on HCO. Several NPD patterns were acquired in the temperature range 3 − 300 K.

From symmetry analysis and observed magnetic reflections we found that the magnetic

symmetry of Ho and Cr sublattices is Pbn′m′. From the Rietveld analysis of NPD patterns

the temperature dependence of magnetic order parameters were determined. It was found

that Cr orders antiferromagnetically with a small canting angle with respect to c–direction

below TN142.3(8) K. From the temperature dependent order parameter one can see that

the Ho ordering is induced. Ho was ordered canted antiferromagnetically in ab plane

with a ferromagnetic component along a. We modeled Cr and Ho ordered moments using

molecular field theory. From the least squares fit of Ho ordered moment it was found

that a small moment persists up to ≈ 142 K. The molecular field constants obtained

from the fit are, λ0 ≈ 37.1 T/µB and λ1 ≈ 9.5 T/µB, associated with Cr–Cr and Ho–Cr

exchange interactions, respectively. Clearly Cr–Cr exchange is relatively stronger. From

the fitting the lowest crystal field splitting energy was found to be ∆ = 1.8(3) meV

which is comparable with the value obtained from specific heat measurements. Our

measurements also indicate presence of spin fluctuations well below magnetic ordering

temperature seen as a broad peak around magnetic reflection (1 0 1), Q ≈ 1.46Å−1.

From thermal variation of lattice parameters we show that HCO exhibit

magnetoelastic effect. Lattice parameters show an anomalous change around magnetic

ordering temperature.The temperature variation of unit cell volume in paramagnetic

region was modeled using Grüneisen approximation for the zero pressure equation of

state. The excess change in unit cell volume ∆V due to ME effect displays a linear

relation with ordered magnetic moment of Cr ion. This confirms spin-phonon coupling

in this material, which is commonly observed in geometrically frustrated materials.

Further inelastic neutron scattering measurements such as magnon-dispersion, on

single crystals of HCO can give a better description of exchange interactions. It is
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also worth studying the effect of external magnetic field on the the magnetic ordering.

In light of multiferroicity a detailed quantitative study of dielectric measurements

are needed. In this chapter we present our inelastic neutron scattering (INS) on

polycrystalline HCO were collected at several temperatures with incident energies Ei =

19.61, 10.25, and, 3.55 meV. Three well resolved crystal field transitions are visible at

1.41, 10.1, and, 15.5 meV. The crystal field levels at 1.5 K were modeled using point

charge model. The crystal field levels obtained are in good agreement with those obtained

from specific heat measurements. Due to the low point symmetry of Ho site (m or C1h)

in HCO and limited energy range measured, we could not model high temperature INS

spectra.

Spin fluctuations are observed as a broad peak around Q ≈ 1.4Å−1. The temperature

dependence of full-width-half-maximum (FWHM) of this peak follows Cr ordered moment

indicating the origin of fluctuations to be Cr. We calculated correlation lengths from

FWHM as function of temperature using Selyakov-Scherrer formula. It was found that

well above the magnetic ordering temperature the correlation length ξ is ≈ 10Å which is

close to next-nearest-neighbor distance in HCO. Around magnetic ordering temperature

a sharp increase in correlations length was observed due to long range magnetic ordering

of Cr.

Further, effect of applied magnetic field on the crystal field levels and magnetic

fluctuations can be measured in this compound.

8.2 Hexagonal DyMnO3

Single crystal of hDMO were synthesized by optical floating zone technique. Rietveld

refinement of PXRD patterns of pulverized single crystals confirmed a pure hexagonal

DMO with space group P63cm. Oriented and cut single crystals were characterized by

specific heat and magnetization measurements, which confirmed two high temperature (∼
69(1) K, ∼ 65(1) K,) and two low temperature transitions (∼ 8(1) K, ∼ 5 K,). Isothermal

magnetization measurements indicate a field induced transition from antiferromagnetic

to ferrimagnetic phase. From the temperature dependence of PXRD patterns, anomalous

changes in lattice parameters is found around magnetic ordering temperature (≈ 65 K),

indicating the presence of ME effect. From single crystal neutron scattering measurements

we determined magnetic ordering temperature of Mn ≈ 66 K. Our measurements also

confirm that Dy orders below ≈ 7 K with magnetic symmetry P63c
′m′. From our
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specific heat, magnetization and single crystal neutron scattering measurements along

with reports based on x-ray resonant magnetic scattering (XRMS) and second harmonic

generation (SHG) measurements we show an unconventional magnetic ordering in hDMO.

In the high temperature region Dy orders with magnetic symmetry P6′3cm
′ and Mn with

magnetic symmetry P6′3c
′m. This is in sharp contrast to other hexagonal manganites

where both rare earth and Mn order with same magnetic symmetry. The present

observation in case of hDMO indicates a weak 4f − 3d interactions in this compound.

