
Inelastic neutron scattering on magnetocaloric
compounds

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften
der RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Master of Science

Nikolaos Biniskos

aus

Cholargos, Griechenland

Berichter: Univ.-Prof. Dr. rer. nat. Thomas Brückel
Univ.-Prof. Dr. rer. nat. Georg Roth

Tag der mündlichen Prüfung: 26. September 2018

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek
online verfügbar.





Abstract

The search for more efficient use of energy has been leading to a growing interest in the research

field of magnetocaloric materials. The magnetocaloric effect (MCE) refers to a change of temperature or

entropy of a magnetic material exposed to a change of magnetic field. The MCE requires the exchange of

magnetic, lattice and/or electronic entropy during an adiabatic (de-)magnetization process. A large MCE

at room temperature and low magnetic field for a material with abundant and environmentally friendly

elements opens the way for magnetic cooling devices.

From the Mn5−xFexSi3 system, that exhibits a moderate MCE at low magnetic fields, two materials

in single crystal form are under investigation: the ferromagnetic (FM) compound MnFe4Si3 and the

parent compound Mn5Si3. The aim of this thesis is to investigate the spin and lattice dynamics and their

couplings in these compounds that are up to nowadays unexplored with inelastic neutron scattering (INS)

and inelastic X-ray scattering (IXS) measurements. Such studies might help to point out ingredients that

may favour large MCE, such as phonon-magnon interaction, effect of spin fluctuations etc.

The FM compound MnFe4Si3 is a promising candidate for applications since it exhibits a moderate

MCE near room temperature. Its magnetic excitation spectrum has been investigated by means of

polarized and unpolarized INS. Spin-wave measurements at 1.5 K reveal a strong anisotropy of the

magnetic exchange interactions along the (h00) and (00l) reciprocal directions of the hexagonal system,

which also manifests itself in the q-dependent linewidths in the paramagnetic (PM) state. The correlation

lengths indicate a short-range order, while the average linewidth is of the order of kBTC pointing to a

behavior typical of many ferromagnets. In addition, the in- and out-of-plane spin-fluctuations are found to

be isotropic around TC and can be suppressed by a magnetic field of 2 T.

In order to study the spin and lattice dynamics and their interactions in MnFe4Si3, a combination of

IXS and INS (polarized and unpolarized) measurements was performed. A remarkable feature evidenced

by this combination of measurements is that along the (h00) direction the magnon branch close to the zone

boundary falls exactly on the two transverse acoustic (TA) phonons. Furthermore, a large difference of

intensities in the two non-spin-flip (NSF) channels was observed for one TA phonon mode. This difference

of intensity between the two NSF channels can be attributed to the nuclear-magnetic interference term.

The parent compound Mn5Si3 has been extensively characterized as a model system by many groups

in the past decades by magnetometry, X-ray and neutron diffraction on powder and single crystal samples.

Previous studies indicate the existence of two stable antiferromagnetic (AF) phases at about 100 K (AF2)

and 66 K (AF1), respectively. AF2 and AF1 transitions are of first-order and the inverse MCE (the

sample heats up when an external magnetic field is applied adiabatically) is associated with the AF1-AF2

phase transition. INS experiments revealed that AF1 is characterized by sharp spin-waves, but AF2

is characterized by a mixed signal that resembles the one of the AF1 and PM state, indicating strong

spin-fluctuations coexisting with spin-waves. Moreover, the application of a magnetic field in the AF1

phase induces spin-fluctuations, which points to their importance for the inverse MCE in Mn5Si3.





Zusammenfassung

Die Suche nach einer effizienteren Nutzung der Energie hat auch zu einem wachsenden Interesse an

dem Forschungsgebiet magnetokalorischer Materialien geführt. Der magnetokalorische Effekt (MCE)

beschreibt eine Änderung der Temperatur oder Entropie eines magnetischen Materials, das einer Mag-

netfeldänderung ausgesetzt ist. Der MCE erfordert den Austausch von magnetischer, Gitter- und/oder

elektronischer Entropie wahrend eines adiabatischen (De-)magnetisierungsprozesses. Ein hoher MCE

nahe Zimmertemperatur und niedrige Magnetfelder für Materialien bestehend aus ausreichend vorhande-

nen und umweltfreundlichen Elementen sind die beste Grundvorraussetzung für magnetische Kühlgeräte.

Aus dem System Mn5−xFexSi3, das einen moderaten MCE bei niedrigen Magnetfeldern aufweist,

werden zwei Materialien in Einkristallform untersucht: die ferromagnetische (FM) Verbindung MnFe4Si3
und die Ausgangsverbindung Mn5Si3. Das Ziel dieser Arbeit ist die Untersuchung der Spin- und

Gitterdynamik und ihrer Kopplungen, die bis heute sowohl mit inelastischer Neutronenstreuung (INS) als

auch mit inelastischer Röntgenstreuung (IXS) unerforscht sind. Diese Untersuchungen können helfen,

Bestandteile aufzuzeigen, die einen grossen MCE begünstigen, wie z.B. Phonon-Magnon Wechselwirkung,

Effekt von Spinfluktuationen, etc.

Die FM-Verbindung MnFe4Si3 ist ein vielversprechender Kandidat für Anwendungen, da sie einen

moderaten MCE bei Zimmertemperatur aufweist. Das magnetische Anregungsspektrum wurde mit

Hilfe von polarisierter und unpolarisierter INS untersucht. Spinwellenmessungen bei 1.5 K zeigen eine

starke Anisotropie der magnetischen Austauschwechselwirkungen entlang der (h00) und (00l) reziproken

Richtungen des hexagonalen Systems, die sich auch in der q-abhängigen Linienbreite im paramgnetischen

(PM) Zustand manifestiert. Die Korrelationslängen weisen auf eine kurzreichweitige Ordnung hin,

während die mittlere Linienbreite in der Grössenordnung kBTC liegt und somit ein für viele Ferromagnete

typisches Verhalten aufweist. Die Spinfluktuation werden ausserdem in der Ebene und senkrecht dazu als

isotrop nahe TC gefunden und können durch ein Magnetfeld von 2 T unterdrückt werden.

Um die Spin- und Gitterdynamik und ihre Wechselwirkungen in MnFe4Si3 zu untersuchen, wurde eine

Kombination aus IXS und INS Experimenten durchegführt (polarisiert und unpolarisiert). Durch diese

Kombination beider Messmethoden wurde die bemerkenswerte Tatsache ersichtlich, dass entlang der (h00)

Richtung der Magnonenzweig nahe des Zonenrandes exakt auf die beiden transversalen akustischen (TA)

Phononenzweige fällt. Desweiteren wurde ein grosser Intensitätsunterschied in den zwei non-spin-flip

(NSF) Kanälen für eine TA Phononmode beobachtet. Diese Differenz in der Intensität zwischen den

beiden NSF Kanälen kann dem nuklearen-magnetischen Interferenzterm zugeschrieben werden.

Die Ausgangsverbindung Mn5Si3 wurde in den vergangenen Jahrzehnten durch viele Gruppen als

Modellsystem mit Hilfe von Magnetometermessungen, Röntgen- und Neutronendiffraktion in Pulver und

Einkristallform ausführlich charakterisiert. Frühere Untersuchungen berichten von der Existenz zweier

stabiler antiferromagnetischer (AF) Phasen unterhalb ca. 100 K (AF2) und 66 K (AF1). Die AF2 und AF1

Phasenübergänge sind erster Ordnung und der inverse MCE (die Probe erwärmt sich, wenn ein externes

magnetisches Feld adiabatisch angelegt wird) wird mit dem Phasenübergang AF1-AF2 verbunden. INS

Experimente lassen erkennen, dass AF1 durch scharfe Spinwellen charakterisiert wird, aber AF2 durch

ein gemischtes Signal repräsentiert wird, das dem AF1 und PM Zustand ähnelt, was auf eine Koexistenz

von scharfen Spinwellen und Spinfluktuationen hindeutet. Ausserdem induziert ein Magnetfeld in der

AF1 Phase Spinfluktuationen, was auf deren Bedeutung für den inversen MCE in Mn5Si3 hinweist.
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Chapter 1

Introduction

1.1 Caloric effects in ferroic materials

Saving or using energy more efficiently nowadays could be the key to overcome the dramatic changes

in the global climate. Gas compression refrigeration devices for industrial and residential applications

are highly energy demanding and one possible way to reduce the energy consumption is to investigate

alternative cooling techniques based on solid state caloric effects. The caloric effect is related to changes

of a ferroic’s material temperature or entropy under the sudden application of an external field: magnetic,

electric, or mechanical.

Depending on the origin of the temperature/entropy change, the caloric effect can be classified as

magnetocaloric, elastocaloric or mechanocaloric [1, 2, 3]. Magnetocaloric and electrocaloric materials

show thermal changes in response to changes of an applied magnetic (∆H) and electric (∆E) field,

respectively. Mechanocaloric materials show thermal changes in response to changes of applied stress

field ∆σ: elastocalorics (in literature are referred also as piezocalorics) and barocalorics respond to

changes of uniaxial stress (∆σu) and hydrostatic pressure (∆p), respectively. A caloric material that

exhibits thermal changes to more than one kind of driving field would be characterized as multicaloric [4].

At present, the magnetocaloric effect is considered as the most practical solid-state refrigerator technology

[5].

1.2 The magnetocaloric effect (MCE)

1.2.1 History of the MCE and applications

The magnetocaloric effect (MCE) is the direct consequence of the variation of the total entropy of a

magnetically responsive material in solid state when subjected to a magnetic field change and is an

intrinsic property of any magnetic compound. Warburg (1881) is credited for the discovery that iron

heats up or cools down by applying an external magnetic field change [6]. Later, Tesla (1890) [7] and

Edison (1892) [8] held patents for a heat engine based on the MCE. Weiss and Piccard (1918) [9] were

the first to establish the physical properties of the MCE and Debye (1926) [10] and Giauque (1927) [11]

independently proposed the principle of adiabatic demagnetization (ADM). It was not until 1933 when

Giauque and MacDougall demonstrated the ADM in paramagnetic salts, which has been employed for

achieving ultralow temperatures in research laboratories for decades [12]. Since then several proof-of-
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principle apparatus have been constructed for magnetic refrigeration at low temperatures and in 1976

Brown demonstrated magnetocaloric (MC) cooling near room temperature using the ferromagnetic (FM)

material gadolinium [13]. In 1997 a magnetic refrigerator using Gd as refrigerating material demonstrated

both the reliability and efficiency of such devices [14]. The apparatus works with a magnetic field of 5 T

to yield a temperature span of 38 K and a cooling power of 100 W. The efficiency of a magnetic cooling

device with a solid refrigerator material is as high as 60 % of the Carnot efficiency (at a temperature span

of 5 K), where the best conventional gas compressor or vapour cycle refrigerators yield less than 40 %

[5]. Meanwhile more than 100 MC compounds have been proposed for applications [5, 15, 16]. With the

discovery of materials exhibiting the so-called giant MCE [17, 18], the interest and research publications

in magnetic refrigeration at room temperature has greatly increased. Therefore, magnetic refrigeration

based on the MCE might rapidly be applied in heat pumps, gas liquefaction, large-scale air conditioners,

etc [19].

1.2.2 Theory of the MCE

The MCE consists of a materials thermal response when subjected to a magnetic field change and can be

quantified as the temperature change in a material for an adiabatic magnetic field change (∆Tad), or as the

entropy change in an isothermal process upon field variation (∆Siso). The relationship between the two

properties is illustrated in Fig. 1.1. It shows the total entropy of a magnetic material at a fixed pressure as

a function of temperature for two values of an applied external magnetic field. In the process A→B the

magnetic field is applied isothermally. The alignment of the spins result in a lowering of the magnetic

entropy and consequently in a lowering of the total entropy. In the process A→C the magnetic field is

applied adiabatically (the material is completely thermally isolated). In order to conserve the total entropy,

the system is forced to increase it’s temperature. The quantities ∆Siso and ∆Tad are characteristic values

for the MCE according to an initial temperature T and for a magnetic field change ∆H=H2-H1 and are

given by ∆Siso(T , ∆H)=S(T , H2)-S(T , H1) and ∆Tad(T , ∆H)=T2-T1.

Figure 1.1: Schematic Entropy-Temperature diagram for constant pressure and two different magnetic
fields (inspired by [20]).

If one considers the entropy as a function of temperature and magnetic field the total differential (at
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constant pressure) can be written as:

dS(T,H) =

(
∂S(T,H)

∂T

)
H,p

dT +

(
∂S(T,H)

∂H

)
T,p

dH. (1.1)

Using the Maxwell relation [16]:(
∂S(T,H)

∂H

)
T,p

=

(
∂M(T,H)

∂T

)
H,p

, (1.2)

one obtains for ∆Siso:

∆Siso(T,∆H) =

∫ H2

H1

(
∂S(T,H)

∂H

)
T,p

dH =

∫ H2

H1

(
∂M(T,H)

∂T

)
H,p

dH. (1.3)

Alternatively, ∆Siso can be determined by use of the second law of thermodynamics:(
∂S(T,H)

∂T

)
H,p

=

(
C(T,H)

T

)
H,p

, (1.4)

where C(T,H) is the heat capacity. This results for ∆Siso and ∆Tad to:

∆Siso(T,∆H) =

∫ T

0

C(T,H2)− C(T,H1)

T
dT, (1.5)

∆Tad(T,∆H) = −
∫ H2

H1

T

C(T,H)

(
∂S(T,H)

∂H

)
T,p

dH = −
∫ H2

H1

T

C(T,H)

(
∂M(T,H)

∂T

)
H,p

dH.(1.6)

If C(T,H) is independent of T and H , then the ∆Tad is coupled to the ∆Siso via:

∆Tad(T,∆H) = −T
C

∆Siso(T,∆H). (1.7)

Significant MCE can be observed around a phase transition, where a relatively small magnetic field

(≈1 T) can produce a large entropy or temperature change. The MCE is expected to be large when

the temperature derivative of the magnetization ((∂M/∂T)H ) is large and C(T,H) is small at the same

temperatures. It should be noted that for the ADM no spontaneous thermodynamic transition is needed.

In a process where the applied magnetic field increases (∆H>0) one can distinguish two types of

MCE: i) the direct or conventional MCE, where (∂M/∂T)H<0, resulting to ∆Siso<0 and ∆Tad>0

(the MC compound heats up) and ii) the inverse MCE, where (∂M/∂T)H>0, resulting to ∆Siso>0 and

∆Tad<0 (the MC compound cools down).

1.2.3 A magnetic refrigeration cycle

If one neglects couplings between the lattice, magnetic and electronic degrees of freedom, the total

entropy S of a magnetic material consists of the sum of the lattice (Sl), magnetic (Sm), and electronic

(Se) entropies. Assuming that only the magnetic entropy strongly depends on the magnetic field, the total

entropy as a function of temperature and magnetic field at constant pressure can be expressed as [21]: S(T ,

H)p=(S(T )l+S(T , H)m+S(T )e)p. Applying a magnetic field in a magnetic material causes a magnetic

ordering of spins, resulting in a lowering of the magnetic entropy. The material’s temperature directly

influences the kinetics of the electrons and the lattice vibrations. Lowering the temperature (releasing

3



1.3. Magnetocaloric compounds

Figure 1.2: Schematic representation of a magnetic refrigeration cycle, which transports heat from the
heat load to its surroundings (taken from [18]).

energy from the system) creates a more ordered system and therefore less entropy. A simplistic magnetic

refrigeration cycle is visualized in Fig. 1.2.

In the process A→B in Fig. 1.2 an external magnetic field is applied under adiabatic conditions in a

MC compound. The magnetic moments orient parallel to the applied field, decreasing Sm. The decrease

in Sm is compensated by an increase in Sl and Se, causing an increase in the temperature of the MC

material. In the process B→C a heat transfer fluid (e.g., water if we are close to room temperature) can be

employed to cool the MC compound back to its initial temperature. In C→D an adiabatic demagnetization

process occurs (removal of magnetic field). The magnetic moments return to the original alignment

causing an increase of Sm in the material and, therefore, decreasing its Sl, Se and temperature. In the last

step (process D→A), in order to cool the contents of the refrigerator, heat is extracted by passing a heat

transfer fluid through the MC material. The cycle ABCDA is the basis for the construction of a magnetic

refrigerator.

1.3 Magnetocaloric compounds

1.3.1 Classification of MC compounds

Since the MCE is expected to be large when spontaneous magnetic ordering occurs, the MC compounds

can be classified according to the order of their magnetic phase transition. Materials that undergo a

first-order phase transition (FOPT) show a discontinuity in the first derivative of the free energy with

respect to a thermodynamic variable. The FOPT is not only magnetic but magnetostructural. Materials

that undergo a second-order phase transition (SOPT) show a continuity and discontinuity in the first and

second derivative of the free energy with respect to a thermodynamic variable, respectively. For MC

compounds with FOPT giant MCE are reported with large values for ∆Tad and ∆Siso. However, large

magnetic fields are necessary to trigger the magnetostructural transitions and the width of the peak shape

for ∆Siso is narrow, which limits the applicability of the materials for cyclic operation. In addition, large

thermal and magnetic hysteresis imply a consumption of energy that is lost for the cooling process. On

4
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the other hand materials that exhibit SOPT lack thermal hysteresis and a broader peak shape for ∆Siso

occurs around the transition temperature, but compared to materials with FOPT smaller values for ∆Tad

and ∆Siso are reported [5]. It should be noted that independently of the order of the transition, the peak

position of the maximum isothermal entropy change (∆SMAX ) and temperature can be tuned by the

purity and homogeneity of the MC material [22]. Nowadays, possibilities for developing devices that

allow the use of different kinds of materials inside the same prototype are explored [24].

Figure 1.3: (a) Absolute value of maximum isothermal entropy change for field change from 0 to 5 T
versus peak temperature for different families of MC materials (taken from [5]). (b) Absolute value of
adiabatic temperature change versus transition temperature for field change from 0 to 2 T for various MC
materials that either undergo a SOPT (Tc) (marked by hatched pattern) or a FOPT (Tm) (marked by solid
fill-pattern) (taken from [39]).

Some representative materials investigated for their MC properties are shown in Figs 1.3(a)-(b). Apart

from the pure metals [15] and the MC compounds that exhibit the giant MCE (e.g. Gd5Ge4−xSix [17, 25],

LaFe13−xSixH [26, 27, 28] and MnFeP(As,Ge) [18, 29]), materials such as manganites [30, 31, 32],

amorphous alloys [33, 34, 35], Heusler alloys [39, 36, 37, 38], Laves phases [40, 41, 42] and other

3d and 4f metal based alloys and intermetallics [43, 44] have been extensively investigated for their

magneto-thermodynamic properties. Up to nowadays, the largest ∆Tad is reported for FeRh alloys (close

to 1:1 stoichiometry), but the MCE is irreversible in this system [15, 45].

Except from the values of ∆Tad and ∆Siso that should be significant around room temperature for low

magnetic field changes (ideally from 0 to 2 T), there is a number of other factors that must be taken into

account for choosing materials for a commercial magnetic refrigeration design. These include: i) cheap,

non-toxic, abundant, resistant to corrosion and environmentally friendly materials, ii) low manufacturing

cost, iii) good mechanical properties, iv) high electrical resistance for avoiding Foucault currents during the

rapid magnetic field changes, v) low specific heat and high thermal conductivity for increasing efficiency

and vi) low thermal and magnetic hysteresis for high operation frequency.
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1.3.2 The Mn5−xFexSi3 series

Among the suggested MC compounds for applications the Mn5−xFexSi3 (0≤ x ≤5) based systems are

interesting candidates. They consist of abundant, non-toxic and cheap elements and they exhibit moderate

MCE at low magnetic fields and at different temperatures depending on x (e.g. the magnetic entropy

change for a field variation from 0 to 2 T is about 2 JK−1kg−1 for x=4) [46]. Figs 1.4(a) and 1.4(b)

illustrate the rich phase diagram and the magnetic entropy change for these materials [46] and evidence

that replacing Mn by Fe affects both the critical temperatures and ∆Sm. In the context of the MCE

properties, for the parent compound Mn5Si3 the inverse MCE is reported, while for the x=3, 4, 5 it is

the direct one. Early studies proposed that the Mn5−xFexSi3 series crystallize in a hexagonal structure,

with two distinguished crystallographic sites occupied by Mn and Fe in different ratios depending on

composition [47]. In the present study emphasis is given to the Mn5Si3 and MnFe4Si3 compounds.

