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Abstract

This thesis shows the first synchrotron-based Mossbauer spectroscopy studies on  irid-
ium containing compounds and first vibrational spectroscopy on Sb containing com-
pounds carried out at the P01 beamline of PETRA III In this context, two types of x-
ray monochromators have been developed: a monochromator for 73 keV photons with
medium energy resolution, and a high-resolution backscattering monochromator based
on a sapphire crystal. The monochromator for 73 keV x-rays is the key instrument
for hyperfine spectroscopy on Iridium compounds, while the sapphire backscattering
monochromator is purposed to vibrational spectroscopy on any Mossbauer resonances
with the transition energies in the 20-50 keV range. Additionally, the signal detection
for nuclear resonance scattering experiments at the beamline was significantly improved
during this work, inspired by the high energies and low lifetimes of the employed reso-

nances.

The first synchrotron-based hyperfine spectroscopy on Iridium-containing compounds
was demonstrated by NRS on 73 keV resonance in '*Ir. The results can be interpreted
by dynamical theory of nuclear resonance scattering. In this work, special emphasis is
set onto the electronic and magnetic properties of Ir nuclei in IrO; and in Ruddlesden-
Popper (RP) phases of strontium iridates Sr,,11r,03,41 (n = 0,1). These systems are
well-suited for studies with x-ray scattering techniques, since the scattered signal con-
tains vast information about the widely tunable crystallographic and electronic structure
of these systems; furthermore, studies with x-rays are less limited by absorption from
iridium as it is the case for neutron scattering experiments. The hyperfine parameters
in IrOy, SrIrO3 and Sr2IrO4 have been measured via Nuclear Forward Scattering for the
first time. Using the dynamical theory of NRS, the temperature and magnetic field de-
pendence of the electric field gradient and magnetic hyperfine field on Ir nucleus have
been determined for these compounds. In order to broaden the perspectives of NRS
with the 73 keV resonance the first room temperature NRS on iridium metal is carried
out. The results demonstrate NRS as a powerful research tool for the studies of iridium
physics due to the high energy of the resonant photons and the high natural abundance
of the '%Ir isotope under study, paving the way for studies of magnetism and electronic

properties under extreme conditions.

The second part of this work is dedicated to vibrational spectroscopy with Nuclear Inelas-
tic Scattering (NIS). A sapphire backscattering monochromator was designed, installed

and tested at the beamline. It provides high energy resolution due to the sub-mK tem-




perature control, though the resolution is limited from theoretically proposed sub-meV
to meV by the quality of currently available sapphire crystals. With this device the en-
ergy resolution of 1.3(1) meV at 23.88 keV and of 3.2(4) meV at 37.13 keV was achieved.
Following this development, the vibrational spectra of antimony in defect pyrochlore Ag-
Sb-O compounds have been measured by means of NIS at 37.13 keV. Density of phonon
states for the Sb(III) and for the Sb(V) site has been unambiguously revealed. The dif-
ference in site-specific antimony modes illustrates the importance of lattice dynamics for

the engineering of these compounds.




Kurzfassung

In dieser Arbeit werden die ersten mit Synchrotronstrahlung durchgefiirten Mossbauer-
spektroskopischen Studien an iridiumhaltigen Verbindungen vorgestellt. Dartiber hin-
aus wird die erste Rontgen-Analyse von Schwingungsmoden in antimonhaltigen, festen
Losungen an der Strahlfiihrung P01 von PETRA III prasentiert. In diesem Zusam-
menhang wurden zwei Rontgenmonochromatoren entwickelt: ein Monochromator mit
moderater Energieauflosung fiir 73 keV Photonen, sowie ein hochauflosender, saphir-
basierter Riickstreumonochromator. Der Monochromator fiir 73 keV Strahlung ist
fur Hyperfeinspektroskopie an Iridium-haltigen Verbindungen gedacht. Der Riick-
streumonochromator wurde fiir Schwingungsspektroskopie an allen

Mossbauer- Resonanzen mit Ubergangsenergien im Bereich von 20 bis 50 keV konzip-
iert. Inspiriert durch die Arbeit mit den hochenergetischen und kurzlebigen Mossbauer-
Resonanzen wurde zusitzlich die Signalerfassungsmethode fiir die Kernresonanzstreu-
ung an der Strahlfithrung P01 von PETRA III optimiert.

Die erste synchrotron-basierte Hyperfeinspektroskopie an Ir-haltigen Verbindungen
wurde mittels Kernresonanzstreuung (NRS) am 73 keV Kernniveau des %Ir Isotops
durchgefiihrt. Die Ergebnisse konnen durch die dynamische Theorie der Kernreso-
nanzstreuung interpretiert werden. In dieser Arbeit werden die Studien der elektrischen
und magnetischen hyperfeinen Wechselwirkungen an Ir in IrO; und in Ruddlesden-
Popper (RP) Phasen von Strontium-Iridaten St,,1Ir,Os3,4+1 (n = 0,1) besonderes her-
vorgehoben. Innerhalb dieser Probensysteme gibt es eine grofie Variation der kristal-
lographischen und elektronischen Struktur, wodurch sie fiir die Untersuchung mit den
Methoden der Rontgenstreuung besonders interessant sind. Aufilerdem werden die
Rontgenmethoden weniger als Neutronenexperimente durch die Absorption von Ir
beeinflusst. Die Parameter von hyperfeinen Feldern in IrOs, in SrIrO3 und in SroIrO4
wurden zum ersten Mal durch Nukleare Vorwartsstreuung (NFS) bestimmt. Dank der
experimentellen Ergebnisse und mit Hilfe der dynamischen Theorie der NRS, wurde
die Temperaturabhédngigkeit des elektrischen Feldgradienten am Ir-Kern und sowie des
magnetischen Hyperfeinfeldes z.T. in Abhédngigkeit vom dufieren Magnetfeld in diesen
Verbindungen ermittelt. Dank der hohen Brillianz der Strahlungsquelle, konnten die
ersten Raumtemperaturmessungen von Kernresonanzstreuung an Ir durchgefiihrt wer-
den. Die Kombination aus hoher Brillianz, hoher Energie der Resonanz sowie der hohen
natiirlichen Isotopenhiufigkeit des '%*Ir ermoglichte es, die Kernresonanzstreuung als
einzigartige Forschungsmethode fiir Ir-Verbindungen zu etablieren. Damit wurden die

Voraussetzungen fiir kiinftige Studien von magnetischen und elektronischen Eigen-




schaften von Ir-Verbindungen unter Extremenbedingungen geschaffen.

Der zweite Teil dieser Arbeit ist der Phononenspektroskopie mittels Nuklear Inelastis-
cher Streuung (NIS) gewidmet. Der Saphir-basierte Riickstreumonochromator wurde an
der Strahlfiihrung P01 von PETRA III konzipiert, aufgebaut und in Betrieb genommen.
Die sub-mK prézise Temperaturregelung ermoglicht hohe sub-meV Energieauflosung,
allerdings ist diese durch die Qualitdt des Saphirs auf wenige meV beschrankt. Es wurde
eine Energieauflosung von 1.3(1) meV bei 23.88 keV und von 3.2(4) meV bei 37.13 keV mit
diesem Monochromator erreicht. Durch diese Entwicklung konnten Phononenspektren
von Sb in defekten Pyrochlor-Ag-Sb-O-Verbindungen durch NIS bei 37.13 keV gemessen
werden. Phononenzustandsdichte fiir den Sb(II)- und fiir den Sb(V)-Platz wurden ein-
deutig ausgewiesen. Die Resultate iiber die gitterspezifische Schwingungsmoden ver-
anschaulichen den Einfluss der Gitterdynamik auf die Eigenschaften dieser Verbindun-
gen.
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Introduction

The recent development of high-brilliant x-ray sources significantly broadened the field
of condensed matter research, establishing most sensitive tools for understanding the
fundamental correlations between macroscopic and microscopic material properties [1,
2]. A vast amount of theoretical hypotheses proposed in the early years of the 20"
century became accessible for experimental proof with the modern light sources only
in the late 1980s - 2000s, with the evolution of the instruments for x-ray and neutron
scattering experiments [1, 2, 3]. Several interesting techniques, like coherent and in-
elastic x-ray scattering were newly developed and elaborated for general users of large
scale facilities in the last 30 years. Particularly, coherent elastic and incoherent inelastic
scattering techniques like x-ray magnetic scattering and inelastic x-ray scattering made
possible the direct measurement and correlation of microscopic magnetism [2], lattice
vibrations and electronic transport in one of the most interesting puzzle, the origin of
high-temperature superconductivity in 3d transition metal oxides (TMO) like cuprates
[4]. 3d TMOs demonstrate vast solid state physics phenomena including superconduc-
tivity, giant magnetoresistance, multiferroicity. These effects have been clearly explained

by strong correlations between electrons [5, 6].

The most recent studies propose heavy-element (high-Z) compounds to be the more at-
tractive subject of studies in the field of electron correlations [7]. Although these com-
pounds should show weak electronic correlation, strong coupling between spin and or-
bital electronic momenta modifies the ground state, and strong correlation between the
electrons in the ground state emerges. This phenomenon gives rise to a plethora of ex-
otic electron-confined structures like Weyl correlation, spin waves, topological states [7].
Notably, several of these states remain stable even at normal pressure and temperatures
slightly lower than room temperature [8, 9]. These recently observed correlations are
very intriguing since they involve both spin and orbital momenta, and reliable access to
experimental studies of this kind of interaction was elaborated only recently by x-ray and
neutron scattering techniques [10, 11, 12]. Particularly, the novel model of a spin-orbit in-
duced electronic j.ss = 1/2 state was established in iridates [13, 14] and the significant
impact of electronic spin and orbital moments and crystal field on the novel state was
shown by x-ray magnetic and inelastic scattering and by x-ray absorption spectroscopy
(see for instance Ref. [11, 12]). Most x-ray scattering and absorption techniques used
for studies of iridates utilize L-edge electronic transitions mostly sensitive to the elec-
trons on the outer shells whose correlations are not robust against high-temperatures

and pressures [15]. The macroscopic probes show that magnetic order in iridates is pre-




2 Introduction

served at temperatures as high as 200-300 K [10, 16]. Neutron scattering experiments on
iridate compounds are generally very challenging due to the high absorption by Ir, the
lack of large single crystals and the challenging interpretation of the results measured
on powdered samples. Magnetic structures modeled from the measurements have been
however reported in the recent literature [17, 18, 19], proposing several interesting effects
like twinning in SroIrO4 [17] and spin reorientation with the moments pointing along
c-axis when Sr2IrOy is doped by Mn [19]. These effects were not observed by x-ray scat-
tering techniques so far. The search for a technique which probes magnetism and charge
distribution in the intermediate scale, between nuclear spin magnetism probed by neu-
trons and spin and orbit magnetism of the outer electrons probed by conventional x-ray

techniques is, therefore, quite natural.

The purpose of a part of this thesis is to establish a new research tool for studies of mag-
netism and electronic properties in correlated systems by means of nuclear resonance
scattering (NRS), a powerful technique relying on the bulk sensitivity of high-energy
Mossbauer radiation and on the polarization of synchrotron radiation [2, 20]. This work
establishes NRS techniques for studies of magnetic and electronic properties at Ir nu-
clei with photon energies of 73 keV. The results were achieved due to the significant
development of the beamline instrumentation. Particularly, a special monochromator
was installed and elaborated for the beamline; during this work the fast detectors and
beam cleaning procedure have been established at PETRA III storage ring inspired by
the work with the high energy and low lifetimes of non-iron Mdossbauer isotopes. In
order to broaden the applications of NRS, lattice vibrational spectroscopy was demon-
strated for the first time on Ag-Sb-O compounds with pyrochlore structure similar to
that of iridates. This became possible by nuclear resonant inelastic scattering of highly
monochromatic 37 keV photons, an option which became accessible at the beamline with
a high-resolution sapphire backscattering monochromator built, installed and tested in
the framework of this thesis. Analysing the results of NIS on Ag-Sb-O, it is shown that
the DPS of the Sb(III) and of the Sb(V) in AgSb3O7 can be obtained from the total DPS of
Sb.

In the Chapters 1 and 2 I provide an overview on the geometry and physical properties
of the systems studied in this work. I present the physical models that characterize 5d
TMO referring to the recent theoretical and experimental studies on iridate compounds
in Chapter 1. Correlation effects and magnetism are briefly discussed in that chapter.
In the following Chapter 2 transport properties of Ag-Sb-O compounds are discussed

addressing the crystal structure which is similar to iridate compounds.

An overview on general formalism of hyperfine interactions and the probability of the
Mossbauer effect is given in the first part of the Chapter 3. Based on that treatment, I

give an overview of the main results of the dynamical theory of nuclear resonance scat-




tering in the Chapter 3. Particularly, I discuss the impact of multiple scattering and hy-
perfine interactions on the nuclear resonance scattering function in frequency and time
domains. Special accent is set onto the nuclear resonant scattering on %*Ir isotope: the
level schemes and radiation characteristics are discussed in detail for different hyperfine
interactions and polarization directions. I show that nuclear forward scattering is a very
sensitive technique for probing hyperfine interactions in iridates. The second part of the
Chapter 3 is dedicated to the treatment of nuclear inelastic scattering, a method used for
measurement of lattice vibrations. The formalism is described in steps for a model spec-
trum. As shown in the chapter 3, nuclear inelastic scattering is a valuable probe of site-

and element-specific lattice vibrations.

A discussion of experimental aspects is given in Chapter 4. Particularly, I give an in-
troduction to the dynamical theory of x-ray scattering with the focus on the design and
operation of high-resolution monochromators, arguing the vital role of monochromati-
zation in the suppression of non-resonant radiation in NRS experiments. I describe two
monochromator devices designed, installed and tested at the PO1 beamline of PETRA III:
a monochromator for 73 keV photons with intermediate energy resolution used for the
hyperfine spectroscopy on Ir compounds, and a high-resolution sapphire-based backscat-
tering monochromator used for vibrational spectroscopy on any Mossbauer isotope with
transition energy in the 20-50 keV range. The detection of the NRS signal and the purity
of the electron beam in the PETRA storage ring are discussed in Chapter 4 and several
developments in this area are described in detail.

The following Chapters 5-7 are dedicated to the results obtained on particular materials
studied in this work. In Chapter 5 I show the results of the first Nuclear Forward Scatter-
ing (NFS) studies on Ir metal. The experimental data obtained for the 15-300 K temper-
ature range are interpreted by dynamical scattering theory, and the temperature depen-
dence of the Lamb-Mdssbauer factor is extracted. Using complementary techniques of
inelastic neutron scattering and of x-ray diffraction I derive thermodynamic parameters
like the Debye temperature, mean atomic displacement parameter and force constant in
Ir metal, making a comparison with ab initio studies on Ir given in the literature. Fi-
nally, I discuss the speed of sound in Ir derived from the present and previous studies. I
show the first NRS studies of hyperfine interactions in iridate compounds in Chapter 6.
Here,  unravel the electric field gradient in iridates with metallic ground states, IrO, and
SrIrOs. I show that no magnetic hyperfine interactions are present in these compounds
at the temperatures above 15 K. I present first measurements of the magnetic hyperfine
fields at Ir in the antiferromagnetic insulator SroIrO,4, showing a change in the beating
pattern of NRS time-spectrum upon application of external magnetic field of 0.53(5) T.
All experimental data are interpreted by means of the dynamical theory of NRS.
Chapter 7 demonstrates first vibrational spectroscopy on silver antimonides, Ag-Sb-O,
carried out at the P01 Dynamics Beamline of PETRA III. Using conventional formalism of

nuclear inelastic scattering, I show the possibility to separate the contributions of Sb(III)
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and Sb(V) vibrational modes to the total spectrum of Sb vibrations.
Chapter 8 concludes the results and provides a brief outlook on future developments
linked to the current work.




1 System under study: transition metal

oxide iridates

Complex oxides of 5d transition metals (TMO) attract large attention in recent years due
to many elusive properties. Among others, the interesting phenomena of extended 5d or-
bitals and strong coupling between angular momentum and spin of electrons in these
compounds give rise to exotic physical models of topological insulators [7], systems
which should have metallic conductivity according to the conventional band theory but
show insulating behavior [21]. The observation of unconventional superconductivity in
the 4d oxide SroRuQy [22] triggered the search of this effect in the isostructural 5d iridate
perovskite SrplrOy4. Detailed theoretical studies proposed charge and magnetic interac-
tions in iridate compounds to be in strong contrast to those observed in 4d and 3d oxides

due to the strong mixing of orbital and spin momentum of the electrons in iridates [7].

Iridium is a 5d transition metal which has [Xe] 4f146s%5d" electron configuration. The
2 s— 7 d—electrons can be considered as valence electrons which participate in the bond-
ing of Ir in a solid. When iridium is placed in oxygen surrounding, which is the case
for the rutile structure of IrO,, two electons from the 6s shell and two electrons from the
5d shell participate in the bonding and will be transferred to the 2p orbital of oxygen;
the residual 5 electrons will occupy the 5d orbitals of Ir(IV) [10]. The transport proper-
ties are determined by the distribution of the electrons in the orbitals; the distribution is
determined by the energy spectrum of the orbitals which is in turn determined by their
configuration [21].

At this point the configuration of the 5d orbitals should be discussed. Crystal field theory
allows to simplify the treatment of atomic orbitals by considering the symmetry of the
ionic coordination. The orbitals are treated by their projections on manifolds defined by
symmetry [23]. For the case of octahedral coordination of the iridium ion, two manifolds
are possible: a doubly degenerated e, manifold which is the basis for d-orbital projec-
tions d.» and d,2_,2, and a triply degenerated ¢5; manifold which includes d,,, d.. and
dy. projections [23]. The effect of this splitting is known as crystal electric field (CEF); it
is shown in Fig. 1.1.

The 2 orbitals of the e, manifold point towards the oxygen ions and, due to the elec-
trostatic repulsion between iridium and oxygen electrons, have higher energies than the
orbitals projected on the ¢, manifold [23]. Thus, electrons tend to fill first the ¢, orbitals.
Hund’s rule proposes that energy of the half-filled shell is the lowest when the spin is

maximized, thus, giving a proposition that electrons can occupy the higher e, state. In
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iridium oxides and iridates discussed later this is not the case: the separation between
eq and to4 orbitals is much larger than the Hund’s coupling constant, and therefore the 5

electrons will occupy the lower ¢y, orbitals forming a low, spin-1/2 state (Fig. 1.1).

Another contribution to the electronic state in iridium compounds is the strong coupling
between spin and angular momentum, so called spin-orbit coupling (SOC), of electrons
in 5d orbitals. This is a very interesting phenomenon which stimulates a large part of
research nowadays. The reason is that the SOC scales with the fourth power of the atomic
number and for 5d elements it is an order of magnitude larger than in 3d elements [24,
25]. Therefore, SOC cannot be treated as a small perturbation to the CEF in iridium

compounds. The Hamiltonian for the spin-orbit coupling can be written by:

Hso=X-S-L (1.1)

with S and L the operators for spin and orbital angular momentum and A the constant

of spin-orbit coupling.

In the case of a large SOC the Hamilton operator of the system does not commute with S
and L separately, thus, spin and orbital momentum cannot be observed independently.
However, the Hamiltonian commutes with the total angular momentum .J2 operator and

thus J? is a good quantum number which can be observed experimentally [26].

In order to understand the meaning of .J in iridium compounds the angular momentum
operator L should be examined. It can be shown that for the 5d-states the matrix elements
of L are zero for the e, manifold [27, 11]. 5 valence electrons of iridium occupy triply-
degenerated ¢y, manifold. Therefore, there is one hole in the ground state and the spin-
orbit coupling problem is simplified: instead of coupling orbit and spin for each of many
electrons, so-called j-j coupling [26], one can couple spin and orbital moments for one hole
[13, 14] which is easier. By doing this the matrix elements of .J are equivalent to the matrix
elements of the — L operator for p-states in the ¢y, manifold [11]. Thus, the projection of
its eigenvalue [ onto the ¢35, manifold can be given by the effective angular momentum
lefy = —1[23]. The addition of SOC removes the 3-fold degeneracy of the ¢5, manifold.
For IrO;y, as discussed before, only one unpaired electron can be found in to4. The ¢, state
can be described by the total angular momentum j.s; = l.¢s & s and therefore two states
are possible: j.¢s = 1/2 doubly degenerated by magnetic quantum number m = £1/2,
and j.ss = 3/2 quadruply degenerated by m = +1/2 and £3/2 [11]. Inspecting energy
eigenvalues of these two states one can notice that j.;s = 1/2 has higher energy due
to the minus sign in L, and that the energy gap between j.;; = 1/2 and jor; = 3/2 is

3\/2 (Fig. 1.1). Recent experimental studies of resonant elastic x-ray scattering and x-ray




Figure 1.1: Splitting of 5d orbitals and electronic states in the presence of the crystal electric field
(CEF) and the spin-orbit coupling (SOC). The configuration of 5d orbitals is shown
for the case of CEF. Black arrows show electronic spin and blue rectangles depict the
state occupancy [12, 29]

absorption spectroscopy at the near edge confirmed the presence of the |j.f¢, m;) states
in IrO; [28]. Therefore, the magnetic moment in this compound exhibits both orbital
and spin components. It is worth to remark that the spin-orbit interaction constant A in
iridates is typically about 0.4-0.5 eV which is an order of magnitude larger than in 3d

compounds [7].

The 5 valence electrons present in the t5; manifold will occupy |jeff, m;) states according
to the Pauli exclusion principle: 4 electrons on the lower j.¢; = 3/2 state and 1 electron
on the upper j.rs = 1/2 level. This occurs without violating Hund’s rules because the

Hund’s coupling constant is much lower than the energy gap between j ;s = 3/2 and
Jefr = 1/2[12].

The electronic structure of IrO, described above shows a hole in the upper energy level
and thus IrO; should be metallic. Experimental work on IrO; confirms this statement
[28].

The situation becomes more difficult when IrOg octahedra are placed in a layered struc-

ture like that of the perovskite iridate SroIrO4. The unit cell of SroIrO4 has a tetragonal
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symmetry with the space group I4; /acd (Fig. 1.3) [16] and the 1 symmetry of the Ir site.
IrOg octahedra form a squared lattice in the a-b plane in this compound (Fig. 1.3). It was
observed experimentally that at ambient conditions Sr2IrOy is an insulator, with a narrow
band gap of about 0.4 eV, and shows an antiferromagnetic transition at 240 K [16]. This
observation is surprising because ab initio calculations and conventional band theory
predict metallic behavior for this compound [16]. Several theoretical models, involving
Coulomb interactions and coupled Coulomb and magnetic interactions, have been de-
veloped in order to explain the unconventional behavior [7]. Fig. 1.2 shows the change
in the band structure when the Coulomb repulsion between electrons in corner-sharing
IrOg octahedra occurs. The system can be described by the Hubbard model which as-
sumes an interplay of two Hamiltonians, a kinetic one describing tunneling of electrons
(‘hopping’) between the site of the lattice Hy;, and the interaction term H; which forces

electrons to localize at one site of the lattice [26]:

H=Hy+Hi~a - W+b-U (1.2)

with W the bandwidth of the non-interacting valence electrons.

The relation between the energy of the Coulomb repulsion U and W should be consid-
ered at this point (Fig. 1.2). In the absence of Coulomb repulsion (U = 0), a single electron
band is formed and the Fermi level is located in the middle of the band: this is the case
of a classical metal [21]. For the case of weak correlation when 0.5 < U/W < 1 the elec-
trons can be described as quasi-particles whose behavior can be approximated by a free
electron model [5]. In the regime of strong correlation between electrons, U/W >> 1, the
electrons are localized in two bands, which are called lower and upper Hubbard bands
[5]. The electronic structure for this case is the result of an interplay of Coulomb repulsion
and SOC [5]. For 4d TMO it was shown that U is relatively small due to the strongly de-
localized 4d states, and with the relatively low SOC, the ground state is metallic [30, 31].
In 5d TMO the SOC splits the ground state into j.rs = 3/2 and j.f; = 1/2 states, as men-
tioned before, and the bandwidth of the j.;s = 1/2 state is narrow, comparable in width
to U. This leads to a splitting of the j. ;s = 1/2 state into lower and upper Hubbard bands,
separated by U, and the material becomes an insulator. Probing j.rs = 1/2 with angular
resolved photoemission spectroscopy and x-ray resonant magnetic scattering validated
this concept for SrolrO4 and BasIrO4 compounds [32, 33].