From the specific heat and neutron scattering data the ordering temperature of Mn is

found to be ∼ 65(1) K. We suggest that the anomaly at ∼ 69(1) K in the specific heat

data is due to magnetic ordering of Dy. This is a very unconventional type of magnetic

ordering. Further at low temperature Dy and Mn order with same magnetic symmetry

P63c
′m′.

Detailed dielectric measurements are still need for this compound. Further inelastic

neutron scattering studies are due. Inelastic neutron scattering measurements will be

a challenging task due to large neutron absorption cross section of Dy. One should try

isotope enrichment for a better experimental statistics.

8.3 Wolframite Mn0.9Co0.1WO4 and Mn0.9Cu0.1WO4

Spin frustrated multiferroic Mn0.9Co0.1WO4 (MCoW) and Mn0.9Cu0.1WO4 (MCuW) were

prepared by standard solid state synthesis method. From magnetization and heat

capacity measurements the compounds are found to order below ≈ 15 K. Heat capacity

measurements show two anomalies below 15 K. From our NPD data measured at several

temperatures we have determined two different magnetic phases in case of MCoW with

same incommensurate propagation vector k′
2 = (−0.220, 1

2
, 0.457). Our measurements

are in excellent agreement with the reported magnetic structure of Mn0.9Co0.1WO4.

From the Rietveld refinement of NPD data of MCuW, it was found that below 12 K

in whole temperature range MCuW is in same magnetic phase in contrast to other

doped and parent MnWO4 compounds. The incommensurate wave vector is found to

be k3 = (−0.235, 1
2
, 0.49).

Lately single crystals of Mn0.9Co0.1WO4 were studied extensively. But this is the

first report on the magnetic structure of Mn0.9Cu0.1WO4. In the present study we have

very limited amount of temperature points. The study should be performed with better

temperature resolution, to clearly investigate the temperature evolution of magnetic
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ordering in this compound. Since the observed magnetic ordering in MCuW is very

different compared to the parent and other doped compounds in this family one should

study the implications of this magnetic ordering on dielectric properties. Two approaches

would be: (i) to study the effect of chemical pressure by varying Cu doping concentration

and (ii) to study the variation of magnetic ordering with the application of magnetic

fields on the magnetic ordering.

In conclusion, we have shown on three different candidates for multiferroic compounds

–two geometrical multiferroics and one with spiral spin mechanism– how crystal and spin

structure determined with scattering techniques are related to physical properties like

magnetization and specific heat. In this way, our study helps to elucidate the mechanisms

of multiferroicity in transition metal oxides.
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List of acronyms

• AFM – Antiferromagnetic

• BF – Basis function

• CEF – Crystal-electric field

• CF – Crystal field

• CFT – Crystal field theory

• FE – Ferroelectric

• FC – Field-cooled

• FIM – Ferrimagnetic

• FM – Ferromagnetic

• FWHM–Full-width-half-maximum

• HCO –HoCrO3

• hDMO–Hexagonal DyMnO3

• INS – Inelastic neutron scattering

• IR – Irreducible representation

• ME – Magnetoelectric

• MCoW–Mn0.9Co0.1WO4

• MCuW–Mn0.9Cu0.1WO4

• MWO –MnWO4

• OFZ –Optical Floating Zone

• NPD –Neutron powder diffraction

• SHG –Second harmonic generation

• PXRD–Powder x-ray diffraction

• RA –Representation analysis

• RE – Rare-earth

• SR – Spin reorientation

• XRMS–X-ray resonant magnetic spectroscopy

• ZFC –Zero field-cooled
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The Rietveld Method

In the Rietveld method, least–squares refinements are carried out until a best fit is

obtained between the observed powder diffraction pattern (integrated intensities in the

case of single crystal diffraction) and the calculated pattern based on the simultaneously

refined models for the crystal and\or magnetic structure(s), diffraction optics effects,

instrumental factors, and other specimen characteristics like lattice parameters as can

be modeled. A key factor of the method is the feature of feedback between improving

knowledge of structure and the allocation of observed intensity to partially overlapping

individual Bragg reflections. Earlier methods used just to follow a systematic procedure

for decomposing the powder pattern into its component Bragg reflections without

reference to a structural model–called pattern decomposition.

Mathematical background

For the refinement using the Rietveld method the data must be obtained in digitized

form, i.e., intensity values yi at equal increments i in case of powder diffraction or

integrated intensities maximum possible Bragg reflections for the case of single diffraction

experiments. The increment is normally in 2θ (in case of powder diffraction). It can also

be in other variables like velocity or wavelength. Typical step sizes vary from 0.01 to

0.05◦ 2θ. The best fit is sought for all the thousands of yis simultaneously. The quantity

minimized in the least-squares refinement is the residual, Sy

Sy =
∑

i

wi(yi − yci)
2

where wi = 1/yi for Gaussian statistics, yi is the observed intensity at ith step and yci is

the calculated intensity at the ith step. The calculated intensities are determined from
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the FK values calculated from a structural model:

yci = s
∑

K

LKFKφ (2θi − 2θk)PKA + ybi

where s is the scale factor, K represents the Miller indices, h k l, for a Bragg reflection,

LK contains the Lorenz, polarization, and multiplicity factors, φ is the reflection profile

function, PK is the preferred orientation function, A is an absorption factor, FK is the

structure factor for the Kth Bragg reflection and ybi is the background intensity at the

ith step.