Figure 1.4: (a) Magnetic phase diagram and (b) magnetic entropy changes for two different magnetic field
variations for the Mn5−xFexSi3 system (taken from [46]).

The parent compound Mn5Si3 crystallizes in the high temperature paramagnetic (PM) state in the

hexagonal P63/mcm space group with two distinct crystallographic positions for Mn atoms (Wyckoff

positions (WP) 6g for Mn2 and 4d for Mn1) [48]. With the onset of long-range magnetic order the

symmetry is reduced to orthorhombic. Two first-order phase transitions towards antiferromagnetic (AF)

phases occur at TN2≈100 K (AF2) and TN1≈66 K (AF1), respectively [46]. The magnetic structure of

Mn5Si3 has been established with neutron diffraction experiments on single crystals. Associated with

the AF2 ordering, a change of crystal structure to the orthorhombic space group Ccmm occurs and Mn2

divides into two sets of inequivalent positions (Mn21 and Mn22). The orthorhombic cell dimensions

are related to those of the hexagonal cell by ao = ah, bo ≈
√

3ah and co = ch (see Fig. 1.5). Magnetic

reflections in this cell follow the condition h+ k odd corresponding to the magnetic propagation vector

κ=(0, 1, 0) [49]. In this phase, the Mn1 and Mn21 atoms have no ordered moments, but the Mn22 atoms

have their magnetic moments of magnitude 1.48(1)µB aligned almost parallel and antiparallel to the b-axis

(see Fig. 1.5) [49]. A small deviation from collinearity occurs and is temperature dependent increasing up
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to 8 ◦ near 70 K [49, 50]; AF2 is nonetheless named as collinear phase in this work. Another structural

distortion occurs concomitantly with the AF1 ordering towards an orthorhombic cell without inversion

symmetry (space group Cc2m) [51]. The magnetic moments reorient in a highly non-collinear and

non-coplanar arrangement, while the propagation vector remains the same. Mn1 atoms (Mn11≈Mn12)

acquire a magnetic moment (1.20(5)µB) and are oriented parallel and antiparallel to the direction with

polar coordinates θ=116(1) ◦, φ=105(1) ◦, where θ is measured from [001] and φ from (010). Still the

Mn21 atoms have no moments like in the AF2 phase. The Mn22 sites (Mn23 and Mn24) related by

the centre of symmetry are no longer magnetically equivalent in the AF1 phase and carry a moment of

2.30(9) and 1.85(9)µB depending on their site position (see Fig. 1.5 and Table 1.1). Neutron diffraction

[50, 52] and macroscopic measurements [53, 54] indicate that Mn5Si3 undergoes several magnetic phase

transitions under magnetic field and temperature with the inverse-MCE observed in the vicinity of the

AF1-AF2 phase transition.

Figure 1.5: Projection in the (a,b) plane of the orthorhombic unit cell of Mn5Si3 in the two AF phases
(taken from [55]). The triangles with continuous and dashed lines are located in different planes separated
by c/2. The relationship between the orthorhombic and hexagonal unit cells is shown in the right figure.
For the AF1 phase Mn11≈Mn12 and the Mn23 and Mn24 sites correspond to the Mn22 sites of the AF2
phase (taken from [52]).

Table 1.1: Manganese atomic positions in the PM state and the two AF phases of Mn5Si3. In the two
ordered AF phases the magnitude and the direction of the magnetic moments is given according to single
crystal neutron diffraction data [49, 51]. θ is measured from [001] and φ from (010).

PM AF2 AF1
P63/mcm Ccmm Cc2m

atomic positions atomic positions moment direction magnitude atomic positions moment direction magnitude
Mn1 in 4d Mn1 in 8e − − Mn11 in 4a θ=116(1) ◦ φ=105(1) ◦ 1.20(5)µB

Mn2 in 6g Mn21 in 4c − − Mn21 in 4b − −
Mn22 in 8g parallel and 1.48(1)µB Mn23 in 4b ±(θ=70(1) ◦ φ=93(1) ◦)2.30(9)µB

antiparallel to [010] Mn24 in 4b ±(θ=21(1) ◦ φ=11(1) ◦)1.85(9)µB

From the Mn5−xFexSi3 series, the FM compound MnFe4Si3 is the most promising one in means of

applications, since a transformation from the PM state to the FM phase occurs at the Curie temperature
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1.3. Magnetocaloric compounds

(TC) ≈300 K [56, 57, 58] with | ∆Sm |≈2 JK−1kg−1 for a field change from 0 to 2 T [46, 56]. The order

of the FM transition seems not to be fully established. Hysteresis loops point to a first-order FM transition

[56]. Recent measurements of hyperfine fields with Mössbauer spectroscopy propose that the type of

the magnetic transition cannot be strictly characterized as first or second-order [59]. In this framework

it is worthwhile to note that in Fe2P-based MC materials the order of the FM transition changes from

first to second order depending on composition [60]. According to recent X-ray and neutron diffraction

experiments performed on single crystals indicate that MnFe4Si3 crystallizes in the hexagonal space

group P6 [56]. While in the higher symmetrical space group P63/mcm three symmetrically independent

sites are occupied in the structure (M1 at WP position 6g; M2 at WP 4d; Si at WP 6g); these Wyckoff

positions are split in space group P6, and six symmetrically independent sites exist (M1a/M1b; M2a/M2b;

Si1a/Si1b). The M2a/M2b sites are exclusively occupied by Fe, while M1a/M1b sites have a mixed

occupancy of Mn and Fe. In this structure (see Fig. 1.6 and Table 1.2), the sites with mixed occupancy

of Mn/Fe carry an ordered magnetic moment of approximately 1.5(2)µB , while no significant magnetic

moment could be determined on the position which is occoupied by Fe [56]. The direction of the magnetic

moments is consistent with magnetization measurements performed on single crystals, where a strong

anisotropy is found with the easy axis of magnetization lying perpendicular to the c-axis [56].

Figure 1.6: Projection of the structure of MnFe4Si3 along the [001] direction in the hexagonal space group
P6 (taken from [56]). Sites occupied by Mn and Fe are shown in magenta and grey; sites exclusively
occupied by Fe are shown in orange; Si atoms are shown in blue. Magenta and grey sites are in different
layers along the [001] direction.

Table 1.2: Mn and Fe atomic positions in the PM state and the FM phase of MnFe4Si3 according to single
crystal neutron diffraction data [56]. θ is measured from the [100] direction.

PM FM
P6 P6

atomic positions occupancy moment direction magnitude
M1a in 3j 37.6(2)% Mn, 62.8(2)% Fe θ=16(2) ◦ 1.5(2)µB

M1b in 3k 27.7(7)% Mn, 72.3(7)% Fe θ=16(2) ◦ 1.5(2)µB

M2a in 2h 100% Fe − −
M2b in 2i 100% Fe − −
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1.4 Elementary excitations

Ehrenfest classified the phase transitions based on the behavior of the thermodynamic free energy as

a function of thermodynamic variables [61]. Phase transitions are categorized as first or second order

depending on where the lowest derivative of the free energy is discontinuous at the transition. The various

solid/liquid/gas transitions are first-order transitions (away from the critical point), because the change

in density, which is the (inverse of the) first derivative of the free energy with respect to pressure, is

discontinuous. Most of the PM to FM phase transition are classified as second-order transitions. Although

first-order transitions may arise when structural change occur at the magnetic phase transition. In the

former case the magnetization, which is the first derivative of the free energy with respect to the applied

magnetic field, increases continuously from zero as the temperature decreases below Tc, but the magnetic

susceptibility, the second derivative of the free energy with the field, changes discontinuously.

When a system enters its low temperature phase from the high temperature phase a symmetry is

broken. In all ordered phases there are elementary excitations. In systems with continuous broken

symmetries at the ordering temperature new collective excitations arise (see Table 1.3) and restore the

broken symmetries. Investigating elementary excitations reveals dynamical properties of matter.

Table 1.3: Characteristic phase transitions and corresponding breaking of symmetries, order parameters
and elementary excitations. ρG is the density. M and M↑ −M↓ refer to the magnetization and staggered
magnetization, respectively.

ordering broken symmetry high T phase low T phase order parameter excitations
crystal translation & rotation liquid solid ρG phonons

ferromagnetic rotation & time paramagnet ferromagnet M magnons
antiferromagnetic rotation & time paramagnet antiferromagnet M↑ −M↓ magnons

1.4.1 Phonons

If an atom in a crystal lattice is displaced from its equilibrium position by a small amount, then the forces

acting on this atom will tend to make it return in its initial position. This results in lattice vibrations.

Due to forces between the atoms in the crystal lattice, the displacement of one or more atoms from their

equilibrium positions will cause a set of correlated vibrational waves that will propagate through the

whole lattice. A simple model to describe this effect is to consider atoms in a crystal lattice as a series of

harmonic oscillators (which corresponds to atoms coupled with elastic springs). Then the frequencies of

motion will depend on the mass of the atoms and the strength of the springs connecting them.

According to quantum mechanics, the energy levels of the harmonic oscillator are quantized. Similarly

the energy levels of lattice vibrations are quantized and the quantum of vibration is called phonon. Each

phonon is having an energy of h̄ω, where ω is the frequency of the atomic motion. Phonon frequencies

depend on the wave-length of the distortion, the mass of the atoms and the binding forces (analogous to

the spring stiffness) that connects them. Phonons are bosons and the expected number of phonons in an

energy state h̄ωs is given by the Bose-Einstein statistics ns(q)= 1

e
h̄ωs(q)
kBT −1

.

In order to describe the dispersion relation ω(q) of a monoatomic linear chain, one considers a linear

chain consisting of atoms with mass M , connected by springs with an average force constant C and
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1.4. Elementary excitations

separated by a lattice constant a. By using the harmonic approximation (atomic vibrations are described

as decoupled normal vibrations) together with Newton’s second law and making a plane wave ansatz

un(t) = Aei(qna−ωt), it is possible to deduce the dispersion relation for the phonon frequency as [63]:

ω(q) = 2

√
C

M
| sinqa

2
|, (1.8)

where q is the wave-vector. For one atom in one dimension, one obtains only one phonon branch. The

sine dependence shows that: i) for small q-vectors (long wave-lengths) the frequency ω is linear in q,

ω=csq where cs is the sound velocity and ii) for q→0 the frequency tends to zero.

Figure 1.7: (a) Schematic representation of an infinite two-atomic linear chain with lattice constant a,
where u represents the displacement (taken from [62]). Top left: transverse acoustic mode (TA), middle:
longitudinal acoustic mode (LA), bottom left: transverse optic mode (TO). In an acoustic and optic mode
the atomic motions are in and out of phase, respectively. (b) Dispersion of an acoustic and an optic phonon
branch in a diatomic chain in the first Brillouin zone.

The function ω(q) is periodic with period 2π
a , which is equal to a unit cell length in reciprocal

space. All information concerning the frequencies and equation of motions is contained within the range

-πa<q<
π
a . This range is called the first Brillouin zone. The values ±π

a are the Brillouin zone boundaries

(lying half way between Brillouin zone centers) and there, in this simple case, the slope of the dispersion
dω(q)
dq is zero. Adding a reciprocal lattice vector τ=2π

a to any point at any wave-vector gives the same

result as in the first Brillouin zone.

Every atom has three degrees of freedom and therefore three modes of vibration are assigned along

x, y and z. For crystals with r atoms in the unit cell there are 3r possible phonon modes. 3 are acoustic

modes and the remaining (3r-3) are optic with a non-zero frequency at q=0. The modes can be further

classified as longitudinal and transverse (see Fig. 1.7). In longitudinal modes the displacement u of the

atoms is parallel to the propagation direction q of the vibration, whereas in the two transverse modes the

displacement is perpendicular.

Phonon dispersion curves are usually measured experimentally and calculated theoretically along

high symmetry direction of reciprocal space where degeneracies may occur. The frequency scale for

phonons are typically in the THz region (1 THz=4.136 meV). The study of phonons is an important part

of condensed matter physics because they play a major role in many physical properties, like thermal

expansion, transport properties (thermal and electrical conductivity), heat capacity and superconductivity.
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1.4.2 Magnons

In general magnetic systems are described by the Heisenberg Hamiltonian H = −
∑
ij
JijSiSj , where

Jij is the exchange integral describing the exchange energy of overlapping charge distributions of the

different atoms i and j. An electron system with its quantum mechanical exchange interaction will result

to a spin-ordered ground state. For simplicity we can assume that this results to two different ground

states: (i) spins ordered parallel (FM ground state) or (ii) antiparallel (AF ground state). Spin deviations

from the average direction of the magnetic moments can be represented by the sum of deviations due

to the set of propagating sinusoidal waves, which are named spin-waves. The concept of spin-waves is

illustrated in Fig. 1.8. In a simple FM in the ground state all spins are aligned parallel to one direction.

The z-component of a single spin S is ms = S. Exciting this state the z-component is reduced (ms < S).

Since the spins are coupled with each other via the exchange interaction the movement of this spin

will influence the neighbouring spins and will initialize a wave of spins processing around z-axis. The

quantized particles of spin-waves are called magnons. There can be series of such wave-like motions and

each spin will have a wave-length and a quantized energy h̄ωq.

Figure 1.8: Visualization of FM spin-waves (taken from [64]). (a) Spin alignment of a simple FM in its
ground state. (b) An isolated spin is reversed which costs a lot of energy. (c) A lower energy is achieved by
sharing the disturbance among neighbouring atoms. All spins precess around the z-axis. (d) Component
of spins in the xy-plane show a wave-like motion.

For a FM linear chain with nearest neighbour FM exchange interaction J separated by a distance a,

the spin-wave dispersion is given by [65]:

h̄ωq = 4SJ(1− cos(qa)) (1.9)

and is shown in Fig. 1.9(a). For small q-vectors (long wave-lengths) the dispersion relation is given by:

h̄ωq'2SJa2q2=Dq2, where D refers to the spin-wave stiffness. For an AF linear chain the magnon

dispersion is given by [65]:

h̄ωq = 4S | J | sin(qa) (1.10)

and is shown in Fig. 1.9(b). In the long wave-length limit the dispersion relation is reduced to: h̄ωq '
4S | J | aq = cswq, where csw refers to the spin-wave velocity. The nearest neighbour exchange integral

J is positive for ferromagnets and negative for antiferromagnets.

In general cases the spin-wave dispersion for systems with one magnetic atom per unit cell is written

as [64]:

h̄ωq = 2S(J0 − Jq), (1.11)
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where the term Jq is the Fourier transformed exchange coupling. Jq is given by: Jq=
∑
l′
Jll′e

iq(Rl−R
l′),

withRl andRl′ being the coordinates of the lth and l
′
th unit cell. In the spin-wave dispersions shown in

Fig. 1.9 there are no gaps so that h̄ωq=0 at q=0. In real systems, however, energy gaps may exist due to

the single-ion anisotropy.

Figure 1.9: Spin-wave dispersion of (a) a FM and (b) an AF chain in a one dimensional lattice with lattice
constant a in the first Brillouin zone (taken from [64]).

1.5 Motivation

Most groups from the magnetocaloric community are interested in quantifying the MCE via macroscopic

measurements such as heat capacity and magnetization, and in establishing magneto-structural couplings

in MC compounds with X-ray and neutron diffraction investigations. These measurements are essential,

since the total entropy of a system depends on the magnetic and structural properties, but they cannot

answer the question of the fundamental driving forces of the MCE. While different scenarios are well

known for specific systems, no microscopic mechanism based on key ingredients such as coupling of spin,

lattice and electronic degrees of freedom has been experimentally proven and to the knowledge of the

author, in literature only few works have been published to this direction [66, 67, 68]. Inelastic neutron

scattering (INS) experiments and as complementary inelastic X-ray scattering (IXS) measurements, can

fulfil this need and provide key information, concerning the spin and lattice dynamics and their couplings

of MC compounds.

The Mn5−xFexSi3 series provide a very good opportunity to initiate such studies, because large and

high quality (in terms of stoichiometry and homogeneity) single crystals can be grown straightforwardly

with the Czochralski method. In this work, two materials will be investigated; the parent compound

Mn5Si3, where the inverse MCE is reported and the FM compound MnFe4Si3, which is promising for near

room temperature applications. In addition, literature provides a very strong background concerning the

macroscopic and structural properties of these two MC compounds, which are necessary before starting

inelastic measurements with neutrons and X-rays.
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Chapter 2

Experimental techniques

2.1 Properties of neutrons

The neutron is an ideal probe for studying condensed matter under elastic and inelastic scattering

conditions. Being uncharged particles, neutrons can interact very weakly with matter and penetrate deeply

into materials. The zero net charge means that there is no Coulomb barrier to overcome and this implies

that neutrons disregard the charged electronic cloud and interact directly with the atomic nucleus. The

interaction between the nucleus of an atom and a neutron is short range (≈10−13 cm). This is much less

than the de Broglie wave-length of thermal neutrons λth = h√
mnkBT

≈10−8 cm=1 Å(neutrons coming

from a moderator near room temperature), so the interaction can be considered point-like.

The neutron-nucleus scattering process contains only s-wave components and therefore is isotropic

(with equal probability in any direction). This process is characterised by the scattering length b and for

most elements is in the range of 0.2≤| b |≤1·10−12 cm, comparable to the nuclear radius. The scattering

length is a complex number, where its imaginary part corresponds to absorption; mainly radiative capture

by the nuclei. For neutrons, in contrast with electrons and X-rays, the scattering is independent of the

number of electrons and its strength varies among the elements and the isotopes of the same element. In

addition, the scattering amplitude from a sample is equal to the sum of scattering amplitudes of individual

atoms, due to the weakness of the neutron-atomic nucleus interaction.

Neutrons carry no charge, but their internal structure consisting of quarks and gluons, gives them a

magnetic moment of µn=-1.913µN , where µN= eh̄
2mp

is the nuclear magneton. The neutron’s magnetic

moment interacts with the unpaired electron spins of magnetic atoms with a comparable strength to that

of the nuclear interaction. Therefore, neutrons are a suitable probe for studying magnetic properties of

matter. Moreover, the spin angular momentum of ± h̄
2 per neutron allows to prepare a spin-polarized

neutron beam (a beam that contains a single angular momentum state): either spin-up, + h̄2 , or spin-down,

− h̄
2 . With spin-polarized neutron beams one can determine magnetic structures, separate the magnetic

from the nuclear scattering, isolate the incoherent scattering from the total scattering, etc.

Another important feature of the neutron properties is their relatively large mass (mn=1.675·10−24 g).

The kinetic energy of neutrons produced from research reactors or spallation sources can be modified by

collisions with atoms of similar mass from moderating mediums (e.g. hydrogen). The resulting energy

distribution of the moderated neutrons is Maxwellian-like, and the average neutron velocity is determined

by the temperature of the moderator. This provides neutrons with energies varying from 0.1 to 500 meV,
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which are appropriate for studying a wide variety of dynamical phenomena in materials in solid and liquid

state.

Despite the unique advantages that neutrons have as a non-destructive probe, they are weakly scattered

once they penetrate matter; moreover, the available neutron beams provide low intensities. Synchrotron

sources can provide fluxes of 1018 photons per second per square millimeter compared with 106 neutrons

per second per square millimeter in the same energy bandwidth even at the most powerful continuous

neutron sources.

2.2 Basics of neutron scattering

2.2.1 Neutron scattering from matter

When neutrons are scattered from matter, during the interaction the total energy and the momentum of the

neutrons and matter are conserved. This is described via the equations [69]:

E = h̄ω = Ei − Ef =
h̄2

2mn
(k2
i − k2

f ) (2.1)

h̄Q = h̄kf − h̄ki. (2.2)

In these equations, the wave-vector magnitude is k = 2π
λ , where λ is the neutron wave-length of the

neutron beam and the momentum transfer is h̄Q. The indices i and f refer to the incident and scattered

neutron beam, respectively. The angle between the incident and scattered neutron beam is 2θ (scattering

angle) and the energy transferred to matter is E = h̄ω. The vector relation between Q, ki and kf is

sketched in the so-called scattering triangle (see Fig. 2.1). From Eq. 2.2 the magnitude of | Q | can be

defined via:

Q2 = k2
i + k2

f − 2kikfcos2θ. (2.3)

Figure 2.1: Vector relation between Q, ki and kf for Bragg (elastic) and inelastic scattering process (taken
from [69]). (a) Two-dimensional representation of reciprocal space showing the Ewald circle. G is a
reciprocal lattice vector and h̄q the momentum transfer within the first Brillouin zone. Inelastic scattering
process for (b) neutron energy loss and (c) neutron energy gain. 0 represents the origin of reciprocal space.