An interesting consequence of the strong coupling of electrons (the case of U/W >> 1)
is that the electrons are mainly localized and antiferromagnetic order between nearest
neighbors occurs. In this case the magnetism can be treated by Heisenberg model with

the Hamiltonian given by [12]:




Figure 1.2: Effect of SOC and Coulomb repulsion in iridates. Left panel displays band structure
of corner-sharing octahedra. Right panel shows electron band structure for different
ratios of electron interaction energy U and bandwidth of noninteracting electrons
W. (A) is the case of free electrons (classical metal), (B) shows the case of a weak
correlation (small U, Fermi liquid metal) and (C) is the case of strong correlation
between electrons (moderate U, Hubbard model); the case of localized electrons (Mott
insulator) is shown in panel(D). Adapted from [12, 5]

~ A~

H=1J-5;-5; (1.3)

With J the Heisenberg constant for the exchange between the angular moments of two
nearest neighbors, S; and S;. Note that S; - §j is the scalar product. This model is suc-
cessfully used to describe low energy excitations in the layered perovskite iridates [11].
Hard X-ray RIXS can be used to obtain the complete magnon dispersion curves across the
entire Brillouin zone [11]. The dispersion of magnetic excitations in SroIrO4 does resem-
ble that in the high-temperature superconductor La,CuOy [34], giving a perspective for
realizing of superconductivity in iridates. A very interesting result reported in the Ref.
[11, 10] is that the energy of magnetic excitations is of the same order of magnitude as
the Coulomb interaction U, thus suggesting the same origin of electronic and magnetic
properties.

Note that for the magnetic properties of layered iridates the magnetic moments in the
model j.rr = 1/2 state are determined by magnetic quantum numbers given by the
scheme of electronic levels. The scheme of electronic levels is in turn strongly dependent
on the interaction between electrons of neighboring IrOg octahedra. Therefore, magnetic
properties of iridates, in contrast to the pure spin magnetism, do depend on the configu-
ration of d-orbitals given by the lattice geometry and bonding [26].

The total magnetic interaction is described by two contributions: the first one is an
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isotropic term describing antiferromagnetic order by equation 1.3 and the second is an

anisotropic term, usually called Dzyaloshinskii-Moriya interaction [14]:

HZJl'Si-S'j—i—JQ'[S'iXSAj} (1.4)

with J; and J; the coupling constants for isotropic and anisotropic interaction, respec-
tively, and [SZ X §j] the vector product of S; and ;.

The magnitudes of the isotropic and anisotropic interactions depend on the geometry of
the lattice [26]. In iridates, there are two boundary conditions for the orientation of the
IrOg octahedra that must be considered [14]:

(a) Corner-sharing geometry with an angle of 180° between the Ir-O and O-Ir bonds.
For this case only the first term in equation 1.4 is considered and the anisotropic

interaction is zero due to parallel orientation of S; and S;.

(b) Edge-sharing geometry with an angle of 90° between the bonds, also called "honey-
comb lattice". For this case the interaction is given solely by the anisotropic part, as

the scalar product S; - S; in eq. (1.4) is zero for perpendicular S; and S;.

The structure of the layered perovskite iridate SroIrO4 with corner-sharing geometry and
slight (~ 12°) rotation of IrOg octahedra around the c-axis (Fig. 1.3) does resemble the
conditions for the case (a). It was recently shown that in strontium perovskite iridates
the magnetic interactions measured by RIXS and the magnetic structure measured by
x-ray magnetic scattering can be described by the isotropic Heisenberg interaction with
a small admixture of an anisotropic term [11]. Particularly, the Heisenberg exchange
interaction J; = 60 meV was derived [11] from the RIXS measurements [35] and the
Dzyaloshinskii-Moriya interaction energy J, ~ 27 meV was estimated from the RIXS

and XRMS measurements [36] on SroIrO, single crystals.

For iridates RpIrO, (R - rare earth ion) with pyrochlore structure the IrOg octahedra show
edge-sharing geometry with a slight deviation of the Ir-O and O-Ir bonding angles from
90°. It was shown by RIXS that the magnetic excitations in SmylIr,O7 pyrochlore iridate
can be modeled by the Hamiltonian given by equation 1.4 with a significant anisotropic
contribution [38]. The anisotropic contribution is believed to be due to magnetic excita-
tions with energies of several dozens of meV.

The resolution of currently used RIXS spectrometers is in the order of 20 meV which is
higher than the energies of the magnetic excitations and splitting by crystal field pro-

posed by experimental [11] and theoretical [14] studies. Inelastic neutron scattering ex-
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Figure 1.3: (A): crystal structure of SroIrOy according to Ref. [16]. (B, D): Magnetic stacking
patterns along the c-axis according to Refs. [37, 36]. Blue arrows show jess = 1/2
moments. The external magnetic field is zero in the (B) case, and larger than 0.2 T
in the case (D). Panels (C) and (E) show the net magnetic moments within the IrOg
layers and their stacking pattern along the c-axis in zero field (panel C) and in the
fields larger than 0.2 T (panel E).

periments on iridium compounds are extremely difficult due to: (i) very high neutron
absorption cross-section of iridium [39], and (ii) the small size of iridate single crystals.
At this point NRS can be a suitable local, isotope-specific probe of electronic and mag-
netic properties [40]. The first realization of NRS experiments on Ir compounds is shown

in this work.
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2 System under study: binary oxides
Ag-Sb-O

Chemical methods for Hy and O production from water pave a way for a search of
new, versatile catalytic materials. A so-called water splitting reaction, might be the most
interesting and technically feasible method [41, 42]. In this method electrons and holes
generated in a semiconductor by the photo-effect reduce 2H™ to Hy and oxidize 20%~
to Oy [43]. The most intriguing possibility is the use of solar light for the generation of
the charge carriers . Therefore, a relevant material for water splitting should effectively
harvest the visible light with photon energies in the 1.6-3.3 eV range [41, 43, 44].

Binary oxides attract much attention due to the high catalytic activity in water oxidation
processes. It was realized that the band gap in many of these compounds is close to the
energies of visible light photons, and, - which is more important - the gap can be tuned in
a wide range introducing defects or substituting the metal ions in the structure [43, 44].
Particularly, solid solutions with general formula Ags_,Sba,,O64, (0 < z < 1) studied
in this work are transparent semiconductor oxides with band gaps in the 2.23-2.72 eV
range showing very low absorption of visible light [44, 45]. Especially interesting is the
compound with z = 0, y = 0 which is more efficient in the production of O3, whereas
Sb-rich compounds with = ~ 1 are more active in the reduction of HT, triggering the

search for a composite system [46, 44].

A deeper understanding of factors influencing the electronic structure of Ags_,Sbo ,Ogy
solutions became necessary. Based on optical and electrical measurements, calculations
of electronic band structure show that the direct band gap in AgSbOs, 0.1 eV, is the
smallest among mostly studied pyrochlore catalysts [47, 48]. Notably, the direct band
gap is perfectly tuned for transmission of middle infrared waves with a wavelength of
12-15 pm, exactly in the transmission window of the Earth’s atmosphere [49]. Therefore,
this material should be a high-efficient catalyst in photochemical reactions [42] which
was shown in the Ref. [50]. The calculations in the Ref. [47] show that the conduction
band exhibits a significant dispersion. The indirect band gap which determines electric
conductivity at ambient temperatures, is about 3 eV in these materials, comparable with

the band gaps of the semiconductors most frequently used in photovoltaic devices [51].

The Ag-Sb-O compounds exhibit pyrochlore structure which for an ideal case, formula
A2 B206Q’, built by framework of BOg octahedra with intercalating network of O"A4,
tetrahedra (fig. 2.1). The two limiting compounds of the Ags_,Sbo, ,Og., solid solution
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row, AgsSbaOg (z = 0) and AgSb3O7 (x = 1), have a defect pyrochlore structure and
should be discussed in detail. Ag,Sb2Og exhibits Ag ions at the A-site and Sb ions at the
B-site (fig. 2.1); O’ sites can be fully vacant, and the formula Ag>Sb,Og is often shortened
to AgSbOs in the literature [48]. About a half of Ag at the A-site in AgSbOj3 can be substi-
tuted by Sb resulting in a stoichiometric composition AgSb3O~. It was shown in Ref. [45]
that the electronic band gap and catalytic activity significantly change upon transition
from AgSbOs to AgSb3O7 and therefore it is interesting to study bonding in these com-
pounds. The geometry of the defect pyrochlore structure is intermediate between corner-
and edge-sharing octahedra with known interactions, already discussed in the section
1. The Ag-Sb-O compounds are thus good model systems for studies of correlations be-
tween structure, electronic and lattice excitations at the transition from one geometry to
another [47]. Indeed, the factors influencing positions and bonding in Ag-Sb-O systems
are not well understood, though relations between site disorder, valence and vibrational
spectrum do provide conclusions about the origin of high conductivity in these com-
pounds and help to engineer more efficient materials [47, 48, 44]. For instance, studies
by x-ray diffraction (XRD) show that, in contrast to the perovskite structure, the angles
between Sb-O-Sb bonds in AgSbOs are significantly lower and the distance between Sb
and O ions is not very sensitive to the size of the A-site cation [47]. This suggests that
filling pyrochlores with high-valence ions on the A-site could raise their catalytic activity.
Measurements of visible light absorption [47] suggest that the band gap is mainly deter-
mined by bonding in the SbOg octahedra and the size of the Ag cation which is in turn
determined by its oxidation state [52].

Figure 2.1: Crystal structure of anion-deficient pyrochlore Ag2SbaOg01 (AgSbO3) compound
[47]. The Ag ion (grey) is in the A-site voids surrounded by SbOg octahedra. Figure
is drawn according to the data from Ref. [53].

Because the Ag in Ag-Sb-O are electropositive ions, it might be naively assumed that
these ions do not contribute to the electronic states near the Fermi level. However,
ab initio studies suggest that the strong contrast between the size of the direct and indi-
rect band gap is related to the strong mixing of 5s orbitals of Ag and Sb into the conduc-

tion band. A similar effect is observed in the stanate perovskite CdSnO3 and explained by
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interaction between Cd»O and SnyOg sublattices [47]. X-ray photoemission spectroscopy
and ab initio calculations show that a similar effect occurs at the top of the valence band
of AgSbOs. Here, electronic states are formed by overlapping 2p— and 4d orbitals of O
and Ag ions, respectively. Therefore, the position and bonding of Ag, Sb and O ions
has significant impact on the electronic structure and should be studied in detail. Two
good model systems for studying the interplay of bonding and electronic properties can
be AgSbO3 and AgSbs;07, because the change in bonding in AgSb3Oy is only due to the
presence of vacancies on the oxygen site: the case is analog to the substitution of Ag by
the metals Na, K, and Tl as proposed before in the Ref. [48].

The analysis of XRD spectra is generally challenging for these compounds due to the
high absorption and small difference in structure factors for Ag and Sb ions. Moreover,
AgSbO3 and AgSbsO7 are usually not stoichiometric, having structural disorder which
makes the determination of the oxygen ion positions especially difficult. Although the
positions of ions and electronic structure can be correlated by photoemission and absorp-
tion spectroscopy [50], the results are generally difficult to interpret for the bulk material
[44, 45]. Neutron diffraction can be used as a probe for locating oxygen ions, despite of
the high neutron absorption cross-section of Ag [48]. Indeed, very interesting informa-
tion has been found by recent neutron scattering measurements on AgSbOs3 [48]: upon
substitution of Ag by Na, K, and TI the length of the Sb-O bond increases which promotes
a decrease of the Ag-O bond length, and the same effect is expected from the increase of
the oxygen content, as it is the case in AgSb3O7. Because the maximum energy of the
valence band is mainly determined by the overlap of Ag and O orbitals, the decrease of

the Ag-O bond length and increasing overlap will significantly change the band gap.

A more closer look to the structure of the Ag-Sb-O compounds shows that Sb ions in
AgSbOs are present in the oxidation state Sb(V), while AgSb30O7 contains Sb ions in both
Sb(III) and Sb(V) states [45], which might be considered as sublattices with different oxy-
gen coordination of Sb. The hypothesis of two sublattices is nicely proved by Mossbauer
spectroscopy studies on AgSbOs3 [53] and on AgSbsO7 [45]. It is shown that AgSbOs
(only Sb(V)) is solely characterized by a single line [45, 53], while AgSb3O7 exhibits an
additional doublet due to the presence of Sb(Ill) (fig. 2.2) [45]. Considering line areas
on the fig. 2.2, a Lamb-Mossbauer factor of 0.84(1) for the Sb(V) oxidation state can be
found, which is larger than the Lamb-Mossbauer factor of 0.63(1) for Sb(Ill) [45]. This
effect might be explained by smaller length of the Sb(V)-O bonds compared to that for
the Sb(IIT)-O bonds. An analogous effect is observed in iron oxides with Fe(III) and Fe(II)
oxidation states [54, 52]. A smaller bond length should also reflect in the higher force
constants for Sb(V)-O bonds [52].

Nuclear Inelastic Scattering (NIS), explored in this work, is a well suitable technique for

studies of bonding parameters and establishing correlations between oxygen deficiency
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Figure 2.2: Mossbauer spectra from AgSbO3 and AgSbsz Oy obtained at 10 K and corresponding
fits. AgSbOs contains only Sb(V) (red line), AgSb3O7 exhibits an additional dou-
blet related to Sb(IIl) (blue line). Black lines show cumulative fit and the green line
corresponds to the minor SbOy impurity in AgSb3O7. Reproduced from Ref. [45].

and electronic properties. Several lattice dynamics parameters measured by NIS should
be mentioned in detail, while a detailed treatment of the NIS technique is given in the
chapter 3.4.2. First, NIS probes directly force constants of Sb-O bonds by measuring the
density of phonon states of Sb ions only. Second, the speed of sound, measured by NIS,
is a suitable probe of bond strength [55, 54]. High resolution of 3.2(4) meV (FWHM) ob-
tained in the NIS experiment in this work does help to measure low-energy vibrations
and therefore to determine elastic properties. It is worth to emphasize that the vibra-
tions of Sb(V) ions should have higher energy than those of Sb(IIl) due to the smaller
bond length since higher Lamb-M&ssbauer factor for Sb(V) [45]. Thus, the contribution
of vibrations of Sb(III) ions to the total vibration spectrum of AgSb3;0O7 is very low at el-
evated temperature and the total vibration spectrum is mainly determined by vibrations
of Sb(V) ions. AgSb30y is therefore an interesting model system for the development of
the NIS methodology: measuring the vibrations of Sb in AgSb3O7 at low and high tem-
peratures allows one to differentiate experimentally between vibration spectra of ions
with different oxidation states.
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3 Theory

3.1 Hyperfine Interactions

The strong interaction between protons and neutrons in nuclei results in discrete nuclear
states. Similarly to the electron shell model, these states can be described in terms of a
nuclear shell model [56] with wave functions which determine important properties of
the states, such as energy, parity and spin. Since the bonding inside the nucleus is very
strong, energies of excited states are high and are typically in the range of several keV up

to MeV. This work considers the 1°* nuclear excited states with energies up to 100 keV.

Electric and magnetic fields created by electrons interacting with the nucleus lead to so-
called hyperfine interactions. These interactions perturb the nuclear states, splitting and
shifting them. The effect is described by a Hamiltonian given by a sum of electric and
magnetic field contributions. Here, the most significant terms are the isomer shift ﬁis,

electric quadrupole Hg, and magnetic dipole term H [56]:

H=Hy+Hj,+ Ho+ Hy + ... (3.1)

The H, term describes the interaction inside the nucleus. It does not depend on the dis-
tribution of the electronic charge around the nucleus and therefore it is not discussed
further.

The H;,, the electric monopole interaction term, describes the Coulomb interaction be-
tween the charge in the nucleus and the shell electrons which penetrate the nucleus and
result in a non-zero electronic charge density at the nucleus. This effect leads to an en-
ergy shift of the nuclear levels. The configuration of electron shells is different for dif-
ferent chemical environments. Thus chemical environments in different materials can
be distinguished by probing the corresponding energy shifts of the nuclear levels. Since
the interaction provides shift, the measurement of interaction strength is relative and re-

quires a reference.
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Assuming that the electronic charge density at the nucleus is constant, the energy of

nuclear levels in sample under scope is shifted by:

2
AE;, = gZGQAp (0) (< R? >, — < R? >,) (3.2)

relative to the energy of levels in the reference sample. In the eq. (3.2) Ap(0) is the
difference in electronic charge density at the nucleus in the sample and in the reference.
This difference is determined by s-electrons. < R? >, and < R? >, are the mean square
radii of the nucleus in excited and ground state, respectively. Z is the number of protons
and e is the elementary charge.

The equation (3.2) gives the expression for the so-called isomer shift. It is found that any
change in the valence shell of an atom, like a change in bonding, oxidation and spin state,
affects the density of s-electrons in that atom. Therefore, the isomer shift can be used to
characterize chemical and magnetic parameters of materials [54]. For instance, there is a
correlation between the isomer shift and the valence state of an ion, as shown in the Fig.

3.1 for the case of 123Ir nucleil.

Figure 3.1: Dependence of the isomer shift on the Ir oxidation state (given by number in brackets)
in Ir compounds [57, 58]. The shift is given relative to iridium metal reference.

'the mm /s energy units are commonly used in nuclear spectroscopy. It can be converted to conventional
energy units by the following equation: AE;, [eV] = B, [eV]. 2Zi=lm™/5] with B the resonance energy,
c the speed of light in vacuum. For the case of 73 keV resonance in '**Ir the conversion is:
AFE;s [neV] ~ 243.33 - AE;; [mm/s]
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There is significant thermal motion of the nuclei at elevated temperatures. This effect

changes the measured isomer shift by the so-called second-order Doppler shift §sop:

OF =60FEy + dsop (3.3)

Probing the temperature dependence of dsop gives information about the Debye tem-
perature, which is an indicator for the rigidity of the lattice and is additionally sensitive
to the environment of the nucleus. A detailed discussion of the importance of the Debye

temperature is given in the section 3.3
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pal axis pointing in the direction of B. m: magnetic quantum number. Example of the
73 keV Massbauer transition in 193Ir nucleus. Upper panel illustrates EFG interac-
tion with perturbation by a small magnetic interaction, while lower panel shows mag-
netic interaction case perturbed by a small EFG. Note that the radiation has M1+E2
character, thus transitions with Am = 0, £1, +2 and AI = 1,2 (8 lines) are allowed.
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The next term in the expansion (3.1) is the electric quadrupole interaction Hy. It is given
by the interaction between the charge distribution inside the nucleus and the nonsym-
metric electric field around the nucleus created by the spatial distribution of electrons
surrounding the nucleus and neighboring atoms of ions. If the electric field potential
around the nucleus is not isotropic, the deviation from spherical symmetry is given by
the electric field gradient (EFG) which is a 3x3 second rank tensor of second derivatives

of the electric potential:

o*V

Vij - 89518:5]

(3.4)

It is possible to find a coordinate system where V;; = 0 for i # j and V,, + V,,, + V.. = 0.
Thus, the EFG is fully determined by two parameters: its projection on the quantization

axis, V,,, and asymmetry parameter given by:

| Var = Vi

i (3.5)

The asymmetry parameter  becomes zero when the nucleus site has a threefold or higher
symmetry.

The electric field gradient V., has two contributions. One is the lattice contribution V..,
which is present when the Mossbauer atom resides in a lattice with non-cubic symmetry
or any impurities or lattice distortions are located close to the atom. This contribution is
not directly transferred to the nucleus, but via polarization of the electronic shell, which
enhances the impact of lattice contributions to the EFG. The second contribution to the
EFG is an anisotropic distribution of electrons in the valence shell V.,,;. The general
expression for the EFG is given by:

Ve = zzlat(l - 'Yoo) + V;:zval(l - R) (36)

where 7, the Sternheimer anti-shielding factor determines impact of polarization of elec-

tronic shell on V., ,, and R shows the attenuation of V.., by core electrons.
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The electric quadrupole interaction splits nuclear levels into | (2] + 1)/2] sub-levels. The

energies of sub-levels are given by:

_ eQVz;
S 4I (21 —1)

Eq (3mi—I(I+1)4/1+ 7;2 (3.7)

where m; the magnetic quantum number of sub-level, @ is the electric quadrupole mo-
ment of the nucleus, and e is the elementary charge. Only nuclear states with a spin
I > 1/2 show non-zero quadrupole moment and exhibit quadrupole interaction. If for
instance the nuclear state has a spin I = 3/2 it is split into two sub-levels while the state
with spin I = 1/2 is un-split; this is for instance the case for the nuclear levels of 1%Ir
and 5"Fe. The quadrupole moment @ of the nucleus is positive for nuclei which have
prolate shape and negative for oblate shape. It is evident from eq.(3.7) that a change in
the quadrupole interaction can only occur if the EFG is changed (change in V. or in 7).
For the case of axially symmetric EFG (n = 0) sub-levels in the ground state with a spin
I = 3/2 have eigenvalues Eg (+3) = SQ% The energy gap between split sub-levels, the
so-called quadrupole splitting, is given by the difference of two transition energies, from
the excited m, = | £ 1 > to the ground m, = | = > and from the excited m, = | £ 1 >

to the ground m, = | £ 2 > state:

. 3 1 o eQV..
AEq = Eq(5) - Eqlt3) = % (3.8)

The situation becomes more complicated if the EFG is not axially symmetric ( # 0). In
this case the sub-levels are given generally by superposition of m -states and the intensity
of the transition can vary according to n and the superposition law [56]. However, states
with half-integer spin, which is the case for the ground and first excited states in >’Fe and
193, respectively, remain doubly degenerate for any asymmetry parameter. This is the
consequence of the Kramers theorem which states double degeneracy for systems with

half-integer spin in electric field [56].

The next term in the Hamiltonian given in eq.(3.1) is the magnetic hyperfine interaction
H)y. This yields splitting of nuclear levels similar to the Zeeman effect usually observed
in electronic systems by optical spectroscopy. The magnetic hyperfine interaction, or nu-
clear Zeeman effect, was not possible to measure for ground and excited state simultane-
ously until the discovery of the Mossbauer effect. Nuclear Magnetic Resonance (NMR)
measures magnetic moment of ground state and perturbed angular correlation (PAC)
technique probes moments of excited state only.

The magnetic hyperfine interaction is the interaction between the nuclear magnetic mo-

ment and the magnetic field at the nucleus. The eigenvalues of the Hamiltonian H,y,, the
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energies of the sub-levels, are given by:

E,, = —gnpunmy|Besyl (3.9)

where gy is the Landé factor, the g-factor for nuclear levels; uy = 2;’1 -~ 5.051- 10727]/T
is the nuclear magneton, m; is the magnetic quantum numbers of the level with the spin

I, and |B. /| is the effective magnetic field at the nucleus.

The magnetic hyperfine interaction splits nuclear levels with spin I into (27 +1) sub-levels
with magnetic quantum numbers m;. Analyzing eq. (3.9) an interesting observation
appears for the case of pure magnetic hyperfine interaction. In this case the excited and
ground states split by |E,, — E_,| = 2gnpunI|Bess| (energy gap between m = +3/2
and m = —3/2 and between m = +1/2 and m = —1/2 in the Fig. 3.2: lower panel, in

the center). Moreover, the distance between the sub-levels is equal to |E,, — E,—1| =

NN |Begy |-

The possible transitions are given by selection rules which determine the spatial distri-
bution and polarization of emitted radiation. Therefore, it is worth to briefly review the
quantum mechanical description of radiation emitted by de-excitation of discrete levels.
Generally, a photon emitted in a transition from a state with spin I, to the state with the
spin I, can carry angular momentum L in the range |I. — ;| < L < I. + I,. Particu-
larly for the case of *3Ir and "Fe, the angular momentum carried by the photon can be
L = 1and L = 2 since the transitions occur between the states with the spins 1/2 and 3/2.
Moreover, the ground and excited state have the same parity (s. Fig. 3.2), and therefore
the emitted radiation can be characterized by electric quadrupole (E2, where 2 denotes
photon angular momentum L = 2) and magnetic dipole (M1, with 1 pointing to photon
angular momentum L = 1) radiation [56]. The corresponding change in magnetic quan-
tum number is Am = 0, &1 for M1 radiation and Am = 0, £1, +2 for E2 radiation for the
case of unpolarized radiation?. Therefore, 8 lines can be observed in this case as shown
in the Fig. 3.2 [56].