The least squares minimization procedure leads to a set of normal equations involving

derivatives of all of the calculated intensities yci with each of the adjustable parameters

and are solvable by inversion of the normal matrix with elements Mjk formally given by

Mjk = −
∑

i

2wi

[

(yi − yci)
∂2yci
∂xj∂xk

−
(

∂yci
∂xj

)(

∂yci
∂xk

)]

where the parameters xj , xk are the same adjustable parameters.

Thus the procedure is one of creation and inversion of an m×m matrix, where m is

the number of parameters to be refined. The solution is found by an iterative procedure

in which the shifts ∆xk, are

∆xk =
∑

M−1
jk

∂Sy

∂xk

The calculated shifts are then applied to the initial parameters to produce a improved

model and the whole procedure is then repeated.

Various terms in yci:

a. Background intensity

The background intensity at the ith step, ybi, can be obtained from (i) an

operator–supplied table of background intensities or (ii) linear interpolation between

operator–selected points in the pattern or (iii) a specified background function. The

background is always refined. Several background functions are employed, and one of the

simplest one is a fifth-order polynomial provided with an operator-specifiable origin to
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help fitting the broad humps in the background curve.

ybi =

5
∑

m=0

Bm [(2θi/BKPOS)− 1]m

where BKPOS is the origin that is to be user-specified in the input control file.

b. Reflection profile function

This function denoted as φ approximates the effects of both instrumental features and

specimen features. Mostly used analytical profile functions are pseudo-Voigt functions,

the Pearson VII function, Gaussian, Lorentzian and modified Lorentzian functions. For

X ray data analysis the pseudo-Voigt function is mostly employed. It has the following

functional form:

ηL+ (1− η)G;

G =
C

1/2
0

HKπ1/2
exp

[

−C0(2θi − 2θk)
2

H2
K

]

L =
C

1/2
1

πHK

1
[

1 + C1(2θi−2θk)
2

H2

K

]

c. Preferred orientation

Preferred orientation arises when there is a stronger tendency for the crystallites in

a specimen to be oriented more one way than all others. This can occur, for example, in

a material that has a strong cleavage or growth habit that is packed into a flat specimen

holder. Preferred orientation mostly produces systematic distortions of the reflection

intensities and the distortions can be modeled with preferred orientation functions such

as,

PK = exp(−G1α
2
K)

or

PK =
[

G2 + (1−G2) exp
(

−G1α
2
K

)]

where G1 and G2 are refinable parameters and αK is an angle.

d. Structure factor
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The structure factor in case of a simple cubic structre is given by

FK =
∑

j

Njfj exp [2πi (hxj + kyj + lzj)] exp (−Mj)

where, h, k and l are the Miller indices, xj , yj and zj are the position parameters of the jth

atom in the unit cell,Mj = 8π2u2jsin
2θ/λ2, u2j (isotropic atomic displacement parameter,

for simplest case of purely harmonic thermal motion of equal magnitude in all directions)

is the root-mean-square thermal displacement of the jth atom parallel to diffraction vector

and Nj is the site occupancy multiplier for the jth atom site.

Agreement factors

The Rietveld refinement procedure will adjust the refinable parameters until the

residual is minimized. The ′′best fit′′ will depend on the adequacy of the model employed

and whether a global minimum is reached rather than a local minimum. Most programmes

that use the Rietveld method have a set of R-values that are measure of quality of the

agreement between observed and calculated profiles [215]. They are:

R− Bragg factor, RB =

∑

|IK (obs)− IK (calc)|
∑

IK (obs)

R− pattern, Rp =

∑

i

|yi (obs)− yi (calc)|
∑

i

yi (obs)

R− weighted pattern, Rwp =







∑

i

wi[yi (obs)− yi (calc)]
2

∑

i

wi(yi (obs))
2







1

2

In addition an expected profile R value Rexp can be calculated, which indicates the

attainable limit for Rwp by considering only pure statistics on the nominator of the

expression for Rwp. For n number of data points and m number of refined parameters,

the expected profile value is,

Rexp =







(n−m)
∑

i

wi(yi (obs))
2







1

2
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One can also define a Goodness of fit as χ2 = (Rwp/Rexp)
2. During the refinement process,

χ2 starts out large when the model is poor and decreases as the model produces better

agreement with the data. Ideally, χ2 should converge to 1 for a good fit.
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Crystal and magnetic structure

determination of HoCrO3

For the symmetry analysis first one has to determine the crystal structure (space

group) and lattice parameters near the magnetic transition temperature. Also with the

knowledge of the magnetic peak position one has to determine the propagation vector (~k),

which is straight forward with the use of program k-search (included in FullP rof suit).