The dots in Fig. 2.1 represent a reciprocal lattice with each point corresponding to a reciprocal lattice

vector. For Bragg scattering the circle (Ewald circle) in Fig. 2.1(a) with radius k passes through two
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points, one of which is the origin of reciprocal space. ki and kf correspond to the direction of the

incident and diffracted neutron beam relative to the crystal, respectively. In this case, the Bragg condition

Q=G=kf−ki is satisfied, where G is a reciprocal lattice vector. For |ki|=|kf | Eq. 2.3 can be rewritten as

|Q|=|G|=2|ki|sinθ=4π
λ sinθ. This is the so-called Bragg’s law and can be written in the more familiar form:

λ=2dsinθ; the magnitude of the reciprocal lattice vector is |G|=2π
d , where d is an interplanar spacing.

In an inelastic scattering process, where |ki|6=|kf |, a difference of momentum is associated with

an energy transfer to the sample. For inelastic experiments in single crystals, physics depends only on

the relative wave-vector defined within a Brillouin zone, and therefore, Q is often decomposed into

Q=G+q. h̄q is the momentum transfer within the first Brillouin zone and corresponds to the wave-vector

of an elementary excitation, which is to be specified. For magnetically ordered systems, one can use the

magnetic zone for convenience so that Q=G+q+κ, where κ is the propagation vector of the magnetic

structure. It should be noted that for an INS experiment, one typically holds one vector constant (ki
or kf ), while changing the other. Figs 2.1(b) and 2.1(c) illustrate two cases where ki is kept constant

and kf varies. In the first case (see Fig. 2.1(b)) kf<ki resulting to h̄ω>0; energy is transferred from the

incident neutron beam to the sample and an excitation is created. In the second case (see Fig. 2.1(c))

kf>ki resulting to h̄ω<0; energy is transferred from the sample to the neutron beam and an excitation is

annihilated. The former and the latter case are equivalent to the Stokes and the anti-Stokes scattering in

optical spectroscopy, respectively.

2.2.2 Cross-sections

In a neutron scattering experiment one measures the fraction of neutrons of incident energy Ei scattered

into an element of solid angle dΩ with an energy between Ef and Ef+dEf . The measured quantity is

the partial differential cross-section d2σ
dΩdEf

and has units of area·energy−1·solid angle−1. The partial

differential cross-section describes a specific transition of the scattering system from one of its quantum

states to another. In more general terms the quantity d2σ
dΩdEf

is a measurement of the response of the

sample to an incident neutron beam with energy Ei and wave-vector ki.

The partial differential cross-section has both a coherent and an incoherent part [70]:

d2σ

dΩdEf
=

(
d2σ

dΩdEf

)
coherent

+

(
d2σ

dΩdEf

)
incoherent

, (2.4)

where both terms have an elastic and inelastic contribution. Coherent scattering describes the way

neutron waves are scattered from different nuclei and interfere constructively with each other. This

type of scattering depends on the distances between atoms and on the scattering vector Q. Coherent

elastic scattering gives information about the equilibrium structure of the sample, while coherent inelastic

scattering provides information about the collective motions of the atoms. Incoherent scattering describes

the way the incident neutron wave interacts independently with each nucleus in the sample; the scattered

waves from different nuclei have random relative phases and therefore cannot produce constructive

interference. Incoherent elastic scattering is isotropic in all directions and creates an uniform background

in the scattering experiments. Incoherent inelastic scattering results from the interaction of a neutron with

the same atom at different positions and times. Therefore it provides information about atomic diffusion.

The values for the coherent and incoherent scattering lengths for different elements and isotopes vary in

a non systematic way across the periodic table. The coherent scattering length is given by bcoh=b (the

scattering lengths of all the nuclei of the sample are b =
∑
n
fnbn, where bn is the scattering length of a n
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distinct isotope with nuclear spin I appearing with frequency fn) and the incoherent scattering length is

given by bincoh=
√
b2 − b2 (the scattering lengths deviations from the mean value b).

Since the scattering of slow neutrons is a weak process it can be described by the first-order perturbation

theory, i.e Fermi’s Golden Rule for transition rates. The incident and scattered neutron states are treated as

plane waves with energies Ei and Ef and wave-vectors ki and kf . The double differential cross-section

or response function is described in a four dimensional space and is given by [70]:

d2σ

dΩdEf
=

(
mn

2πh̄2

)2 kf
ki

∑
n0

p(n0)
∑
n1

| 〈kfσfn1 | V | kiσin0〉 |2 δ(ε1 − ε0 − h̄ω). (2.5)

The indices 0 and 1 refer to the initial and final states of the sample, respectively. E is the energy of

the neutron and ε the energy of the sample. The factor kf
ki

is related to the fact that the cross-section is

defined as the ratio of the outgoing and incoming neutron flux. The sum
∑
n0

runs over all initial states

n0 of the system, each occurring with a probability p(n0). The probability p(n0) at a given temperature

T is calculated by: p(n0)= e
− εn0
kBT∑

n0

e
− εn0
kBT

. The sum
∑
n1

runs over all final states n1 of the system. The matrix

element 〈...〉 is between the initial (sample (n0) + neutron (ki, σi)) and the final (sample (n1) + neutron

(kf , σf )) total state of the system. V is the interaction potential between the neutron and the sample. The

δ function rules out the states (n1, ε1) for which energy is not conserved.

One formalism for interpreting the obtained data for d2σ
dΩdEf

is the linear response theory. Linear

response theory is often written in terms of correlation functions, which depend on time and spatial

coordinates. These correlation functions are usually written as 〈A(R, t)B(R
′
, t
′
)〉, where A and B are

quantum mechanical operators for observable variables and the angular brackets denote thermal averages.

The neutron cross-section is proportional to the Fourier transform of 〈A(R, t)B(R
′
, t
′
)〉 with respect to

the time and spatial coordinates and the conjugate variables in the Fourier transform are the energy h̄ω

and momentum transfer h̄Q, respectively.

2.2.3 Nuclear scattering

For nuclear scattering due to the very short distance of the neutron-nucleus interaction the potential is a δ

function and can be written in terms of the Fermi pseudo potential as [70]:

V (r) =
2πh̄2

mn

∑
l

blδ(r− Rl), (2.6)

where Rl is the position of the nucleus l and bl its scattering length. Inserting the expression of the Fermi

pseudo potential in Eq. 2.5, assuming unpolarized neutron beam and introducing quantum mechanical

Heisenberg operators one obtains for nuclear scattering [70]:(
d2σ

dΩdEf

)nuclear

=
kf
ki

1

2πh̄

N∑
l,l′=1

bl′ bl

∞∫
−∞

〈e−iQR
l
′ (0)eiQRl(t)〉e−iωtdt =

kf
ki
Sn(Q, ω). (2.7)

The scattering function or the dynamical structure factor Sn(Q, ω) describes the properties of the sample

and depends only on the momentum and the energy transferred from the neutron to the sample. The Q
and the ω dependence of Sn(Q, ω) provide information of where atoms are and how atoms move. N is

the total number of nuclei, t is the time andRl are the coordinates of the scattering centers. Assuming
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that no correlation exists among the b values of different nuclei then one can separate the coherent and

incoherent part of Sn(Q, ω) using bl′ bl=b
2

for l
′ 6=l and bl′ bl=b

2 for l
′
=l.

In a Bravais lattice the displacement of a nucleus from its equilibrium position m due to thermal motion

is given by: Rm(t)=m+um(t), where um(t) is the Heisenberg operator for the atomic displacement.

Assuming that the interatomic forces are linear functions of the atomic displacements, then um(t) can be

expressed as a sum of a set of normal modes [70]:

Q · um(t) =

√
h̄

2MN

∑
s

Q · es√
ωs

(
ase

i(q·m−ωst) + a†se
−i(q·m−ωst)

)
, (2.8)

where ωs refers to the frequency and es to the polarization vector of the mode s. The sum
∑
s

is over the

N values of q in the first Brillouin zone and M is the mass of an atom (we assume all atoms are the same).

as and a†s are the Heisenberg annihilation and creation operators, respectively. The expression for the

coherent one phonon double differential cross-section is given by [70]:(
d2σ

dΩdEf

)1 phonon

coh
=

kf
ki

b
2
(2π)3

2MV0
e−2W (Q)

∑
s

∑
τ

(Q·es)2

ωs
·

· (〈ns〉δ(ω + ωs)δ(Q + q− τ ) + 〈ns + 1〉δ(ω − ωs)δ(Q− q− τ )) , (2.9)

where V0 is the unit cell volume and e−2W (Q) the Debye-Waller factor. The cross-section in Eq. 2.9

contains the factors δ(ω ± ωs) and δ(Q± q− τ ), which implies that scattering occurs if two conditions

are satisfied: i) ω = ±ωs and ii) Q = τ ± q. The first and second term after the double sum in Eq. 2.9

describe phonon annihilation and phonon creation by a neutron, respectively. In general, the quantity h̄Q
refers to the neutron momentum change, while h̄(τ + q) is the momentum imparted to the crystal.

The double differential nuclear cross-section for coherent one phonon scattering for a system contain-

ing different atoms with mass Md at position d is given by [70]:(
d2σ

dΩdEf

)coh 1 phonon

dif. atoms
=

kf
ki

(2π)3

2V0

∑
s

∑
τ

1
ωs
|
∑
d

bd√
Md
e−WdeiQd(Q · eds) |2 ·

· (〈ns〉δ(ω + ωs)δ(Q + q− τ ) + 〈ns + 1〉δ(ω − ωs)δ(Q− q− τ )) .(2.10)

It should be noted that in experiments one could measure different scattering intensities in different

Brillouin zones for the same frequency due to terms involving the Q dependence in the scattering function.

2.2.4 Magnetic scattering

Neutrons are scattered from the magnetic field that is generated from unpaired electrons in a sample. The

magnetic field has two sources: i) the electron spins lead to a dipole-dipole interaction and ii) moving

electrons generate a field obtained from the Biot-Savart’s equation. Unlike the nuclear interaction, the

magnetic interaction is not isotropic. The strength of the magnetic interaction between the nucleus and the

neutron depends on the relative orientations of their magnetic moments and the distance r between them.

The interaction potential due to the magnetic interaction between a neutron in spin-state σ and a

moving electron with momentum p and spin S is given by [64]:

V (r) = −γNµN2µBσ

(
∇

(
S × R̂
R2

)
+

1

h̄

p× R̂
R2

)
, (2.11)
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2.2. Basics of neutron scattering

where γN=-1.913 is the value of the neutron gyromagnetic ratio. The first and second term describe the

spin and orbital interaction with the electron, respectively.

Inserting the expression of the magnetic interaction potential in Eq. 2.5, it is possible to obtain the

magnetic scattering double differential cross-section of unpolarized neutron beam for identical magnetic

ions and spin-only magnetism [71]:(
d2σ

dΩdEf

)magnetic

=
kf
ki

(r0γN )2f2(Q)e−2W (Q)
∑
α,β

(
δα,β −

QαQβ
Q2

)
1

2π

∞∫
−∞

e−iωtdt
∑
l

eiQrl〈Sα0 (0)Sβl (t)〉

= (r0γN )2 kf
ki
f2(Q)e−2W (Q)

∑
α,β

(
δα,β −

QαQβ
Q2

)
Sαβ(Q, ω). (2.12)

There are three important features concerning the magnetic neutron scattering in Eq. 2.12: i) the scattering

amplitude is given by the classical electron radius r0=0.282·10−12 cm and therefore, is of the same order

of magnitude as the nuclear scattering, ii) the magnetic form factor f(Q) is the Fourier transform of

the normalized magnetization density and indicates that magnetic scattering decreases at increasing Q
(as opposed to nuclear scattering) and iii) the polarization factor

(
δα,β −

QαQβ
Q2

)
indicates that only

components of the sample’s magnetization that are perpendicular to the scattering vector Q are effective

in the scattering process (the indices α and β refer to Cartesian coordinates).

The geometry for elastic magnetic scattering is illustrated in Fig. 2.2. The scattering is largest

when Q is perpendicular to the magnetic moment µ. The magnetic interaction vector S⊥ is given by:

S⊥=Q̂× (S× Q̂), which leads to: |S⊥|2=
∑
α,β

(
δα,β −

QαQβ
Q2

)
S∗αSβ .

Figure 2.2: Sketched geometry of elastic magnetic scattering (taken from [72]). The intensity of the
scattered beam is proportional to sin2α. If µ‖Q the intensity is zero.

The inelastic unpolarized neutron double differential cross-section from the spin-waves, assuming

identical magnetic ions with localized electrons and spin only scattering, with moment ordering along the

z-direction, is given by the sum of terms for one magnon annihilation and creation by [64]:(
d2σ

dΩdEf

)1 magnon

=
kf
ki

4π3

V0
(r0γN )2Sf2(Q)e−2W (Q)

(
1−

(
Qz
Q

)2
)∑

q

∑
τ
·

· (〈nq〉δ(ω + ωq)δ(Q + q− τ ) + 〈nq + 1〉δ(ω − ωq)δ(Q− q− τ )) .(2.13)

From the above equation one can see that peaks in the INS spectra will appear from spin-wave scattering

if the conditions: i) ω = ±ωq and ii) Q = τ ± q are satisfied, similarly to the coherent one phonon

scattering process.

In a PM state of a localized magnetic system, for a temperature much higher than the ordering

temperature, the magnetic moments of the ions are completely uncorrelated and randomly oriented. This
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results to zero internal magnetic field. If the spin orientation of a particular ion changes there will be

no energy change of the system. Therefore, the spin matrix element 〈Sα0 (0)Sβl (t)〉 is time independent.

For a PM Bravais crystal with localized electrons in zero external magnetic field the cross-section is

non-zero for l=0 and α = β. This results to
∑
α,β

(
δα,β −

QαQβ
Q2

)
= 2 and the elastic double differential

cross-section is given by [64]:(
d2σ

dΩdEf

)PM

=
kf
ki

(r0γN )2 1

2πh̄

∑
l

| fl(Q) |2 1

6
g2
l Sl(Sl + 1), (2.14)

where gl is the Landé factor. Because of the Q dependence, the PM scattering decreases with increasing

Q values, as demonstrated for the magnetic and spin-wave scattering. If a magnetic field H is applied

along the z-axis, a nonzero average spin Sz leads to a coherent scattering that will be superimposed on

the nuclear Bragg scattering (and is proportional to 〈Sz〉2) and a diffusive signal. For a perfect PM, where

no correlations and no interactions between atomic spins exist, the magnetic scattering is isotropic, elastic

and independent of temperature.

2.2.5 General properties of the scattering function S(Q, ω)

The scattering function S(Q, ω) is not a completely arbitrary function and since it is essentially related to

a measured intensity, is always positive. The intensity relation for up-scattering (h̄ω < 0: annihilation

of an excitation) and down-scattering (h̄ω > 0: creation of an excitation) is given through the detailed

balance condition [73]:

S(−Q,−ω) = e
− h̄ω
kBT S(Q, ω). (2.15)

The detailed balance condition can be tracked back to the sum
∑
n0

p(n0) of the general Eq. 2.5 and can be

used for systems in thermal equilibrium. For T=0 K there are no energy levels populated above the ground

state, therefore, up-scattering is not possible. For high temperatures, the intensity is almost the same for

up and down-scattering, since the transition rate for two nearly equally populated states is nearly the same.

It should be noted that for systems with inversion symmetry −Q can be replaced by Q in Eq. 2.15.

When the response to a periodic perturbation is periodic with the same frequency, one can define

another complex function, the generalized dynamic susceptibility χ(Q, ω)=χ′(Q, ω)+iχ′′(Q, ω). The

real part describes the response in phase with the perturbation (reactive part), while the imaginary part is

related to the out of phase response (dissipative part). The real and imaginary part of the susceptibility are

related by the Kramers-Kronig relation [69]: χ′(Q, ω) = 1
π

∞∫
−∞

χ′′(Q,ω′)
ω−ω′ dω

′. The imaginary part χ′′(Q, ω)

of the dynamical susceptibility, which is an odd function of ω, is related to the scattering function S(Q, ω)

through [73]:

S(Q, ω) =
1

π

1

1− e−
h̄ω
kBT

χ′′(Q, ω). (2.16)

One can connect χ′′(Q, ω) with the bulk susceptibility χb measured with a SQUID magnetometer, via the

relation: χb = lim
Q→0
−χ′(Q, 0) = lim

Q→0
1
π

∞∫
−∞

χ′′(Q,ω′)
ω′ dω′.

An excitation at a given frequency ωq and with an infinite life time can be expressed by delta functions

as [73]: S(Q, ω) = (n(ω) + 1)ZQ (δ(ω − ωq)− δ(ω + ωq)), where ZQ is a dimensionless structure
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factor and n(ω) + 1 =

(
1− e−

h̄ω
kBT

)−1

. The two delta functions express creation and annihilation of

excitations and the minus in the second delta function assures that ZQ (δ(ω − ωq)− δ(ω + ωq)) is an

odd function of ω, since χ′′(Q, ω) ∝ ZQ (...). If an excitation has finite life time, but still remains well

defined, then delta functions can be replaced by Lorentzians functions and one obtains [73]:

S(Q, ω) = 1
π (n(ω) + 1)ZQ

(
Γq

(ω−ωq)2+Γ2
q
− Γq

(ω+ωq)2+Γ2
q

)
= 1

π (n(ω) + 1)ZQ
4ωωqΓq

(ω2−Ω2
q)

2+4ω2
qΓ2
q
, (2.17)

where Γq is the q-dependent linewidth, corresponding to the half width at half maximum (HWHM) of the

Lorentzian peak. Because a Lorentzian function corresponds to the exponential decay of the excitation in

time, one can rewrite S(Q, ω) in terms of a damped harmonic oscillator function, where Ωq =
√
ω2
q + Γ2

q .

For overdamped excitations and in the limit of small ω, one can use a quasielastic Lorentzian which

describes a relaxation behaviour [73]:

S(Q, ω) =
1

π
(n(ω) + 1)

ZQ
Ω′q

ωΓ′q
ω2 + Γ′2q

. (2.18)

A quasielastic Lorentzian is a Fourier transformation of an exponential decay e−
t
τ , where τ−1 = Γ′q. For

magnetic scattering, ZQΩ′q
can be replaced by χ′(Q, 0). Eq. 2.18 is used to described PM correlated systems

as opposed to Eq. 2.14 that is used for uncorrelated PM systems.

2.2.6 Polarized neutrons

So far in the neutron cross-sections the neutron spin state was neglected and only the change from

one momentum state to another was considered. In polarized neutron scattering experiments, both the

momentum and the neutron spin state are considered. The polarization of neutrons is defined by the

normalized average over the neutron spins P=2〈S〉 [62]. The polarization will be measured with respect to

a quantization axis. In any device for polarization analysis the polarization of the neutron beam is defined

by [62]:

P =
n↑ − n↓
n↑ + n↓

, (2.19)

where n↑ and n↓ refer to up and down neutron spin orientations, respectively, with respect to a polarisation

axis. P=1 and P=0 correspond to completely polarized and unpolarized neutron beam, respectively.