The magnetic field |B.f¢| in (3.9) measured by Méssbauer or NRS technique is the sum of
several contributions and usually called effective field. Generally, the B is a vector sum
of two components, the field produced by the electronic configuration of the atom itself,
called magnetic hyperfine field B,y and the field produced by macroscopic conditions for

the sample By,

?Polarized radiation is sensitive to preferred orientation of magnetic moment. This case will be discussed
in details in the NRS theory section 3.4
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Beff = Bhf + Bourr (310)

The Bj,f is a vector sum of magnetic fields produced by direct and indirect interactions
of the electronic system with the nucleus.

B/, s has four contributions:

Bhf = Beore + Borp + Bdip + Btrhf (311)

Biore is the core polarization term. It exists because core s-electrons can penetrate the
nucleus. A non-zero probability of finding an electron in the nucleus leads to the inter-
action between the nuclear magnetic moment and the spin density of core electrons at
the nucleus. B, is usually called Fermi contact interaction and it is the most significant
contribution to By s. The origin of the Fermi contact interaction is the spin polarization
of core electrons. From quantum mechanics it is known that the energy of interaction
between electrons is maximal for electrons with opposite spins. For the Ir** ion studied
in this work, the electronic d shell is half-occupied by electrons and cumulative spin of
d orbitals is non-zero. The non-zero cumulative spin of d electrons polarizes the spin of
the system and core electrons with opposite spin are thus repelled into the direction of
the nucleus, increasing the density of s-electrons (and electron spin) in the nucleus. The
Fermi contact field has thus an opposite direction to the field generated by the spins of

the d electrons. The same is correct for f-electrons, as shown for Eu [59].

The orbital angular momentum interaction term B,,; exists due to the interaction of the
magnetic moment of the nucleus with the total orbital angular momentum of electrons in
the open shells. It cancels for angular momentum L = 0, for instance, for ions with fully-,
half- and non-occupied outer shells. By, is given by the direct interaction between the
spin of the nucleus and the spin of the valence electrons. The dipolar term Bg;,, is zero
for fully-, half- and non-occupied shells and if the environment of the nucleus has cubic
symmetry. It is worth to note that typically Bg;, oc AEq [60].

By, is the transferred hyperfine field. It exists due to the interaction between the spin
of the nucleus and the spin of magnetic ions surrounding the nucleus. An important
contribution to the transferred hyperfine field is the polarization of core electrons of non-
magnetic ions by magnetic ions, also called "super-exchange interaction". By, s may also
arise with metallic bonding, where conduction electrons penetrate the nucleus and polar-
ize it. The effect which is called RKKY (Ruderman, Kittel, Kasuya, and Yosida) interaction

[21]. A non-cubic environment of nucleus can also lead to a non-zero By, s term.

The field B, is determined by macroscopic conditions like externally applied magnetic
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tield B¢, and a demagnetization field. B, is given as the vector sum:

Bsurr = Beat + DM (3.12)

where D is the demagnetization factor which takes the shape of the sample into account,
M is the magnetization. For spherical particles D = 0, while for a foil D = %” for magne-
tization normal to the surface and D = 0 for magnetization in the plane of the foil. DM

is usually directed opposite to Bey:.

Comparing the contributions to B.; ¢, the Fermi contact term B, is usually larger than
the orbital B, and the dipolar term B;,. The Fermi contact term usually does not change
even in high external fields and is always antiparallel to the spin of outer electronic shells
(d— or f—). Since B.s; is a vector sum, it depends on the direction of contributing mag-

netic moments. In the following several cases of magnetic order are analyzed.

3.1.1 Ferromagnetism

In a ferromagnet the atomic magnetic moments are aligned in one direction within a
domain in the absence of external fields. The magnetic moment of the domains can be
fully aligned in these materials at moderate fields, typically less than 0.5 T. For these
materials, |B.sf| is equal to |Byy| in the absence of external fields. B.f; measured in
ferromagnetic materials with zero angular orbital momentum of outer shells (e.g. a-Fe)
is equal in the magnitude to the Fermi contact field B.,.. (33 T for a-Fe). Small external
fields can align electronic spin but do not change the electronic configuration of the ions
and thus |B.s¢| is given by the Fermi contact field |B..-.| minus the field |B,,,.|. For
instance, |B.s¢| in the a-Fe foil magnetized in the foil plane in the external field of 13 T
will be equal to 20 T.

3.1.2 Antiferromagnetism

In an antiferromagnetic material half of the magnetic moments orient antiparallel with
respect to the other half, and the macroscopic magnetization is aspiring to zero. The
preferable orientation of moments can be described by the two magnetic sub-lattices,
each having one orientation. In a perfect anti-ferromagnetic material two sub-lattices
show exactly antiparallel magnetization. The total magnetic moment in this case is zero.
In the presence of rather small external fields, e.g. up to 4T for NiO, the magnetic mo-

ments are oriented perpendicular to the field [61]. The measured effective field for the
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perfect anti-ferromagnetic material, being a vector sum of B;; and By, will be given

by:

Begs| = \/IBusl? + [Bourl? (3.13)

This relation was found to be valid for instance for NiO, which can be described by two
sub-lattices with nearly antiparallel moments as shown in the Ref. [61]. Magnetic mo-
ments in an antiferromagnetic material can also slightly deviate from the exact antiparal-
lel alignment by a small angle. In this case the material is called a canted antiferromagnet.
Small fields usually do not align the canted moments inside the domain. In this case the
measured |B.s¢| will be determined by the canting angle ¢..,; between magnetic sub-
lattices and their orientation with respect to the field B,,,,. The derivation of |[B.ss| is
explained in the Fig. 3.3 for the case of two nuclear sites with non-equal magnetic hyper-
fine fields By s, and By,y,, respectively.

Beffl

(] ) 0,

Figure 3.3: A sketch for the calculation of effective magnetic field on nucleus in case of canted
antiferromagnet. By, and By, are the magnetic hyperfine fields at the 15 and 2
site, respectively (s. text).
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3.2 Mossbauer Effect

The Mossbauer effect is the recoilless emission or absorption of - quanta by nuclei. The
effect was discovered by R.L. Mossbauer in 1958 [62, 63]. He demonstrated that the -
quanta emitted by the decay of the excited state of 19!Ir can be resonantly absorbed by a
sample containing '*'Ir nuclei.

In the process of emission of y-quanta the momentum is conserved and transferred to
the emitting nucleus, thus the energy of emitted quanta is smaller than the energy of the
excited state Fy due to the recoil of the nucleus: E.=Fy-Er where E, energy of transition,
Er - recoil energy which for the unbound nucleus is:

2
o ]
2Mc?

Eg (3.14)

with M the mass of the nucleus. For the same reason, the energy of the absorbed quanta
must be higher than the energy of the transition: £, = Ey + Eg. Therefore, in order to
observe resonant absorption, the energy shift 2E should be less than the linewidth of
the resonance I'. The recoil energy is in the order of 1073 to 1072 eV for typical Méssbauer
transitions with Ey < 100 keV. The linewidth of the resonance T is related to the lifetime
of the excited state 79 as: I' = T—’; Here, 79 is typically in the range 107!-10° nsand T
is thus in the 1075-107? eV range. These values are much smaller than the energy shift
2EpR . For an unbound nucleus the condition of resonant absorption is thus not fulfilled
because the mass of the nucleus is small and the energy of the transition, £, is high.

In a solid, the re-emission of resonantly absorbed photons might be described by de-
excitation of states without change in the lattice state, |e) |n) — |g) |n) or with a change of

the vibration states, |e) |n) — |g) |m) with m # n, as shown in the Fig. 3.4.
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Figure 3.4: Lattice vibrational states and corresponding transitions: the solid lines show recoilless
emission of x-rays, dashed lines present phonon-assisted transitions. Left panel: a
sketch of level schemay; right panel: a sketch of probability density of the corresponding
transitions. Reproduced from Ref. [64].

The de-excitation of the states with change of the vibration states can occur with creation,
le) []n) — |g) |n + m), or annihilation, |e) n) — |g) |n — m) of m number of phonons. The
processes are shown in the fig 3.4 by dashed lines. These processes provide a direct probe

of lattice vibrations and will be treated in the section 3.4.2.

There is a finite probability that a photon is emitted or absorbed by nucleus without
creation or annihilation of phonons. The effect is called the Mossbauer effect or recoil-free
resonant absorption and emission of photons. The effect is similar to the elastic (Bragg)
scattering of x-rays from the lattice planes in a crystal. Here, the momentum transfer to
the lattice planes occurs without change of energy. The effect increases with lowering the
temperature and decreasing interatomic distances (e.g. using hydrostatic compression),
with decreasing atomic displacement [54, 52]. A detailed description of the probability
of the Mdssbauer effect will be given in the next section 3.3.

One should note that the linewidth of the Mossbauer radiation is extremely small due to
the absence of recoil. It is thus a very sensitive spectroscopic probe and its longitudinal
coherence length is very high. Indeed, the longitudinal coherence length in vacuum is

roughly equal to % and thus for Mossbauer radiation is in the 0.1-1000 meter range.
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3.3 Lamb-Mdssbauer factor

The probability of the recoilless absorption or emission of v-rays, the Mossbauer effect, is
given by the Lamb-MGossbauer factor. It can be derived using the description of emission
of v-quanta by the nucleus in a crystal lattice.

The vector potential of an electromagnetic wave emitted by nuclei is given by:

A(t) = Age™o? (3.15)

with Ag(t) is the normal vector and wy is the resonance frequency of the emitted wave.

At elevated temperatures lattice vibrations exist which can be treated as oscillators. Fre-
quency of mth of oscillator 2 (), is given by the Doppler shift:

Q(t),, =wo [1 + ”m(t)] (3.16)

With v,,,(t) being the displacement of oscillator divided by time (velocity of oscillator)
and c is the speed of light.

In a first approximation the vibration spectrum can be described by a set of harmonic
oscillations. For this case the time dependence of the displacement of the oscillators from
their equilibrium position can be approximated by a Fourier series. Using this approxi-
mation, the vector potential of the emitted wave is given by:

A(t) _ Aoeiwoteikxosin(th) (317)

with k is the wavevector of non-shifted radiation (corresponds to the £, energy of nu-
clear transition), g is the amplitude of oscillation. The exponential part can be rewritten
as a series of products of Bessel functions J,, of the first kind and harmonic waves with
the frequencies wy + nf2,, which approximate the movement of m-th oscillator with the

frequency 2,

+oo 3N
Alt)=Ag > ] Jnlkam)e@otnoml (3.18)

n=—oom=1

N 1is the number of oscillators.
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The probability to observe a wave with Ay(t) is given by the squared module of its am-
plitude, |Ay(t)|?. Then, the probability of recoilless absorption, i.e. with zero-phonon

transfer, is given by:

3N
fou = [ Jo(kzm)? (3.19)
m=1

The definition of the mean squared displacement of an oscillator < 2 >= %" % can

be used to re-write the formula to:

2 2
E,y-47r

22
fL]V[(T) ~ efk2<12> — e hZ2 <z?>(T) ~e <a®>(T) [A ]-(Ew[keV})2/3.8938

(3.20)

From this definition one can immediately see that f7,5; decreases with increasing transi-
tion energy E.. While the mean squared displacement of the nucleus < z? > (T) is in
the order of 107 nm? the upper limit of transition energies should be not higher than
100-150 keV in order to observe a significant effect of recoilless absorption. As shown in
the eq. (3.20), < 22 > and frr are functions of temperature: < 22 > increases and fr;

decreases with increasing temperature.

Two approaches exist to describe the Lamb-Mossbauer factor: a classical and a quantum-
mechanical. The classical approach assumes that the vibrational spectrum of a solid
is continuous and the mean squared displacement is directly proportional to tempera-
ture. In the classical approximation frs can be calculated by the equation (3.20) given

above.

In quantum mechanics the spectrum of lattice vibrations (phonons) is discrete. Quantum
mechanics treats the phonon spectrum by the density of phonon states and the number

of occupied states.

The Lamb-Mdssbauer factor can be written as:

B 2FR [Smas 1 g(Q)

with g (©2) - density of phonon states and (2,4, - maximal frequency of the phonon spec-

trum. The integral is applied over all states with frequencies 2 [56]

One can see that the determination of density of phonon states g({2) and Er provides the

knowledge of frs.
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It is usually difficult to measure the density of phonon states directly and therefore sev-
eral approximations exist. First, the vibration spectrum can be approximated by the Ein-
stein model. It states that only one frequency is present. In this case 2 = ,,4, = €1 and

the equation (3.21) transforms to:

fom = exp [—gﬂ (3.22)

This simple model is very useful for the description of isotropic modes, e.g. the optical
vibration modes and in some special cases where the measured g ({2) can be described
by a single vibration mode (e.g. modes of filler in skutterudites [65, 66]). In a real solid
the bonding between atoms is very strong so that oscillations of an atom affects the oscil-
lations of its neighbors and the Einstein model is not correct anymore. The Debye model
can be used instead.

The Debye model assumes that g(2) is a quadratic, continuous function of €2 and defined

up to maximum frequency {2p., where it has a maximum:

99%])\; 02 fOT’ Q<Qpep
g(Q) = (3.23)
0 for Q>Qpep

From equation (3.23) and equation (3.21) f7us is given by [54]:

1 T 2 Top/T €T
- d 24
il <@Deb) /0 er 17 (3.24)

6ER
kO pep

fom = exp

Here, O p,y is the Debye temperature.

The exact solution of this equation can be obtained by numerical methods. However, for
the two limiting cases, at high and at low temperature, the equation can be simplified. At
low temperatures (1" < © p,p) it transforms to:

__Er <§ w22T2>
fov =e "BOPNT Ohe (3.25)

While at high temperatures (I' > ©p.) Infras is a linear function of temperature:
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Figure 3.5: Temperature dependence of the Lamb-Mossbauer factor calculated after the Debye
model for different Debye temperatures © py, in the case of 73 keV transition in 19[r
nucleus.

,EiRT
fov = e FBODeb (3.26)

The Lamb-Mo6ssbauer factor can also be calculated when the phonon density of states is
known. In this case it is given by [67]:

E
EV1 kT
g(E) +eidE

1 _ ekBT

v =exp | —ER / (3.27)

Analyzing the equation (3.27) one can see that f7,s is weighted by 1/E" with 1 < n < 2.
Thus, mainly low energy vibrations contribute to fr7;.

It is notable that f7,,s increases with decreasing temperature and becomes significant at
temperatures below O p;. This is the limitation of Mossbauer spectroscopy: the incident
photon flux per linewidth of the resonance should be very high in order to be able to
observe resonant absorption at elevated temperatures.

The temperature dependence of the Lamb-Mossbauer factor is shown in the Fig. 3.5 for

the case of 73 keV transition in 3Ir.

The Debye temperatures are in the range of the
values given in the literature for Ir compounds. For Ir metal studied in this work 430 K

is the most frequently cited Debye temperature [21, 68].
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Until this point the vibrations of the crystal lattice were considered as harmonic. How-
ever, the anharmonicities are always present and have an impact on fz5;. Among other
effects, anharmonicity of lattice vibrations explains the non-zero thermal expansion of
materials. Given the thermal expansion e the Lamb-Mossbauer factor can be determined
by [69]:

Infry = (3.28)

where f; ,, is the measured Lamb-Mossbauer factor, ¢ is the relative thermal expansion,
Yo = —%3—5 is the Griineisen parameter with V' is the volume of the unit cell, E is the

energy of vibrational mode.

The effect of thermal expansion is significant for the correction of interference between
electronic and nuclear absroption in MS with very intense sources, however, it is less
important for the hyperfine spectroscopy on the systems studied in this work. For Ir
metal, typical Griineisen parameter values are in the 2.3-2.5 range and thermal expansion
is about 6 - 1076, Thus, even at room temperature the contribution of thermal expansion

to the value of frys is only 1073 (one tenth of a percent).
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3.4 Nuclear Resonant Scattering

3.4.1 Nuclear Forward Scattering

The natural linewidths of Mossbauer excited levels are in the order of feV-ueV [2]. When
the nucleus is surrounded by electrons, hyperfine interactions between the nucleus and
the electronic system result in the splitting of the nuclear levels into sub-levels, as shown
in the section 3.1 [2, 20, 54]. The magnitude of the splitting is in the order of neV-peV in
solids. The extremely narrow nuclear resonance linewidth, in order of feV-p.eV, makes

spectroscopy by nuclei a very sensitive tool of research.

In conventional Mossbauer spectroscopy a source with almost single line emission spec-
trum is used to generate photons of the same energy as the Mossbauer transition in nuclei
in the sample [54]. The obtained spectrum is a convolution of the emission spectrum of
the source and the transmission spectrum of the sample over the energy region defined
by the Doppler shift of the source or the sample [54]. In the case of Nuclear Forward
Scattering (NFS) a synchrotron is used as photon source and the object of study is the
time-dependence of the delayed radiation field which follows the excitation of nuclear
levels by the synchrotron radiation (SR) pulse. In an NFS experiment it is assumed that
all sub-levels are excited simultaneously; the photons produced during the decay inter-
fere with each other in forward direction and produce a characteristic beating pattern
in time [2, 20]. Therefore, the incident beam should have a bandwidth of some peV at
least to be able to cover the entire energy range of the hyperfine splitting and measure
the hyperfine parameters. The undulator radiation has an energy bandwidth of the or-
der of 50-150 eV. The radiation outside the region of nuclear resonance is not resonantly
scattered by nuclei and contributes as a strong background signal at about 100 ps after ex-
citation (so-called "prompt" signal due to the fast electronic scattering events). The latter
results in an overload of detectors and acquisition electronics if no further reduction of
photon flux is applied [2, 20]. Monochromators aim to reduce the energy bandwidth and
thus lower the prompt signal from electronic scattering events. It is worth to mention that
monochromators should also have high efficiency in order to maintain high count-rates
in NFS experiment [2, 20]. A detailed overview of monochromators is given in chapter
4.2. Since the radiation scattered by the nuclei is delayed in time, only photons arriving
between pulses of synchrotron radiation (SR) are counted; the prompt SR pulses aren’t
acquired by the detection electronics. For further increase of countrates APD detectors
with high efficiency and detector electronics with high dynamical range are used. This
assures earlier start counting times and high countrates. The chapter 4.3 provides an

overview of detection techniques for NRS.

For the case of NFS the radiation scattered in forward direction is collected. Thus in NFS
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experiments all optical elements, sample environment components, and detectors are
placed in line with the beam path downstream to the source, except the case of backscat-
tering geometry [2, 20]. The following chapters give a theoretical description of NFS
inspired by References [2, 70, 64, 71, 72].

Scattering by bound nucleus

Absorption and re-emission of x-rays by nuclei can be described by scattering. The am-

plitude of the scattered wave Eg scales with the amplitude of the incident wave FE; as:

Eg (w) = f(w)Ei(w) (3.29)

(w)] () being the scattering function which has amplitude | f(w)| and phase

f(w)
@

=1f
(w). f (w) gives a full description of the system interacting with the excitation pulse.

A SR excitation pulse is very short in the time domain. It can be described by a Dirac

d-function with a maximum at the resonance frequency wo:

1 oo twot
o) =5 [ et (3.30)

— 00

The response of the system to the excitation pulse is a convolution of the scattering func-

tion and the Dirac §-function.

For the case of a single bound nucleus without hyperfine interactions it is given by:

1 1 iwot—=—
ft) = _ZgiﬂUNfLMﬁTfoe " (3.31)

Thus, scattering by a single nucleus is given by the nuclear resonant cross-section oy,
Lamb-Madssbauer factor frys, abundance of nuclei 3, lifetime 79 of excited state, and
transition frequency wy. The nuclear resonant cross-section o depends on the energy
of incident x-rays F, the internal conversion coefficient o and the spin of the excited and
ground states, I, and I,

_2mhi? 1 2L +1

- 32
INTTE? Tta2l,+1 (3.32)
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Multiple scattering by ensemble of nuclei: dynamical beats

In a solid state the wave scattered by a nucleus can be re-scattered by neighboring nuclei:
the effect is called multiple scattering. The theoretical treatment of this case is similar
to that given by the dynamical theory of diffraction of x-rays on electrons (see e.g. Ref.
[70]). An ensemble of nuclei without hyperfine interactions should be considered at this
point. Waves re-scattered by each nucleus will interfere. For disordered systems like
non-crystalline or very fine powdered samples only the waves re-scattered in forward
direction will interfere constructively. The transmitted field Ey will be a sum of the

incident F; and forward scattered field Enrg:

Ey = E; + Enrs (3.33)

Scattering from a set of thin targets having thickness dz along the direction z is consid-
ered in order to treat the effect of multiple nuclear scattering. Here, the fraction of wave

transmitted by each target is given by:

2
dE;, = —z’EtT% f (w) Nrdz (3.34)

where Np is the number of resonant nuclei.

After integration over the length one obtains:

27

Ey = Bje V% T(W)Nr2 (3.35)

The excitation field E; cannot be approximated by a J-function at this point since the SR
source does emit a set of wavelengths. Instead, the incident wave is described by a set of

harmonics:

E@' = Eioeiwt (336)

Integrating the transmitted field over all harmonics and taking the Fourier-transformed

scattering amplitude into account gives:




3.4 Nuclear Resonant Scattering 37

T . . Topr Ji(\/Te
B, — Eioge—% 5(t) + etwot=r/22¢l] 1/ TersT) (3.37)

2 V0 ersT

where Ej is the amplitude of incident wave, att = oy,n0d electronic absorption term
with o,y is the photoelectric absorption cross-section, ng is the number of atoms per unit
volume, d is the sample thickness 7 = 7% eff = oN fomNRd is the effective thickness, J;
is the Bessel function of the first kind and first order.

The first term in brackets is the field generated by the incident wave promptly scattered
by electrons. The second term describes the amplitude En g of the delayed field gener-

ated by photons scattered by nuclei in forward direction.

For early times after excitation and small ¢ ;¢ so that @ < 3, Enrs can be written as:

Enps e Te2ff /2014 5L) (3.38)

One can see that with increase of the effective thickness T s ; the amplitude of the forward

scattered field Exrg tends to decay faster, the effect is called "speed-up".

In a NFS experiment the intensity of the forward scattered field is measured. It is the

square of the amplitude Enps:

Inrs = Iy

2
L1 (Do) (3.39)
AE 47’0 A /TeffT )

Due to the presence of the Bessel function the time dependence of Iy rs has a pronounced
beating pattern strongly dependent on the effective thickness 7. ss. In order to demon-
strate the effect of sample thickness, a comparison of NFS time spectra and energy spectra
of NFS and MS is depicted in the Fig.3.6 [70].
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Figure 3.6: Mossbauer and NRS spectra: dynamical beating and speed up effects. Calculations
are given for the case of 73 keV resonance in 1%31r.

At small T, ¢y the response lines in energy domain are Lorentzian functions of energy, for
MS as well as for NFS. In the time domain Iyrg is described by an exponential decay
for small T¢sy (fig 3.6, upper right panel). With an increase of the effective thickness
the width and intensity of the response line in MS increase. A Fourier-transformed NFS
spectrum shows behavior similar to that in MS until some critical value of the effective
thickness is achieved. Above this critical value the intensity of the scattered wave cannot
exceed the intensity of the incident wave. Instead, the intensity is re-distributed on the
wings of the resonance line and a double hump pattern of the spectrum is formed (fig 3.6,
lower center panel). Notably, the maxima are symmetric around the resonance and the
separation between them does increase with further increase of the effective thickness.
The intensity of NFS in time domain shows a pronounced beating pattern (fig 3.6, lower
right panel) at large effective thicknesses which is called dynamical beating [2, 70]. The

period of beats does increase with time and with decrease of effective thickness [2, 70].