Then the programs like BasIreps (included in FullP rof suit) [216] or SARAh [153] can

be used to deduce the allowed magnetic representations given the crystal symmetry and

propagation vector. For the present case we used the program BasIreps .

C.1 Representation analysis of HoCrO3 with

BasIreps

The program BasIreps calculates the irreducible representations (irreps) of the so called

”little groups” from which the full irreps of space group can be calculated using the

induction formula. After calculating the irreps corresponding to a given space group and

propagation vector the program calculates the basis function corresponding to vectorial

properties (atom displacements or magnetic moments) of atoms in crystalline solids. This

program calculates non-normalized basis functions of the irreps of the little group Gk for

atom properties in a crystal. In particular the calculations can be performed for magnetic

moments which are axial vectors. In general the magnetic moment of atom j in cell L
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may be written as a Fourier series of the form:

mjL =
∑

k

Skj exp (−2πik ·RL) (C.1)

Here k and RL are vectors referred to the reciprocal and direct crystallographic basis,

respectively. The vectors mjL and Skj have the same units and are referred to a basis

of unit vectors along the direct crystallographic cell basis. The Skj are the Fourier

components of the magnetic moments mjL.

Taking in to account the symmetry, the vectors Skj can be written as linear combinations

of the so-called basis functions of the irreducible representations of the propagation

vector group Gk. The number of free parameters in a magnetic structure is less than

N = 3 × n × O{k}. The number 3 comes from the components of Skj , n is the total

number of atoms in a primitive cell and O{k} is the number of propagation vectors. The

number of independent parameters (order parameters) can be calculated from the group

theory. In general the vector Skj may be written as:

Skj =
∑

a,m

Ca,mVa,m (k, ν|j) (C.2)

Where Ca,m are the coefficients (that may be real or purely imaginary) of the linear

combination, and Va,m(k, ν|j) are constant vectors referred to the basis of the direct

cell. The labels are the following (k, ν) is for the particular propagation vector and

the representation called Γν . The index a varies from 1 up to the dimension of the

irreducible representation: a = 1, 2, ...dim(Γν). The index m varies from 1 to the

number of times the irreducible representation Γν is contained in the global magnetic

representation constructed by working with the symmetry operators acting on atoms

coordinates and components of axial vectors (dimension 3× n) [84].

To calculate the allowed magnetic presentations (MRs) the program BasIsreps requires

the details (in the input file called ∗.smb) of crystal symmetry, lattice parameters and

~k. Once these are known it becomes rather simple straight forward to determine all the

symmetry allowed magnetic representation. To makes things simple, BasIreps produces

an output file ∗.fp which contains symmetry operations corresponding to all possible

MRs which can directly be used in refinement of magnetic structure using FullP rof .

The input file for BasIreps used for the case of HoCrO3 is shown in figure C.1.
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TITLE repre_HoCrO3
SPGR  P B N M
KVEC   0.0000  0.0000  0.0000 X 
BASIR AXIAL
ATOM Cr   Cr    0.50000  0.00000  0.00000
ATOM Ho   Ho   -0.01795  0.06567  0.25000

Figure C.1: A snap-shot of the input file ∗.smb for the program BasIreps. Line one is the title,
line-2 defines the space group (SPGR) Pbnm, line 3 defines the magnetic propagation vector
(KVEC), ~k = (0 0 0) and lines 5 and 6 defines the atomic positions of Cr and Ho ion

The output of BasIreps, ∗.fp contains magnetic symmetry elements for eight MRs

of Cr ions (Γ1 − Γ8) and four MRs of Ho ion (Γ1,Γ3,Γ5 and Γ7). Using these results

one can simulate magnetic contribution to the neutron diffraction patterns (magnetic

Bragg intensities) and also can refine the magnetic structure from experimental data

from neutron, single crystal or powder diffraction measurements.