When the neutron polarization is considered then the double differential cross-section in Eq. 2.5

consists of four cross-sections [70]:

d2σ

dΩdEf
=

1

2
(sum of four spin state cross-sections). (2.20)

The four spin state cross-sections involve all the four possible spin state transitions for the initial and final

neutron spin state, namely σ↑↑, σ↓↓, σ↑↓ and σ↓↑. The 1
2 factor indicates that the probability for spin-up

and spin-down neutron state is the same. In the general case the double differential cross-section for initial

(σi) and final (σf ) neutron spin states can be written as [69]:(
d2σ

dΩdEf

)polarized beam

σi,σf

=
kf
ki

∑
i,f

P (i) | 〈f |
∑
l

eiQrlU
σi,σf
l | i〉 |2 δ(Ei − Ef − h̄ω), (2.21)

where Pi refers to the probability of being in the initial state |i〉 and Uσi,σfl = 〈σf | Al + BlIlσ −
r0γn

2 M⊥lσ| σi〉 to the scattering amplitude (see below).
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2.2.6.1 Nuclear scattering with polarized neutrons

The nuclear interaction operator V̂n can be described by a point-like and isotope specific Fermi pseudo

potential as discussed before. For nuclei with zero spin the scattering length operator b̂ is scalar and the

scattering will be independent of the neutron spin orientation. The interaction becomes spin dependent

if the scattering nuclei have a non-zero nuclear spin I and the scattering lengths differ for parallel and

antiparallel alignment of I and S. Then b̂ can be written as the sum of average and coherent part A and a

fluctuating spin dependent part: b̂ = A+Bσ̂Î (A and B are constants). σ̂ is the Pauli spin operator given

by the Pauli spin matrixes σ̂x=

(
0 1

1 0

)
, σ̂y==

(
0 −i
i 0

)
and σ̂z=

(
1 0

0 −1

)
. Defining a polarization axis

z for the neutron polarization P=2〈Ŝ〉=〈σ̂〉, with spin-up states |+〉=

(
1

0

)
and spin-down states |–〉=

(
0

1

)
,

one obtains the following matrix elements for nuclear scattering [69]:

〈+ | b̂ | +〉 = A+BIz

〈− | b̂ | −〉 = A−BIz
〈+ | b̂ | −〉 = B(Ix − iIy)

〈− | b̂ | +〉 = B(Ix + iIy). (2.22)

The obtained result is independent of the direction of P with respect to Q. For coherent scattering and

assuming random orientation of nuclear spins, all scattering appears in the non-spin flip (NSF) channels.

For incoherent scattering if I = 0 there is no spin flip (SF) scattering.

2.2.6.2 Magnetic scattering with polarized neutrons

The magnetic interaction potential is given by V̂m = − r0γn
2 σ̂M̂

⊥
Q , with M̂

⊥
Q referring to the operator of

the magnetic interaction that is reduced to only the perpendicular components of MQ with respect to Q
(M⊥Q = eQ ×MQ × eQ) [62]. MQ is the total Fourier transform of the spin and orbital contribution to the

magnetization density.

For polarized neutron experiments, the usual convention is to define a cartesian coordinate system with

the x-axis parallel to Q, the y-axis perpendicular to Q in the scattering plane and the z-axis perpendicular

to the scattering plane. Since neutron scattering experiments probe only the magnetism perpendicular to

the scattering vector Q, the measured magnetic fluctuations are therefore 〈δMy〉 and 〈δMz〉, where:

〈δMα〉 = Sαα(Q, ω). (2.23)

The longitudinal polarization analysis (LPA) method allows to recover PL, the projection of the final

polarization P onto the incident polarization P0. The longitudinal component of the polarization is given

by PL = P·P0
P0

. By neglecting terms arising from the nuclear spins, the chiral and nuclear-magnetic

interference terms (NMI), one can deduce the following expressions for the NSF (the polarization does

not change) and SF (completely reversion of the polarization) cross-sections in the different cases where
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P0 is parallel to x, y and z [64]: (
d2σ

dΩdE

)x
NSF
∝ BGNSF + 〈N〉(

d2σ

dΩdE

)x
SF
∝ BGSF + 〈δMy〉+ 〈δMz〉(

d2σ

dΩdE

)y
NSF
∝ BGNSF + 〈N〉+ 〈δMy〉(
d2σ

dΩdE

)y
SF
∝ BGSF + 〈δMz〉(

d2σ

dΩdE

)z
NSF
∝ BGNSF + 〈N〉+ 〈δMz〉(

d2σ

dΩdE

)z
SF
∝ BGSF + 〈δMy〉, (2.24)

where 〈N〉 refers to the nuclear scattering and BGNSF and BGSF are the background in the NSF and SF

channel, respectively. In other words one can determine the structural and magnetic contributions by

measuring the NSF and SF cross-sections in a configuration where P0 ‖ Q. Magnetic fluctuations parallel

to the neutron beam polarization are visible in the non-spin-flip channel, while fluctuations perpendicular

to the neutron beam polarization give rise to the spin-flip signal (i.e. inversion of the polarization of the

scattered beam with respect to the initial one).

In the general case where the symmetric nuclear-magnetic interference and antisymmetric chiral

terms cannot be neglected the four differential cross-sections, σ++ =
(

d2σ
dΩdE

)++
, σ−− =

(
d2σ
dΩdE

)−−
,

σ+− =
(

d2σ
dΩdE

)+−
and σ−+ =

(
d2σ
dΩdE

)−+
for an initial polarization applied, respectively, along x, y

and z are given by [64]:

σ++
x = σNSF

x

σ−−x = σNSF
x

σ+−
x = σSF

x − P0Mch

σ−+
x = σSF

x + P0Mch

σ++
y = σNSF

y + P0Ry

σ−−y = σNSF
y − P0Ry

σ+−
y = σSF

y

σ−+
y = σSF

y

σ++
z = σNSF

z + P0Rz

σ−−z = σNSF
z − P0Rz

σ+−
z = σSF

z

σ−+
z = σSF

z , (2.25)

where Mch is the chiral term and Rα (α = y, z) the symmetric NMI terms coupling the nuclear and the

magnetic components in the direction α. The different terms, namely the nuclear. magnetic, NMI and

chiral, can be determined separately from linear combinations of the previous relations.
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2.3 Inelastic X-ray scattering

Photons with a wave-length of λ=0.1 nm have an energy of about 12 keV. Therefore, the study of phonon

excitations in condensed matter, which are in the meV region, requires a relative energy resolution of

at least ∆E
E ∼ 10−7. There are a number of instances when inelastic X-ray scattering (IXS), using the

backscattering technique, can compete with inelastic neutron scattering (INS) as a tool to study collective

structural excitations. An example is that it is not possible to study acoustic excitations propagating with

the speed of sound vs using a probe particle with a speed v < vs. Another advantage of the IXS technique

arises from the fact that very small beam sizes (of the order of a few tens of micrometers) can be produced

at todays synchrotron sources. This opens the way to study systems available only in small quantities as

single crystals (down to a few 10−6 mm3) and investigate them in extreme thermodynamic conditions,

such as very high pressures combined with high temperatures.

For an inelastic X-ray scattering process, where the used probe is a photon beam, the momentum and

energy conversion relations are:

E = h̄ω = Ei − Ef (2.26)

h̄Q = h̄kf − h̄ki. (2.27)

The relation between momentum and energy in the case of photons is different compared to neutrons

since it is given by E(k) = h̄ck. In the case for IXS the energy gains or losses associated with i.e. phonon

excitations, are always much smaller than the energy of the incident photon (E � Ei). Therefore, the

ratio between the exchanged momentum and the incident photon momentum is given by:

Q2 = k2
i + k2

f − 2kikfcos2θ
ki≈kf−−−−→ Q

ki
= 2sin

(
θ

2

)
, (2.28)

where θ is the scattering angle. For IXS there is no limitations in the energy transfer at given momentum

transfer for phonon excitations, in contrast to INS where a strong coupling between energy and momentum

transfer exists due to the instrumental constrains.

In the weak relativistic limit and by neglecting resonance phenomena close to the X-ray absorption

limit and the much weaker magnetic couplings, the electron-photon interaction is described via the

Thomson interaction Hamiltonian [73]:

HX-Th =
1

2
r0

∑
j

A2(rj , t), (2.29)

where r0 refers to the classical electron radius and A(rj , t) to the electromagnetic field vector potential

in the rj coordinate of the jth electron. The sum
∑
j

is over all the electrons of the system. The double

differential cross-section is proportional to the number of incident photons scattered with an energy range

∆E and momentum variation into a solid angle ∆Ω. In the process, where a photon with initial energy

Ei, wave-vector ki and polarization εi, is scattered into a final state of energy Ef , wave-vector kf and

polarization εf , and the electron system goes from an initial state |I〉 to a final state |F 〉, one obtains for

the double differential cross-section [73]:

d2σ

dΩdEf
= r2

0(εi · εf )2kf
ki

∑
I,F

PI | 〈F |
∑
j

eiQrj | I〉 |2 δ(h̄ω − Ef − Ei). (2.30)

23



2.3. Inelastic X-ray scattering

The sum
∑
I,F

over the initial and final states is the thermodynamic average and PI refers to the thermal

population of the initial state.

Within the adiabatic approximation, the systems quantum state |S〉 can be seperated into a product

of an electronic part |Se〉 and a nuclear part |Sn〉: |S〉=|Se〉|Sn〉. The electronic part depends only

parametrically from the nuclear coordinates. If the electronic part of the total wave function is not

changed by the scattering process, then the difference between the initial state |I〉=|Ie〉|In〉 and the final

state |F 〉=|Fe〉|Fn〉 is only due to excitations associated to atomic density fluctuations. Using these two

hypotheses, one arrives from the correlation function of the electron density that is contained in Eq. 2.30

to the correlation function of the atomic density [73]:

d2σ

dΩdEf
= r2

0(εi · εf )2kf
ki

∑
In,Fn

PIn | 〈Fn |
∑
l

fl(Q)eiQRl | In〉 |2 δ(h̄ω − Ef − Ei)

 , (2.31)

where fl(Q) is the atomic form factor of the atom l and Rl its position vector. The expression in the

parenthesis (...) contains the dynamical structure factor S(Q, ω). Assuming that the system contains N

equal scattering units, then this expression can be simplified by the factorization of the form factor of

these scattering units to:

S(Q, ω) =| f(Q) |2 1

2πh̄N

∞∫
−∞

e−iωt〈e−iQRl(0)eiQR
l
′ (t)〉dt. (2.32)

Then the double differential cross-section can be rewritten as [73]:

d2σ

dΩdEf
= r2

0(εi · εf )2kf
ki
| f(Q) |2 S(Q, ω) =

(
d2σ

dΩ

)
Th
| f(Q) |2 S(Q, ω). (2.33)

This expression is valid only for a system composed of equal scattering units, therefore, the coupling

characteristics of the photons to the system (i.e. the Thomson scattering cross-section) are separated

from the dynamical properties of the system, and the atomic form factor f(Q) appears as a multiplication

factor.

By substituting the atomic form factor with either the elementary cell form factor, or the molecular form

factor, the expression can be generalized to describe crystalline and molecular systems. The expression

for the S(Q, ω) depends on whether the system is crystalline or amorphous. For crystalline systems, the

formalism for the inelastic structure factor is well established, and the symmetry considerations, as well

as, the phonon selection rules are identical to the ones for INS.

The similarities and differences between the IXS and INS technique can be summarized as:

(i) X-rays couple to the electrons of the system with a cross-section proportional to r2
0. The strength is

comparable to the neutron-nucleus scattering cross-section b.

(ii) The IXS cross-section is proportional to | fl(Q) |2. For Q→ 0 the form factor equals to Z (the

number of electrons in the scattering atom). For increasing values of Q, the form factor decays. For INS

the cross-section is proportional to b2.

(iii) The total absorption cross-section of X-rays above 10 keV is limited in almost all cases (Z > 4)

by the photoelectric absorption (∼ λ3Z4), while for INS there is weak absorption.

(iv) In IXS there are no incoherent scattering contributions in contrast to INS.

(v) The beam size for IXS is ≤100µm and the energy resolution about 1 meV. For INS the beam size

is several centimetres and the energy resolution about 0.1 meV (for cold triple axis spectrometers).
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(vi) The INS triple axis spectrometers resolution function is approximately Gaussian changing in

(Q, E)-space, while the IXS one is Lorentzian with long tails. For IXS measurements this can be a serious

handicap for low energy excitations (<20 meV) due to the presence of elastic diffuse scattering.
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Chapter 3

Experimental instruments

3.1 The neutron triple axis spectrometer

One instrument for measuring magnetic and lattice excitations in solids is the triple axis spectrometer

(TAS). The TAS is using Bragg diffraction to prepare and analyze the neutron wave-length. The name

of the spectrometer arises from the existence of three axes that are the important components of the

instrument and can be rotated [69]. A sketch of a typical TAS is illustrated in Fig. 3.1. In order to select the

proper neutron wave-length, according to Bragg’s law (nλ = 2dhklsinθ), the monochromator crystal as

well as the sample table have to rotate around the first axis. Around the second axis the analyzer/detector

unit can be rotated, whereby the sample scattering angle φ is selected with respect to the direction of the

incident wave-vector ki. Around the third axis, both the analyzer crystal and detector are rotated in order

to select the desired wave-length of the scattered neutron beam. An additional rotation around the sample

axis can be performed in order to scan any accessible plane in reciprocal space. Various components, such

as collimators and filters, can be installed in order to improve the efficiency of a TAS. Collimators control

the divergence of the neutron beam and can be installed in the incident and/or in the scattered beam.

The collimation can improve the Q and E resolution of the instrument. Filters are installed to suppress

higher order wave-lengths (arising from Bragg’s law) from the monochromator and/or the analyzer. As a

consequence, they also contribute in reducing the background and the spurious signal from the sample

environment (cryostat, magnets etc.).

Figure 3.1: Sketch of a triple axis spectrometer (taken from [74]). The different components are described
in the text.



3.1. The neutron triple axis spectrometer

In a single detector TAS one can access one point at the time in the (Q, ω)-space. This can be very time

consuming, especially when the signal is weak and every point must be measured a long time. In order to

cover larger portions in the (Q, ω)-space, multiplexing schemes have been employed to the secondary

spectrometer (analyzer-detector). This is done by operating several analyzer-detector arms in parallel. As

an example, the FlatCone multianalyzer setup that was used for measurements in this work is shown in

Fig. 3.2 [75].

Figure 3.2: Sketch (courtesy of Dr. P. Steffens) of the FlatCone multianalyzer setup used at the Institut
Laue Langevin (ILL) in Grenoble, France. The secondary spectrometer consists of 31 analyzers and
detectors tubes.

With a TAS one performs for convenience two types of scans: (i) energy scans at constant Q or (ii) Q
scans at constant energy transfer. For constant-Q scans, the spectrometer is set to a particular Q, which is

kept fixed during the scan and the energy transfer is changing. In constant-E scans the spectrometer is set

to detect a particular energy transfer of the investigated excitation and Q is varied in a specific direction

in reciprocal space (usually along a high symmetry direction). The choice between these two scans is

dictated by the nature of the excitations, e.g. the slope in (Q, ω)-space of the investigated dispersion

of the propagating modes. For the steeper parts of the dispersion constant-E scans are employed. For

measurements close to the zone boundaries where dispersions become flat, usually constant-Q scans are

preferred.

The observed intensity at a given (Q, ω) depends not only on the scattering process from the sample

but also on the instrument resolution. The measured intensity I(Q, ω) is the convolution of the resolution

function F (Q, ω) and the scattering function S(Q, ω): I(Q, ω)=F (Q, ω)⊗S(Q, ω). The resolution

function F (Q, ω), depends on the experimental configuration, such as the initial and the final energy, the

mosaic spread of the sample (in case of single crystals), the monochromator and the analyzer, as well

as the collimation used in the setup. In many neutron scattering experiments, taking into account the

resolution effects is crucial in determining the intrinsic width and amplitude of an excitation. Computer

programs are available nowadays that can perform the four-dimensional (three dimensions for Q and one

for ω) convolution of the resolution function for a specific experimental configuration with a model, fit

the result to the data, and finally give the model parameters, such as the intrinsic correlation lengths and
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the lifetime of excitations [76].

The resolution ellipsoid is usually more elongated along one direction. This elongation is the basis for

the focusing condition of the spectrometer as the widths of the observed peaks depend on the orientation

of the ellipsoid with respect to the dispersion surface. For the focusing condition, the long axis of the

ellipsoid is parallel to the dispersion curve, therefore the observed peaks will be more intense and narrower

compared with the defocusing condition. This is shown in Fig. 3.3, for an upward dispersion curve. The

focusing and the defocusing conditions can be determined from the instrument configuration [77].

Figure 3.3: Effect of focusing (full line in the observed intensity) and defocusing conditions (dashed line
in the observed intensity). If the resolution ellipsoid is adopted to the slope of the dispersion, the peak
shape of the inelastic signal can be optimized (taken from [62]).

3.2 Polarized neutron scattering with triple axis spectrometer

In order to perform experiment with polarized neutrons, some modifications are necessary to the standard

TAS setting (see Fig. 3.4). For polarizing experiments in some cases the monochromator can be used as a

polarizer by selecting specific crystals. Good polarizing crystals, i.e. select neutron with a given spin state,

are FM crystals where the nuclear structure factor (FN (Q)) is similar to the magnetic structure factor

(FM (Q)). The differential cross-section for the general case of magnetized crystal is given by [69]:(
dσ

dΩ

)±±
= (FN (Q)± FM (Q))2 . (3.1)

If one can find a special reflection where |FN (Q)|=|FM (Q)|, then the diffracted neutron beam will be

completely polarized. This is the case for the (111) reflection of the Heusler alloy Cu2MnAl. The analyzer

is made of the same material as the monochromator and operates the same way. Another way of polarizing

the neutron beam is using magnetic multilayers with spin dependent transmission/reflection.

The directions of the spins in a neutron polarized experiment can be changed by flippers. The

precession of the spin around a magnetic field is given by the Larmor angular frequency ωL. If the

magnetic field rotation ωB is much smaller than ωL, then the component of the polarization parallel to the

magnetic field maintains its direction, while the perpendicular one processes around the magnetic field
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3.3. Inelastic X-ray scattering with ID28

Figure 3.4: Sketch of a triple axis spectrometer in polarized mode (taken from [78]). The different
components are described in the text.

(adiabatic case). If ωL � ωB , then the neutron spins will precess around the new field (non-adiabatic

case). Mezei-flippers consist of a coil with a tuneable current. The current needed to turn the spin depends

on the neutron velocity. A guide field is applied both before and after the coil. Before entering the coil the

neutron spins are aligned along the guide field. When entering the coil the neutron spins are turned to a

new direction. The guide field after the coil ensures that the neutron spins will maintain the new obtained

direction. In order to access all four neutron spin cross-sections, it is necessary to install flippers on both

sides of the sample (in the incident and in the scattered beam direction).

3.3 Inelastic X-ray scattering with ID28

The setup of the inelastic X-ray scattering beamline ID28 is shown in Fig. 3.5. After the premonochromati-

zation, the initial energy is defined by a flat backscattering monochromator. In the backscattering geometry

for X-rays the resolution of the initial wave-length depends on the properties of the monochromator crystal

and is given by ∆λ
λ = ∆dhkl

dhkl
+ cotθ∆θ ≈ ∆dhkl

dhkl
for θ=89.98 ◦.

It can be shown that the resolving power is given by [73]: ∆E
E = dhkl

πΛext
, where dhkl refers to the lattice

spacing associated with the (hkl) reflection order and Λext to the primary extinction length. Λext increases

with the reflection order of a perfect single crystal. A perfect single crystal can be defined as a periodic

lattice without defects and/or distortions. A (13, 13, 13) reflection from a highly perfect silicon crystal

can reach ∆E
E = 10−8. After further optical components, the photons are scattered from the sample and

arrive in the analyzer. The energy resolution of the analyzer should be the same as the monochromator.

The refocussed, energy-analyzed X-rays are detected by an inclined silicon diode detector. There are five

independent analyzer systems with a fixed angular offset between them, mounted on a long arm that can

rotate around a vertical axis of the sample. This rotation allows to select the scattering angle (θs) for the

five analyzers and consequently the corresponding exchanged momentum Q = 2kisin( θs2 ).

In contrast to the TAS, due to the backscattering geometry, the energy difference between the analyzer

and the monochromator cannot be changed by modifying the Bragg angle on one of the two crystals

(analyzer(s), monochromator). The energy scans are performed by keeping the Bragg angle constant and

by changing the relative temperature between the two crystals. The temperature change affects the relative

lattice parameter and therefore the value of the reflected energies. The temperature of the analyzer is kept

constant, while the temperature of the monochromator changes, and therefore Ei varies. Considering that
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Figure 3.5: Setup of the inelastic X-ray scattering beamline ID28 at the European Synchrotron Radiation
Facility (ESRF) (taken from [62]).