The thickness of the sample has significant influence on count-rate of NFS. It is especially
important to optimize sample thickness in NFS experiments with short-living excited
states in order of 2-8 ns, because the speed-up effect deteriorates NFS countrates at times
even earlier than lifetimes of the excited states. Moreover, with incorrectly determined

sample thicknesses the beating pattern can show a minimum of Iy g at early times which
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leads to low NFS signal. Therefore, the thickness of samples should be optimized for each

specific study.

The optimal sample thickness d,,; is defined as the thickness which gives a trade-off be-
tween electronic absorption and nuclear resonance scattering. In the following it is shown
how sample thickness can be optimized for NFS and how countrates can be estimated in
the absence of hyperfine interactions. This is the case of Ir metal studied in this work.
The optimal sample thickness d,,; can be found calculating the maximum of intensity of
the NFS signal integrated over the time window between start counting time ¢; and time

of arrival of the next SR pulse 5. It is given by the time integral:

t2

R(d) = S(d, 10, le, ln)dt (3.40)
t1
where:
S (d 70, 1o, 1) = e e (2 ot (3.41)
; TOs bey b)) = € € 47_0 ln g 47_0 ln 70 .

with o( wﬁ(’f -) being a square of the function defined as o(x) = L\/\E/@ ; J1(z) is the

Bessel function of the first order and first kind, 7 is the lifetime of the excited state, I, is

1
Mn fLa

nuclear attenuation coefficient, and f;,5; is the Lamb-Mo&ssbauer factor.

the electronic absorption length, {,, = is the nuclear absorption length, s, is the

Note that the start counting time ¢; significantly influences the maximum of the inte-
grated intensity R(d)®. The dependence of R(d) on d is shown in Figure 3.7 for different

start counting times ;.

*It is worth to notice here that nuclear absorption length I,, in eq. (3.41) includes Lamb-Méssbauer factor
which decreases with temperature. Analyzing eq. (3.41), one notes that the optimal thickness increases
with temperature.
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Figure 3.7: The dependence of % on d for different start counting times t, for elemental Ir. The

Lamb-Mossbauer factor is taken equal to 0.37 according to Ref. [57]. Electronic ab-
sorption length of 1764m was calculated from density of Ir using software ATHENA
[73].

For the 73 keV transition in '%Ir isotope and the Ir metal sample studied in this work
the relevant parameters are 7p = 8.4ns and [ = 174.9 um. The values of the optimal
thickness are calculated for different temperatures and different start counting times ¢;.
The results of calculation are shown in the table 3.1: the optimal thicknesses are in the

46-200 pm range for the case studied in this work.

Based on the efficiency of the monochromator and APD detectors, it is possible to esti-

mate the flux of photons in an NFS experiment. It is given by:

T
Inps = 1o ER(Teff )NAPDMmono + B (3.42)

with Iy being the flux of incident photon beam, AE is the energy bandpass of the
monochromator, napp is the efficiency of the multielement APD detector, 7,000 is the
efficiency of the monochromator and B is the flux of background radiation.

Obviously, the two critical parameters for the countrate are the late start time for count-
ing and the efficiency of the APD detector. The late start time for counting is related to

the presence of spurious electron bunches in the synchrotron ring and due to overload of
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detectors and/or electronics. The parasitic bunches can be removed by an efficient pro-
cedure of beam cleaning, as described later in the section 4.4. The count-rate values can
be improved by the use of a stack of thin APD detectors with small capacitance [74]. The
former assures that more resonant photons are acquired and the later makes accessible

earlier starting times for counting which is described in details in the Chapter 4.3.

For the 73 keV resonance in %Ir the natural linewidth I is 75 neV. The flux of photons
at 73 keV is measured to be 3.8:10° ph/(meV-s) at P01 beamline. The flux of photons
in an NFS experiment on elemental Ir is calculated using eq. (3.42) for different sample
temperatures and start times for counting. The energy bandpass was taken as AE =
112meV (theoretical value for energy bandpass of the monochromator, see Chapter 4.5)
and the efficiencies of the monochromator and APD were assumed to be n4pp = Mmono =
1. The obtained values are shown in the table 3.1.

Temperature| Start time | Optimal NFS coun- | Time desired for
of Ir foil, | for count- | thickness, trate, [H z] collecting of a rea-
(K] ing, [ns] [um] sonable* number of

counts, [min.]

50 3 115 65 2.3
5 85 34 4.4
9 62 12 13
3007 3 265 6.2 24
5 250 4.4 34
9 225 2.2 70

Table 3.1: Optimal thickness and expected NFS count-rate for Ir metal as a function of different
counting start time t;.

* Assuming 9000 counts; the number is based on experience with NFS experiments on Ir
** frv=0.37
# fra=0.044
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Magnetic and electric hyperfine interactions: quantum beats

In the presence of hyperfine interactions nuclear levels split into several sub-levels and
several transitions are allowed, as mentioned in chapter 3.1.

The amplitude of NFS given by equation (3.29) above will be modified to include hyper-
fine interactions. For this case it is given by [70]:

& !
155" (w,wo) = const 2h ——C2% (me, my, Am) P55 (Am (3.43)
To 9
Am

w —wo(Am) — iz

with wp (Am) - photon frequency of transition

C - Clebsch-Gordan coefficients which describes the strength of the transition
s - polarization state of incident wave

s’ - polarization state of scattered wave and

P*5'(Am) - polarization factor

When the hyperfine splitting is much larger than the linewidth of the resonance, an ana-
lytical expression for the scattering function and intensity of NFS can be found [70].

The equation for the intensity of NFS is given by the square of the NFS amplitudes. For
the simple case of 2 transitions due to electric quadrupole interaction with equal proba-

bility of transtions the intensity of NFS is given by [70]:

! -1 —atto 72 jeff 2 Awt jeffI
= [N eff
INFS I() (& (& 2J1 9 COoS 9 + (344)

The comparison of the Mossbauer and NFS spectra in the presence of hyperfine interac-
tions is shown in the Fig. 3.8. The Bessel function and the squared cosine function in
(3.44) give rise to a beating pattern similar to the case of multiple scattering described
above. In the presence of hyperfine interaction the beating pattern is called "quantum
beating”. Comparing the equation (3.44) with the equation (3.6) which describes mul-

tiple scattering, the frequency in this case is modulated by cos?

. The intensity at the
minima of Iy g are equal to zero for a perfectly homogeneous sample. However, in an
experiment these minima are smeared out due to the finite time resolution of the detector

and by distribution of sample thickness.
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In the equation for I g, the product of the hyperfine splitting and the period of oscilla-
tions in the time spectrum can be approximated by a constant for the case of negligible
T. s+ and low electronic absorption [71]. For quadrupole splitting in '*3Ir it can be shown
that:

mm

AEq [ ] T lns] ~ 17 (3.45)

S

From this equation one can see that the larger the magnitude of splitting, the higher the
frequency of the beating pattern which is shown in the Fig. 3.8.

Figure 3.8: Effect of hyperfine splitting on MS and NFS spectra for the case of 73 keV transition
in 193r: (A) shows MS spectra for the case of single line and quadrupole splitting
of AEg = 1.3 and 2.6 mm/s and thin sample (Tcyy = 0.001); (B) is for the same
conditions as (A) but the multiple scattering effect is included with effective thickness
Terp = 0.0025 for the single line and Tery = 0.005 for the splitting AEg = 2.6
mm/s. Panels (C) and (D) show the corresponding NFS spectra for the cases (A) and
(B). On the panel (C) note the speed-up of the decay compared to the natural decay
(dashed line) even at small effective thicknesses. Inspired by Ref. [71].
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In the general case of two transitions with non-equal probabilities the intensity of NFS is

given by [70]:

IU I Teff *Tffefatt"l'_

I
NES =S0AE "4t

effr J « T T
exp 2t | wit + Leff )—l—
W1 — W9 alTeffT
effTeffF o T g
+exp {22’ <w2t + ah ) } 22y )—i-
W1 — w2 OéQTeffT

Lot J2 (/ouT,
+2-exp{i <w1t+ 927k ) 1( e effT)
w1 — w2

\/alTeffT
e$p{ <w2t+ o T )}az Ji (VaaTessT)

w1 — w2 OégTeffT

(3.46)

with w; and ws - frequencies of photons emitted in the transitions and «; and ay proba-

bility of the corresponding transitions.

The equation (3.46) includes multiple scattering effects. Notably, the minima of Ix g are
non-zero in contrast to the case of equal probabilities of transitions. This is due to the
individual contributions to the sum in the square brackets. Including thickness effects,
the contrast between maxima and minima of I g becomes smaller compared to the case

of resonances with the same probabilities.

Up to this point, no polarization effects have been considered. These can be included
assuming that for resonance line with Am and multipole transition Q! (Q is the radia-
tion characteristics and [ is the eigenvalue of radiation’s angular momentum. @ = M,
L = 1 for magnetic dipole and Q = E, L = 2 for electric quadrupole) the response to
polarized radiation is the same as the response of a classical oscillator with QI, Am. In
a collective excitation participate only those oscillators whose axis is parallel to the vec-
tor product of wave-vector and polarization vector. Particularly, the Am = 0 oscillation
is excited only when the quantization axis given by direction of EFG principal axis or
magnetic moment m is parallel, while Am = %1 oscillation is excited when quantiza-
tion axis is perpendicular to the vector product of wave-vector and polarization vector
(direction of pi-polarization in case of SR) [54]. The Am = =£2 response (E2 radiation)
does not have any component along 7 polarization direction of incident radiation. These
facts are known from Méssbauer spectroscopy (MS) [54] but distinguishing direction of
quantization axis is hindered for conventional Mdssbauer spectroscopy with unpolarized

photon source [71]. For NFS the determination of the quantization axis direction in the
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polarization plane is accessible [2].

A more closer quantitative look on the polarization properties of coherent NRS is given
by the matrix formalism in the Ref. [2, 75]. The scattering amplitude in eq. (3.29) can be

written as:

() = 13 373 (N;() + Ej(w) (347)

The electronic scattering matrix E;(w) scales with the atomic number Z and the total
electronic absorption cross section depends on the strength of Compton scattering and
photoelectric absorption. This term characterizes only promptly scattered radiation and
therefore will not be discussed. The resonantly scattered radiation involved in the pro-
cesses is, like resonant x-ray magnetic scattering and nuclear resonance scattering, fully
described by the second matrix term N;(w) in eq. (3.47). The general form for N;(w) is
given in the Ref. [76] by:

oy T2+ 1) )RR 3 S [T 20i ™ (B)]* [T1ns ™ (R)
N] (W) = 2 FML5(W (,U)G e 6[)\6[/)\’ a s (U.)/) i
(3.48)

where

X 3 1/2 L
TV (k) = {%Z J S YN (R)C(LLLy; mN) < Lmlé; >< ol Lym + M >

and

2h
Zni (W) = ?(Qn —Q; — W)

with Y W being the vector spherical harmonics and 7, multipole mixing coeffi-

cients.

Figure 3.9 shows simulated NFS energy and time-spectra for different orientations of the
EFG’s principal axis in the case of axially symmetric EFG (1 = 0). An interesting observa-
tion emerges: the single line case occurs when V., directed parallel to the m-polarization
direction of the incident beam. This is in contrast to NRS on %“Fe where the single line
case takes place when V. is parallel to the o-polarization direction. In the figure 3.10
Mossbauer, NRS spectra and NFS time-spectra are shown for different orientations of the

magnetic moment.
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Figure 3.9: Comparison of absorption and time-spectra for different orientations of EFG prin-
cipal axis and polarization of incident radiation. The example is given for hyperfine
interactions in IrOy. Inspired by examples for 5" Fe [71, 2].
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Figure 3.10: Comparison of absorption and time-spectra for different orientations of magnetic
field and polarization of incident radiation. The example is given for magnetic field
on 1931r in SrolrOy4 assuming B sy = 247T. Inspired by examples for 5"Fe [71, 2].

Another, more complex case for the calculation of Iy g is when a distribution of the hy-
perfine field is present or a precession of the nuclear spin occurs in a time scale close to the
time during that electron spins flip. These effects lead to a broadening of the resonance
line and acceleration of resonance decay by £ where A is the width of the experimental

(broadened) resonance line and I is the natural linewidth of the resonance.

Concluding the NFS section, it is worth to remark that several software packages can be
used for analyzing NFS spectra; the most frequently used ones are CONUSS [77] and
MOTIF [78].




48 3 Theory

3.4.2 Nuclear Inelastic spectroscopy: lattice vibrations

Another branch of NRS is spectroscopy by nuclear inelastic scattering (NIS), a technique
which probes lattice vibrations. The theoretical background of the technique was estab-
lished soon after discovery of the Mossbauer effect [79, 80]. It was shown that Mossbauer
effect provides an unique opportunity for studying lattice excitations (phonons) in the en-
ergy range of about hundred meV around the nuclear resonance energy [79]. However,
the studies of phonons by conventional Mossbauer spectroscopy (MS) require Doppler
shifts in the order of km/s and high photon flux from the source due to the low proba-
bility of phonon-assisted excitation and due to the very narrow linewidth [79]. Weifs and
Langhoff reported [81, 82] on the measurements of phonon density of states (DPS) by MS.
In their experiment an ultra centrifuge provided Doppler shifts in the order of 0.1 km/s,
corresponding to the energy shift of 25 meV, and a strong, 370 MBq radioactive source
was used. Such experiment is very challenging in realization. The appeared high-flux
synchrotron sources with tunable photon energy provide access to the studies of lattice
excitations by NIS. The first NIS experiments were carried out in 1990s and reported in
Ref. [83, 84, 85].

A NIS spectrum is acquired by scanning the energy of incident x-rays and measuring
the nuclear fluorescence signal integrated over the time window between synchrotron
pulses. In this measurement, the nuclear resonance occurs at energies below and above
the nuclear transition energy associated with annihilation and creation of phonons, re-

spectively.

The technique is called Nuclear Inelastic Scattering and the name was chosen in order to
preserve a comparison with the results obtained by inelastic neutron and x-ray scattering
[86, 55]. There are two processes which are assisted by phonons: nuclear resonant inelas-
tic coherent scattering (coherent inelastic) and nuclear resonant absorption (incoherent
inelastic). The first process is given by resonant absorption and subsequent emission of
~-ray fluorescence radiation. [55]. The cross-section of this process depends on the mo-
mentum transfer and lifetime of phonons and thus allows studies of phonon dispersion
relations. The experimental arrangement for observation of coherent inelastic scattering
involves careful placement of detector at correct angle to the incident beam in order to se-
lect a segment of momentum space. Coherent inelastic scattering has not been observed
so far.

The second process which is involved in NIS is nuclear resonant absorption. In this pro-
cess the excited nuclear state decays either via - fluorescence or via internal conversion
with a conversion electron leaving the atom. The resulting unoccupied electron level
will be filled by outer electrons following by emission of characteristic x-rays or/and

Auger electrons. The characteristic x-rays have energies lower than the resonance energy
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and are emitted isotropically, thus, the detection probability for an absorption process is
higher than that for scattering. The currently measured NIS spectra can be thus treated

by the theory of nuclear resonant absorption [87].

An example of a NIS spectrum is given in Fig.3.11. The central peak is due to elastic ab-
sorption. The energy axis is defined as the difference between the energy of the incident
photons, E, and the energy of the nuclear transition, F,. Thus, phonon creation occurs
at the positive part of the spectrum and phonon annihilation takes place at the negative

energy part.

The cross section for NIS, on1s(E, k), is proportional to S(E), the probability of nuclear

transition with change of the lattice vibrational state. It is given by [87]:

monI’

onis(E, k) = S(E, k) (3.49)

with oy - nuclear resonant cross-section and S (E, k) is excitation probability density

which depends on the wavevector k of the exciting photons.

The general form of the scattering function S (E, k) is difficult to obtain. However, it was

shown [87] that in the harmonic approximation S (E) is given by:

S(E) = fLm (6 (B)+) Sn(E)> (3.50)
n=1

with ¢ (E) - elastic (zero-phonon) contribution given by Dirac delta function. The single-
phonon term S (E) can be written as:

g(lE]) 1
$1(E) = Br= "1 poy (3.51)

Knowing the one-phonon term S; (E) allows obtaining the density of the phonon states
(DPS). In order to find S; (E) three preliminary steps should be done.




50 3 Theory

Figure 3.11: Procedure of treatment of NIS spectrum: (A) acquired NIS spectrum, (B) acquired
energy dependence of NFS, (C) Normalized NIS spectrum after subtraction of elastic
line, (D) derived density of phonon states. The inset in the panel (D) shows determi-
nation of Debye level limpg_¢ gg) . E is the energy of the incident photons, E., is the
resonance energy. The spectra were measured on Tellurium single crystal at 32(5) K
with the incident beam along c-direction [88]. The asymmetry of the NIS spectrum
in (A) is determined by the temperature dependence of the occupancy of the phonon
states (see text).
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e Normalization of the NIS spectrum (panel (A) in Fig. 3.11)

As mentioned before, the NIS spectrum is proportional to o5 with a proportionality
coefficient. The proportionality coefficient can be found by a normalization of the NIS
spectrum using the so-called sum rules given by Lipkin [89]. The normalization proce-
dure using sum rules relates moments of the NIS spectrum to nuclear or material param-
eters.

For instance, the 15 moment of NIS spectrum is equal to the recoil energy of a free nu-

cleus:

+oo
< FE! >:/ S(E)E dE = Eg (3.52)

The acquired spectrum is normalized to satisfy this condition.
e Subtraction of elastic scattering contribution § (E) (panels (B) and (C) in Fig. 3.11)

The normalized NIS spectrum is now equal to the NIS absorption cross-section convo-
luted with the instrumental function of the monochromator. The instrumental function
should be measured in the forward scattering channel (panel (B) in Fig. 3.11) and sub-
tracted from NIS by numerical deconvolution (panel (C) in Fig. 3.11) [67].

After the subtraction of the elastic contribution the Lamb-Mossbauer factor can be calcu-
lated:

i1 [ s as— [ s(m) am (3.53)
—00 +0

At this step, the sample temperature can be determined precisely by the detailed bal-
ance rule [67]. This rule defines the asymmetry of the NIS spectrum and defines the
ratio of created and annihilated phonons. Phonons obey Bose-Einstein statistics and
the occupancy of phonon states is proportional to e~#/k5T [21]. Therefore, I (E) and
I (—E) eP/*sTs will be equal at the sample temperature Ts [67]. The asymmetry of the
NIS spectrum becomes more pronounced at low temperatures due to the low occupancy
of phonon states.

e Subtraction of the multi-phonon contribution (panels (C) and (D) in Fig. 3.11)
Next, the contribution from the multiphonon term should be subtracted. In the harmonic

approximation the n-phonon contribution depends recursively on the one-phonon func-
tion 51 (E):




52 3 Theory

Snat ( / S, (E") Sy (E—E")dE' (3.54)

As shown in Ref. [87] the one-phonon term S; (E) can be obtained by the so-called
Fourier-Log method. It assumes that S; (E) is calculated by:

S (B) = fruF! {F (6 (E))In (1 - ¢F;£L;g(&gi))>] (3.55)

with F and F~! being operators of the Fourier and inverse Fourier transform, respec-
tively. The function ¢ is introduced in order to avoid numerical truncation problems

with the division by F'(¢ (E)). It is given by:

F(I)F(6(0)
o H . (3.56)

Finally, the phonon density of states ¢(|E|) is obtained from S (E):

Sy (E)E(1 — e~ B/ksT)

E|) = 57
9(1E]) o (3.57)
Several important thermodynamic properties can be derived from g(|E|) [67]
For instance, the vibrational part of the internal energy per atom can be found by:
3 [ eB/kBT 4 1

The lattice specific heat per atom at constant volume is given by the temperature deriva-
tive of U:

(eE/kBT o 1)2

C, = 3k /0 F o iE (3.59)

The vibrational entropy per atom can be calculated with:

E/kpT
eB/keT 4 1 B/kpT in (eE/QkBT _ e—E/%BT) dE (3.60)

S:3kBA g(E) eE/kBT_l 2
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The speed of sound can be determined from the measurements of density of phonon

states. It is related to the so-called Debye level (reduced DPS) limg_, 9](3? and the mass

of the oscillator m (here, mass of the resonant nucleus) by:

™
limg_.q 9(E) 272p

E2
eb = 3.61
vpes 2 @:61)

The procedure of obtaining g (£) described above involves however several uncertain-
ties. First, the multiphonon contribution is given by (—In(fzar))"/n! [67] and can be
significant especially when the Lamb-Mossbauer factor fr,5s is low, typically lower than
0.3. In this case the recursive relation (eq. (3.54)) is only a very rough approximation.
Second, the measured materials only roughly follow the harmonic oscillator model. The
subtraction of the elastic peak and multiphonon contribution calculation may become not
precise enough in the presence of large anharmonicity. In order to eliminate the uncer-
tainties, information derived from the higher moments of the NIS spectrum can be used
for the cross-check of the calculation of g (E).

Higher moments of NIS spectrum contain information on the material properties as
shown in the Refs.[67, 89, 72]. For instance, the 2" moment is proportional to the mean

kinetic energy per phonon in the direction of the wave-vector of incident x-rays:

+oo
<E*>= / S(E)E*dE = 4Fg < T(k) > (3.62)

— 00

the 3"¢ moment is proportional to the mean force constant < F' > and < w,% >, the mean

square phonon frequency of modes in the direction of k vector:

—+o0 2
< E3 >:/ S(E)E3dE = Qﬁ]\fR < F >=Eph?* < w? > (3.63)

—00

An additional cross-check of quality of DPS calculation can be made by comparing the
Lamb-Mossbauer factor fr; obtained from NIS spectrum by equation (3.53) and fru
calculated directly from DPS by equation (3.27).

Finally, one should emphasize that NIS measures lattice vibrations of only one sort of
nuclei and in the direction parallel to the wave-vector of incident x-rays, thus, the DPS
obtained by this method is usually called partial, projected DPS. The special software
[77,90] is available for the treatment of NIS spectra.
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4 Experimental Techniques

4.1 Set-up for Nuclear Resonance Scattering

In this section the experimental set-up for nuclear resonance scattering (NRS) is dis-
cussed. The focus is set on two branches of NRS, nuclear forward (NFS) and nuclear
inelastic scattering (NIS). Although the two methods and information obtained by them
are different, the two main challenges for experimentalists are the same. In this chapter

several technical challenges of NRS experiments are discussed.

First, NRS has a very narrow energy bandwidth compared to that of the broadband un-
dulator radiation. The unwanted signal from electronic scattering should be reduced
by reduction of the bandwidth of the radiation. This is done by monochromators. For
the purpose of hyperfine spectroscopy by NFS, a degree of monochromatization AE/E
less than 107 is required. This degree of monochromatization cannot be achieved with
conventional double-crystal monochromators (DCM) present at any beamline, and an
additional monochromator with moderate resolution and optimized transmission is nec-
essary. This is the case for the medium resolution monochromator described here with
the focus on NFS on Ir compounds. A monochromator for NIS should in addition feature
a very high energy resolution. Here, a degree of monochromatization AE/E < 1078 is
needed in order to resolve phonon spectra. This kind of monochromator is presented
with the example of a sapphire backscattering monochromator. It has high transmission
due to the large angular acceptance of backscattering geometry, high resolution due to
the precise temperature control and sapphire crystal quality, and can be applied for NRS

on many isotopes with nuclear transitions in the 20-50 keV range.