C.2 Magnetic structure refinement of HoCrO3 using

FullP rof

For the present case only four MRs (Γ1,Γ3,Γ5 and Γ7) will be considered as allowed MRs

as only these four are allowed for both Cr and Ho magnetic sublattices. The magnetic

peak intensities were simulated for all four MRs mentioned above using the program

FullP rof . By comparing measured intensities and simulated intensities of few typical

magnetic peaks we were able to determine unambiguously the magnetic representation

to be Γ5 for both Cr and Ho ions (see section 4.3.1.2 in chapter 4 for details). The

magnetic structure was refined with the MR Γ5 (space group Pbn′m′ ) simultaneously

with the nuclear structure (space group Pbnm). The input control file (*.pcr) used for

the simultaneous refinement of crystal and magnetic structures from the neutron powder

diffraction data collected at 3 K is presented in the next page.
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Input file (*.pcr) for the simultaneous refinement of crystal and magnetic structre of HoCrO3:

COMM HoCrO3
! Current global Chi2 (Bragg contrib.) =      2.536    
! Files => DAT-file: HCO_1,  PCR-file: hocro3_3k
!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut
   1   7   2  60   2   0   0   1   0   2   1   0   1   0   0   0   0   0   1
!
!Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 NLI Prf Ins Rpa Sym Hkl Fou Sho Ana
   0   2   1   1   2   0   4   0   0  -3  10  -2   1   1   1   0   1
!
! lambda1 Lambda2    Ratio    Bkpos    Wdt    Cthm     muR   AsyLim   Rpolarz ->Patt# 1
 1.548100 1.548100  0.0000   14.000  7.0000  0.0000  0.3000  180.00    0.0000
!
!NCY  Eps  R_at  R_an  R_pr  R_gl     Thmin       Step       Thmax    PSD    Sent0
 99  0.32  0.98  0.98  0.98  0.98      1.0000   0.100065   153.8000   0.000   0.000
!
!2Theta/TOF/E(Kev)   Background  for Pattern#  1
       11.674     2297.190      261.000
   58 more background points in between
      151.705     1327.638      931.000
! 
! Excluded regions (LowT  HighT) for Pattern#  1
        0.00       10.00
      152.00      180.00
!
      94    !Number of refined parameters
!
!  Zero    Code    SyCos    Code   SySin    Code  Lambda     Code MORE ->Patt# 1
 -0.00032   21.0  0.00000    0.0  0.00000    0.0 0.000000    0.00   0
!-------------------------------------------------------------------------------
!  Data for PHASE number:   1  ==> Current R_Bragg for Pattern#  1:     2.26
!-------------------------------------------------------------------------------
HoCrO3 nuclear                                                                                                                                                      
!
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More
   4   0   0 1.0 1.0 2.0   0   0   0   0   0       1071.964   0   5   0
!
P b n m                  <--Space group symbol
!Atom   Typ       X        Y        Z     Biso       Occ     In Fin N_t Spc /Codes
!    beta11   beta22   beta33   beta12   beta13   beta23  /Codes
Cr     Cr      0.50000  0.00000  0.00000  0.69980   0.50000   0   0   0    0                                                                                  
                   0.00        0.00        0.00         61.00      0.00
Ho     Ho   -0.01795  0.06567  0.25000  0.68958   0.50000   0   0   0    0                                                                                  
                   111.00    121.00     0.00        81.00      0.00
O1     O      0.10489  0.46432  0.25000  0.00000   0.50000   0   0   2    0                                                                                  
                    131.00   141.00     0.00        0.00        0.00
      0.00705  0.00825  0.00314 -0.00200  0.00000   0.00000
       181.00   361.00    371.00    381.00     0.00        0.00
O2     O     -0.30710  0.30293  0.05263  0.00000   1.00000   0   0   2    0                                                                                  
                   151.00    161.00    171.00     0.00         0.00
      0.01018  0.00824  0.00373 -0.00134 -0.00042  -0.00046
       191.00    411.00    401.00    391.00    351.00    341.00
!-------> Profile Parameters for Pattern #  1
!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model
  6.1897       0.22550   0.00000   0.00000   0.00000   0.00000       0
 51.00000    251.000     0.000       0.000       0.000      0.000
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continued from previous page....