∆E
E = ∆d

d = α∆T (α=2.58·10−6 K−1 for Si at room temperature), the temperature has to be controlled

with a precision of 0.5 mK to obtain an energy step for about 1 tenth of the energy resolution.
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Chapter 4

Spin dynamics of the magnetocaloric
compound MnFe4Si3

4.1 Spin dynamics of localized and itinerant electron systems

For revealing microscopic ingredients that favour the MCE, which is enhanced around a magnetic phase

transition, an investigation of the magnetic properties in the ordered phase (T < TC), as well as, in

the magnetically non-ordered state (T > TC) is necessary. To this aim the spin dynamics of the MC

compound MnFe4Si3 has been investigated above and below TC as a function of the wave-vector Q and

the energy E with INS in single crystals.

A magnetically ordered phase is described by the order parameter M (e.g. magnetization for a FM).

In real systems magnetic fluctuations (〈δM〉) occur. They describe the deviation of the magnetic moments

from their average value. As the temperature approaches TC (critical point) these fluctuations become

important. Near the critical point in continuous phase transitions, the behaviour of a system can be

described by power laws of the deviations of thermodynamic variables from their values at the critical

point. Investigating the magnetic field response of the fluctuations around the critical point with INS

might possibly point out major components at play for the MCE in MnFe4Si3.

Magnetism in solids originates from the magnetic moments of the atoms in the system. The magnetic

moments are a consequence of the spin and angular momenta of the electrons. Two different models have

been proposed to describe the magnetism in solids: the localized and the itinerant model. The behaviour

of the spin-fluctuations is different for localized and itinerant electron systems. An empirical formula

used to described the PM scattering function S(Q, ω) is given by the double Lorentzian function [79, 80]:

S(Q, ω) =
1

π

1

1− e−
h̄ω
kBT

χ0

1 +
( q
κ

)2 h̄ωΓq
Γ2
q + ω2

=
1

π

1

1− e−
h̄ω
kBT

χq
h̄ωΓq

Γ2
q + ω2

, (4.1)

where χq, Γq and κ are the q-dependent susceptibility, linewidth and inverse correlation length and χ0 the

static susceptibility.

In the case of localized magnetism the atoms constituting the solids have total angular momentum

from spin and orbit from the electrons of each atom. The magnetic moments exist below and above the

critical temperature and are confined to single atoms. The spins interact via quantum mechanical exchange

interactions described by the Heisenberg model for magnetism (H =
∑
i,j
JijSiSj). The q-dependent
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linewidth can be approximated by [80]:

Γloc(q) = Alocq
2.5f(

κ±

q
), (4.2)

where f(κ
±

q ) represents the dynamical scaling function and ± refers to measurements above and below

TC . The dynamical scaling function equals to 1 at TC and is a homogeneous function of κ
±

q away from

TC . The inverse of the spin correlation length is given by the critical law [80]:

κ± = κ±0

(
| T − TC |

TC

)ν
. (4.3)

In this formula κ0 refers to the inverse spin correlation length at T=0 K and the exponent ν equals to

0.5 and 0.7 for a Heisenberg model within the mean-field approximation and for critical scattering for

Heisenberg spins (spins that have x, y and z component) in 3D, respectively.

In the itinerant case electrons are nearly free and are shared along the entire solid in an electron gas.

Weak itinerant ferromagnets are characterized by small magnetic moments and the conduction electrons

are mainly responsible for the magnetic properties of these materials. Exchange interaction causes a

splitting between spin-up and spin-down density of states. Magnetic order appears when the total energy

is reduced by this splitting. One simplified model to explain this is the Stoner model [65]. For weak

itinerant ferromagnets the q-dependent linewidth is different when compared to a localized ferromagnet

and is given by [80]:

Γwi(q) = Awiq

(
1 +

( q

κ±

)2
)
. (4.4)

4.2 Experimental details

The single crystal of MnFe4Si3 was grown by the Czochralski method [56] and two samples of this batch

with a mass of about 7 g each were individually mounted on an aluminium sample holder and oriented in

the (a*,c) and (a*,b*) scattering plane of the hexagonal lattice, respectively. The linewidths of the rocking

curve of each sample consists of a single Gaussian peak and is of about 0.3 ◦ as measured by neutron

diffraction.

INS measurements were carried out on the cold and thermal TAS IN12 [81] and IN22 at the Institut

Laue Langevin (ILL), as well as on MIRA [82] and PUMA [83] at the Heinz Maier-Leibnitz Zentrum

(MLZ). The spectrometers used for INS studies were setup in W configuration with a fixed final energy

and a fully focusing setup. MIRA was used in elastic TAS mode with 60’ secondary collimation. The

corresponding integration in energy covers the range from -0.1 to 0.1 meV. Additional information

regarding each configuration is given in Table 4.1.

For unpolarized INS measurements below TC the sample was cooled down to the base temperature

T ≈1.5 K with a 4He flow cryostat or a closed cycle cryostat (configurations "A" and "B" in Table 4.1),

while for measurements above TC a cryofurnace was used to cover the temperature region of 80≤T≤500 K

(configuration "C" in Table 4.1). Elastic measurements on MIRA were performed using a 2.2 T vertical

field magnet with the field applied in the plane (configuration "F").

For INS measurements with polarized neutrons, the incident neutron beam spin state was prepared

for IN12 with a transmission polarizing cavity [81] located after the velocity selector and for IN22 with

a Heusler (Cu2MnAl(111)) monochromator. All along the neutron path guide fields were installed to
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4. Spin dynamics of the magnetocaloric compound MnFe4Si3

Table 4.1: Instrument configurations. "PG" refers to pyrolytic graphite. Higher order contamination was
removed using a PG filter in the scattered neutron beam on IN22 and PUMA. On IN12 and MIRA a
velocity selector (VS) was employed before and a cooled Be filter after the monochromator, respectively.
The symbol " * " refers to polarized setups.

Config. TAS Monoch. Anal. kf (Å−1) Filter

A IN12 PG(002) PG(002) 2 VS
B PUMA PG(002) PG(002) 1.971 PG
C IN12 PG(002) PG(002) 1.3 VS
D IN12* PG(002) Cu2MnAl(111) 2 VS
E IN22* Cu2MnAl(111) Cu2MnAl(111) 2.662 PG
F MIRA PG(002) PG(002) 1.4 Be

maintain the polarization of the beam. In order to investigate the spin-wave scattering, the sample was

placed in a 2.5 T vertical field magnet. The single crystal was first heated up above TC to 316 K and

then cooled down to 1.5 K under a vertical magnetic field of Hz=1 T applied parallel to the b-axis of the

hexagonal system of the sample, corresponding to an axis within the easy plane of magnetization [56].

This results in a single domain state of the sample. The scattered beam was analyzed by a combination

of a Mezei spin flipper and a horizontally focusing Heusler analyzer set at fixed kf (configurations "D"

and "E" in Table 4.1). The PM scattering was also investigated in detail at T=316 K using the spherical

polarization analysis setup CRYOPAD [84] and configuration "E". For all measurements with polarized

neutron beam (configurations "D" and "E") a flipping ratio (F = NSF
SF ) of about 14 has been measured on

a graphite sample.

4.3 Spin-wave scattering

The real and reciprocal space primitive translation vectors for a hexagonal Bravais lattice (a = b 6= c,

α = β = 90 ◦ and γ = 120 ◦) are given by:

a ≡ a1 =

√
3a

2
x̂+

a

2
ŷ , b ≡ a2 = −

√
3a

2
x̂+

a

2
ŷ and c ≡ a3 = cẑ (4.5)

a∗ ≡ b1 =
2π√
3a
x̂+

2π

a
ŷ , b∗ ≡ b2 = − 2π√

3a
x̂+

2π

a
ŷ and c∗ ≡ b3 =

2π

c
ẑ. (4.6)

A hexagonal Bravais lattice has as reciprocal lattice another hexagonal lattice with lattice constants 4π√
3a

and 2π
c rotated through 30 ◦ about the c-axis with respect to the direct lattice (see Fig. 4.1). The first

Brillouin zone of the hexagonal lattice has also a hexagonal structure. The reciprocal lattice is generated

by reciprocal lattice vectors Q(h,k,l) = ha∗ + kb∗ + lc∗. The connection between the reciprocal latice

vectors and real space lattice spacing for the hexagonal structure is given by:

| Q(h,k,l) |=
2π

dhkl
= 2π

√
4

3a2
(h2 + hk + k2) +

l2

c2
. (4.7)

In this chapter: Q=G+q, where G corresponds to a zone center, Q=(Qh, Qk, Ql) is the scattering

vector and q=(h, k, l) expresses the wave vector of an elementary excitation given in reciprocal lattice

units (r.l.u.). All vectors are represented in hexagonal coordinates. Magnetic excitations of the MC

compound MnFe4Si3 were measured mainly around the zone centers G=(2, 0, 0), G=(0, 2, 0) and G=(0,
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4.3. Spin-wave scattering

Figure 4.1: Sketch of a hexagonal lattice in (a) real and in (b) reciprocal space in xy plane. The shaded
area indicates the first Brillouin zone.

0, 2) with configuration "A" and "B". There the calculated magnetic form factors for Fe and Mn are

expected to have significant magnitude (see Fig. 4.2).

Figure 4.2: Magnetic form factors squared versus the modulus of the wave-vector Q = 4π
λ sinθ for Mn

and Fe. The 〈j0〉 integral is calculated using the parameters given in [85]. The arrows indicate the zone
centers were magnetic excitations were measured for MnFe4Si3.

In order to extract acoustic magnon branches, constant energy and constant Q scans were carried

out at energy transfers below 20 meV at T=1.5 K along the high symmetry reciprocal directions (h00),

(hh0) and (00l) of the hexagonal system. Specific scans were repeated above TC , e.g. at T=313 K, in

order to establish the magnetic nature of the excitations. Typical representatives of such measurements are

shown in Figs 4.3. In Fig. 4.3(a) the peak observed at T=1.5 K is replaced by a broad quasi elastic signal

above the ordering temperature at T=313 K. It should be noted that the peak at T=1.5 K is extremely

broad (FWHM=3.5(2) meV). The instrument resolution for this setting as computed with the software

[76] is 1.2 meV. This broadening might be caused from strong spin-fluctuations at the WP 4d or from

chemical disorder at the WP 6g [56]. In Fig. 4.3(b) only magnons are observed around the zone center

G=(2, 0, 0) at Qh=1.73 r.l.u. and Qh=2.25 r.l.u., the former being more prominent due to the instrumental

resolution focusing conditions. Around the zone center G=(3, 0, 0) two distinct peaks at Qh=2.73 r.l.u.

and Qh=2.93 r.l.u. are attributed to spin-wave and phonon scattering, respectively. The peak observed in
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4. Spin dynamics of the magnetocaloric compound MnFe4Si3

the FM phase (T=1.5 K) at Qh=2.73 r.l.u. (magnon) is replaced by an almost flat background in the PM

state (T=313 K), while in contrast the peak at Qh=2.93 r.l.u. (phonon) remains in the same Qh position for

the two different temperatures. The decrease of the magnon intensities in the two different zone centers

that are in the focusing side of the spectrometer (Qh=1.73 r.l.u. and Qh=2.73 r.l.u.) is due to the decrease

of the magnetic form factor f(Q) with increasing Q.

Figure 4.3: (a) Energy spectra at Q=(2.3, 0, 0) and (b) Q spectra around Q=(Qh, 0, 0) at constant energy
transfer of 3 meV measured at IN12 spectrometer with unpolarized setup (configuration "A") at 313 K
(squares) and 1.5 K (circles). Neutron intensity for data at 1.5 K and 313 K is given on the left and right
vertical axis, respectively. The solid lines correspond to fits with Gaussian functions and the dashed line is
a guide for the eyes. The solid horizontal line on the left figure indicates the instrument resolution and the
vertical dashed lines on the right figure the Brillouin zone boundaries.

Further experiments with polarized neutrons were performed along the (h00) and (00l) directions at

1.5 K using instrument configurations "D" and "E". Figs 4.4 show characteristic constant energy scans

with polarized neutrons performed for an energy transfer of 5 meV around Q=(2, 0, Ql) (see Fig. 4.4(a))

and for an energy transfer of 4 meV around Q=(Qh, 0, 2) (see Fig. 4.4(b)).

Figure 4.4: Polarized inelastic neutron scattering spectra obtained at IN12 (configuration "D") at T=1.5 K
(a) around Q=(2, 0, Ql) at constant energy transfer of 5 meV and (b) around Q=(Qh, 0, 2) at constant
energy transfer of 4 meV from spin flip and non-spin flip channel. The solid lines represent fits with
Gaussian functions.

In Fig. 4.4(b) the peak observed in the spin flip (SFzz) channel vanishes in the non-spin flip (NSFzz)

channel. The polarization is along the direction of the applied vertical magnetic field, z, which corresponds

to the direction of the ordered magnetic moments in the single domain sample MnFe4Si3. Spin-waves
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4.3. Spin-wave scattering

correspond to precession perpendicular to the ordered moment with therefore a unique component 〈δMy〉
(〈δMz〉=0). In the crystal frame and for Q in the (a∗,c) plane, the cross sections become (see Eq. 2.24 in

Section 2.2.6.2): (
d2σ

dΩdE

)z
NSF
∝ BGNSF + 〈N〉(

d2σ

dΩdE

)z
SF
∝ BGSF + 〈δMy〉 = BGSF + cos2θ〈δMc〉+ sin2θ〈δMa∗〉,

with θ the angle between Q and the (h00) direction, 〈N〉 is the nuclear scattering and BGNSF and

BGSF are the background in the NSF and SF channel, respectively. Consistently, the peaks observed at

Ql=0.11 r.l.u. and Qh=-0.28 r.l.u. correspond to spin-wave scattering and the peak at Qh=-0.13 r.l.u. to

phonon scattering. Measurements with polarized neutrons are crucial in such a FM as acoustic phonon

and magnon modes originate from the same Brillouin zone center. Moreover, all spectra were examined

carefully for spurious scattering, especially aluminium and copper contamination, and the corresponding

regions were masked during the data evaluation. Magnetic excitations, both for the constant Q and

constant E scans, were fitted with Gaussian functions.

The obtained magnon dispersion along the main three symmetry directions ((h00), (00l) and (hh0))

is shown in Fig. 4.5. While the magnon branches are found to be rather isotropic in the two basal plane

directions (h00) and (hh0), a much steeper dispersion develops along (00l). The experimental spin-wave

spectrum at low energies (E≤ 5 meV) can be described by a quadratic dispersion E=∆ +D(hkl)q
2, where

∆ is the energy gap, D(hkl) is the spin-wave stiffness and q is the momentum transfer. The obtained values

are ∆=0.71(25) meV, D(h00)=30(4) meVÅ2, D(hh0)=46(4) meVÅ2 and D(00l)=310(30) meVÅ2 for the in

and out-of plane magnon branch, respectively. The obtained value for the spin gap is within the instrument

resolution, which is approximately 0.5 meV for configuration "A". Therefore, in the present study it is

difficult to draw firm conclusions about the existence of a spin gap.

Figure 4.5: Magnon dispersion at T=1.5 K along (00l), (h00) and (hh0) directions from polarized (circles)
and unpolarized (triangles) INS measurements. The colour-coded intensity corresponds to spin-wave
simulation as described in the text.

To describe the spin-wave spectrum and to extract the relevant exchange interactions of this compound

the SpinWave software package was used [86] (see also Appendix A.1). For the present study, the higher
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4. Spin dynamics of the magnetocaloric compound MnFe4Si3

symmetric P63/mcm structure [47] proved to be a sufficient approximation. Since the experimental data

revealed only the lower energy acoustic magnon dispersion for each direction, a simplified spin model

was employed. Given the experimental uncertainty on the magnetic moment on the 4d site [56], one

type of magnetic atoms carrying a spin S on the 6g sites of mixed occupancy was considered. As no

significant differences are observed between the dispersion measured along the (h00) and (00l) directions

at zero field and for H=1 T applied along the b-axis, one can assume for simplicity that the magnetic

moments are lying along the b-axis. Furthermore the Zeeman effect is negligible being of the order of

0.09 meV for a magnetic moment of 1.5µB under a magnetic field of 1 T. The spin model is described by

a Heisenberg-type Hamiltonian, HH =
∑
i,j
JijSiSj , where Jij denotes the exchange couplings between

sites i and j.

The exchange interactions between the nearest neighbouring magnetic atoms located at WP 6g are

shown in Fig. 4.6 and are described in Table 4.2. First, the coupling between magnetic atoms in the same

distorted [MnFe]6 octahedra are considered. This concerns 2SJ0, the exchange between the spins located

on a triangle (distance 2.775 Å), 2SJ2 and 2SJ3 that couples two spin located on adjacent triangles

separated by c/2 with distances 2.885 Å and 3.981 Å, respectively. Second, the exchange 2SJ1 concerns

the shortest distance (4.304 Å) between spins located on adjacent distorted [MnFe]6 octahedra. The

experimental fact that the magnon dispersion is much steeper along the (00l) direction than in the basal

plane, imposes that the exchange interaction with the highest ratio of out-of-plane to in-plane component,

2SJ2, is the dominant one. The second most important interaction concerning acoustic spin-waves is the

one that connects the different octahedra, 2SJ1, which is mandatory to create the in-plane dispersion. The

calculated dispersion using only the 2SJ1 and 2SJ2 interactions with the values indicated in Table 4.2 is

shown in Fig. 4.5. This simplified model describes well the experimental dispersion and including further

interactions is not relevant given the present set of data. In this respect, it should be pointed out that 2SJ0

does not participate in the out-of-plane dispersion by nature. The simulations show further that it does

not contribute to the in-plane acoustic modes but only to the optic modes. Since these modes were not

experimentally observed in the present study, 2SJ0 cannot be determined. In addition, it is found that the

effect of 2SJ3 is redundant with the one of 2SJ1 and 2SJ2 and cannot be disentangled.

Figure 4.6: Projection on the hexagonal plane of the crystal structure of MnFe4Si3 in P63/mcm space
group. Sites occupied by Mn and Fe (WP 6g, large purple) carry magnetic moments 1.5µB parallel to
b-axis, sites occupied by Fe (WP 4d, large orange) and Si atoms (small blue) carry no magnetic moments.
Yellow lines (J0) connect atoms in the same plane, red lines (J1), black lines (J2) and green lines (J3) in
different planes.
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4.4. Paramagnetic scattering

Table 4.2: Exchange constant values, number of neighbours between magnetic sites (zn), in-plane (IPP)
and out-of-plane projections (OPP) of the vector linking the magnetic sites and distances between magnetic
atoms (see Fig. 4.6). The symbol "− " means that the exchange interactions cannot be determined in the
present work.

Exchange value zn IPP OPP Distance
(meV) (Å)

2SJ0 − 2 0.409 0 2.775
2SJ1 −4 2 0.528 0.5 4.304
2SJ2 −18 4 0.236 0.5 2.855
2SJ3 − 2 0.472 0.5 3.981

4.4 Paramagnetic scattering

The spin dynamics of the MC compound MnFe4Si3 in the PM state was investigated with INS mea-

surements, which were carried out with the scattering vectors along the (h00) and (00l) directions. For

determining the extent of the spin-fluctuations in the PM region spectra have been collected with an

unpolarized neutron beam at small q, using instrument configuration "C". The measured intensity was cor-

rected by the Bose factor and a constant background was subtracted so that the obtained results correspond

to the imaginary part of the dynamical spin susceptibility χ′′(Q, ω). A typical temperature dependence

for Q=(0.25, 0, 0) for an energy transfer of E=0.3 meV is shown in Fig. 4.7(a). The spin-fluctuations

show their maximum at TC and extend for temperatures higher than 1.5TC . The inset in Fig. 4.7(a) shows

the temperature dependence of the beam polarization P . Measurements were performed with the use of

CRYOPAD and configuration "E" in non-spin flip NSFxx and spin flip channel SFxx at the Q=(0, 0, 2)

Bragg peak. The calculated beam polarization was obtained by P = NSFxx−SFxx
NSFxx+SFxx and equals to 86.6 %

for T >305 K. It is clearly seen that a considerable beam depolarization occurs for T ≤ TC due to the

magnetic domain structure, indicating the transition from the PM state to the FM phase at TC=305 K.