A second important feature of NRS is the time delay of the nuclear resonance signal.
Indeed, the electronic scattering occurs in the fs-ps time range, while NRS has a char-
acteristic decay time of ps-us. Since the separation between synchrotron pulses is on the
order of hundred ns and there is almost no SR emitted between the pulses, the NRS signal
can be acquired mostly without any background. Fast detectors with high dynamic range
and fast electronics synchronized with the bunch clock of the synchrotron are used for the
time discrimination of the NRS signal. Furthermore, an optimized detector can also help

to solve the detector overload problem while working with a large energy bandwidth.

The next section gives several theoretical and practical aspects of high-resolution monochro-

mators and detection systems used for NRS. The two following sections are dedi-
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cated to the transmission-optimized medium resolution monochromator for NRS on
Ir compounds and the backscattering high-resolution sapphire monochromator, both

constructed and commissioned within the framework of this thesis.

4.2 High-Resolution Monochromators

Monochromatization is a vital feature for many studies. For instance, it provides access
to energy resolving spectroscopic techniques for studies of properties of condensed mat-
ter. The main physical quantities of interest are dispersion relations of electronic, vibra-
tional and magnetic excitations; detailed information on the crystallographic structure
can be collected in x-ray diffraction experiments which in turn requires the application of
monochromators [1]. In the special case described in this work, the monochromators are
used in order to: a) reduce the flux entering the detector by reducing energy bandwidth
relevant to a sharp Mossbauer transition and thus to avoid detector overload in NFS
experiments; b) perform nuclear inelastic scattering (NIS) experiments with an energy

resolution sufficient to resolve phonon spectra.

The monochromatization of the x-rays in the energy range of Mossbauer transition is

achieved by Bragg diffraction from single crystals. Bragg’s law can be written as:

he
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with E the energy of the reflected radiation, d the interplanar distance, ©p the Bragg an-
gle, h the Planck constant, and c the speed of light in vacuum. The interplanar distance d
is related to the lattice constant a and Miller indexes of a reflection, i,k,[, by d = \/ﬁ
for crystals with cubic symmetry which are commonly used for monochromators. The in-
cident radiation has usually a wide spectrum of wavelengths. One can see from eq. (4.1)
that a crystal oriented to the incident beam at a particular angle @ can filter radiation of
a particular wavelength (energy). A crystal can thus be considered as a wavelength se-
lector, a monochromator (greek: "mono" - single and "chroma" - colour), and the process

of wavelength selection is called monochromatization.

Usually, monochromatization at present SR sources is done by gradual decrease of the
energy bandwidth, as shown in the Fig. 4.1. At the first stage the radiation from the
undulator is pre-monochromatized from a 50-100 eV to a 2-5 eV bandwidth. This is done
usually by two silicon crystals utilizing the same Bragg reflection. The major purpose of
this monochromator, also called double-crystal monochromator (DCM) or high heat load

monochromator, is to reduce the heat load of the undulator radiation and to decrease the
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bandwidth to a moderate degree of AE/E = 10~* — 1075. At the same time the spectral
photon flux, defined as the flux of photons in a energy bandwidth [ph/s/eV] should
not be deteriorated by the DCM. The crystals are usually cooled in order to provide an
active heat sink for the thermal energy delivered to them. The high, several kW, heating
power of the beam is indeed a very challenging problem since it can not only destroy the
crystals but also provides a local deformation of the silicon. Thus the DCM crystals are
maintained at a temperature close to 125 K where the thermal expansion coefficient of
silicon is close to zero [91]. It was demonstrated that diamond is advantageous to silicon
for high heat load applications due to the higher reflectivity and high transmission [92],

however, large volume perfect diamond crystals are difficult to produce.

Figure 4.1: A layout of a beamline. U: undulator; DCM: double crystal monochromator; HRM:
inline high-resolution monochromator; S+E+D: sample with sample environment and
detectors.

The degree of monochromatization provided by the DCM is not sufficient for phonon
spectroscopy, but already suitable for performing other experiments with SR, such as
powder diffraction, small-angle scattering, photoemission spectroscopy, fluorescence
and absorption spectroscopy, imaging [1]. In an experiment the DCM is adjusted to
transmit the desired x-ray energy and the undulator gap is tuned to the maximum

photon flux at this energy.

Monochromatization with a DCM is sufficient for most beamlines at a synchrotron radi-
ation facility. However, techniques like nuclear resonance scattering (NRS) and inelastic
x-ray scattering (IXS) demand high-resolution monochromators (HRMs). In this case,
an HRM is placed downstream from the source after the DCM as seen in the Fig. 4.1,
and provides monochromatization down to a meV bandwidth and in some special cases,

down to a sub-meV bandwidth®*.

An expression for the energy resolution of a monochromator can be obtained by taking

total differential of E in eq.(4.1) and dividing it by the E given in eq.(4.1):

“However, the energy resolution of the DCM can be sufficient for NRS experiments with very high reso-
nance energies, as shown for the 90 keV nuclear resonance in 99Ru [93]
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For perfect crystals % — 0 and the energy resolution depends on the angular deviation
from the Bragg’s law, A ©, and the Bragg angle ©p only. Thus, the energy resolution can
be increased by decreasing of the angular deviation A6 and by using Bragg reflections
with high Bragg angles (large Miller indices).

In near perfect crystals used for monochromators multiple scattering effects are not neg-
ligible, which means that multiple refraction and reflection on lattice planes becomes
pronounced [94]. Due to multiple scattering effects the reflection occurs not at the exact
angle ©p but in a region around the Bragg angle, called Darwin width &p [94]. For a
symmetrical Bragg reflection with Bragg angles ©p < m/2 by several milliradians, the
angular acceptance corresponds to the Darwin width of the reflection. The dynamical
scattering theory gives A©p as follows:

reh2c? 2

A6p = VE2in(205)

|Fyle™™P (4.3)

where r. is the classical electron radius; V the volume of the unit cell; e the tem-
perature dependent Debye-Waller factor given by the temperature dependent rigidity
of the lattice; P the polarization factor which is P = 1 for o-polarized (case of SR) or
P = cos(260 p) for m-polarized radiation.

Fgu=>,|( T(LO)(H) + fL(E) +if!(E))eH "’”} is the structure factor for a given Bragg
reflection with atomic form factor f,(LO) (H), anomalous scattering corrections f},(E) and
I7(E), reciprocal lattice vector H, and vector r,, of an atom n. The coefficients 7o, fL(E),
and f//(F) can be determined by Hartree-Fock-Slater calculations, usually tabulated val-
ues are used [95, 96]. Note that reflections with H -r,, = $n do not allow Bragg scattering
as Fiy for these reflections is zero. For crystals with cubic symmetry the set of reflections
is most limited. For instance, for the cubic diamond structure, such as Si, only reflections
with all odd Miller indexes h, k,l or with h + k +1 =45 (j =1,2,3,...) are allowed.

As shown in eq. (4.2) the energy resolution can be improved by using reflections with
high Bragg angles, however, from the eq. (4.3) one can see that the angular acceptance of
the reflection decreases with increasing Bragg angle and is typically lower than 1 prad for
reflections with Bragg energy in the 20-30 keV range. In contrast, the radiation after the
DCM has a divergence of several prad and thus will not be fully transmitted by reflec-
tions with low AE. The beam after DCM should therefore be collimated or the angular

acceptance of the HRM should be improved. The collimation can be done by asymmetri-




4.2 High-Resolution Monochromators 59

cally cut crystals, i.e. crystals with reflecting planes not parallel to their physical surface
[97]. In this case, the incident beam with a divergence of A©;, = AOp/ Vb is accepted
by the crystal and the divergence of the reflected beam is AB@,,; = AO pVb with b -

asymmetry parameter which is defined as:

_ sin(Op — )
b= sin(@p + «) (44)

where « is the asymmetry angle, the angle between reflecting planes and the physical

surface of the crystal.

Thus, in the usual approach to design a high-resolution monochromator [97] one crys-
tal with a large asymmetry angle accepts the photon flux after the DCM and provides a
highly collimated beam to match the acceptance of the reflection in the following crys-
tal which provides a narrow, sub-meV to meV, energy bandwidth (Fig. 4.2). In total,
the monochromator consists of a set of 3 or 4 crystals. The last crystal brings the re-
flected beam back into the direction of the incoming beam which is desired in experi-
ments [97].

The task of designing a high-resolution monochromator can be simplified by using a
graphical approach called DuMond diagrams. A DuMond diagram depicts the relation
between energy (wavelength) and Bragg angle of the beam (Fig.4.3). In the general case,
the relation is given by a reciprocal sinus function (eq.(4.1)) but in a narrow energy or an-
gle region, the dependence can be approximated by a line with the slope determined by
cotOp and the slope is also called DuMond tangent. Since multiple scattering effects are
not negligible for perfect crystals, the lines on the DuMond diagram have finite thickness
given by the Darwin width of the reflection and, in case of an asymmetrical reflection
by the Darwin width and asymmetry parameter b of the reflection. In a monochromator
setup with multiple crystals, the DuMond diagrams for the incident and reflected waves
for each crystal is drawn in one graph. The area built by the intersection of these ar-
eas represents the bandpass of the monochromator in (E,0) - space. The height of the
crossover area is thus an estimation of the energy bandpass of the monochromator (see
Fig. 4.3).

Besides the DuMond diagram approach, in some cases, the energy bandpass can be cal-
culated using approximations. For dispersive setting of crystals, which is the case of the
monochromator for NRS on Ir compounds, the energy bandpass can approximated by a

Gaussian function [72]:

\/ﬁ
AE =F A7+ A6, (4.5)

tan®; + tanBy
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where A©; and A, are the acceptances of the first and the second crystal, and ©; and

6, are the Bragg angles for the first and second crystal, respectively.

The approximation by a Gaussian function and DuMond diagram approach usually over-
estimates the energy bandpass by a factor of 1.5-2 [72, 98]. Exact values of the energy
bandpass can be obtained by numerical calculations using expressions given by the dy-

namical scattering theory.

One should note, as seen in the Fig.4.2, that schemes with multiple crystals are usually
complicated in design and have several drawbacks at photon energies above 30 keV. First,
the structure factor Fy of elemental semiconductors used in these monochromators sig-
nificantly decrease with the energy. Second, the angular acceptance drops with energy
proportionally to 1/E? at any Bragg angle, except for angles © = % + § with § Smrad
[97]. The third difficulty emerges for studies at resonance energies since Bragg reflections
take only discrete values in a crystal, and it is especially challenging to find a reflection
with a suitable energy bandwidth. Indeed, in crystals with high symmetry, such as cubic
Si and Ge, many lattice reflections are forbidden or degenerate due to the multiple-beam
diffraction [99]. Fourth, the extremely asymmetrical crystal cuts result in a large beam
size after collimation, on the order of several dozens of mm. Thus, a crystal with perfect
crystallinity over a large volume is required. Finally, multiple-crystal constructions have
many moving parts and it is desirable to maintain the precision of the movement of each
part at least within the Darwin width of the reflection, which is technically difficult. For
high order reflections the angular width can be as small as 100 nrad, thus, the mechanical

setup should be able to rotate the crystals with that precision or better.
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Figure 4.2: The most popular constructions of multiple-crystal high-resolution monochromators:
(A) channel-cut crystals with symmetric reflections, low angular acceptance, meV
resolution; (B) two asymmetrical cut crystals: first uses low-order reflection, second
high-order reflection cut in opposite way, does not change beam size and divergence;
(C) nested scheme, preserves beam direction and assures high energy resolution; (D)
four-bounce scheme of (B), high energy resolution, beam path is preserved; (E) nested
scheme: low order reflection asymmetrically cut, second high-order reflection close to
backscattering, high energy resolution, the beam direction is preserved. Inspired by
[2,97].
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Figure 4.3: DuMond diagrams for two crystals. Lower panel: magnified region of intersection of
the curves from the upper panel [2].

The constraints of the multiple-crystal monochromators described above led to the de-
velopment of backscattering monochromators. Bragg’s law given by eq.(4.1) in backscat-

tering geometry ©=7 + § with § =~ mrad reduces to a simple relation [99]:

o hc
2dpp

(4.6)

Note that the interplanar distance dpi; depends on the lattice parameter, which is an
intrinsic property of the crystal, and strongly depends on the temperature of the crystal.
Therefore, the energy of the monochromatized radiation may be tuned by varying the

temperature of the crystal.

The backscattering geometry has several prominent advantages compared to multiple-
crystal geometry. First, the angular acceptance is of the order of a few mrad at 20-50
keV and decreases with energy proportionally to 1/E [99]. As the angular divergence
after the DCM is in the order of few dozens of prad, a backscattering monochromator
consisting of one single crystal can easily cover the incoming beam divergence. Also,
the high angular acceptance permits a higher countrate in the experiments with a highly
diverging beam. A prominent example of such experiments is momentum-resolving in-

elastic x-ray scattering, where the back-reflections are used for energy analysis. Here, the
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Figure 4.4: DuMond diagram. The solid line is given by the dynamical scattering theory, the
dashed line is the prediction in the kinematical approximation. Note that for a given
angular divergence the energy bandwidth is the smallest for the Bragg angles 6 ~ 90°
[99].

studied radiation is scattered from the sample in the whole solid angle 47 and thus, the
analyzer should be able to cover as large solid angle as possible [100]. Another feature
of backscattering is the smallest energy bandwidth at a given angular divergence of the

beam incident on the crystal, as seen in the Fig. 4.4 [99].

Furthermore, a backscattering monochromator consists of less moving parts and is com-
paratively easy in operation. The change of the reflected X-ray energy is achieved by
changing the temperature of the crystal which is practically a tuning of the interplanar
distances, while the Bragg angle is kept constant [99]. This way of operation requires an
extremely precise temperature control over a wide temperature range [101, 102, 103]. In-
deed, one can show that the energy E of photons in backscattering geometry depends on
the temperature via temperature dependency of interplanar distances dj; derived from

the temperature expansion [99]:

OLE _ i d(dhkl)
dT  dpy dT

(4.7)

For instance, with the given temperature expansion of silicon, for x-ray energies E/ =37.13 keV
(the energy of the nuclear resonance in '21Sb), and a crystal temperature of 1025K we

could obtain for the corresponding (2 6 32) Bragg reflection:
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dE
o7 = 0159 [eV/K] (4.8)

when the Bragg angle is several mrad away from 7 /2 (backscattering geometry). Obvi-
ously, the temperature of the crystal should be changed with 1-10 mK precision for tuning

of the energy with a sub-meV to meV precision.

Theoretical [104, 105] and experimental [106, 107] studies have shown the possibility of
both lowest energy bandwidth and weak dependence of energy bandwidth on the en-
ergy. The energy range was 1-10 keV in the experiments and Si and Ge crystals with cu-
bic symmetry were used [106, 107]. The production technology of Si and Ge crystals has
significantly evolved and the monochromators constructed by using this type of crystals

deliver energy bandwidths beyond 100 peV at photon energies up to 22 keV [108, 109].

A special emphasis in the part of this work dedicated to the backscattering monochroma-
tor is set to NRS on isotopes which have transition energies ranging from 20 to 50 keV.
For application of cubic Si and Ge crystals for these studies two major challenges emerge.
First, the Debye-Waller factor and thus the structure factor and reflectivity are small at
photon energies higher than 20 keV. This fact results in a low efficiency of the monochro-
mator. Second, a back-reflection suitable for resonance energy is difficult to find due to
the high symmetry of the crystals. Moreover the effect of multiple-beam diffraction does
reduce the reflectivity of reflections. It was shown that the reflectivity of particular reflec-
tions in cubic crystals drops drastically by approaching the Bragg angle close to 7/2 [110].
Notably, the effect becomes more pronounced at the narrow energy bandwidth of the in-
cident x-rays [111]. The effect of damping of reflectivity is attributed to the transition
from two-beam to multiple-beam diffraction regime [112]. In case of the multiple-beam
regime the scattering channel is open not only for the back-reflection but also for another
reflection and intensity of incident rays is distributed mostly into reflections away from
backscattering [99].

To overcome the problems, it was suggested [99] and confirmed experimentally [113, 114,
103, 115] that crystals with non-cubic symmetry, like single crystal corundum Al,Os, can
be used as a backscattering monochromator for NRS studies on the isotopes with energies
of transitions being in the range 20-40 keV. Indeed, the density of reflections in energy is
very high in Al,O3 as compared to Si (see Fig.4.5) and the reflectivity is much higher, es-
pecially at energies higher than 30 keV and at low temperatures. High energies accessible
with sapphire monochromator are also the best probe of the sapphire crystal quality by
NRS: using the high-order reflections with a small energy bandwidth allows revealing
small deviations in a crystal structure. Moreover, the access to highly monochromatized
high-energy x-rays has stimulated the search for new resonances, allows probing sample

properties more deeper in the bulk, provides higher signal in high-pressure studies (both
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due to the larger penetration depth of high-energy x-rays), and establishes a tool for the
studies of new interesting phenomena. It was shown that other crystals with non-cubic
symmetry can be used as backscattering monochromator, for instance, polytypes of SiC
could be an appropriate choice instead of Al,O3 [113]. However, the quality of corundum

crystals is currently surpassing that of SiC [116].

A large part of this work is dedicated to the construction and first tests of the sapphire
backscattering monochromator (BS HRM) at the PO1 beamline of PETRA III. A layout of
a typical experiment with a backscattering monochromator is shown in the Fig. 4.6. Note
the distances shown on the lower part of the figure for P01 beamline and for ID18 beam-
line at ESRF. The larger distance between the BS HRM and sample at P01 beamline allows
larger separation between direct and reflected beams without perturbing backscattering

condition, and larger sample environment can be used.

Figure 4.5: Peak reflectivity of all Bragg reflections in Si (upper panels) and AloOs (lower panels)
at 295 K and 4 K. Reproduced from Ref. [99].

In the experiment at the beamline (Fig. 4.6), the sample, sample environment, and detec-
tors are placed far away from the high-resolution monochromator. In some applications

of the backscattering monochromator, such as experiments with diamond anvil cells, a
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focusing of the beam down to some pm is desired. Thus, focusing mirrors [1], lenses
[117], or Fresnel zone plates [1] can be introduced into the setup. These optical elements
can be massive and thus more space is desired to place them. An especially crucial situa-
tion is when focusing in experiments with a backscattering monochromator is necessary.
In that case a long distance between sample and HRM can help to gain sufficient space
for focusing devices. From the figure 4.6 one can see the advantage of the almost 90 m
long beamline PO1. Here, the distance between direct and reflected beam can be as large
as 20-40 mm without losing the advantages of the almost exact backscattering geometry

which are the small energy bandwidth and its weak dependence on energy.

Figure 4.6: Layouts of the backscattering experiments at P01 beamline of PETRA III and ID18
beamline of ESRF. U: two undulators; DCM: double crystal monochromator; BS
HRM: backscattering high-resolution monochromator; S: sample; D ps and Dypg:
detectors for NFS and NIS, respectively.
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4.3 Detection of NRS signal

Several requirements should be fulfilled by detectors and electronics for an efficient de-
tection of the NRS signal. First, the electronically scattered or transmitted synchrotron
pulse, the so-called prompt pulse, has a typical flux of 107-10'° ph/s, whereas the NRS
flux can be less than 1 ph/s. Thus, the detector should sustain the high prompt flux and
be able to acquire single delayed photons between the SR pulses. Second, a fast recovery
time is desired. The acquisition system must be able to recover as soon as possible after
the prompt pulse and detect delayed NRS photons. Third, a time resolution of better
than 1 ns is desired to be able to resolve the important features in time-spectra. Finally,
the detection system should have very low noise level and high quantum efficiency in the
10-100 keV energy range, where most Mdssbauer isotopes have their transitions. The de-
tectors have usually two applications, NFS and NIS. Notably, detectors for NFS can have
small area and thickness. They can be stacked in order to achieve the best time resolu-
tion and maximum efficiency at high photon energies. The detectors for NIS should have
a large area in order to cover an as large as possible solid angle due to the fluorescent
character of NIS radiation.

4.3.1 Avalanche photodiode detector

Silicon avalanche photodiodes (APDs) have been elaborated as fast and convenient de-
tectors for NRS [74]. Like in almost all semiconductor detectors for x-ray energies less
than 100 keV, the signal generation in APDs is based on photoelectric absorption of x-
rays followed by creation of electron-hole pairs [118]. The current of the charge carriers
is further amplified and measured by downstream electronics [118]. An APD device is,
however, unique by its high gain values for current and low signal-to-noise ratio defined

by its design.

The doping and electric field profiles of an APD determine the operation properties of
the detector. Generally, when high reverse bias is applied, there is a region with high
gradient of electric field called region of amplification [74]. X-rays impinging the charge
depletion region create electron-hole pairs due to photoelectric absorption and Compton
scattering. At room temperature each 3.6 eV of deposed energy creates one electron-hole
pair on average. The created electrons drift to the amplification region with typical drift
velocities of 100 um/ns at room temperature. Electrons entering this region, ionize the
dopants, and an avalanche of electrons is built [118]. The avalanche propagating in the
silicon results in a drop of its resistivity which is acquired and amplified by the detector

pre-amplifier [118].
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The two main parameters which describe a silicon APD are its active thickness and its
capacitance [74]. Both parameters determine efficiency, time resolution and recovery time
of APD [74]. Time resolution is usually given by the width of the leading edge of the
APD signal and the recovery time by its trailing edge (Fig. 4.7b) [74]. Typically, APD
with an active thickness less than 100 ym provide the desired time resolution of less than
1ns. Larger active thicknesses result in larger drift times for electrons and impair time
resolution. For APD with an active thickness less than 100 xm the quantum efficiency is
low for the photon energies higher than 20 keV. Fig.4.7a shows the attenuation length of
x-rays in silicon versus photon energy. For energies in the range 20-80 keV the desired
thickness of silicon is in the 3-20 mm range. The capacitance of a diode has a large impact
on recovery time as shown in fig. 4.7b. It is clear that APDs with smaller area and thus
smaller capacitance have very short recovery time but cover a small solid angle of the
beam resulting in less efficiency. The problem of low quantum efficiency can be solved
by stacking many APDs along the beam and inclining them so that the beam-path along
the diode is maximal (Fig.4.7c). Problems of low time resolution and slow recovery time
can be solved by using thin, small area APDs with low capacitance [74]. Such an APD
detector consisting of 16 APDs was built by the company ATIM and used at the P01
beamline (Fig.4.7d)

One preamplifier is connected to each APD and builds an RC chain with the APD. Once
the resistivity in the RC chain drops, a voltage pulse is sent by the pre-amplifier to the
downstream electronics. High-energy x-rays have a large penetration depth and thus
a higher probability to be detected after being scattered by objects in the experimental
hutch. Radiation re-scattered from these objects is delayed in time and will also be ac-
quired by the detector leading to the background in NRS time spectra. Therefore proper
shielding of detectors by heavily absorbing materials like lead or tantalum is desired for
experiments with high-energy x-rays.
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Figure 4.7: Properties and setup of silicon APD detectors: (A) energy dependence of the total
(Rayleigh and Compton scattering) attenuation length of x-rays in silicon; (B) time
response to Ag K-shell fluorescence radiation (22-24 keV) of APDs with area 7.1 mm?
(capacitance of ~15 pF) and 100 mm? (capacitance of ~120 pF); (C) sketch of a multi-
element detector: a stack of thin small area APDs in the housing (D) is inclined
relative to the beam (B) scattered by the sample (S); (D) photo of the 16-element APD
detector used at P01 beamline.
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4.3.2 Detector electronics

A layout of the acquisition electronics for NRS experiments is shown by the block dia-
gram in the fig. 4.8. The voltage pulse from the pre-amplifier (PA) is fed into a constant-
fraction discriminator (CFD). This device provides a pulse of fixed length and amplitude
once the voltage on the input is higher than the set threshold. One output signal from this
CFD is sent to a counter which counts all events, including prompt and delayed, and thus
is used for optimizing the flux during an experiment. A second CFD output is fed into a
second CFD which is gated by a veto pulse triggered by the bunch clock signal. The veto
signal is adjusted in arrival time and width in order to block the CFD operation for sev-
eral ns before and after the SR pulse. Thus, the second CFD delivers output signals only
for delayed photons. The output of the second CFD is also used as an input signal to the
counter of the delayed quanta. Information from this counter can be used for instance for
the optimization of the monochromator energy and for measuring the delayed fluores-
cence in NIS. Also, the output signal from the second CFD is used for acquisition of NFS
time spectra. For this purpose the output of the second CFD starts the time-to-amplitude
converter (TAC) while the TAC is stopped by the bunch clock signal. Thus, the time dif-
ference between arrival of the delayed photon and the prompt pulse is converted into a
voltage pulse proportional to the time difference. This voltage is then digitized by the
analog-to-digital converter (ADC) and analyzed by the multi-channel analyzer (MCA).
Thus, the channel number in the MCA is proportional to the time difference between the
arrival of the delayed photon and the prompt pulse.