!       U         V          W           X          Y        GauSiz   LorSiz Size-Model
   0.072652  -0.038727   0.124308   0.000000   0.000000   0.000000   0.000000    0
    211.000     221.000     231.000      0.000         0.000         0.000        0.000
!     a          b         c        alpha      beta       gamma      #Cell Info
   5.238771   5.513430   7.527004  90.000000  90.000000  90.000000                                                                                   
   31.00000   41.00000   11.00000    0.00000      0.00000      0.00000
!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4  
  0.00000  0.00000  0.10521  0.02096  0.00000  0.00000
     0.00      0.00       241.00      201.00     0.00     0.00
!-------------------------------------------------------------------------------        
!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern#  1:     2.24            
!-------------------------------------------------------------------------------        
HoCrO3 magnetic phase                                                                         
!                                                                                       
!Nat  Dis Mom  Pr1  Pr2  Pr3  Jbt  Irf  Isy  Str Furth       ATZ    Nvk Npr More                
   2     0      0    0.0   0.0   1.0    1    0   -1    0    0          0.000      0     5    0                 
!                                                                                       
P -1                     <--Space group symbol for hkl generation                       
!Nsym Cen Laue MagMat                                                                   
   4   1   3   1                                                                        
!                                                                                     
SYMM x,y,z                                                                              
MSYM u,v,w,0.00                                                                         
SYMM -x,-y,z+1/2                                                                        
MSYM u,v,-w,0.00                                                                        
SYMM x+1/2,-y+1/2,-z                                                                    
MSYM u,-v,-w,0.00                                                                       
SYMM -x+1/2,y+1/2,-z+1/2                                                                
MSYM u,-v,w,0.00                                                                        
!                                                                                       
!Atom Typ  Mag Vek    X         Y           Z          Biso          Occ        Rx         Ry          Rz          
!           Ix           Iy      Iz       beta11   beta22   beta33    MagPh                                
CR1  MCR3  1  0  0.50000 0.00000 0.00000  0.69196  1.0000    0.099     0.082     2.609        
                           0.00      0.00       0.00       61.00       0.00      941.00   951.00   71.00        
                 0.000   0.000    0.000    0.000   0.000   0.000  0.000                                
                  0.00     0.00      0.00      0.00     0.00     0.00    0.00                                
HO1  JHO3  1  0  -0.01798 0.06565  0.25000  0.68354 1.0000   3.644   7.010   0.000        
                              111.00    121.00     0.00       81.00      0.00      91.00  101.00    0.00        
                 0.000   0.000    0.000    0.000   0.000   0.000  0.000                                
                  0.00     0.00      0.00      0.00     0.00     0.00    0.00                               
!-------> Profile Parameters for Pattern #  1                                           
!  Scale          Shape1       Bov         Str1          Str2         Str3       Strain-Model            
    6.1930       0.22538   0.00000   0.00000   0.00000   0.00000           0                  
   51.00000   251.000      0.000       0.000       0.000     0.000                          
!         U              V                W               X               Y             GauSiz   LorSiz      Size-Model 
   0.072516  -0.038507   0.124133   0.000000   0.000000   0.000000   0.000000      0      
    211.000     221.000     231.000       0.000         0.000         0.000        0.000           
!         a                b               c             alpha           beta          gamma      #Cell Info         
   5.238771   5.513427   7.527000   90.000000  90.000000  90.000000                      
   31.00000   41.00000   11.00000    0.00000       0.00000     0.00000                      
!  Pref1        Pref2         Asy1       Asy2        Asy3       Asy4                                  
  0.00000   0.00000   0.10510   0.02102   0.00000   0.00000                                  
     0.00          0.00      241.00     201.00        0.00       0.00                                  
!  2Th1/TOF1    2Th2/TOF2  Pattern # 1                                                  
      10.000     151.900       1                                                        

Magnetic symmetry elements corresponding
to magnetic representation 5 obtained from
the output file of BasIreps as explained in the
previous section
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Refined structure parameters of

HoCrO3

Table D.1: Atomic positions (non-general positions only), Isothermal parameters (Biso), selected
bond lengths and and bond angles of HCrO3 obtained by Rietveld refinement of neutron powder
diffraction (NPD) data collected at 300, 100, and 3 K. For comparison parameters obtained by
refinement of powder x-ray diffraction (PXRD) pattern collected at 300 K is also given.

NPD PXRD

Temperature= 3 K 100 K 300 K 300 K

Atomic positions

Ho(4c) x −0.0178(3) −0.0171(3) −0.0163(2) −0.0168(3)

y 0.0658(2) 0.0657(2) 0.0650(2) 0.0655(5)

O1(4c) x 0.1051(4) 0.1049(3) 0.1039(2) 0.1026(8)

y 0.4645(4) 0.4647(3) 0.4647(2) 0.4664(8)

O2(8d) x −0.3073(3) −0.3070(2) −0.3066(1) −0.3054(2)

y 0.3032(3) 0.3031(2) 0.3027(1) 0.3055(2)

z 0.0526(2) 0.0531(1) 0.0534(1) 0.0497(4)

Continued on next page
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Table D.1 – continued from previous page

NPD PXRD

Temperature= 3 K 100 K 300 K 300 K

Biso (Å
2)

Ho(4c) 0.68(2) 0.69(4) 0.94(1) 0.69(4)

Cr(4b) 0.67(4) 0.62(2) 1.00(2) 0.62(2)

O1(4c) 0.83(3) 0.81(3) 1.16(2) 0.81(3)

O2(8d) 0.99(2) 0.94(2) 1.26(1) 0.94(2)

Bond lengths (Å)

Cr–O1(×2) 1.9704(6) 1.9705(5) 1.9715(3) 1.956(2)

Cr–O2(×2) 1.9814(16) 1.9815(11) 1.9836(7) 1.9587(6)

Cr–O2(×2) 1.9926(16) 1.9939(11) 1.9951(8) 2.0199(5)

< Cr−O > 1.9815(7) 1.9820(5) 1.9834(9) 1.978(3)

Cr–Cr(×2) 3.7635(1) 3.7644(1) 3.7693(0) 3.7774(5)