Fig. 4.7(b) shows constant E spectra for an energy transfer of 1.5 meV around Q=(Qh, 0, 0) at four

different temperatures. The sharp peaks observed in the FM phase (T=80 K) at Qh=1.8 r.l.u. and at

Qh=2.2 r.l.u. correspond to spin-waves. In the PM state the signal broadens as the temperature increases

and the measured intensity is decreasing, consistently with Fig. 4.7(a). This is typical for PM scattering

and indicates the diffusive nature of the spin-fluctuations. The ridges that are peaked at Qh=2 r.l.u. and

are present in the four different temperatures correspond to spurious scattering from the Bragg tail.

In order to get further insight into the spin dynamics near room temperature and above TC , the PM

scattering was studied at T=316 K corresponding to 1.036·TC along the (h00) and (00l) directions with

constant Q-scans using instrument configuration "E". Spectra were collected in two non-spin flip channels

NSFyy and NSFxx around the G=(2, 0, 0) and G=(0, 0, 2) zone centers. The magnetic fluctuations

were extracted by taking the difference of intensity of the two non-spin flip channels taking into account

higher order corrections of the monitor counts of each polarization channel. This gives access to the

spin-fluctuations along the c-axis, 〈δMc〉 (see Section 2.2.6.2 and below). A typical measurement is

depicted in Fig. 4.8, where energy scans at Q=(2.2, 0, 0) and Q=(2.3, 0, 0) are shown. As expected

the intensity decreases when q increases. The obtained spectra were convoluted with the 1D-instrument
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4. Spin dynamics of the magnetocaloric compound MnFe4Si3

Figure 4.7: (a) Temperature dependence of dynamical spin susceptibility χ′′(Q, ω) at Q=(0.25, 0, 0)
and E=0.3 meV. The dashed vertical line and the red arrow indicate TC ≈305 K and 1.036TC ≈316 K,
respectively. The inset shows the temperature dependence of the beam polarization at Q=(0, 0, 2)
Bragg peak. (b) Q spectra around Q=(Qh, 0, 0) at constant energy transfer of 1.5 meV at four different
temperatures corresponding to the FM phase (80 K) and the PM state (320 K, 395 K, 490 K). The line
at T=80 K corresponds to a fit with Gaussian functions and the lines connecting data points for the
other temperatures are guides for the eyes. Spectra were measured with unpolarized neutrons at IN12
(configuration "C").

resolution and values for the q-dependent susceptibility χq and linewidth Γq were extracted as described

below.

The measured intensity I(Q, ω) is the convolution of the resolution function F (Q, ω) and the

scattering function S(Q, ω): I(Q, ω)=F (Q, ω)⊗S(Q, ω). For simplicity one can assume for a signal not

very strongly peaked in Q-space that the resolution function is 1D in the ω direction and has a Gaussian

shape with widths defined from measurements on a vanadium sample. The PM scattering function is

given via Eq. 4.1. For all the obtained constant Q spectra at 1.036TC ≈316 K (e.g. Fig. 4.8) the energy

transfer was between -5≤E≤5 meV. For this energy range and temperature Eq. 4.1 is simplified to the

double Lorentzian form:

S(q, ω) = T
χ0

1 + (q/κ)2

Γq
ω2 + Γ2

q

= Tχq
Γq

ω2 + Γ2
q

, (4.8)

where ω and T are given in units of h̄ and kB , respectively. The resulting fit for the measured intensity

I(Q, ω) can be realized as a Voigt function. From the Voigt’s function amplitude χq can be extracted and

the width of the Lorentzian part (HWHM) corresponds to Γq. The width of the Gaussian part is fixed to a

constant value, defined from the vanadium sample measurement.

The obtained values for χq and Γq for (00l) and (h00) directions at 316 K are shown in Figs 4.9. χq
decreases faster along the (00l) direction compared to (h00) indicating a shorter inverse correlation length.

A Lorentzian fit for the q-dependent susceptibility χq gives values for the inverse correlation lengths κq:

κ(00l)=0.054(3) Å−1 and κ(h00)=0.16(1) Å−1. The energy range of the spin-fluctuations is of the same

order of magnitude as the one of the spin-waves along these high symmetry directions. For q=0 the

linewidth extrapolates to zero. In order to describe the experimental data for Γq at 1.036TC two different

models were used. For localized Heisenberg ferromagnets the linewidth of the magnetic fluctuations can

be expressed as Γq = Alocq
2.5 [80]. On the other hand for the weak itinerant model the expression is

Γq = Awiq(1 + (q/κ)2), where κ refers to the inverse correlation length [80]. The obtained values for the
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4.4. Paramagnetic scattering

Figure 4.8: Spin-fluctuations 〈δMc〉 obtained at IN22 (configuration "E") and measured at Q=(2.2, 0, 0)
(black circles) and Q=(2.3, 0, 0) (red squares) at 1.036TC . Solid lines represent fits as explained in the
text.

(00l) direction are Aloc=183(6) meVÅ2.5, Awi=1.3(5) meVÅ and κ(00l)=0.054(12) Å−1 and for the (h00)

direction Aloc=24.6(5) meVÅ2.5, Awi=0.80(22) meVÅ and κ(h00)=0.16(3) Å−1.

Figure 4.9: (a) q-dependent susceptibility χq and (b) linewidth Γq in the (00l) and (h00) directions at
316 K. The solid black lines for χq correspond to Lorentzian fits as described in the text. The solid black
and dashed red line for Γq correspond to the localized and weak itinerant model of ferromagnetism,
respectively.

Constant energy scans were performed for energy transfers 1.5≤ E ≤4 meV along the directions

(h00) and (00l) at 316 K in three non-spin flip channels NSFxx, NSFyy and NSFzz around the G=(2, 0, 0)

and G=(0, 0, 2) zone centers. For scattering vectors Q parallel to (h00), the scattering cross sections (see
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4. Spin dynamics of the magnetocaloric compound MnFe4Si3

Eq. 2.24 in Section 2.2.6.2) are for (a∗,c) plane:(
d2σ

dΩdE

)x
NSF
∝ BGNSF + 〈N〉(

d2σ

dΩdE

)y
NSF
∝ BGNSF + 〈N〉+ 〈δMc〉(

d2σ

dΩdE

)z
NSF
∝ BGNSF + 〈N〉+ 〈δMb〉

and for scattering vectors Q parallel to (00l), the scattering cross sections for (a∗,c) plane become:(
d2σ

dΩdE

)x
NSF
∝ BGNSF + 〈N〉(

d2σ

dΩdE

)y
NSF
∝ BGNSF + 〈N〉+ 〈δMa∗〉(

d2σ

dΩdE

)z
NSF
∝ BGNSF + 〈N〉+ 〈δMb〉.

Therefore, it is possible to determine the in-plane and out-of-plane components of the magnetic spin-

fluctuations by using canonical subtraction of intensities measured in the different polarization channels.

The results for the subtracted fluctuations for an energy transfer of 1.5 meV are shown in Figs 4.10. As can

be seen the in-plane 〈δMb〉 and the out-of plane fluctuations 〈δMc〉 are found to be isotropic (Fig. 4.10(a)).

The different in-plane component 〈δMa∗〉 and 〈δMb〉 are also isotropic (Fig. 4.10(b)). For this energy

of 1.5 meV, the spectra show a maximum at a specific wave-vector q=(0.23, 0, 0) along (h00) and q=(0,

0, 0.08) along (00l) direction, respectively. This mimics the spin-wave dispersion. However the PM

scattering is quasi-elastic, as can be seen in Figs 4.3(a) and 4.8, since there is no well-defined inelastic

mode associated with a given wave-vector. Such "ridge" structure in (Q, E)-space, i.e. maxima in

constant-E spectra at finite q away from the Γ-point (see Figs 4.7(b) and 4.10) and maxima in constant-Q

spectra for E=0 (Figs 4.3(a) and 4.8), is typical of PM scattering [80, 79]. One can also see that the peak

widths are very anisotropic between the basal plane, where a broad peak spans the whole Brillouin zone

(Fig. 4.10(a)) and perpendicular to the c-axis, where a narrow peak shape is found (Fig. 4.10(b)). The

spectra measured at a constant energy of 1.5 meV were fitted by Lorentzian line shapes. The obtained

effective inverse correlation lengths are κ∗(h00)=0.161(2) Å−1 and κ∗(00l)=0.0825(4) Å−1. They compare

well with the correlation lengths obtained through the q-dependence of the energy integrated PM scattering

(see above and Fig. 4.9(a)).

The data shown in Figs 4.10 were fitted with Lorentzian functions independently of the parameters

obtained by the analysis of the constant Q-scans. An attempt to describe the spectra shown in Figs 4.11

by taking into account these parameters is described below. The out-of plane fluctuations 〈δMc〉 along the

(h00) direction and the in-plane fluctuations 〈δMb〉 along the (00l) direction for three different energy

transfers at T=316 K are shown in Figs 4.11(a) and 4.11(b), respectively. For both high symmetry

directions the measured intensity is decreasing with increasing energy transfer, while the signal broadens,

indicating the typical behaviour of the diffusive nature of the spin-fluctuations. Fitting the spectra with

the general PM scattering function S(Q, ω) (see Eq. 4.1) with the linewidths expressed as Γq = Alocq
2.5

and leaving all parameters free during the process, resulted to non realistic values for χ0, Aloc and κ. To

overcome this difficulty the amplitude was left as the only free parameter and the values for Aloc and κ for

each direction were fixed to the ones obtained as described above expressed in meVr.l.u.−2.5 and r.l.u.,
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4.5. Spin dynamics under magnetic field

Figure 4.10: Subtracted spin-fluctuations spectra from constant energy scans at 1.5 meV at 316 K along
(a) the (h00) and (b) the (00l) directions obtained at IN22 (configuration "E"). The indices i in 〈δMi〉
indicates the direction of the spin-fluctuations (a∗, b and c). Solid lines correspond to fits with Lorentzian
functions.

respectively (A(h00)
loc =29 meVr.l.u.−2.5, κ(h00)=0.15 r.l.u. andA(00l)

loc =375 meVr.l.u.−2.5, κ(00l)=0.041 r.l.u.).

The obtained fits for each energy transfer and direction describe qualitatively well the experimental data.

The observed disagreement between the data and the fits might be attributed to the fact that the scattering

function (see Eq. 4.1) is not convoluted with the instrument resolution. Given this disagreement the

1.5 meV data shown in Figs 4.10 were fitted with Lorentzian functions.

Figure 4.11: Subtracted spin-fluctuations spectra for different constant energy transfers at 316 K along (a)
the (h00) and (b) the (00l) directions obtained at IN22 (configuration "E"). Solid lines correspond to fits
as described in the text.

4.5 Spin dynamics under magnetic field

Fig. 4.12 shows the evolution of elastic scattering measured with configuration "F" as a function of

magnetic field at three temperatures: close to TC (300 K), above TC (480 K) and below TC (110 K) at

the lowest accessible Q-range. In this very low Q-range the contribution to the intensity in the obtained

spectra is attributed mainly to magnetic scattering. Consistently with Fig. 4.7(a), the magnetic scattering

is significantly reduced at 110 and 480 K compared to 300 K. Around the critical temperature, a field of

2 T is sufficient to suppress the magnetic fluctuations. The spectra at 300 K are offset by the coercive field
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4. Spin dynamics of the magnetocaloric compound MnFe4Si3

(≈0.03 T) for ramping the magnetic field in positive or negative direction.

To get a qualitative description of the suppression of the magnetic fluctuations, the model of Ref. [87]

was used and the calculated q-dependent susceptibility at TC as a function of field is shown in the inset in

Fig. 4.12. This model estimates the q-dependent susceptibility under a finite external magnetic field using

the Landau theory for the magnetic fluctuations. In the vicinity of TC the expressions of Ref. [87] are

given by: (
χq(0, TC)

χq(H,TC)
− 1

)3

= c
P

A3

H2

q6
, (4.9)

where the constant c equals to 27 and 1 for the susceptibility parallel (χ‖q(H,TC)) and perpendicular

(χ⊥q (H,TC)) to the field, respectively. The parameters P and A are constant in the critical region and are

given by:

P =
9

10S3(S + 1)3

V 3

g4µ4
B

kBTC

A =
3V

S(S + 1)g2µ2
B

kBTC
κ2

0

,

where V refers to the volume of the cell and g to the Landé factor. The measurements shown in Fig. 4.12

probe the sum of the susceptibilities parallel and perpendicular to the magnetic field and are given by:

χ‖q(H,TC) =
χq(0, TC)

1 + (27
30)1/3(κ0

q )2(gµBHkBTC
)2/3

(4.10)

χ⊥q (H,TC) =
χq(0, TC)

1 + ( 1
30)1/3(κ0

q )2(gµBHkBTC
)2/3

. (4.11)

The field dependent susceptibility is calculated by inserting the parameters κ0 obtained for ν=0.5 in

Eq. 4.3 and by averaging the in and out-of plane correlation lengths (giving (κ0
q )2 ≈ 100). The obtained

calculation is shown in the inset of Fig. 4.12 with an overall scale factor as the only free parameter. The

calculated function describes qualitatively well the data, but the observed decrease with magnetic field is

quantitatively stronger.

Figure 4.12: Evolution of elastic scattering at Q=0.05 Å−1 measured at MIRA (configuration "F") as a
function of magnetic field at three temperatures. Lines can be used as guides for the eyes. The inset shows
a calculation of the field dependence of χq(H,TC) following Ref. [87].
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4.6 Discussion

Polarized and unpolarized INS measurements performed on single crystals of the MC compound

MnFe4Si3 reveal a strong anisotropy in the exchange interactions between the (h00) and (00l) directions

of the hexagonal system, while the magnetic fluctuations (dynamical susceptibilities) in the PM state at

T=1.036TC=316 K are found to be isotropic. This anisotropy is reflected in the magnon spectrum as well

as in the q-dependent linewidths Γq (see Figs 4.5 and 4.9(b)). The ratio of the spin-wave stiffness D and

the constant Aloc for the two directions is about of the same magnitude
(
D(00l)/D(h00)

)
=10.3(1.7) and(

A
(00l)
loc /A

(h00)
loc

)
=7.44(29). The obtained data at 1.5 K indicate that the magnetic exchange interactions

within the basal plane between the (h00) and (hh0) directions are isotropic. The experimental data col-

lected at 1.5K̇ could be well described by a Heisenberg-type Hamiltonian. In the used effective spin-wave

model this translates into two FM exchange parameters with values 2SJ2=−18 meV and 2SJ1=−4 meV.

Strong anisotropy in the magnetic exchange interactions between the (h00) and (00l) directions has

been reported for other FM compounds with hexagonal structure and lattice parameters comparable to

MnFe4Si3 e.g. MnBi [88], MnSb [89, 90], MnP [91, 92] and Fe2P [93]. Selected microscopic properties

for representative hexagonal FM compounds are given in Table 4.3. A striking feature is the large value

of D(00l) and the related strong anisotropy for MnFe4Si3. For the isostructural MnT FM (T= Bi, Sb, P)

decreasing the size of the T-ion leads to a decrease of interatomic Mn-Mn distance resulting in lower

magnetic moments and Curie temperatures. This behaviour might be attributed to a systematic shift

from dominant itinerant to short-range exchange interactions with decreasing size of the T-ion [88]. In

MnFe4Si3 the magnetic atoms that carry moments in WP 6g, which has a mixed occupancy of Mn and Fe,

have an interatomic shortest nearest neighbours distance of ≈2.775 Å comparable to MnP. This could hint

to short range exchange magnetic interactions in MnFe4Si3.

Table 4.3: Properties of selected ferromagnetic materials with hexagonal structure. Lattice parameters are
given at around 300 K. Ms refers to the saturated magnetic moments. For MnP compound the parameters
are given in the distorted hexagonal NiAs-type structure. The lattice parameters for MnFe4Si3 are the
ones obtained in the present study and are in agreement with Ref. [56].

Compound TC Ms a c c/a D(h00) D(00l) D(00l)/D(h00) Easy axis of
(K) µB (Å) (Å) (meVÅ2) (meVÅ2) magnetization

Fe2P [93, 95, 96] 209 1.46 5.88 3.44 0.585 42 76 1.81 (at 77 K) c
MnP [91] 292 1.33 3.17 5.26 1.659 70 145 2.07 (at 150 K) a
MnFe4Si3 305 1.5 6.78 4.72 0.696 30 310 10.3 (at 1.5 K) b

Further insight can be gained from the calculation of the correlation lengths. The order of the FM

transition is not clarified and since experimentally no discontinuity of the temperature dependence of

magnetization was reported [56, 59] and strong critical fluctuations are observed (Fig. 4.7(a)), the inverse

of the spin correlation length κ can be assumed to follow the critical law of Eq. 4.3. The calculated values

κ0 for ν=0.5 result to: κ(h00)
0 =0.86(5) Å−1 and κ(00l)

0 =0.284(16) Å−1 and for ν=0.7 to: κ(h00)
0 =1.7(1) Å−1

and κ(00l)
0 =0.55(3) Å−1. One alternative model for calculating the inverse spin correlation lengths κ0 by

taking into account the spin-wave stiffness and the transition temperature is the following [79]:

κ0 =

√
3kBTC

(S + 1)D
, (4.12)
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4. Spin dynamics of the magnetocaloric compound MnFe4Si3

which gives κ(h00)
0 =1.15(8) Å−1 and κ(00l)

0 =0.357(17) Å−1. These values are of the same order of magni-

tude as the ones obtained by Eq. 4.3. It is clearly seen that the corresponding correlation lengths ξ0=κ−1
0

(for ν=0.5: ξ(h00)
0 =1.16(7) Å and ξ(00l)

0 =3.5(2) Å and for ν=0.7: ξ(h00)
0 =0.59(3) Å and ξ(00l)

0 =1.8(1) Å)

are smaller than the lattice parameters a and c, which points to a localized feature of the magnetism of

MnFe4Si3. On the other hand for itinerant magnetic systems ξ0 are expected to be significantly larger

[79, 80].

Additional information can be given by the linewidths Γq. The experimental data for the Γq obtained at

316 K for the (h00) and (00l) directions could be well described both with a model for localized Heisenberg

ferromagnets (Γq = Alocq
2.5) as well as a model for weak itinerant ferromagnets (Γq = Awiq(1+(q/κ)2)).

The difficulty to distinguish between both models near TC was reported previously for Ni3Al [94].

The maximum value for Γq in the zone boundary (q=0.5 r.l.u.) for each direction is Γ
(h00)
loc,max=5.15(12) meV

and Γ
(00l)
loc,max=62(2) meV, which means that the overall 〈Γq〉 is not expected to be higher than 2kBTC .

Based on the fact that the characteristic linewidths are higher than kBTC one could expect an itinerant

contribution to the magnetism. This is in agreement with Ref. [56], where the Rhodes-Wohlfarth model for

the ratio of magnetic moments obtained from the Curie-Weiss law (Mc) to the low temperature saturation

magnetization (Ms), Mc/Ms=1.7 points to itinerant magnetism.

Based on the Heisenberg model and the molecular field approximation the Curie temperature TMF
C

can be calculated by [80]:

TMF
C =

2S(S + 1)

3kB

∑
n

Jnzn, (4.13)

where zn is the number of the nth neighbours. Using Table 4.2 one can calculate the minimum TMF
C

assuming that there are no strong AF interactions between second, third, etc. nearest neighbours. The

calculated value is giving TMF
C =619 K leading to the ratio TMF

C /TC≈2. This ratio is typical for a ferro-

magnetic metal pointing to the existence of spin-fluctuations beyond the molecular field approximation

and is also confirmed by the typical value of 〈Γq〉 with respect to TC .