Figure 4.8: Layout of electronics for measuring NRS. See text for the details.
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4.4 Beam purity

The NRS technique measures the delayed signal from a nuclear decay in-between the
synchrotron bunches [20]. In an ideal case, far from the resonance energy, no other signals
should be present in the time slot between the bunches. However, in reality a parasitic
signal between the bunches is always present. It originates from electronic noise in the

acquisition system, detected cosmic rays and SR from so-called side bunches.

Due to some features of the particle acceleration process, accelerators provide potential
wells along the particle travel path. These potential wells are called buckets. The buckets
can be filled by bunches of particles on purpose, and several buckets can be empty. The
side buckets, between the main buckets filled on purpose, aimed to be empty, but these
can be filled by mistake or particles in the main buckets can spread into the neighboring
buckets due to the Coulomb repulsion inside a main bunch. Bunches of particles in the

side buckets are called "side bunches".

Background measurements can be acquired and subtracted from the measured signal.
This is done by tuning the energy of the incident x-rays away from the nuclear resonance
energy followed by the acquisition of time spectra at the detuned energy. In some cases
the background can be large and can perturb the measured data. In the following, the
techniques that aim to reduce or exclude the parasitic signals are discussed. The first rea-
son of these signals, electronic noise in the acquisition scheme, can be completely avoided
by setting a higher threshold in the detection electronics. The impact of detected cosmic
x-rays is complex to predict, though events involving cosmic rays are rare with coun-
trates less than 0.01 Hz. Side bunches in the ring are a common reason of background
in NRS experiments forcing to late start counting times. Experience shows that the pres-
ence and intensity of side bunches is specific for each accelerator ring and each operation
mode. Indeed, this factor is most problematic for NRS studies and needs special atten-
tion during the measurements at the beamline. In the PETRA ring, the side bunches may
appear in the time slot from —16 to +16 ns around the main bunch (Fig. 4.9, upper panel)
due to the 8 ns separation between the bunches in the injector chain. It is not critical for
NRS studies on long-living excited states, but becomes an issue for the short-living states
like 12'Sb and '?3Ir studied in this work (see table 4.1).

During this work, an APD detector was installed at the P01 beamline for monitoring the
beam purity. Several modes and electron beam cleaning techniques have been tested and
evaluated in collaboration with the accelerator operation group. In each test, the relative
intensity of side bunches compared to the intensity of the main bunch was acquired. We
observed that some beam cleaning procedures can significantly remove side bunches but

also reduce the intensity of the main bunch which is not acceptable. A cleaning procedure
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not affecting the main bunch intensity was found.

Figure 4.9 shows the time structure of the beam before the studies and after the optimal
cleaning procedure was established. One can see that the intensities of the side bunches
later than 3 ns decreased by about 2 orders of magnitude or side bunches disappeared
completely. This improvement allows one to acquire NRS signals starting from 4 ns after
the main bunch. Thus, the NRS studies on short living isotopes are accessible, as shown

in the table 4.1.

Figure 4.9: Beam time structure in the PETRA ring: before and after the optimal cleaning proce-
dure was established. The time spectra are acquired in several seconds.

Isotope E,, [keV] Life time, [ns]
>TPe 14.4 141

119gn 23.9 26

125Te 35.5 2.1

121gp, 37.1 5

1931y 73.0 8.8

Table 4.1: Energy and lifetimes of several excited states studied by NRS.
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4.5 Monochromator for NFS on Ir compounds

4.5.1 Design

The design of the medium resolution monochromator (MRM) for the '%3Ir resonance is
governed by the properties of the x-ray beam at 73 keV. Particularly at the P01 beamline
the x-rays with energy 73 keV are provided by the 17" harmonic of two 32 mm period
undulators, and monochtromatized by the DCM with two Si (3 1 1) reflections. The beam
downstream the DCM has an angular divergence of 5.2 urad and a size of 2.5 x 0.75 mm?
(horizontal x vertical) at the position of the monochromator. The energy bandwidth of

the 73 keV photons incident on the monochromator is 8(2) eV (see Appendix A .4).

The purpose of the medium resolution monochromator is to allow high spectral flux for
NFS experiments rather than achieving high resolution. As explained before the band-
width of a monochromator for NFS must be sufficiently small in order to avoid detec-
tor overload. Multi-bounce high-resolution monochromators can be used for NFS as
well. However, the construction of such a monochromator for energies as high as 73
keV would assume the use of very high order of Bragg reflections which have very small
angular acceptance, as shown in Chapter 4.2. The efficiency of this type of monochro-
mator would be very low. Backscattering monochromators based on sapphire provide a
suitable angular acceptance, as shown in Chapter 4.2, but sapphire crystals do not have
sufficient quality over large volume and cannot provide high reflectivity at photon ener-
gies as high as 73 keV. Instead, a two-reflection monochromator can be used as shown in
Refs. [97, 72, 61]. This type of monochromator consists of two asymmetrically cut silicon
crystals in dispersive geometry. Using this principle, a MRM for the '%3Ir resonance was
developed (s. fig. 4.11). It is installed downstream of the DCM (fig.4.12 and 4.15). The
first crystal makes use of the Si (4 4 0) reflection in order to collimate the beam. The di-
vergence of the beam reflected by the first crystal matches the angular acceptance of the
subsequent energy-resolving Si (6 4 2) reflection in the second crystal. The main param-
eters of the crystals are shown in the table 4.2. The corresponding DuMond diagram and
transfer function calculated by the dynamical scattering theory are shown in fig. 4.10.

High-energy x-rays pose a challenge for the preparation of the silicon crystals and for
the mechanics to be used for moving the crystals. The important factors which influence
the crystal quality are bulk purity, roughness of the surface, and thickness of the dam-
aged surface layer. Bulk purity of the silicon and the process of the crystal preparation

determine these factors, and therefore should be described in detail.
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tons in Si, [mm]

First crystal Second crystal
Reflection (440) (642)
Bragg angle, [degree] 5.072 6.716
Asymmetry parameter b 0.11 2.6
Incoming angle, [degree] 1.002 9.716
Outcoming angle, [degree] 9.142 3.716
Angular acceptance of the incident | 2.35 0.25
beam, [prad)
Angular divergence of the diffracted | 0.26 0.65
beam, [prad]
Beam spot size on the crystal, [mm)] 57.2 53.9
Vertical size of reflected beam, [mm] 9.0 3.5
AT of reflection (see eq. (4.9)), [mK] | 10.3 0.83
[mm]
FWHM of instrumental function, | 112
[meV]
Attenuation length of the 73 keV pho- | 22

Table 4.2: Main design parameters of the MRM for 73 keV x-rays.
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Figure 4.10: DuMond diagram for the setup of MRM for 73 keV x-rays. The bandpass is shown
by the gray polygon as calculated by the dynamical scattering theory.

First, the rather large volume of the crystal penetrated by 73 keV x-rays (see table 4.2) de-
mands an excellent quality of bulk silicon. In this work silicon ingots grown by the zone
melting method have been used. The resistivity of the silicon ingots was > 2.65 kQ-cm.
The bulk material is considered to be of sufficient quality, although it might have an in-
fluence on the spectral reflectivity as shown by utilizing very pure silicon with resistivity
of 70 kQ-cm in the work [108]. Cutting of the crystals from the ingot results in a damaged
layer on the crystal surface which contains distortion of the crystalline order and may
also contain the cutting products such as wire material and diamond particles used in
the cutting process. The thickness of the damaged layer is roughly 30 pm [119]. In order
to remove the damaged layer the crystals have been etched in a solution of hydrofluoric
acid, acetic acid and nitric acid with a ratio of 1:2:3 volume parts for several hours at room
temperature. As a result 50 ysm of material were removed from the surface. To achieve
a planar mirror surface, the crystals have been lapped with a SiC slurry. The lapping
again resulted in a damaged layer of about 20-30 ym thickness. In order to remove this
layer, a polishing by cloth has been done afterwards. This polishing process has removed
about 60 m of material. Thus, the distorted surface layer resulting from the preparation
of the crystals has been removed and has negligible impact on the performance of the
crystals.

The most crucial issue in the design of the monochromator mechanics is the very small
angular acceptance of the second crystal that is in the order of hundreds of nano-radians.

Obviously, the mechanical setup should be able to move the crystal with the angular step
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size of this order or better. The angular positioning of the crystals is provided by two
motorized stages (fig.4.11, produced by Kohzu Precision Co., Ltd., Japan) which allow
step size of 24 nrad or smaller [120]. The divergence of 250 nrad which can be accepted
by the 2"? crystal (s. table 4.2) is significantly larger than the angular resolution of the
mechanics and therefore the mechanics should be able to resolve the reflection on the 274

crystal.

Additionally, the mounting of the crystal on the stages is crucial. A tight fixation does
induce a curvature of the crystals, the effect is significant even for thick crystals, as it is
denoted in the work on monochromatization of 67 keV x-rays for NRS on %'Ni isotope
[61]. In this work the MRM crystals were placed onto the holders, without squeezing,
thus, the mounting prevented curvature of the crystals.

Further, the temperature stability of the two crystals could become an issue due to the
small acceptance of the 2"¢ crystal. Using Bragg’s law one can show that a reflection is
shifted by as much as its angular acceptance Af when the temperature is changed by AT
[72]:

Af
AT = (4.9)

Here, « is the coefficient of thermal expansion of silicon at room temperature, 2.57(3) -
1079K~1 [121, 122]. At large Bragg angles 65 and small acceptance of the reflection A,
the influence of the temperature change becomes more pronounced. For this setup the
change of the temperature of the second crystal by just 0.83 K will already shift the re-
flection by 250 nrad and thus spoil transmission. Temperature measurements have been
done at the P01 beamline in order to measure the temperature stability inside the hutch.
A resistive temperature sensor and a special temperature acquisition system with sensi-
tivity better than 200 K> were used in the measurements. The measurements show that
the temperature stability inside the hutch is better than 200 mK during 4 days (s. Figure
4.13) which corresponds to a shift of the Bragg energy by 37.5 meV. The shift is much
smaller than the energy bandpass of the monochromator.

Heating by the photon beam is nearly constant, since the electron current in the PETRA
ring change by 2% at highest (so-called top-up mode), providing a temperature change
of less than 20 mK by photon beam heating [91, 123]. The heat load by the photon beam
is thus easy to manage for this monochromator. Therefore, the impact of temperature
should not be significant for this monochromator in the conditions present at the beam-

line.

The energy change is done by rotating of the Bragg angles of the first and second crystals

5The temperature acquisition system is described in detail in the next section 4.6.
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with non-equivalent step sizes given by the following coupling factor:

565
2 332 4.1
59, = 33267 (4.10)

where 66; and 6, are the angular steps of rotation of the first and second crystal. The

energy step is related to the change of the angles by the equation:

009

EF=- E
o tan(0y) + 2tan(6,)

4.11)

here 6; and 6, are the Bragg angles of the first and second crystal and F is the energy of
the incident x-rays.

For this particular monochromator, an energy step is related to an angular step as

OFE [eV] = 6480 (862 [degree] — 1.116, [degree]) (4.12)

Figure 4.11: CAD-model of the MRM. The blue arrows indicate the beam path.
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Figure 4.12: Sketch of the experimental setup for nuclear fluorescence measurements at the 73 keV
resonance of 193Ir. U - two undulators, SL1 and SL2 - slits, DCM - double crystal
monochromator, IC1 - ionization chamber, MRM - medium-resolution monochro-
mator, D - PIN diode detector, S - sample, APD - APD detector.

Figure 4.13: Temperature stability in the experimental hutch at the PO1 beamline. The temper-
ature deviations have an RMS of 27.5 mK and an amplitude of 130 mK, which is
much less than AT of Bragg reflections utilized in the monochromator (see table
4.2).

4.5.2 Performance of the monochromator

The instrumental function of the monochromator can be measured with NFS. In this case
the energy bandwidth of the forward scattered photons is a convolution of the energy
bandpass of the monochromator and the linewidth of the nuclear resonance. The natural
linewidth of the '*3Ir resonance is 75 neV while the energy bandpass of the MRM is on

the order of hundreds of meV. The natural linewidth can therefore be well approximated
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by a delta function. The energy bandwidth of forward scattered photons is then equal to
the energy bandpass of the MRM.

However, the first NFS experiments on a resonance with not precisely known energy
are challenging. A rough estimation of the resonance energy, alignment of the upstream
optics and measurements of efficiency of the monochromator can be done by measur-
ing nuclear fluorescence. Resonant fluorescence is easy to observe while making energy
scans in a wide range with less time-consuming large energy steps. The technique is par-
ticularly useful when side bunches are present in the ring (see Chapter 4.4) and nuclear
forward scattering signal cannot be detected starting at late times after excitation due to
the speed-up effect (see Chapter 3.4). The incoherent inelastic scattering channel (nuclear
fluorescence) is not affected by the speed-up of nuclear decay and significant signal is still
present at late times after excitation which is particularly useful for short-living excited
states. The radiation scattered in the inelastic channel follows the exponential decay with
a time constant equal to the natural lifetime of the resonant state. It is therefore a precise
probe for the natural lifetime of the resonance. The signal measured in the inelastic chan-
nel is, however, a convolution of the instrumental function with the inelastic scattering
function which is generally unknown but can be as broad as the instrumental function
of the MRM when Lamb-Madssbauer factor is low, which is the case for high-energy res-
onances. Thus, nuclear fluorescence cannot be used for detailed characterization of the
monochromator. In this work, the preliminary characterization of MRM and search for
the resonance was done using inelastic scattering channel and then, after development of
the beam cleaning procedure and improving the APD detector, the resonant signal was

found in the NFS channel and the instrumental function was measured.

The setup for the nuclear fluorescence experiment is shown in the fig. 4.12. The undu-
lator radiation was pre-monochromatized by the DCM down to eV-bandwidth and later
down to hundreds of meV by the MRM. The photon beam after the MRM impinges on
the Ir metal powder sample (S) that is attached to the APD detector and maintained at
room temperature. An APD detector with an active area of 10x10 mm? and standard NRS
electronics have been used to detect the resonant photons. By these means we monitor
the delayed fluorescence radiation with photon energies of 11.2, 12.8, and 13.4 keV corre-
sponding to the L- fluorescence lines of Iridium. The energy of the incident beam on the
MRM has been pre-calibrated with absorption measurements at the K-edge of Iridium at
76.111 keV. This pre-calibration was done in order to: (i) reduce the energy range to be
scanned and (i) to find the nuclear resonance in *3Ir with the DCM, since the DCM me-
chanics is not precisely calibrated for 73 keV photons. After that, energy of the DCM was
scanned around 73 keV in order to find the '%Ir resonance. The time-integrated signal
was acquired starting from 9 ns after the synchrotron bunch. In this first experiment the
presence of spurious bunches at 8ns after the main bunch prevented an earlier start of

signal acquisition with respect to the synchrotron bunch. A big effort of the PETRA ma-
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chine group and the members of the Photon Science group allowed establishing a beam
cleaning procedure (s. chapter 4.4). By means of this procedure, the spurious bunches

were reduced and early, 4-5 ns start times for counting became accessible.

The nuclear %Ir resonance was found monitoring nuclear fluorescence and resonance
energy was refined to 73.04(8) keV. The lifetime of the resonance transition has been de-
termined to 8.4(2) ns (fig. 4.14) by fitting of exponential decay to the experimental time
spectrum. The obtained value is in good agreement with the literature value of 8.79(22)
ns [124]. The photon flux incident on the monochromator was measured by a nitrogen-
filled ionization chamber (IC1, fig. 4.12) to 7.8 - 10'° ph/s 6 at the resonant energy and
an electron current of 95 mA in the PETRA ring. The flux downstream of the MRM was
measured to 6 - 108 ph/s by PIN diode (D, fig. 4.12) in the same conditions.

A NFS experiment sometimes requires a complex sample environment like cooling, ap-
plication of strong magnetic fields or high pressures. The beam reflected by the MRM
is deflected by 23° with respect to the incident beam (fig. 4.15). This does not pose any
problem for the installation of sample environment in NFS experiments since sample can
be placed before the MRM without any influence on the results of the NFS experiment.
The MRM device is called analyzer in this case. Therefore, the Ir sample was placed up-
stream of the MRM. In order to maximize the count-rate in NFS, the sample was mounted
in a helium closed cycle cryostat and cooled to 13 K (samplel, fig. 4.15). Another Ir foil
sample (sample2, fig. 4.15) was installed on the NIS detector downstream the MRM and
maintained at room temperature. Nuclear fluorescence was measured on this foil in or-
der to follow the instabilities in the DCM and tune its energy to the resonant one. Once
the resonance was found in the NIS channel, the energy of the DCM was fixed. In the
following the MRM was moved into the beam and the energy of the MRM was scanned

in order to find the resonant transition in the forward scattering channel.

®Measured at 57 m from the photon source, beam size on IC1 was determined by slits with opening 4x0.4
mm? (horizontal x vertical) placed close to the IC1
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Figure 4.14: Time-spectrum of x-rays scattered in the inelastic channel showing an exponential
decay with the natural lifetime 79 =8.4(2) ns.

The resonance was found in forward scattering channel. The energy of the resonance
was determined to 72.90(8) keV which is 3.207 keV lower than the K- absorption edge
of Iridium. The error in the absolute value of the resonance energy was determined
as 3o from the point of the maximum of the derivative of the K-edge of Iridium. The
obtained value of 72.90(8) keV is lower than the literature value of 73.045(5) keV received
by measurements of internal conversion time dependence in Ref. [125]. In fact, the value
of 73.045(5) keV is only one value reported in the literature with such a high accuracy.
Analysis of literature values from 1960 to 2016 (reference databases [124, 126]) shows
that the most frequently mentioned resonance energy value is 73.0 keV, with an error of
~0.1 keV.

Following the observation of the resonance, the optics setup was optimized. The opti-
mization does involve scans of the vertical and horizontal position of the MRM crystals
with the beam in order to find the best spot showing the highest reflectivity and the
smallest energy bandwidth. The measurement of the instrumental function is carried
out by scanning the energy of the MRM which is done by scanning the Bragg angles
of both crystals synchronized with the coupling factor given by equation (4.12). The
obtained instrumental function is shown in fig. 4.16. The FWHM of the experimental
curve is 158(8) meV while dynamical scattering theory predicts 112meV (FWHM) for
this setup. The broadening can be explained by insufficient perfection of the volume of
silicon crystals that is traced out by the x-ray beam. The beam spot sizes on the crystals
and penetration depth are very high at the energy used here (see table 4.2), thus, it is

more probable to meet a defect in the monochromator crystals with the beam. After
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optimization, a typical count-rate of 6-7 Hz has been achieved in NFS by a 100 ym Ir
thick foil. The achieved count-rates allowed the collection of NFS spectra in a reasonable
time of a few hours, as shown in Chapter 5.2. The measured properties of the MRM are

summarized in table 4.3.

Figure 4.15: Sketch of the experimental setup for NFS measurements on the 73 keV resonance of
1931y U - two undulators, SL1 and SL2 - slits, DCM - double crystal monochro-
mator, IC1 - ionization chamber, MRM - medium-resolution monochromator, D -
PIN diode detector, Cryo+samplel - sample for NFS in the closed cycle He cryostat,
NFS-APD - APD detector for NFS, sample2 - sample for check of photon energy,
NIS-APD - APD detector for check of the photon energy.
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Figure 4.16: Instrumental function of the MRM at 72.90(8) keV. Red line: fit by a Gaussian

distribution with FWHM 158(8) meV.

linewidth of 1931r resonance,

[ph/s/T]

Parameter Value
Energy bandpass, 158(8)
[meV]

Photon flux after MRM, 6-10%
[ph/s]

Photon flux per natural | 280

Table 4.3: Summary of the measured properties of the MRM.
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4.6 Al,Oj3 backscattering monochromator

In this section the design and performance of the backscattering monochromator is dis-
cussed. The precise temperature control and quality of the crystal are the most essential
parts of a backscattering monochromator. As shown in the chapter 4.2 change of the
Bragg energy in backscattering geometry is proportional to the thermal expansion of the
crystal. Thermal expansion of sapphire is typically in the range of (1..6)-107¢K~1. Us-
ing equation (4.7), it can be estimated that the Bragg energy is changed by typically 0.1-
1meV when the temperature of the sapphire crystal is changed by 1 mK. Consequently,
the temperature of the crystal should be controlled with an accuracy of 0.1 to 1 mK in or-
der to be able to resolve the back-reflection. Also, for the energy (temperature) scans the
temperature step size must have the same precision or better in order to provide suffi-
cient energy resolution in NIS scans. Here, two challenges emerge: first, the temperature
change should be measured with the best precision, and second, the temperature should
be controlled with high accuracy. The design of the monochromator cryostat and the
temperature control system is adapted to fulfill these requirements.

It is worth to mention the parameters of the pre-monochromator (DCM) at the P01 beam-
line since it defines the properties of the beam incident on the backscattering monochro-
mator. The DCM hosts two pairs of Si crystals, one using the (1 1 1) and another one
utilizing the (3 1 1) reflection. For most experiments using the backscattering monochro-
mator the (11 1) crystal pair is used due to the larger angular acceptance for the undula-

tor radiation resulting in a higher transmission.

4.6.1 Design

The sapphire backscattering monochromator built for the PO1 beamline is shown in fig.
4.17. The main element is a two-stage flow cryostat with copper heat exchangers.

Cold nitrogen gas is used as a coolant, however, any gas can be used which is not reactive
to copper, nickel, stainless steel and NBR” resin. The cryostat operates with overpressure,
having atmospheric pressure on the outlet. The operation with overpressure provides gas
flow which can be adjusted by flow meter valve at the cryostat exhaust assuring a better
temperature control. The cold gas circulates in the spiral channels of the larger primary
and smaller secondary copper heat exchanger and the gas temperature stabilizes down
to sub-mK deviations around the set point. The cold nitrogen is produced by evaporation
of liquid nitrogen from a Dewar and supplied to the cryostat via a gas transfer line. The
gas temperature is stabilized by pre-heating in the gas transfer line. The accuracy of the

temperature stabilization at the cryostat inlet is 200-500 mK. The heat exchanger chamber

"NBR (Nitrile-Butadiene Rubber) is the resin commonly used for vacuum sealing.
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including the crystal holder is thermally insulated from the outer cryostat wall in order
to avoid thermal transport and resulting loss of the cooling power. After passing the heat
exchangers, the tempered cold gas flows inside the crystal enclosure and regulates the
temperature of the crystal. The gas is then released at the outlet. The typical flow rate is
200-500 liters of nitrogen gas per hour during operation between 150 and 400 K with

~1 bar overpressure in I-Ny dewar.