Cr–Cr(×4) 3.8027(1) 3.8032(1) 3.8066(0) 3.7998(1)

Ho–O1 2.2330(26) 2.2304(22) 2.2329(1) 2.2481(75)

Ho–O1 2.2907(25) 2.2910(2) 2.2938(2) 2.3392(67)

Ho–O2(×2) 2.2677(18) 2.2677(15) 2.2703(1) 2.2546(54)

Ho–O2(×2) 2.4941(19) 2.4934(16) 2.4970(12) 2.5112(53)

Ho–O2(×2) 2.6319(16) 2.6352(16) 2.6409(1) 2.6262(48)

< Ho−O > 2.4139(8) 2.4145(7) 2.4179(5) 2.4241(9)

Bond angles (◦)

Cr–O1–Cr 145.497(1) 145.576(1) 145.855(0) 145.516(31)

Cr–O2–Cr 146.232(89) 146.142(59) 146.172(42) 148.226(1)
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Refined structure parameters of

hDyMnO3

Table E.1: Atomic positions (non-general positions only), Isothermal parameters (Biso), selected
bond lengths and and bond angles of hDyMnO3 obtained by Rietveld refinement of neutron
powder diffraction (NPD) data collected at 300, 50, and 4 K. For comparison parameters
obtained by refinement of powder x-ray diffraction (PXRD) pattern collected at 300 K is also
given.

NPD PXRD

Temperature= 4 K 50 K 300 K 300 K

Atomic positions

Dy1 (2a) z 0.2947(8) 0.2948(8) 0.2939(8) 0.2746(7)

Dy2 (4b) z 0.2532(7) 0.2533(7) 0.2543(7) 0.2367(7)

Mn (6c) x 0.3435(17) 0.3391(21) 0.3303(21) 0.3602(7)

O1 (6c) x 0.3140(14) 0.3140(14) 0.3153(17) 0.2838(16)

z 0.1710(11) 0.1710(11) 0.1750(11) 0.1362(16)

O2 (6c) x 0.6399(14) 0.6393(14) 0.6418(15) 0.6720(24)

z 0.3463(1) 0.3461(9) 0.3473(11) 0.3455(16)

Continued on next page

165



Appendix E

Table E.1 – continued from previous page

NPD PXRD

Temperature= 4 K 50 K 300 K 300 K

O3 (4b) z 0.50042 0.50042 0.50042 0.4879(13)

O4 (2a) z −0.0241(3) −0.0244(14) −0.0200(16) 0.0368(29)

Biso (Å
2)

Dy1 (2a) 0.08(4) 0.09(4) 0.30(4) 0.93(3)

Dy2 (4a) 0.08(4) 0.09(4) 0.30(4) 0.93(3)

Mn (6c) 0.13(4) 0.17(11) 0.45(11) 0.38(6)

O1 (6c) 0.47(7) 0.46(7) 0.75(7) 2.47(16)

O2 (6c) 0.47(7) 0.46(7) 0.75(7) 2.47(16)

O3 (4b) 0.20(6) 0.27(6) 0.51(6) 3.63(20)

O4 (2a) 0.20(6) 0.27(6) 0.51(6) 3.63(20)

Bond lengths (Å)

Mn–O1 1.968(12) 1.969(12) 2.007(14) 1.630(21)

Mn–O2 1.767(11) 1.771(11) 1.759(13) 1.781(18)

Mn–O3 2.121(12) 2.090(12) 2.046(12) 2.232(4)

Mn–O4(×2) 2.041(6) 2.057(63) 2.080(6) 2.028(4)

< Mn−O > 1.9815(7) 1.9820(5) 1.9834(9) 1.978(3)

Dy1–O1(×3) 2.408(11) 2.401(10) 2.380(10) 2.365(16)

Dy1–O2(×3) 2.297(6) 2.300(6) 2.298(6) 2.185(14)

Dy1–O3 2.360(9) 2.360(9) 2.366(9) 2.443(17)

Dy2–O1(×3) 2.315(10) 2.318(10) 2.306(8) 2.5112(53)

Dy2–O2(×3) 2.248(10) 2.245(10) 2.256(8) 2.423(11)

Dy2–O4 2.556(18) 2.551(18) 2.590(20) 2.288(35)

< Dy1−O1,O2O3 > 2.4139(8) 2.4145(7) 2.4179(5) 2.4241(9)

< Dy2−O1,O2,O4 > 2.4139(8) 2.4145(7) 2.4179(5) 2.4241(9)

Continued on next page
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NPD PXRD

Temperature= 4 K 50 K 300 K 300 K

Bond angles (◦)

O1–Mn–O2 178.03(52) 179.84(52) 177.26(57) 156.69(95)

O1–Mn–O3 84.68(27) 85.38(25) 87.09(30) 76.69(35)