Short range magnetic correlations in the PM state were also observed in Fe2P-based MC materials

[97] and their importance for the MCE is not clearly demonstrated. However, the present study shows

that the temperature and the magnetic field ranges, where the change of entropy is sizeable, matches

the ones where the magnetic fluctuations are either critical (near TC) or suppressed (near H=2 T). This

points to the importance of such fluctuations for the MCE. In particular, the critical scattering observed

near TC is strongly suppressed by a magnetic field of 2 T. The calculated function (see inset in Fig. 4.12)

describes qualitatively well the data, but the observed decrease with magnetic field is quantitatively

stronger. Such disagreement could be attributed to different reasons: the finite integration in energy

of our data (-0.1≤E≤0.1 meV), the isotropic nature of spin correlations in the model of Ref. [87] or

a fluctuations pattern beyond the Landau theory. Since such studies on the effect of a magnetic field

on the critical fluctuations are scarce, it is difficult to draw firm conclusions. The same model was

used to describe the suppression of the critical fluctuations in Gd [98] and here also the agreement is

semi-qualitative. In this context, further studies on the effect of the magnetic field on the magnetic critical

fluctuations are necessary regarding their potential importance for the MCE.
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4.7 Conclusions

In this study the obtained correlation lengths and linewidths point to both itinerant and localized contribu-

tions of the magnetism in the MC compound MnFe4Si3, a behaviour typical of many ferromagnets [80].

This detailed study of the spin dynamics of the MC compound MnFe4Si3 provides key microscopic infor-

mation concerning the nature of the magnetism in this system. Among the specific features highlighted

are the isotropic dynamical spin susceptibilities in the PM state, strong anisotropy between in and out-of

plane magnetic exchange interactions, short range correlation lengths compared to typical distances and

extended characteristic linewidths compared to TC . So far it is not clear which ingredient is favourable to

produce a large MCE. These results suggests that the strong response of the critical fluctuations in the PM

state to a magnetic field of 2 T is an important feature. Thus a systematic study of the spin dynamics of

various MC compounds in order to highlight the major components at play and to finally optimize the

materials in view of applications is highly needed.
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Chapter 5

Unravelling the underlying
mechanisms of the inverse

magnetocaloric compound Mn5Si3

5.1 Inverse magnetocaloric compounds

As described in Section 1.2, cooling by adiabatic demagnetization using materials that exhibit giant

MCEs near room temperature magneto-structural phase transitions can be potentially used for magnetic

refrigeration applications in daily life. Alternatively, in some compounds cooling can be achieved by

adiabatic magnetization, a less common effect, the inverse MCE. The discovery of large inverse MCE

around room temperature has attracted interest since it provides added flexibility in the material and

functional device design [36, 39]. The inverse MCE potentially occurs in any PM to AF phase transition

[99, 100]. However, this effect is usually not large and systems in which the inverse MCE is of interest

undergo a first-order magnetic transformation between distinct magnetic phases. Representative examples

of inverse MCE compounds are to be found in AF to ferrimagnetic (FI) transitions (e.g. Mn1.95Cr0.05Sb

[43], Mn1.82V0.18Sb [101]), in AF to FM transitions (e.g. Fe0.49Ni0.51 [102], Mn3GaC [103], DySb

[104]), in austenite to martensite transitions in FM Heusler alloys (e.g. Ni0.50Mn0.50−xSnx [36]) and in

collinear to non-collinear AF transitions like in Mn5Si3 [46], the subject of this chapter.

Both the crystal and the magnetic structure of Mn5Si3 were described in detail in Section 1.3.2. The

magnetic structure of Mn5Si3 for 66≤T≤100 K (AF2 phase) consists of collinear antiparallel arrangements

of magnetic moments, while below 66 K (AF1 phase) the orientation of the magnetic moments becomes

highly non-collinear and non-coplanar due to magnetostructural distortion. The crystal structure of the two

AF phases can be described with an orthorhombic cell (space group Ccmm and Cc2m for the AF2 and

AF1 phase, respectively). The inverse MCE in this compound is detected in the vicinity of the AF1-AF2

phase transition and it should be noted that the negative sign of the MCE has only been observed in the

range where non-collinear magnetic structures prevail. According to Ref. [43], it is speculated that an

applied magnetic field decouples some of the antiparallel aligned magnetic moments of the AF1 phase

which results in increasing disorder of the spin system, raising the magnetic entropy.

Up to nowadays the magneto-thermodynamic effects for materials that exhibit the direct, as well as

the inverse MCE are experimentally studied mostly by bulk measurements, e.g. specific heat and magneti-



5.2. Experimental details

zation as a function of T and H , which quantify the MCE and provide a basis for a phenomenological

description. However, the microscopic mechanisms at play are to be revealed and the key ingredients are

to be identified. The present microscopic investigation using as probe INS, will attempt to address the

dynamical magnetic response, which is at the origin of magneto-thermodynamic effects .

5.2 Experimental details

For synthesising polycrystalline samples of Mn5Si3, elementary manganese (Aldrich, 99.99 %) and silicon

(Aldrich, 99.99 %) were used. The manganese pieces were etched prior to the synthesis in hydrochloric

acid to obtain a clean unoxidized surface. All raw materials were heated under vacuum to remove

remaining impurities, such as surface water. The elements were mixed in stoichiometric ratios and melted

in argon atmosphere by induction heating in a levitation cold crucible. The resulting product was cooled

and heated four times to ensure maximum homogeneity of the sample. In order to confirm the formation

of the Mn5Si3 phase, part of the polycrystalline sample was characterized by X-ray powder diffraction at

room temperature.

Once the the formation of the Mn5Si3 phase was confirmed, a single crystal was grown from the

polycrystalline samples using the Czochralski method in an aluminum oxide crucible with a tungsten

crystal as seed. The final single crystal had a diameter of about 13 mm and was cut by spark erosion

into two large single crystal samples of about 7 g each. These single crystals were mounted on an

aluminium sample holder and oriented in the (a,b) and (b,c) scattering plane of the orthorhombic symmetry,

respectively. The linewidths of the rocking curves of the samples consist of single Gaussian peaks of

widths of about 1.25 ◦ as measured by neutron scattering. In order to reduce the scattering of the aluminium

sample holder a cadmium foil was placed around it.

INS measurements were carried out on the cold and thermal TAS ThALES, IN12, IN20 and IN22

at the Institut Laue Langevin (ILL), as well as on 2T1 at the Laboratoire Léon Brillouin (LLB). All

spectrometers used for INS studies were setup in W configuration with a fixed final energy. Focusing

setups were employed for all spectrometers except IN22 were the analyzer was set flat. Additional

information regarding each configuration is given in Table 5.1.

Table 5.1: Instrument configurations. Higher order contamination was removed using a velocity selector
(VS) before the monochromator on ThALES and IN12 and a PG filter in the scattered neutron beam on
IN20, IN22 and 2T1. The symbol " * " refers to polarized setup.

Config. TAS Monoch. Anal. kf (Å−1) Filter

G ThALES Si(111) Si(111) 1.4 VS
H IN12 PG(002) PG(002) 1.5, 1.8, 2 VS
I IN20 Si(111) PG(002) 2.662, 4.1 PG
J IN22 PG(002) PG(002) 2.662 PG
K 2T1 PG(002) PG(002) 2.662 PG
L IN12* PG(002) Cu2MnAl(111) 1.8 VS

For unpolarized INS measurements below room temperature, the sample was cooled down with a
4He flow cryostat (for TAS at ILL) or a closed cycle cryostat (for TAS at LLB), covering the temperature

region of 10≤T≤120 K. In order to map extended ranges of the (Q, E)-space the FlatCone multianalyzer
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5. Unravelling the underlying mechanisms of the inverse magnetocaloric compound Mn5Si3

option [75] was used (configuration "G" in Table 5.1). The rotation step width of the sample was 0.5 ◦ and

the measuring time per step 2 minutes.

Spin dynamics investigations with unpolarized neutrons under magnetic field were carried out us-

ing a 10 T vertical field magnet. The single crystal was oriented in the (a,b) scattering plane of the

orthorhombic structure and the analyzer was set at fixed kf=1.8 Å−1. The field was applied along the

c-axis (configuration "H" in Table 5.1) and 80’-open-open collimations were installed.

Polarized INS measurements were performed with configuration "L" in Table 5.1, using the spherical

polarization analysis setup CRYOPAD [84]. The incident neutron beam spin state was prepared with a

transmission polarizing cavity located after the velocity selector [81]. All along the neutron beam path

guide fields were installed to maintain the polarization of the beam. A flipping ratio of about 14 has been

determined from a graphite sample.

5.3 Preliminary measurements

Preliminary INS experiments with unpolarized beam were performed at IN12 spectrometer with configu-

ration "H" (see Table 5.1) and the analyzer set at fixed kf=1.5 Å−1. The single crystal was oriented in the

(a*,b*) scattering plane of the hexagonal symmetry at room temperature. During cooling the reduction

of symmetry from hexagonal to orthorhombic due to the onset of long-range magnetic order was not

observed [105]. This could be attributed to the small changes of the lattice parameters [105] and the

poor resolution of TAS IN12 compared to a single crystal diffractometer. Once the sample reached base

temperature, the lattice parameters were readjusted with elastic measurements at (2, 0, 0) and (0, 2, 0)

Bragg positions and the single crystal was realigned in the hexagonal symmetry.

Spectra at constant energy transfers were collected in the AF1 phase at T=1.5 K and excitations were

measured around the Bragg positions (3
2 , 0, 0) and (2, 0, 0). Such typical measurements are shown in

Fig. 5.1(a). In an antiferromagnet with non-zero propagation vector as Mn5Si3, acoustic phonons and

magnons originate from different zone centers. Consistently, magnons originate from the magnetic zone

center (3
2 , 0, 0), while phonons originate from the structural zone center (2, 0, 0) [105, 106].

Figure 5.1: Unpolarized inelastic neutron scattering spectra at constant energy transfer of 3 and 5 meV
obtained at (a) IN12 and (b) 2T1 in the AF1 phase of Mn5Si3. The equivalence between the hexagonal
and the orthorhombic symmetry is described in the text. The solid lines correspond to fits with Gaussian
functions.
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The hexagonal symmetry (PM state) of Mn5Si3 can be described with an ortho-hexagonal (orthorhom-

bic) cell with three possible choices, which can be derived from the following expressions:

aI
o = ah,bI

o = ah + 2bh, cI
o = ch (5.1)

aII
o = bh,bII

o = −2ah − bh, cII
o = ch (5.2)

aIII
o = −ah − bh,bIII

o = ah − bh, cIII
o = ch (5.3)

In what follows in the present study and for being consistent with the more recent single crystal diffraction

data [49, 51, 52] the ortho-hexagonal representation of the cell derived from Eq. 5.1 will be used. The

transformation from the hexagonal to the corresponding ortho-hexagonal reciprocal coordinates is given

through the matrix: h
I
o

kI
o

lIo

 =

1 0 0

1 2 0

0 0 1


hh

kh

lh

 (5.4)

The ortho-hexagonal cell dimensions are related to those of the hexagonal cell by ao=ah, bo=
√

3ah and

co=ch. The lattice parameters of Mn5Si3 are a=6.88 Å, b=11.91 Å and c=4.81 Å at 10 K. The scattering

vector Q is expressed in Cartesian coordinates Q=(Qh, Qk, Ql) given in reciprocal lattice units (r.l.u.).

The wave-vector q is related to the momentum transfer through h̄Q=h̄G+h̄q, where G is a Brillouin

zone center and G=(h, k, l).

Below TN2 the onset of long-range magnetic order reduces the crystal symmetry to orthorhombic and

the relations written above between (ao, bo, co) and (ah, bh, ch) lattice parameters hold approximately.

Every structural peak in the (a, b) plane is the superposition of three peaks, that are generated from three

equivalent orthorhombic cells. Within the TAS instrumental resolution, these three peaks are not resolved.

By adding and subtracting the propagation vector, one can find two magnetic peaks in the coordinate

system of each orthorhombic cell. The overall pattern of the magnetic peaks around the structural Bragg

positions maintains an approximate sixfold symmetry, since the three orthorhombic cells are generated

from one initial cell with hexagonal symmetry.

In Fig. 5.1(b) one can see INS spectra where the orthorhombic representation of the cell is used.

Spin-waves and phonons originate from the magnetic and structural zone center (0, 3, 0) and (0, 4, 0),

respectively. The differences in the lineshapes of the spectra measured in the two equivalent symmetries

in Figs 5.1 is attributed to resolution effects between the IN12 and 2T1 spectrometers. However, the peak

positions of the elementary excitations as found from Gaussian fits are in quantitative agreement between

the two symmetries e.g. qh=(0.09, 0, 0) and q0=(0, 0.18, 0) for the magnons for E=3 meV.

5.4 Determination of phonon and spin-wave dispersion curves in
the non-collinear AF1 phase

For extracting the magnon and the phonon branches, constant energy and constant Q scans with unpo-

larized neutrons were carried out at energy transfers below 30 meV at T=10 K along the high symmetry

directions (0k0) and (00l) of the orthorhombic symmetry. Q-scans for 3≤E≤7 meV are added up to

a colour map and are shown in Fig. 5.2(a). The magnetic and phonon excitations that originate from

different Bragg positions, seem to cross at Q=(0, 3.5, 0) at about E=6 meV and for higher energy transfers
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it is not easy to distinguish the individual branches. However, this observation might be misleading since

the use of polarized neutrons was not employed. In order to overcome this difficulty and to drive firm

conclusions concerning the dispersion curves of the phonons and the spin-waves, measurements were

performed around zone centers where only one type of excitation was observed. Such measurements are

depicted in Fig. 5.2(b) where the longitudinal acoustic (LA) phonons originate from the structural center

G=(0, 0, 2), while no modes were observed from G=(0, 0, 1) and G=(0, 0, 3) (structural zone centers

with l 6=2n are not allowed in the space groups P63/mcm, Ccmm and Cc2m [107], see also Table 1.1 in

Section 1.3.2).

Figure 5.2: Colour maps constructed from Q scans at constant energy transfers 3≤E≤11 meV at T=10 K.
The spectra shown in (a) and (b) were obtained at 2T1 and IN20, respectivelly. (a) Branches originating
from G=(0, 3, 0) and G=(0, 4, 0) correspond to magnons and LA phonons propagating along (0k0), re-
spectively. (b) The dispersion curves originating from G=(0, 0, 2) correspond to LA phonons propagating
along (00l).

In order to obtain the acoustic phonon dispersion curves, spectra were collected in transverse and

longitudinal geometry around nuclear zone centers and away from magnetic Bragg positions. Every peak

generated from a phonon excitation was fitted with a Gaussian function. It should be noted that the peaks

observed at constant Q scans were fitted also with damped harmonic oscillator (DHO) functions, which

give the same centers (within the error bars) as the fits with Gaussian functions. Before fitting, every

spectrum was analyzed carefully looking for accidental scattering, in particular aluminium contamination,

and the corresponding regions were cut out. E-scans were conducted only in the focussing side in order

to determine excitations close to the zone boundary where the dispersion curves become flat.

The transverse acoustic (TA) phonon propagating along (0k0) and polarized in (00l) was measured

around G=(0, 0, 2). The LA phonon propagating along (0k0) for energy transfers 3≤E≤5 meV was

measured around G=(0, 4, 0) and for E≥5 meV around G=(0, 12, 0). The TA phonon propagating

along (00l) and polarized in (0k0) was measured around G=(0, 8, 0) and G=(0, 10, 0). The LA phonon

propagating along (00l) for 3≤E≤10 meV was measured around G=(0, 0, 2) and for E≥10 meV around

G=(0, 0, 4). The resulting phonon dispersion curves at T=10 K are shown in Fig. 5.3. Data points with

horizontal error bars correspond to constant E scans and vertical error bars correspond to constant Q

scans. As can be seen in Fig. 5.3, only the TA[0 1 0]〈001〉 phonon has been determined up to the Brillouin

zone boundary. All the other acoustic phonons have been measured only to about half way to the zone

boundaries, since no peaks were observed in the constant Q scans in the investigated Brillouin zones for

E≥12 meV that could be assigned to acoustic modes.
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Figure 5.3: Phonon dispersion curves of Mn5Si3 at T=10 K along the (00l) and (0k0) directions from
unpolarized INS. Triangles and squares correspond to longitudinal (LA) and transverse (TA) acoustic
phonons, respectively. Symbols at E≥13 meV correspond to optic phonons with longitudinal character
(LO). The dashed lines can be used as guide for the eyes and extrapolate the acoustic phonon dispersions
to q=0.

From the obtained phonon dispersion curves further parameters can be deduced. The orthorhombic

crystal symmetry implies that 9 elastic moduli Cij are independent and non-zero [108]:

Cij =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


(5.5)

The elastic moduli Cii are calculated via [108]:

Cii = ρυ2, (5.6)

where υ refers to the velocity of each mode and ρ to the density (ρ=6.06 g/cm3 for Mn5Si3). The phonon

velocities can be determined from linear fits of the experimental acoustic phonon dispersions at low energy

transfers (E≤5 meV). The orthorhombic crystallographic directions (h00), (0k0) and (00l) are pure mode

directions and all acoustic wave velocities measured along these directions are related to single elastic

constants only. Determining the wave velocities of longitudinal and transverse acoustic phonons along

these three high symmetry directions results to the isolation of the diagonal elements in the elastic constant

matrix. From the available experimental data three of them could be determined, namely C22, C33 and

C44. In order to derive the remaining diagonal elements it is necessary to measure the LA[1 0 0] (for C11),

the TA[1 0 0]〈010〉 or the TA[0 1 0]〈100〉 (for C66) and the TA[1 0 0]〈001〉 or the TA[0 0 1]〈100〉 (for C55).

Table 5.2 summarizes the experimental results of the phonon velocities and the elastic moduli of Mn5Si3
derived at T=10 K, which are found to correspond to typical values of solids. The calculated constant C44

deduced from two different TA modes, results to the same number within the value of uncertainty. To the

knowledge of the author, results for the parameters υ and Cii cannot be found in literature for comparison.

For obtaining the magnon dispersion along the (h00), (0k0) and (00l) directions, Q scans at constant

energies below 25 meV were carried out around the magnetic Bragg peaks (2, 1, 0), (0, 3, 1) and (0, 1, 1).
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Table 5.2: Summary of investigated acoustic branches of Mn5Si3 with the direction of the propagation
and polarization vectors of phonons. Parameters υ and Cii refer to the acoustic wave velocity and elastic
moduli derived at T=10 K, respectively.

Mode Propagation vector Polarization vector υ (m/s) Cii (GPa)

LA[0 0 1] [0 0 1] 〈0 0 1〉 5211(115) C33=165(7)
TA[0 0 1]〈010〉 [0 0 1] 〈0 1 0〉 4200(300)C44=107(15)

LA[0 1 0] [0 1 0] 〈0 1 0〉 5900(250)C22=211(18)
TA[0 1 0]〈001〉 [0 1 0] 〈0 0 1〉 3860(180) C44=90(8)

Because very steep magnon branches were observed, the analyser was set up in flat mode for all scans in

order to improve the Q resolution (configuration "J" in Table 5.1). Such scans were mostly conducted

between intervals of +q and -q. Therefore every peak was measured in the focusing and the defocusing

mode. The exact position of a magnon was evaluated by fitting the excitation spectrum with a double

Gaussian with same center at the focusing and defocusing side, but with different widths and amplitudes.

Such typical scans with the corresponding fits are shown in Fig. 5.4 at different constant energy transfers

in the AF1 phase (T=10 K) along the two high symmetry orthorhombic directions (0k0) and (00l). The

spectra show a maximum at finite q, which shifts to higher values with increasing energy transfers. This

behavior indicates that the peaks correspond to dispersive spin-waves.

Figure 5.4: Unpolarized neutron spectra obtained at IN12. The raw data depict spin-wave scattering at
different constant energy transfers around (a) Q=(0, Qk, 1) and (b) Q=(0, 3, Ql) at T=10 K (AF1 phase).
The solid lines correspond to fits with double Gaussian functions as described in the text.

The magnon dispersion along the (00l) and (0k0) directions is very steep and up to the investigated

energy transfer of 22 meV the zone boundaries are not reached. A remarkable feature is that along all

three high symmetry directions ((00l), (0k0) and (h00)) the low energy spin-waves (E≤8 meV) of Mn5Si3
are isotropic in contrast to MnFe4Si3 (see Section 4.3). For energy transfers E≥7 meV a broadening of

the spin-waves is observed. The broadening could be attributed to crossing of spin-waves from different

domains (see Section 5.5.1). Attempts to describe the experimental magnon spectrum with the empirical

dispersion relationsE=
√

∆2 + csw(hkl)
2q2 andE=

√
∆2 + csw(hkl)

2sin2q [109] were not successful. In these

relations ∆ is the energy gap, csw(hkl) is the spin-wave velocity and q is the momentum transfer. However,

when fitting only the low energy part of the magnon dispersion (E≤8 meV) one can obtain for the energy

gap ∆=1.6(3) meV, but the values for the spin-wave velocities are almost equal to the standard deviation
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and therefore are not reliable. To verify experimentally the existence of an energy gap measurements at

low energy transfers (E≤2 meV) are essential. At this stage simulating the spin-wave spectrum is not

an easy task, because the magnetic structure of the AF1 phase is complicated and the experimental data

limited.