The measurement of the gas temperature is performed by a platinum PT1000 resistor.
A Keithley 3706 digital multimeter® is used for reading of the resistance values. This
device reduces noise by a factor of 2 and requires 10 times smaller test currents for mea-
suring 1 kOhm resistances compared to the frequently used 100 Ohm resistances. Thus,
the PT1000 resistors with 1088 kOhm resistance at room temperature have been chosen
for operation of this cryostat. A software-based PID temperature controller [101] reads
the resistance provided by the Keithley device, compares it with the set resistance, calcu-
lates the voltage desired, and the voltage is applied to the cryostat’s constantan heating
wire by a power supply connected to the controller. The PID controller was optimized
by the Ziegler-Nichols method [127]. During optimization it was noticed that the use
of any differential coefficient reduces the stability of the temperature control, thus, only
proportional and integral coefficients have been applied to control the temperature. The
sensitivity of the temperature measurements depends on the integration time of the volt-
age reading by the Keithley multimeter. Additionally, the sensitivity depends on the
number of channels that are read sequentially. The sensitivity dependence on the inte-
gration time is shown in fig. 4.18. As follows from this figure, the sensitivity of tempera-
ture measurements can be improved by a factor 10 with an optimal integration time and
proper grounding of the measurement circuit, leading to an accuracy of 0.1-0.2 mK. For
the purpose of grounding the current probes of the first and fourth channels of the digi-
tal multimeter are attached to the earth ground electrode in the device rack. The crystal
temperature is measured by a second PT1000 resistor attached to the crystal. The resistor
is attached to the crystal mechanically, with a thin layer of silver paste in between the
crystal and the resistor. Another channel in the Keithley multimeter is used for reading

of the resistance values of this thermosensor.

The backscattering cryostat hosting the sapphire crystal is installed 89 m downstream of
the undulator source and reflects the beam towards the sample that is located 21 m fur-
ther upstream. The monochromator has been tested for temperature stability without
heat load from the impinging beam in order to evaluate the precision of the tempera-
ture measurements at a crystal temperature of 275K. The temperature point 275K was
chosen because at this temperature the copper heat exchangers of the cryostat have a rela-
tively high heat capacity which provides a challenge for the reactivity of the temperature

control. Furthermore, this temperature point corresponds to the energy of 46.5 keV pho-

Sthe device has 7.5 digits resolution for the resistance range under scope.
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tons reflected by the (2 9 11 92) sapphire back-reflection with AE /AT =-0.258 meV/mK.
Large AE/AT demands on very small temperature steps AT in order to achieve a low
energy resolution AFE, thus, this reflection is a good probe for the quality of the temper-
ature control. The results of the temperature control tests are shown in Fig. 4.19. An
average of RMS deviations of 0.181 mK relative to the set point of 275K was achieved
during each temperature stabilization. 8 temperature stabilization runs of 1 hour each
were performed in order to reveal the repeatability of the control. The achieved precision
of 0.181 mK corresponds to an energy drift of the monochromator by 46.6 yeV during 1
hour at the energy of 46.5 keV. The temperature scans around the temperature 275K have

been carried out with a temperature ramp of 230 mK/min during 30 min (fig. 4.20).
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(a)

(b)

Figure 4.17: Setup (a) and cross-section (b) of the backscattering monochromator (outer heat ex-
changer is not shown).
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Figure 4.18: Sensitivity of temperature measurements at room temperature for different reading
rates and number of channels. Current probe of the channels 1001 and 1004 are
grounded, the circuit is opened. Channels 1002 and 1003 are used to measure resis-
tances of platinum temperature probes (PT1000).

Figure 4.19: Temperature stability during temperature control at 275 K. The duration of each
scan is 1 hour.
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Figure 4.20: Temperature control at 275 K with a fast, 230 mK/min, temperature change. The de-
viation from linearity is 9.8 mK (RMS) in a temperature range of 1.5 K. The offset in
absolute temperature is determined by spatial separation of "sapphire” and "control”
Sensors.
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4.6.2 Performance at 23.88 keV at the ''?Sn nuclear resonance

The backscattering monochromator was installed and tested for the first time at the P01
beamline at the energy of the 11%Sn nuclear resonance at 23.88 keV. In this first experiment
the temperature stability and precision of the temperature control were tested under heat
load by the x-ray beam. Since the temperature of the crystal corresponding to the Bragg
energy of the resonant quanta is a fixed well-defined value, the nuclear resonance pro-
vides the possibility to measure temperature gradients by mapping of the instrumental
function of the particular reflection over the sapphire crystal surface. In this case the tem-
perature shown by the thermosensor at the maximum of resonance will be different for
different spots on the crystal. There is no need to place several thermosensors in different
positions to measure temperature gradients. However, an error in the obtained data can
emerge when the direct beam or the beam from a strong reflection hits the thermosensor.
Thus, the thermosensor was attached to the edge of the crystal which should reduce the
temperature effect of the beam.

During the experiment the PETRA ring was operated in 40 bunch mode, resulting in
192ns separation between the bunches. The standard double-crystal monochromator
(DCM) was operated using the pair of Si (1 1 1) reflections. It was tuned to the energy
23.879 keV. The DCM reduced the bandwidth of the undulator radiation down to 3 eV
around the 19Sn resonance. A powder of SnO, enriched in the 19gp isotope to 95 %
has been placed into the direct beam. The direct beam attenuated by the sample and the
quanta reemitted by ''9Sn nuclei have been reflected by the Al,O; crystal. A sapphire
crystal of disk shape with 18 mm diameter and 5 mm thickness was used. The crystal
was grown by heat-exchange method [128], having HEMEX grade’. The crystal surface
was mechanically polished. Additionally, the crystal quality of another sapphire, grown
by the Kyropoulos technique [128] with low pulling rate (wafer #1 in Ref. [129]) was
inspected. That crystal was 1 mm thick; the crystal surface was first chemically etched

and later mechanically polished.

In the experiment, the Al,O3 crystal has to be oriented in a way, that it reflects photons
with 23.879 keV, corresponding to the energy of the Méssbauer transition in 1!?Sn at the
26 angle close to 180°. The corresponding crystallographic planes (4 4 8 45) should be
oriented perpendicular to the beam. This has been done by an orientation matrix which
connects Euler angles and Miller indices of the crystal. The Euler angles define three ro-
tation degrees of freedom which allow one to bring the crystal from any arbitrary to a
defined position. Thus, an orientation matrix can be used to determine the orientation of
the crystal. For the purpose of finding the orientation matrix, a fluorescence screen was

installed close to the monochromator. First, the crystal was maintained at room temper-

YHEMEX is trademark of GT Advanced Technologies Inc., 243 Daniel Webster Highway, Merrimack, NH
03054, USA.
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ature and the energy of the DCM was changed. Reflections with Bragg angles close to
90° (back-reflections) have been observed on the fluorescence screen. Moving the fluo-
rescence screen closer to the monochromator allows one to observe more back-reflections
which can be used for orientation. This can be particularly useful for reflections with
low reflectivity. When a back-reflection was found on the fluorescence screen, it was put
into the backscattering regime, i.e. into the spot of the direct beam, using the goniometer
and tuning energy of pre-monochromator. The procedure is repeated for several back-
reflections in order to reduce the statistical error in determination of the orientation ma-
trix. The azimuthal and polar angles have been used to calculate the orientation matrix
of the crystal setup. Once the matrix was determined, the crystal was oriented to match
the (4 4 8 45) reflection and the temperature of the crystal was reduced to 192 K, which
is the temperature of the Bragg energy coinciding with the resonant energy. In the fol-
lowing the energy of the pre-monochromator was refined to optimize the transmission of
the setup. X-rays reflected from the Al,O3 crystal have been detected by a stack of APD

detectors installed upstream of the backscattering monochromator.

Figure 4.21: Spectral reflectivities of 1 mm thick and 5 mm thick sapphire crystals measured
around 119 Sn resonance energy of 23.88 keV (Energy difference 0). Red lines: values
calculated by the dynamical theory of x-ray diffraction.
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Figure 4.22: Measured temperature stability during temperature control with heat load by
23.88 keV x-ray beam. The RMS value is 0.7 mK during 1 hour.

The best position on the crystal was found. At this position an energy bandwidth of
1.3(1) meV (FWHM) and relatively symmetric shape of the instrumental function have
been achieved, as shown in fig. 4.21. The obtained temperature stability at the sap-
phire crystal was 0.7 mK (r.m.s.) (fig. 4.22) which corresponds to an energy uncertainty
of 0.06 meV. This value is much smaller than the FWHM of the instrumental function.
Therefore, for this Mossbauer transition the quality of the temperature control is the least

important factor that deteriorates the resolution of the monochromator.

There could be two reasons which deteriorate the energy bandwidth measured in exper-
iment. Firstly, the crystal imperfections such as dislocations and stacking faults are the
reasons for the broadening of the instrumental function as shown in Ref. [99]. Second,
the temperature gradients along the sapphire crystal might influence the resolution. In
Ref. [114] it was shown that a temperature gradient of 0.1 mK may explain broadening of
up to 10 meV. By mapping the sapphire temperature at resonant energy with respect to
the position of the incident beam on the crystal one can estimate temperature gradients
present in the system. Though the position of the temperature sensor to the beam might
influence the measurements, the impact of this effect is not too high because the crystal
is thick and the thermosensor is placed on the edge of the crystal. The temperature map
is shown in the fig. 4.23 for the 5mm thick sapphire crystal. The temperature gradient is

roughly 100 mK/mm in some regions on the crystal.
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Figure 4.23: Temperature map for the 5 mm thick sapphire crystal. The temperature is taken at
the maximum of instrumental function (s. text).

The high reflectivity of the crystal results in a higher flux from the monochromator, which
is desired in NRS experiments. Thus, it is very important to measure this parameter. The
photon flux upstream and downstream of the BS HRM was measured by a 300 m thick
silicon PIN diode and a 100 um thick APD, respectively. The flux incident on the BS HRM
was 8.1:10'2 ph/s (or 2.7-10'2 ph/s/eV) at 23.8793 keV. The measured photon flux after
the BS HRM was 1.6:10° ph/s at this energy. This corresponds to a sapphire spectral
reflectivity of 26.6 %, or 3.1-10% photons per natural linewidth I of the 11Sn resonance.
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4.6.3 Performance at 37.13 keV at the '?'Sb nuclear resonance

The backscattering experiment at the energy 37.13 keV had the same setup and alignment
procedure as described before. However, here the energy of the pre-monochromator was
set to 37.13 keV. In this experiment the resonance of interest was '2!Sb at 37.1292(5) keV
[103]. The flux of the beam incident on the BS HRM was measured to be 1.7 - 10*2 ph/s.
This value agrees well with the calculated flux value [130] of 1.2 - 10'2ph/s. The
(8 16 24 40) sapphire back-reflection was used for this energy. The thickness of the
utilized sapphire crystal was 1 mm. For this reflection the energy slope

AE/AT =-0.16 meV/mK and the temperature for the Bragg energy is 237 K. The lifetime
of the '?1Sb resonance, 5ns, is rather small. Therefore, the time window for counting
should be opened very early after the excitation pulse. The side bunches in the PETRA
ring did not allow one to start counting earlier than 9ns. Thus, the NRS signal has been
collected with 9ns starting time after the excitation pulse. The resonance of ?!Sb has
been excited and the instrumental function of the sapphire backscattering monochroma-
tor was measured using NFS. At the best spot of the crystal, the acquired instrumental
function has a full width at half-maximum of 3.2(4) meV. The rocking curve and fitted
Lorentzian function are shown in fig. 4.24. For this particular energy and reflection the
energy bandwidth of the monochromator is about factor of 5 higher than the 0.61 meV
energy bandwidth predicted by theory. This deviation is much larger than the deviation
by a factor of 2 observed at 23.88 keV photon energy in this work. This deviation can be
explained by the larger penetration depth of the 37.13keV x-rays and slightly different
orientation of the sapphire crystal. Indeed, the extinction length for 37.13keV is 845 ym
and for 23.88 keV x-rays it is 273 ym and therefore more defects in the crystal are probed
by 37.13 keV photons than it is for 23.88 keV photons. Moreover, the atom density in the
< 816 24 40 > direction in sapphire is higher than that in the < 44 8 45 > direction due to
higher atomic density in the former direction. Thus, the probability of a defect to appear
in the < 8 16 24 40 > direction is higher than that for the < 4 4 8 45 > direction. The
flux after the monochromator was measured as 8.1 - 107 ph/s, which corresponds to the
reflectivity of 18.6%, or 1.4-10° photons per natural linewidth of the '2!Sb resonance.
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Figure 4.24: Instrumental function of a 5 mm thick sapphire crystal measured around the 12'Sb
resonance energy of 37.1292(5) keV (resonance energy is set to 0). Red line: fit by
the pseudo-Voigt function with FWHM 3.2(4) meV. The binning is 1 meV/point.
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Feasibility study: NFS on Sb,O3

The first feasibility studies of the backscattering monochromator at the '?!Sb resonance
have been done before the cleaning procedure for the PETRA ring has been established
(see chapter 4.4). In these studies, late starting times for counting with respect to the
synchrotron bunch resulted in a low countrate, however, the acquisition of NFS spectra
on '21Sb was possible (fig. 4.25). Since the cubic Sb2Oj is frequently used as a reference
in NFS experiments on !2!Sb, most informations are known about the sample [114] and

the NFS spectrum can be fitted to the experimental data.

The software package CONUSS [77] has been used to calculate and fit the NFS to the ex-
perimental data, see fig. 4.25. The obtained quadrupole splitting of 16.4(3)I" (I is the nat-
ural linewidth of 37.13 keV resonance in '?!Sb) resembles the literature value of 16.7(4)T
[114]. However, it is slightly smaller than the value of 17.9(4)I" given by earlier MS stud-
ies in Ref. [131] and the value of 17.4I" given in the review [132]; both references, [131]
and [132], provide values for cubic modification of SbyOs3. It was shown in Ref. [133]
that the quadrupole splitting for SbY in cervantite is 15.6(4)I', which is lower than the
quadrupole splitting of 17.4(4)T" for Sb'!! in cubic SbyO3 reported in the same Ref. [133].
In order to examine this effect on NFS data, a model with two non-equal sites should be

applied. However, the low statistics of the data does not allow an appropriate fit.

Figure 4.25: NFS spectrum measured on SboO3 powder with 2*Sb resonance. Red line: NFS
spectrum calculated by the software CONUSS.
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5 Nuclear Forward Scattering at the '*°Ir

resonance

5.1 Iridium and the 73 keV Mossbauer resonance in ?3Ir

The element iridium is a 5d transition metal with seven 5d—, two 6s— valence electrons
and a [Xe] 4f! configuration of the core electron shell. Under normal conditions Ir crys-

tallizes in a face-centered cubic lattice with the space group Fm3m (number 225 [134]).

Iridium gained significant interest in recent years as a component of the transition metal
oxide compounds (TMO). The puzzle of magnetic and electric interactions in these com-
pounds became highly interesting due to the observation of high-temperature supercon-
ductivity in cuprate perovskite compounds. Many novel electronic states have been pro-
posed for these compounds, especially antiferromagnetic and Mott-insulator states. Re-
cent theoretical studies have shown that superconductivity could also be possible in other
TMO compounds, e.g. in Ruddlesden-Popper (RP) phases of the Sry,;11r,,O3,,+1 iridates
(with n being the number of layers of SrIrO3 separated by layers of SrO) [7, 11]. The
structure of these compounds is the same as that of the cuprates and their low-energy
excitations can also be modeled by Hubbard-type interactions [7]. However, in contrast
to the cuprates, a two orders of magnitude larger spin-orbit interaction (SOC) is present
in the iridate compounds which might impact the conditions for superconductivity. A
novel j.rs = 1/2 state was proposed theoretically and observed experimentally [13, 37].
The large SOC and observed locking of the magnetic moment to the rotation of the IrOg
octahedra [36] might lead to interesting phenomena like Dzyaloshinsky-Moriya interac-
tion [36] and gaps in the spin-wave spectrum. There is therefore a high scientific interest
in these compounds as they provide a possibility to study correlations of electrons in
the presence of strong spin-orbit coupling and establish modeling techniques for these

phenomena.

Elemental iridium itself is one of the least investigated metals in terms of lattice dynam-
ics. The lack of data stands in contrast to the large number of first principle calculations.
Inelastic Neutron Scattering (INS), the most common method of phonon dispersion stud-
ies, is technically difficult to carry out due to the high Ir absorption cross-section for neu-
trons. This cross-section is 425 barn [39] while elements typically studied with INS have
cross-sections in the 0.01-10 barn range. Despite of the experimental challenges, iridium

is an interesting model system for studies of thermal properties and lattice dynamics. It
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can withstand temperatures as high as 2000°C, together with osmium and tungsten be-
ing one of the most temperature resistant metals. It is extremely resistive to acids, bases
and oxygen, having one of the highest resistivity to these media. Iridium is one of the
least abundant elements in the earth crust, though its concentrations are the highest in
several geological structures like impact craters and igneous deposits formed by intru-
sions from the lower Earth mantle. Studies of structure and dynamics in these formations
have high scientific impact. Technological applications of iridium are very important, for
instance, doping construction alloys used in the high-demanding applications like air-
craft and spacecraft with iridium does significantly increase hardness and temperature

or chemical resistivity of the materials.

Conventional MS was already employed for studies of hyperfine interactions and lattice
dynamics of Ir compounds. Therefore, the information on Mdssbauer transitions in Ir is
available [57, 58] and should be reviewed in detail. The naturally occurring Mossbauer
isotopes of Iridium are 'Ir and %Ir. The isotopes have Mossbauer transitions at 82
and 129 keV, and at 73 and 139 keV, respectively. Although the Mossbauer effect was
discovered with the 129 keV resonance of 9'Ir [62, 63], 129 keV as well as 139 keV tran-
sitions are not of practical importance due to the high energy and low Lamb-M&ssbauer
factors. Sources for MS on Ir cannot be easily prepared. The excited states of *Ir can
be produced by the 3~ decay of '°'Os or by electron capture from °'Pt, with a lifetime
of 22 days and 4 days, respectively. '°!Os is produced by neutron activation of Os in the
reaction 1%°0s(n,7)11Os. The production of the 9!Ir isotope via Pt is carried out by ir-
radiation of Ir with protons or deuterons, **Ir(p,n)*'Pt or *1Ir(d,2n)'9'Pt. The 5~ decay
of 91Os exhibits a less complicated emission spectrum, however, the 82 keV level in 19'Ir
is weakly populated in this decay and thus challenging for studies with MS. Moreover,
the preparation of sources for MS with '!Ir is complicated due to the low abundances of
91y and 1910s. Therefore, in most Ir Mdssbauer spectroscopy studies, the 1%Ir isotope
has been used. The source can be produced by neutron activation of Os, 1920s(n,)'%30Os,
using > 95% enrichment in !%2Os. The source has a relative small lifetime of 45 hours
but recoilless emission is relative intense due to the high Debye temperature of Os. The
source is not a perfect single-line source because Os has a hexagonal crystal cell and the
source produces an unresolved quadrupole doublet with a line separation of 0.48 mm/s
corresponding to ~ 1.6 I'. Several studies suggested the use of alloys with Os with Pt or
Nb which have cubic lattice and emit almost a single line [57]. However, the preparation
of sources is deteriorated by high-temperature melting of highly activated '**Os. Obvi-
ously, the source preparation for conventional MS on Ir is complicated while NRS does

not require any radioactive source.

As mentioned above, the 129 keV transition in °'Ir was not used after the discovery
of the Mossbauer effect due to the high energy and low recoilless probability for this

transition. For NRS studies this isotope is not accessible so far because the brilliance of
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photons with energies higher than 100 keV is still low even at modern photon sources.
For the same reasons, the 139 keV transition in %Ir is currently not interesting for MS
and NRS studies.

The transitions with energies of 73 keV and 82 keV are of particular interest for MS and
NRS studies: their properties should be reviewed in detail. Table 5.1 shows the compari-

son of the main parameters of these two Mossbauer transitions.

Parameter Wl | 1931r
Natural abundance, [%] 37.3 62.7
Spin of the excited state +1/2 | +1/2
Spin of the ground state +3/2 | +3/2
E,, [keV] 82 73*
Lifetime, [ns] 41 8.4
I, [neV] 110 75
frm forIrat4 K 0.46 0.37*%
Recoil energy Er, [meV] 19.1 14.8
Internal conversion coefficient 10.9 6.8
Nuclear resonance cross section o, | 1.35 3.06
1072 [em?]

Electronic absorption length in Ir at res- | 55 175
onance energy E., [jim]

Table 5.1: Properties of the Mossbauer transitions in Iridium. The parameters are given for tran-
sitions with E,, < 100 keV. The advantages of the 73 keV transition in 3Ir are shown
in bold. Compiled from Refs. [2, 57, 124].

* The values are corrected in this work

Comparing the properties of the two transitions, the most interesting and practical for
NRS on iridium is the resonance in 1%Ir at 73 keV. The %3Ir isotope has a high natu-
ral abundance of 62.7% and therefore no isotopic enrichment is necessary. The 73 keV
transition has also slightly lower energy and longer lifetime. The longer lifetime of the
corresponding excited state is beneficial for NFS. Furthermore, the 73 keV transition has
a higher resonance cross section which again results in higher count-rates in NFS. The
energy of the transition is high: while electronic scattering techniques usually involve
low-energy photons which do not permit the use of complex sample environments such

as high-field magnets and pressure cells, NRS does not have this limitation due to the
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very large absorption lengths for 73 keV photons.

Finally, it is worth to mention that the K-edge of electronic absorption of Ir is at 76.111 keV
[135] which is slightly higher than the nuclear transition at 73 keV. Thus, the conversion
coefficient is lower than that for 82 keV, resulting in slightly higher intensity of NFS.
The proximity of the nuclear resonance energy to the energy of the K-edge provides a
remarkable feature of high electronic absorption length at the nuclear resonance energy
(see table 5.1). This is of benefit for achieving high NFS countrates with thick samples.
Moreover, the proximity of the K-edge to the nuclear resonance results in a technical
advantage: the energy of the nuclear resonance can be determined with higher accuracy
by calibration with electronic absorption in Ir. Indeed, for such a small difference in
energies, the non-linearity in movement of the Bragg angle is negligible: the measured
movement of the Bragg angle is equal to the set movement with a high accuracy. The
error in the energy of the nuclear resonance will be given mainly by the error in the
energy of the K- absorption edge.
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5.2 Lattice dynamics in Ir studied with NFS

The first observation of nuclear resonance scattering by 1%Ir described in Chapter 4.5
encouraged a simple first application of NFS. It was decided to measure NFS on Ir due
to the following reasons. First, elemental Ir is one of the least-studied materials in terms
of lattice dynamics: only few reports about density of phonon states and diffraction data
exist in the literature. The NFS spectra measured at different temperatures reveal the
temperature dependence of the Lamb-Mossbauer factor, the atomic displacement, and
the Debye temperature, and thus measuring NFS widens the knowledge about lattice
dynamics [54, 52]. Second, the evaluation of NFS spectra on Ir is simplified because Ir
exhibits no macroscopic magnetic order in the 10-300 K temperature range under scope.
Moreover, Ir atoms in fce-Ir show a coordination with cubic symmetry [136]. Therefore,
the hyperfine interactions in fcc-Ir can be neglected [58, 57]. Comparing the optimal
thickness values from table 3.1 in the theory part, the thicknesses of the sample foils were

chosen as 100 ym and 200 pm.

The measured NFS time spectra are shown in the fig. 5.1a and 5.1b by black symbols. The
background contribution is determined from the time spectrum acquired at a photon
energy 6.5 eV below the resonance energy. The background countrate is 0.2 Hz. The
background time spectrum is scaled by the acquisition time of the NFS spectrum and

subtracted from it.

The NFS beating patterns can be described by the dynamical theory of NRS ([2] and chap-
ter 3.4). The fits to the NFS spectra are shown in the fig. 5.1a, 5.1b by the red lines and
the measured spectra are shown by the black dots. In the fig. 5.1b the green dashed line
shows the time dependence of the natural decay of the excited state of %Ir. The speed-
up of the intensity in the measured NFS spectra due to the finite thickness of the Ir foils
is clearly visible even at room temperature.

The Lamb-Mossbauer factor derived from the effective thickness is shown in fig. 5.2
by the black symbols for four temperature points. The temperature dependence of the
Lamb-Mossbauer factor can be approximated by equation (3.24) with the Debye temper-
ature 0pe, = 309(30) K (fig. 5.2, solid line).