O4–Mn–O4 121.311(1) 119.826(1) 118.159(1) 123.357(1)

O2–Mn–O4 80.694(2) 80.084(2) 80.980(2) 104.798(1)

O3–Mn–O4 118.116(1) 118.868(1) 120.158(1) 115.980(2)

O2–Mn–O3 93.35(28) 94.46(28) 95.64(32) 80.00(40)

O1–Mn–O4 100.226(2) 99.992(2) 97.659(3) 85.620(1)

Mn–O3–Mn 119.999(1) 119.999(1) 119.999(1) 119.618(1)

Mn–O4–Mn 118.209(2) 118.177(1) 118.811(2) 115.74(1)

Dy1–O1–Mn 131.42(55) 130.76(54) 127.78(60) 148.96(31)

Dy2–O2–Mn 119.748(2) 120.127(2) 120.510(2) 117.506(1)
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FullProf control (input) files used

for the Rietveld refinement of the

magnetic structures of

Mn1−xMxWO4

In the following sections we present the FullP rof control files (*.pcr) used for the

refinement of crystal and different magnetic phases of MnWO4, Mn0.9Co0.1WO4 and

Mn0.9Cu0.1WO4.
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Figure F.1: Magnetic part of the pcr file used for the Rietveld refinement of AF1 magnetic phase
of MnWO4 presented in figure 7.5(a)
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Figure F.2: Magnetic part of the pcr file used for the Rietveld refinement of AF2 magnetic phase
of MnWO4 presented in figure 7.5(b)

171



Appendix F

Figure F.3: Magnetic part of the pcr file used for the Rietveld refinement of AF2′ magnetic
phase of Mn0.9Co0.1WO4 presented in figure 7.5(c)
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Figure F.4: Magnetic part of the pcr file used for the Rietveld refinement of of Mn0.9Cu0.1WO4,
AF3 magnetic phase with Γ1 representation, which is presented in figure 7.6(c) and
figure 7.7(a)-(b)
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Figure F.5: Magnetic part of the pcr file used for the Rietveld refinement of of Mn0.9Cu0.1WO4,
AF3 magnetic phase with Γ2 representation , which is presented in figure 7.6(d) and figure 7.7(c)
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[169] V. Sechovskỳ, L. Havela and K. H. J. Buschow, Handbook of Magnetic Materials,

Volume 11 (Elsevier Science, Amsterdam, 1998).

[170] P. Fulde and M. Loewenhaupt, Spin waves and magnetic excitations edited by

Borovik-Romanov, A. S. and Sinha, S. K (Elsevier Science Pub. Co. Inc., New

York, NY, 1988).

[171] R. T. Azuah, L. R. Kneller, Y. Qiu, P. L. W. Tregenna-Piggott, C. M. Brown,

J. R. D. Copley and R. M. Dimeo, J. Res. Natl. Inst. Stand. Technol. 114, 341

(2009).

[172] L. I. Mirkin and H. M. Otte, Handbook of X-Ray Analysis of Polycrystalline

Materials (Physics-Mathematics Literature, Moscow, 1961).

[173] M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy and

A. Fert, Nat. Mater. 6, 296 (2007).

[174] W. Eerenstein, N. D. Mathur and J. F. Scott, Nature 442, 759 (2006).

[175] W. Prellier, M. P. Singh and P. Murugavel, J. Phys.: Condens. Matter. 17, R803

(2005).
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[195] D. Bravo, A. Kaminskii and F. López, J. Phys. Condens. Matter 10, 3261 (1998).

[196] O. V. Kovalev, H. T. Stokes and D. M. Hatch, Representations of the

crystallographic space groups: irreducible representations, induced representations,

and corepresentations (CRC, 1993).

[197] A. Wills, Physica B 276, 680 (2000).

[198] P. J. Brown and T. Chatterji, J. Phys. Condens. Matter 18, 10085 (2006).

[199] M. Fiebig, T. Lottermoser and R. V. Pisarev, J. Appl. Phys. 93, 8194 (2003).

[200] S. Nandi, A. Kreyssig, L. Tan, J. W. Kim, J. Q. Yan, J. C. Lang, D. Haskel, R. J.

McQueeney and A. I. Goldman, Phys. Rev. Lett. 100, 217201 (2008).

[201] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura, Nature

426, 55 (2003).

[202] J. Strempfer, B. Bohnenbuck, M. Mostovoy, N. Aliouane, D. N. Argyriou,

F. Schrettle, J. Hemberger, A. Krimmel and M. Zimmermann, Phys. Rev. B 75,

212402 (2007).

[203] A. H. Arkenbout, T. T. M. Palstra, T. Siegrist and T. Kimura, Phys. Rev. B 74,

184431 (2006).

[204] R. P. Chaudhury, B. Lorenz, Y. Q. Wang, Y. Y. Sun and C. W. Chu, Physical

Review B 77, 104406 (2008).
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