Besides Mossbauer spectroscopy, the main experimental method used to obtain Debye
temperature 6., is the measurement of the specific heat capacity. However, this method
weights all lattice vibrations as well as heat capacity originating from electrons. In con-
trast, the Lamb-Mossbauer factor is determined mainly by phonons with low excitation
energy. Therefore, the Debye temperature value obtained by heat capacity measurements
is higher than that measured by microscopic NRS and MS techniques. Comparing the mi-

croscopic measurement techniques, the of values of 6, obtained with neutron scattering
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and Mossbauer effect should be in a good agreement, whereas the x-ray scattering will

give lower values of . [52].

There are different values of the Debye temperature for iridium reported in the literature
(table 5.3). Calculations give values of 6p¢, as 266 K [137], 282 K [138], whereas measure-
ments of specific heat capacity give different values from 260 to 350 K and to 430 K with
an extrapolation to 0 K temperature [68]. Interestingly, Low-Energy-Electron Diffraction
measurements on single crystals of Ir show the possibility to image the contributions of
longitudinal and transversal vibration modes to Op¢, [139]. In that study the values of
Opey have been reported as 245-285 K, depending on the orientation of the crystal. The
Debye temperature value obtained in this work from the temperature dependence of the
Lamb-Madssbauer factor (fig. 5.2) is in agreement with the literature values given above,
and in a remarkable agreement with the value of 316 K received in measurements of

electrical resistivity at low temperatures reported in Ref. [138].
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(a)

(b)

Figure 5.1: Experimental NFS time spectra (points) and fits to them (lines, only effective thick-
ness and its Gaussian distribution are fitted) for: (a) 100 pm Ir foil, (b) 200 pm Ir

foil.
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Figure 5.2: Temperature dependence of the Lamb-Mossbauer factor and the mean atomic displace-
ment parameter in Ir. The red line shows the fit with the Debye model with a De-
bye temperature of 309(30) K. Empty symbols correspond to the data acquired on
the 100 pum thick sample and filled symbols correspond to the data measured on the
200 pem thick sample.

Since NFS probes the displacement of the nucleus and its close surrounding, the result
presents more the adiabatic part of lattice dynamics. At this point, the obtained values of
frau and pep, should be compared with literature values measured by different methods
which probe different time scales of lattice vibrations. In this work inelastic neutron scat-
tering and x-ray diffraction experiments are carried out in order to verify literature data
and obtain the lacking information on the phonon density of states and atomic displace-

ment parameter.
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The measurements of lattice dynamics by neutron scattering on Ir is challenging due
to the high absorption of neutrons by %Ir nuclei. However, several experimental and
theoretical studies of the DPS do exist in literature [140, 141, 142, 143]. The results of

previous studies can be divided into two categories:

o set of studies showing maximum phonon energies of 33-37 meV and a square root
(Debye) behavior up to 15-20 meV [140, 141]

e another set of studies showing phonon maximum phonon energies at 24-27 meV
and a square root (Debye) behavior up to 12-16 meV [142, 143]

The INS experiment was carried out with the wide angular-range chopper spectrome-
ter (ARCS) at the Oak Ridge National Laboratory neutron spallation source [144]. The
energy of incident neutrons was fixed to 45 meV and the energy resolution of the spec-
trometer was 1.4 meV (FWHM).

The DPS derived from the INS scattering function is shown in fig. 5.3. A quantitative
comparison of the DPS measured in this work and the one reported in literature shows
that the DPS measured in this work does resemble the theoretical calculations from the
Ref. [143]. The maximum phonon frequency and energy are 6 THz and 25 meV, respec-
tively. This value is in a very good agreement with the values 5.8-6.5 THz (24-27 meV)
obtained by ab initio calculations in the works [142, 143]. The mode with energy 23 meV
reported in Ref. [143] does resemble the mode at 23 meV measured in this work. The
softer mode observed in this work at 17.5 meV is slightly shifted to higher energies and
broadened compared to the calculated one. The shift to higher energies implies a higher
force constant. It is worth to mention that the 17.5 and 23 meV modes in the DPS ob-
tained in this work have lower intensity than those given by Ref. [143]. Softer modes
in the 0-12 meV range observed in this work are more pronounced than those given by

calculation.
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Figure 5.3: Density of phonon states in Ir: measured by inelastic neutron scattering (black dots)
and calculated in Ref. [143] (blue line). The inset shows the reduced DPS indicating
the Debye levels and corresponding Debye sound velocities as reported in Ref.[145]
(brown arrow), derived from the DPS reported in Ref. [143], and derived from the
DPS measured in this work for Ir at 10 K (black), 150 K (red), and at 250 K (green).

Several thermodynamic properties can be derived from the DPS measured by INS. No-
tably, the DPS measured at the temperatures 10, 150, and 250 K do not differ significantly.
Thus, in the following the values are given for the measurements at 150 K and the value
in brackets shows the deviation of the values measured at 10 and 250 K from that mea-
sured at 150 K. The internal energy per atom U determined by equation (3.58) is 26.2 meV.
The specific heat per atom Cy is determined to 0.65 eV /K. The entropy per atom is ob-
tained as 0.22 11V /K. The mean force constant is obtained as 236 N/m, slightly lower
than force constant of 254.78 N/m reported by ab initio calculations for the direction
along [0 0 1] [143]. This can be seen in the fig. 5.3: the softer modes are more intense in

the experimental spectrum. Data extracted from INS measurements are summarized in
table 5.2.
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Parameter Value

Internal energy per atom, [meV/at] | 26.2(1)

Specific heat per atom, [peV/K/at] | 0.65(9)

Entropy per atom, [peV/K/at] 0.22(2)
Mean force constant, [N/m)] 236(30)
Bulk modulus*, [GPa] 363(10)
Shear modulus*, |G Pa] 224(10)

Speed of sound**:

Transversal, [km/s] 3.15(13)
Longitudinal, [km/s] 5.35(18)
Debye, [km/s] 3.46(13)

Table 5.2: Lattice dynamics properties of Ir studied by INS.

* Determined from the puls-echo and high pressure XRD studies (s. text)

** Determined from the bulk and shear moduli (s. text)

The speed of sound obtained from the Debye level of the DPS measured in this work
at 10K is 2.4(6) km/s. This value is lower than the value of 4.8 km/s obtained by cal-
culations in Ref. [146], and the discrepancy reasons should be discussed in detail. The
speed of sound is the parameter which characterizes the propagation of elastic waves in
a material. It is thus determined by the response of the material to elastic deformation.
The response is generally described by bulk and and shear moduli K and G which give
the response to isotropic and shear stress, respectively. There is therefore the speed of
sound for the wave with polarization perpendicular to the wave propagation, transver-
sal speed of sound, and the speed of sound for the wave with polarization along to the

wave propagation, longitudinal speed of sound. These parameters are determined by

Vtrans = g (51)
p

K +3iG
Vlong = P) 3 ) (52)

equations:

and
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respectively, with p - density of the material

There are several techniques which can be used for the determination of the elastic re-
sponse. The most popular methods are the pulse-echo method, measurements of hydro-
static lattice compressibility by XRD, and density of phonon states measurements at low
energy transfer by IXS, NIS and INS. The pulse-echo method probes the time delay of the
elastic wave propagation and measures directly bulk and shear moduli. The speeds of
sound are defined by equations (5.1) and (5.2).

The second technique, the measurements of hydrostatic lattice compressibility by XRD,
provides information about bulk modulus which can be compared to the results obtained
by pulse-echo. From the measurements of density of phonon states the speed of sound
can be determined from the Debye level which was defined by eq. (3.61) in the Chapter
3.4.2. In order to compare the results obtained by the pulse-echo method and XRD com-
pression experiment with that obtained by IXS, NIS and INS, the Debye speed of sound

can be written in terms of the transversal and longitudinal speed of sound:

1 2 71/3
v e = 1 3 . + 5.3
Deb < / <Ulong3 Utransg ) ) ( )

The results of a pulse-echo experiment on Ir are reported in Ref. [145]. From the data
given in work [145] a bulk modulus of 363 GPa and a shear modulus of 224 GPa can be
derived!?. The bulk modulus obtained by the pulse-echo technique is in a good agree-
ment with the value of 347(44) GPa obtained in the XRD study of the compressibility
reported in the Ref. [147]. Using the value of bulk and shear moduli obtained by the
pulse-echo technique the transversal and longitudinal speeds of sound are determined
to 3.15(13) km/s and 5.35(18) km/s, respectively. The Debye speed of sound derived
from these values by equation (5.3) is vpep=3.46(13) km/s.

A Debye level of limg_, gég) = 1.7(12) - 10~* meV~3 is obtained by INS in this work.

Using the equation (3.61) the Debye speed of sound is determined to 24*$ km/s which

is smaller in average than 3.5(1) km/s which corresponds to a Debye level of 0.59 - 104
meV 3. In fact, the speed of sound determined by INS is strongly affected by the large
contribution of elastic scattering at small energy transfer. The problem is well known for
evaluation of data obtained by inelastic scattering techniques and a detailed description
is given in Ref. [148]. A possible solution of the problem is the reduction of the tails in
instrumental function of the INS spectrometer which can be achieved by an improvement

of the optics for the incident neutrons.

Interestingly, the density of phonon states in fcc-Ir is similar to that in fcc-vy-Fe (fig. 5.4).

10Unfor’runa’cely, the errors for the elastic constants are not reported in Ref. [145]
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Indeed, a good agreement between the DPS of Ir and that of y-Fe can be achieved by
compression of the energy scale of the DPS for v-Fe by 0.7. The factor 0.7 can be explained
by three contributions: first the relation between lattice parameters of iron, a(y— Fe), and
iridium, a(Ir) should be considered. Second, the relation between the atomic masses of

iron, M (Fe), and iridium, M (Ir), should be taken into account.

E(Fe) . a(ly—Fe) (M(Fe) %
E(Ir) =07= a(Ir) (M(Ir)) 22 4

Third, the coefficient 2.2 might be related to the Griineisen parameters of iridium (2.35,
as reported in Ref. [149]) and iron (2.3, as calculated in Ref. [150]).

Figure 5.4: Comparison of DPS in two fcc metals: DPS measured on Ir in this work and DPS
obtained for v-Fe in the work [151].
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Further insight into the lattice dynamics is given by the atomic displacement parameter
measured by XRD. In this work the room-temperature XRD on Ir was carried out at the
P02.1 diffraction beamline of PETRAIII [152]. The purity of Ir powder sample was 99.95
%. The wavelength at the beamline was fixed to 0.20715(1) nm and the geometry of the
experiment including distance between sample and detector, inclination of detector to the
beam was determined with a LaBg powder diffraction standard!!. The obtained XRD pat-
tern was integrated using the software Fit2D [153] and analyzed by the Rietveld method
[154] using the software JANA2006 [155]. The lattice parameter of Ir of 3.8399(22) A ob-
tained in this work resembles the value of 3.8394 A'? given by early NIST report [136]
and in a good agreement with the value of 3.8392(6) A reported in the recent compre-
hensive review on the crystallographic properties of Ir, Ref. [156]. The isotropic atomic
displacement parameter Uy, is derived from the measured data and shown in the table
5.3. It should be noted that the atomic displacement obtained from XRD is affected by

site occupation or disorder, while NFS probes one-particle displacements.

A summary of XRD, neutron scattering, and NFS measurements is given in the table 5.3.
The values obtained from the DPS reported in the Ref. [143] and Debye temperature
O pep obtained from heat capacity measurements are also presented. The fig. 5.3 and the
comparison table 5.3 show very good agreement between the data obtained by NFS, INS

and ab initio calculations.

"LaBs exhibits a high Debye-Waller factor and well-defined room-temperature XRD pattern. Therefore, it
is widely used as standard reference for calibration of distances in XRD experiments.
12Unfor’runa’cely, Ref. [136] does not provide the error for this value.
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Method ODeb Uiso Or < 2 > fLM
K] 10 [AQ]
Heat capacity | 350-400(20) 4.8-5.5 0.47-0.52
[68]
at10-20 K at 10-20 K** at 10-20 K*
XRD 200(40)** 38(9)
Neutron scat- | Debye behavior | 6.9(26)** 0.39(16)*
tering up to 10 meV
NFS 309(30)*** 6.2(12) at 13 K** 0.43(8) at 13 K
MS: 335(9) [69] MS: 0.37 at 4 K
[57]
ab initio calcu- | Debye behavior | 6.4** 0.427#
lations [143] up to 10 meV

Table 5.3: Lattice dynamics properties of Ir studied by different methods.

* calculated from 0pey, assuming Debye model (3.24) ** derived from frys assuming classical
approximation (3.20) *** calculated from fr,nr assuming Debye model (3.24) # derived from DPS
using (3.27)
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6 Hyperfine interactions in iridium

compounds

6.1 Electric hyperfine interactions in IrO; and in SrIrO;

The successful NFS experiments on elemental Ir provided the perspectives for studies of
more complex systems like Ir oxide compounds. Looking for a simple test sample for
NEFS, iridium (IV) oxide can be considered. IrOs shows strong spin-orbit coupling and
a small gap in the spin-wave dispersion, resulting in the easy conversion of charge cur-
rent into a spin current and vice versa [9], the phenomena called direct and inverse spin
Hall effect [157]. The charge or spin current can be induced by thermal activation: in
this case it is called spin Seebeck effect [158]. It was demonstrated that both effects are
significant in IrO;, and which is more important, the resistivity of IrO; is higher than that
in Pd, V, Au, Pt metals, which also demonstrate high spin Hall and Seebeck effects and
typically are used for detection of spin currents [158, 9]. Strong spin-orbit coupling and
unusual transport effects inspire studies of microscopic electronic and magnetic proper-
ties of IrO,.

Bulk IrO5 shows paramagnetic behavior and metallic type of electric conductivity in the
10-300 K range, according to recent studies of macroscopic magnetism and charge trans-
port in this compound [159]. The oxide has a tetragonal crystal lattice of rutile type and
3-fold symmetry of the coordination polyhedron of Ir [160]. The coordination of Ir is not
cubic, but shows a significant tetragonal distortion [160], see inset in fig. 6.1. Thus, an
axially symmetric quadrupole interaction is expected in this compound [54]. To the best
of our knowledge, no microscopic magnetism was reported by XRMS, RIXS, XMCD, or
neutron scattering techniques. IrO; is a good reference sample for the first NFS measure-
ments on Ir oxides, since the data might be interpreted by the simple model of electric

hyperfine interactions.

The experimental setup was the same as shown in the fig. 4.15 in the Chapter 4.5. We
cooled down the standard powdered IrO, 3 to 16 K using the standard Helium closed
cycle cryostat. The sample was accurately attached to a massive sample holder and ther-
mally stabilized by several insulation layers. The PETRA ring was operated in the 40-
bunch mode (192 ns spacing between bunches) and the ring current was 100 mA. The
NEFS time spectra have been acquired with a 15-element APD detector (see Chapter 4.3).

Bthe sample was obtained from Sigma Aldrich Corporation, the purity is reported to be 99.9% wt.
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An external magnetic field of 0.53(5) T was applied to the sample (zero-field cooling) in

order to examine possible magnetism on the Ir nucleus.

The time spectra are shown in the fig. 6.1 by black markers. Sufficient number of counts
was collected in 3 hours in both experiments, without (upper panel of the fig. 6.1) and
with applied external field (lower panel in the fig. 6.1).

The obtained data were interpreted by a model with only two fit parameters: the
quadrupole splitting AEg = % and the effective thickness Ty = on fLm Ngd (o is
the cross-section of nuclear resonance scattering, frs is the Lamb-Mdossbauer factor, Ng
is the number of resonant nuclei and d is the sample thickness). The fitting of the model
to experimental data was performed with CONUSS software [77] specially improved
for the calculations of hyperfine interactions in the presence of M1+E2 radiation mixture
in 1931r using formalism given in Ref. [76] (Chapter 3.4). The fits to the measured time
spectra (red lines in fig. 6.1) show very good agreement with the experimental data.
A quadrupole splitting of 2.76(2) mm/s (8.96(7)[' or 672(5) neV) was obtained. This
value is in a very good agreement with the value of 2.71(6) mm/s (8.8(2)I" or 660(15)
neV) measured by conventional MS and reported in the Ref. [161] and slightly lower
compared to 3.0(2) mm/s (9.7(7)I" or 730(50) neV) given in the earlier publication [162].
Calculating the NFS spectra for several possible quadrupole interaction energy values, it
was found that the beating period can be related to quadrupole interaction energy by a

simple relation:

AEqg [peV]-T [ns] ~ 4.14. (6.1)

We determined the Lamb-Maossbauer factor to be 0.32(4) at 16 K. The Debye temperature
was estimated to be 230(30) K. No detectable effect is observed upon the application
of the external magnetic field (lower panel in the fig. 6.1), and the time spectrum was
interpreted by the same model. In other words, a possible magnetic hyperfine interaction
in IrOy could be not larger than that which can be resolved by the NFS technique. The
resolution of NFS is determined by the time-resolution of the APD detector and should
be discussed briefly. The time resolution of the APDs used in this work is ~0.4(1) ns.
Analyzing the time spectra for parallel oriented electric and magnetic hyperfine fields
on the Ir nucleus, one can notice that a change of the magnetic hyperfine field by 0.53 T
leads to a shift of the beatings in NFS time spectrum for a magnetically ordered material.
Particularly, the time spectrum shift by 0.04 ns which is an order of magnitude beyond
the resolution of the detector. An improved acquisition system should be implemented
for detection of such a small time shifts of beating patterns. Particularly, fast backend-
electronics which digitizes signals from APD directly, without using CFD and gating

technique, can be used. Such system built on a field-programmable electronics (FPGA)
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was recently demonstrated in Ref. [163], and could be applied for NRS studies on Ir.

Figure 6.1: NFS time spectra acquired (black markers) on IrOo at 16 K without external magnetic
(upper panel) and with 0.53(5) T field (lower panel, zero-field cooling). The fits to the

time spectra are shown by red lines. The inset shows local coordination of Ir in IrOq
as reported in Ref. [160].
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The most intriguing object for NFS studies are the members of the Ruddlesden-Popper
(RP) series of strontium iridates Sr,, 11r,Os3,+1. The understanding of the physics in these
compounds was recently improved by studies of RIXS [35, 32, 29], magnetic scattering of
x-rays [11, 15] and neutrons [19, 17], as well as exploring the macroscopic properties like
conductivity and magnetization of these materials [164, 10]. However, several puzzles
like the origin of the magnetism and the impact of the d-orbitals configuration on the
electronic structure remain unsolved [7, 10]. This work is the first attempt to determine

microscopic magnetic and electric properties in iridates by means of NFS.

The parent compound of the RP series, SrIrO3 is a good starting point for studies of
NFS on strontium iridates. This compound shows paramagnetic behavior and significant
trigonal distortion of the IrOg octahedra (see inset in fig. 6.2) [165]. Thus, one can expect a
quadrupole splitting of the 1%Ir nuclear levels without hyperfine magnetic interaction.

We acquired NFS time spectra on powdered SrIrO3; at 15K and at 108 K. Using the
CONUSS software [77], the NFS time spectra were fitted by a pure quadrupole interac-
tion model. The result is shown in figure 6.2. The effective thickness of the sample was
very small, Tcry =~ 0.4, and therefore the NFS beating pattern is solely determined by

hyperfine interactions.
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Figure 6.2: NFS time spectra acquired (black markers) on SrlrOs at 15 and 108 K. The fitted
spectra are shown by red lines. The inset shows geometry of the IrOg polyhedron in
this compound as reported in Ref. [166].

From the fit we obtained a quadrupole splitting of 1.24(5) mm/s (4.0(2)I" or 302(12) neV)
at 15 K, in very good agreement with the value of 1.26 mm/s (4.1I' or 307 neV) men-
tioned in the Ref. [167] (conventional MS). With an increase of temperature from 15K
to 108 K the oscillation frequency decreases (fig. 6.2) which is a fingerprint of a decreas-
ing quadrupole splitting. The quadrupole splitting obtained from the fit is 1.08(5) mm/s
(3.5(2)I" or 263(12) neV) for 108 K, smaller than at 15 K. To the best of our knowledge, no
change of Ir coordination symmetry is reported for the temperature range under scope.
Therefore, the change in quadrupole splitting is most likely related to a change in the
population of the electronic levels at higher temperature. The effect is well known from
MS on 5"Fe compounds (3d electron systems) [54] and theoretically explained by Ingalls
in Ref. [168].
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6.2 Combined hyperfine interactions in Sr,IrO,

It is very interesting to explore magnetism in iridates since the correlation between
magnetism, superconductivity and origin of magnetism in these compounds remains
a puzzle [7]. A good model system can be the perovskite SrolrO, which is well-
studied with macroscopic techniques, like resistivity and magnetic susceptibility, and
microscopic techniques utilizing x-ray scattering on electrons and neutron scattering
[11, 16, 10]. This compound shows weak ferromagnetic behavior at temperatures below
240K [16, 169, 170]; most intriguing is the pronounced anisotropy in magnetization along
and perpendicular to the c-axis in this compound reported in Ref. [16, 169]. Recent stud-
ies of microscopic magnetism by RIXS [37, 171] revealed the canted antiferromagnetic
order in IrOg layers and the net magnetic moments ordered antiparallel along the [001]
direction below 240 K (see inset in fig. 6.3). The magnetic structure was confirmed by
several XRMS and RIXS studies [11, 12], by xSR [172], combined EMR, IR and Raman
[170] studies, and by measurements of microscopic magnetoresistance [173]. Studies
of neutron diffraction [17, 19] confirm the magnetic structure proposed in Ref. [37] as
well, though a neutron scattering study Ref. [18] revealed that magnetic moments in
IrOg layers orient along [00 1] direction under doping with Mn and the positions of the
diffraction peaks are the same as that reported in Ref. [37] for the case with applied
external magnetic field. Interestingly, a magnetic transition occurs in this compound in
the presence of an external magnetic field as it was found from magnetic susceptibility
measurements in Refs. [16, 169, 37] (see panels (C) and (E) in fig. 1.3). The field which
triggers this transition is relatively small: the net magnetic moments of the IrO¢ layers
as seen along c-axis may order ferromagnetically already at 0.2 T (panels (C) and (E) in
tig. 1.3) as reported by RIXS study in Ref. [37] and by magnetoresistance studies in Ref.
[173].

In contrast to the x-ray scattering techniques applied for studies on SroIrOy4 so far, the
NFS technique probes the magnetic hyperfine field directly, without involving complex
models for scattering function [20, 2]. Moreover, NFS probes magnetism and electronic
structure locally, at Ir nucleus only [40, 2]. We measured NFS on SryIrO, single crystalline
samples. All crystals exhibit the form of platelets with (00 1) planes being parallel to the
largest surface areas. The typical crystal thickness is small and ~ 30-70 ym with 1x3 mm?
lateral size. Therefore, the 5 crystals have been stacked along the beam in order to in-
crease the NFS count-rate. The orientation of the crystals was carried out using polarized
Raman spectroscopy with a 532 nm laser. Particularly, the Raman signal intensity from
the By, mode (380 cm™!) [174] was measured owing to that it is maximal if the polariza-
tion of the incident laser beam is parallel to [1 0 0] or [0 1 0] direction in Sr2IrOy, as shown
in the Ref. [174]. Careful parallel alignment of each crystal in the stack is necessary. As-

sembling the sample stack under the microscope, each crystal was carefully pushed by




6.2 Combined hyperfine interactions in SraIrOy 119

tweezers and the focus depth change was measured. Knowing the length of each crystal
and change of focus depth, the deviation angle from ideally parallel crystal stacking was
estimated as ~8-12 degree. For the NFS experiment the crystals have been installed so
that the (00 1) plane in SroIrO4 was perpendicular to the incident beam and the crystallo-
graphic direction [100] or [010] was parallel to the o-polarization vector of the incident
SR beam (see sketches in fig. 6.3 and fig. 6.4).

In order to explore the impact of the magnetic transition on the hyperfine interactions on
the Ir nuclei in this compound, we acquired NFS spectra in the presence of an external
magnetic field and compared it with the data obtained without field. The sample was
cooled down to 15K prior to applying a magnetic field (zero-field cooling). The magnetic