Figure 5.5: Spin-wave dispersion curves of Mn5Si3 at T=10 K (AF1 phase) along the (00l), (0k0) and
(h00) directions from unpolarized INS. The dashed lines can be used as guide for the eyes.

5.5 Spin dynamics in the collinear AF2 phase

5.5.1 Unpolarized INS data

The temperature dependence of the purely magnetic (1, 2, 0), (0, 3, 0) and (0, 3, 1) Bragg peak intensities

are shown in Figs 5.6(a)-(b). (1, 2, 0) and (0, 3, 1) mark the onset of AF2 ordering. Neutron scattering is

sensitive to magnetic moments or fluctuations perpendicular to the scattering vector. The Q vector of (0,

3, 0) is almost parallel to the magnetic moments of the AF2 phase and the associated Bragg peak intensity

is therefore nearly extinguished. However, it is convenient to detect the AF1 transition. A colour-coded

intensity map of the INS intensities measured for a constant energy transfer of E=5 meV as a function of

Q=(Qh, 2, 0) and T is shown in Fig. 5.6(c). The PM scattering is constituted of a broad peak centered at

the magnetic center Qh=1 r.l.u., the signature of a correlated diffuse signal. The shape of the scattering of

the AF2 phase resembles the one of the PM state, no marked change in the dynamical response occurs at

TN2 . In contrast, AF1 ordering is characterized by a strong modification of the spectrum leading to sharp

spin-wave peaks identified through the ridges at Qh=0.87 r.l.u. and Qh=1.13 r.l.u., the former being more

prominent due to the instrumental resolution focusing conditions. The same observation stems from the

colour-coded intensity map for a constant energy transfer of E=6 meV as a function of Q=(0, 3, Ql) and

T (see Fig. 5.6(d)), where spin-wave peaks appear in the AF1 phase, while the signal in the AF2 phase

and in the PM state seems identical.

Measurements at the energy transfer of E=3 meV for selected temperatures corresponding to the

different phases along the (0k0) and (00l) directions are shown in Figs 5.7. Consistently with Figs 5.6(c)-

(d) the shape of the scattering of the AF2 phase (T=80 K) resembles the one of the PM state (T=120 K).
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Figure 5.6: Neutron scattering results in the two AF phases and in the PM state of Mn5Si3. Temperature
dependence of the purely magnetic (a) (1, 2, 0) and (0, 3, 0) and (b) (0, 3, 1) Bragg peak intensities.
Colour-coded intensity plot of the INS data collected (c) at E=5 meV as a function of Q=(Qh, 2, 0)
and T and (d) at E=6 meV as a function of Q=(0, 3, Ql) and T . Data were collected with unpolarized
neutron beam at 2T1 and at IN22. In the inelastic spectra the background was subtracted and the measured
intensity was corrected by the detailed balance factor.

The clear peaks in the AF1 phase (T=10 K) at finite q away from the magnetic center correspond to

spin-wave scattering. It is demonstrated that the spin excitation spectrum is markedly different in the two

magnetically ordered phases along all the three orthorhombic high symmetry directions, namely (h00),

(0k0) and (00l).

Figure 5.7: Spectra obtained at IN12 with unpolarized neutrons around (a) Q=(0, Qk, 1) and (b) Q=(0,
3, Ql) in the AF1 (T=10 K), AF2 (T=80 K) phase and in the PM (T=120 K) state at constant energy
transfer of 3 meV. Neutron intensity for T=10 K is given on the left and for T=80 K and T=120 K on the
right vertical axis. Lines in the AF1 phase and in the PM state indicate fits with Gaussian and Lorentzian
functions, respectively. The line in the AF2 phase can be used as guide for the eyes.

To confirm further this observation, additional INS spectra were collected in large portions of the

reciprocal space with FlatCone setup (configuration "G" in Table 5.1) in (a, b) and (b, c) scattering planes

for E=3 meV at three different temperatures corresponding to the PM state (T=120 K), the collinear AF2

phase (T=80 K) and the non-collinear AF1 phase (T=10 K) (see Figs 5.8(a)-(e)). In the AF1 phase, the

rings in the Figs 5.8(a) ((b,c) scattering plane) and 5.8(d) ((a,b) scattering plane) represent intense phonon
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and spin-wave scattering originating from the structural (h + k even) and magnetic (h + k odd) zone

centers, respectively. Apart from these rings, similar signal is also observed around half integer h and

k positions in the (a,b) plane (see e.g. Fig. 5.8(d)). These additional rings are assigned to spin-wave

scattering originating from other magnetic domains, the domain structure being reminiscent of the sixfold

symmetry of the high temperature hexagonal phase. Consistently with Figs 5.6(c)-(d) and 5.7, the spin

excitation spectrum is different in the AF1 and AF2 phases for the inelastic spectra that originate from the

magnetic Bragg peaks that exist in the two phases (e.g. (1, 2, 0), (1, 4, 0), (0, 3, 1), (0, 1, 1)). While in the

AF1 phase clear rings indicate spin-wave scattering (see Figs 5.8(a) and 5.8(d)), the signal in the AF2

phase (bright yellow spots in Figs 5.8(b) and 5.8(e)) resembles the one of the PM state (Fig. 5.8(c)).

Figure 5.8: (a)-(e) FlatCone measurements at ThALES in the AF1 (T=10 K), AF2 (T=80 K) phase and
in the PM (T=120 K) state at constant energy transfer of 3 meV. Figs (a)-(c) and (d)-(e) correspond to
the scattering planes (b,c) and (a,b), respectively. The "holes’" in the spectra correspond to spurious
scattering that has been masked during the data evaluation. (f) Raw data obtained at IN12 (kf=1.8 Å−1)
with unpolarized neutron beam around Q=(Qh, 2, 0). The corresponding Q range of the cuts is indicated
with horizontal red dashed lines in Figs (d) and (e) for the AF1 and AF2 phases. Neutron intensity for 50 K
is given on the left and for 80 K and 120 K on the right vertical axis. Lines in the AF1 phase (T=50 K)
and in the PM state (T=120 K) indicate fits with Gaussian and Lorentzian functions, respectively. The
line in the AF2 phase (T=80 K) is a guide for the eyes.

The spin dynamics of the AF1 phase sustains only propagating spin-waves (see Figs 5.4 and 5.9(a))

along the three high symmetry orthorhombic directions, namely (0k0), (00l) and (h00). All spectra show a

maximum at finite q, which shifts to higher values with increasing energy transfers. On the contrary, for

58



5. Unravelling the underlying mechanisms of the inverse magnetocaloric compound Mn5Si3

the spectra in the PM state (T=120 K) (see Fig. 5.9(b)) there is no well-defined inelastic mode associated

with a given wave vector, all spectra are centered at the magnetic center and the intensity is decreasing

with increasing energy transfers while the signal broadens. This is typical for PM scattering and indicates

the diffusive nature of the spin-fluctuations. The observed behavior for the AF1 phase and the PM state is

expected, but the spin dynamics of the AF2 phase is very peculiar. Additional spectra in the AF2 phase

can be found in Appendix A.2.1.

Figure 5.9: (a) Raw data depicting spin-wave scattering at different constant energy transfers along the
(h00) high symmetry direction of the orthorhombic system at T=10 K (AF1 phase). Lines represent fits
with Gaussian functions. (b) PM scattering at different constant energy transfers along the (h00) high
symmetry direction of the orthorhombic system at T=120 K. Lines represent fits with Lorentzian functions.
Data were obtained at 2T1.

5.5.2 Polarized INS data

The AF2 phase is at first sight not constituted of discrete modes, but of a broad continuum of states. In

order to get more insight concerning this behavior and to compare it with the seemingly identical PM spin

dynamics, spectra were collected using polarized INS methods. In such an experiment the neutron beam

polarization is prepared in different states which gives access to different neutron cross sections. The

conventions are the same as defined in Section 2.2.6.2: (i) the momentum transfer Q is parallel to x-axis,

(ii) the initial polarization was prepared parallel to x-axis, perpendicular to Q in the scattering plane

(y-axis) and perpendicular to the scattering plane (z-axis) and (iii) the final polarization was analyzed for

a scattering process reversing the initial polarization by 180 ◦. The corresponding measurement channels

are canonically labelled SFxx, SFyy and SFzz , where SF stands for Spin-Flip.

Figs 5.10 illustrate spectra collected around Q=(Qh, 2, 0) at T=80 K (AF2) and T=120 K (PM)

for SFxx, SFyy and SFzz channels. The spectra in the PM state at T=120 K are identical for the two

polarization channels SFyy and SFzz , which indicates isotropic spin-fluctuations (see Fig. 5.10(a)). In

contrast, the spectra in the AF2 phase at T=80 K are different for the two polarization channels concerning

intensities and lineshapes (see Fig. 5.10(c)). This indicates that the magnetic excitation spectrum is

different in the AF2 phase and PM state, a fact that was not evidenced by the unpolarized INS data shown

above. Moreover, the better wave-vector resolution achieved with the setup used to collect the polarized

INS data (configuration "L" in Table 5.2) allows to reveal the flat top shape of the peaks at T=80 K. This

hints to a signal composed of several ill-resolved peaks. The difference of the spin dynamics in the AF2
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phase and the PM state is also reflected in the spectra for the polarization channel SFxx (see Fis 5.10(b)

and 5.10(d)). Altogether these information point to the fact that the signal in the AF2 phase is composed

of different components.

The simplest hypothesis is to consider that the signal is composed of spin-fluctuations coexisting

with spin-waves. This natural assumption stems from the nature of the AF2 magnetic phase with mixed

magnetic and non-magnetic sites. It is expected that it sustains both kind of excitations: spin-waves,

collective precession of spins around the ordered moment and spin-fluctuations, which correspond to

weakly correlated spin relaxation of non-ordered moments. Each of these excitations is the landmark of

magnetically ordered and disordered phases, respectively.

Figure 5.10: Inelastic spectra obtained with polarized neutrons in the PM state (T=120 K) and in the AF2
phase (T=80 K). (a)-(b) In the PM state (T=120 K) the solid line corresponds to a Lorentzian function fit.
(c)-(d) In the AF2 phase (T=80 K) the solid lines represent overall fits and the dashed lines the individual
signal from spin-waves (S.W.) and spin-fluctuations (Fluc.) (see details in text). The horizontal dashed
line indicates the background level. Data were obtained at IN12 at constant energy transfer of 3 meV
around Q=(Qh, 2, 0).

Neutron scattering experiments probe only the magnetism perpendicular to the scattering vector Q, the

measured magnetic fluctuations are 〈δMy〉 and 〈δMz〉 (see Section 2.2.6.2). In order to have a quantitative

result concerning the spin-wave and the spin-fluctuation contributions to the spectra in the AF2 phase of

Mn5Si3 several assumptions were made. Assuming that the background is the same for the three spin-flip

channels (BGSF) and in the crystal frame for Q in the (a,b) plane, the double differential cross-sections
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5. Unravelling the underlying mechanisms of the inverse magnetocaloric compound Mn5Si3

become (see Eq. 2.24 in Section 2.2.6.2):

SFyy :

(
d2σ

dΩdE

)y
SF
∝ BGSF + 〈δMc〉 (5.7)

SFzz :

(
d2σ

dΩdE

)z
SF
∝ BGSF + cos2θ〈δMb〉+ sin2θ〈δMa〉, (5.8)

with θ the angle between Q and the [100] direction which can be calculated by θ=arctan( 2
Qh

a
b ) for Q=(Qh,

2, 0). In the AF2 phase the magnetic moments lie parallel and antiparallel to the b-axis. Spin-waves

correspond to precession perpendicular to the ordered moment so their components will appear in 〈δMc〉
and 〈δMa〉. Assuming that the signal in this phase consists of spin-waves (sw) and spin-fluctuations (f ),

the cross sections can be rewritten as:

SFyy :

(
d2σ

dΩdE

)y
SF
∝ BGSF + 〈δM sw

c 〉+ 〈δMf
c 〉 (5.9)

SFzz :

(
d2σ

dΩdE

)z
SF
∝ BGSF + cos2θ〈δMf

b 〉+ sin2θ〈δMf
a 〉+ sin2θ〈δM sw

a 〉 (5.10)

Assuming that the spin-waves and the spin-fluctuations are isotropic, Eq. 5.9 and Eq. 5.10 can be simplified

further to:

SFyy :

(
d2σ

dΩdE

)y
SF
∝ BGSF + 〈δM sw〉+ 〈δMf 〉 (5.11)

SFzz :

(
d2σ

dΩdE

)z
SF
∝ BGSF + 〈δMf 〉+ sin2θ〈δM sw〉 (5.12)

The measured intensity for the spin-fluctuations and the spin-waves can be described by a Lorentzian

and a set of two Gaussians, respectively. In order to reduce the number of fitted parameters, we assume

that the Lorentzian function is centered at Qh=1 r.l.u. and that its width equals to the one obtained from

the fitting in the PM state (see Fig. 5.10(a) and Appendix A.2.2). The resulting fits for the AF2 phase

are shown in Figs 5.10(c)-(d) for SFyy, SFzz and SFxx. Consistently the spin-wave scattering in the

polarization channel SFzz is reduced due to the angle prefactor sin2θ, which decreases with increasing

Q. The magnons in the AF2 phase are peaked at about the same Qh position as in the AF1 phase for

E=3 meV. In order to draw firm conclusions concerning the spin-wave stiffness along the (h00) direction,

measurements are needed in higher energy transfers in both AF phases. It is to be noted that SFyy and

SFzz are fitted simultaneously in order to reduce the space of accessible parameters. The data are well

described by this model and since the polarized INS cross-sections conveys stringent fitting conditions, it

gives credit to the hypothesis of the coexistence of spin-waves and spin-fluctuations.

5.6 Field induced spin-fluctuations

Previous neutron diffraction measurements performed under magnetic field in powder and single crystal

samples indicate a transition from the AF1 to the AF2 phase at H=3.5 T for T=58 K [50, 52]. The full

magnetic phase diagram as a function of temperature and magnetic field up to 10 T applied along the c-axis

was established by electrical transport and magnetization measurements [53] and is shown in Fig. 5.11.

Below T=60 K, the increasing magnetic field induces transitions from the AF1 to another intermediate

AF1’ phase before reaching the AF2 phase. The intermediate AF1’ phase will not be addressed in
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5.6. Field induced spin-fluctuations

the present study (to the knowledge of the author the magnetic structure of the AF1’ phase is not yet

established with neutron diffraction experiments). Above T=60 K, the AF2 phase is stable up to the

maximum investigated field of 10 T.

Figure 5.11: (T -H) magnetic phase diagram of Mn5Si3 for ~H ‖ c (taken from [53]).

Figure 5.12: (a)-(b) Field dependence of the magnetic Bragg peaks of Mn5Si3 at T=50 K for ~H ‖ c. For
(1, 2, 0), a 9 mm plexiglass attenuator was in place. (c) Inelastic spectra obtained at T=50 K around
Q=(Qh, 2, 0) under H=0 T and H=10 T for an energy transfer of 3 meV. The red line is guide for the
eyes and the black line correspond to fits with Gaussian functions. Data were obtained with unpolarized
neutron beam at IN12.

Building up on these results, an investigation of the field dependence of the magnetic Bragg peak

intensities (1, 2, 0) and (0, 3, 0) at T=50 K for a magnetic field applied along the c-axis was performed (see
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5. Unravelling the underlying mechanisms of the inverse magnetocaloric compound Mn5Si3

Figs 5.12(a)-(b)). Starting at H=0 T in the AF1 phase, two anomalies at approximatively 3 and 7 T mark

the onset of different magnetic phases that are identified as AF1’ and AF2 phases, roughly consistent with

the (T -H) phase diagram of Ref. [53]. Above 7 T, the system re-enters into the AF2 phase characterized

by a drop of a factor ≈2 compared to AF1 in the intensity of the Bragg peak (1, 2, 0) and a continuous

diminution of the (0, 3, 0) Bragg peak intensity. Up to the maximum investigated field of 10 T, the PM

state is not reached, which is related to the very steep TN2(H) phase boundary. The field induced AF2

phase at 50 K consists of AF coupled magnetic moments lying perpendicular to H with an additional

increasing induced FM component, which is evidenced in magnetization measurements [53].

Fig. 5.12(c) shows INS spectra collected around Q=(Qh, 2, 0) at T=50 K at a constant energy transfer

of E=3 meV for H=0 and 10 T. The typical spin-wave spectra with two peaks in the AF1 phase at H=0 T

transforms into a broad peak centered at the magnetic center Qh=1 r.l.u. at H=10 T. Drawing a parallel

between the spectra at T=50 K as a function of field (Fig. 5.12(c)) with the ones at H=0 T as a function of

temperatures (Fig. 5.8(f)), one concludes that the field restores the fluctuations pattern associated with the

AF2 phase. This leads to the unusual feature that a high enough magnetic field of 10 T applied in the AF1

phase induces spin-fluctuations. In contrast, a field of 10 T applied in the AF2 phase and PM state reduces

the intensity of the magnetic excitations without changing their lineshapes. This is shown in Figs 5.13 for

the AF2 phase and the PM state for the same Q range and energy transfer of 3 meV as in Fig. 5.12(c).

Figure 5.13: Inelastic spectra obtained with unpolarized neutrons at IN12 in (a) the AF2 phase (T=80 K)
and (b) the PM state (T=120 K) around Q=(Qh, 2, 0) for E=3 meV energy transfer. Data points in black
and red indicate measurements with zero and high magnetic field, respectively. The lines are guides for
the eyes.

5.7 Discussion

The microscopic ingredients giving rise to the stability of the mixed magnetism of the AF1 and AF2

phases, constituted of the coexistence of magnetic and non-magnetic sites, were discussed in previous

studies on Mn5Si3 [49, 50, 51, 52, 53]. Namely, a first ingredient at play is the Mn1-Mn1 distance with

respect to the critical value corresponding to the instability in the competition between bonding and

magnetism. The shortest Mn1-Mn1 distance in Mn5Si3 equals c/2 and is too small in the AF2 state to

lead to a magnetic configuration for Mn1. Below TN1, an abrupt change of the lattice parameter value c

occurs and this allows to stabilize the magnetic configuration of the Mn1 site. Under magnetic field, it was
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shown by neutron diffraction experiment performed at 50 K and 4 T [50], that c/2 decreases below the

critical value for Mn1 moment stability. The other shortest distances between Mn2-Mn1 and Mn2-Mn2

are above the critical value and are also modified during the transition from AF2 to AF1. A second

ingredient common to the AF1 and AF2 phases is the geometrical frustration associated with the triangular

arrangement of Mn2 atoms which leads to the occurrence of two ordered moments out of the three Mn2

sites (see Fig. 1.5).

Such mixed magnetic phases occur in other Mn-based compounds. The most extensively studied

ones are the Laves phases RMn2 (R being a rare earth element) for fundamental properties concerning

magnetism [110], as well as, for the MCE [42]. The presence of a 4f element adds complexity to the

magnetic properties, however it is possible to discuss in first approximation only the Mn subsystem, which

sustains the leading magnetic interactions. In RMn2 systems, the same ingredients as in Mn5Si3 are at

play: instability of Mn magnetism and magnetic frustration. The switch from conventional to mixed

AF phase as a function of magnetic field was theoretically predicted and verified by neutron diffraction

experiments in TbMn2 [111]. This situation bears similarity to Mn5Si3 and the results presented here

find echo in the broader context of mixed magnetic systems studies. The present study goes one step

further by evidencing the properties of the excitation spectrum of the mixed magnetic phases revealing the

coexistence of two dynamical responses, spin-waves and spin-fluctuations.

Another important result of this study is the evidence of magnetic field induced spin-fluctuations.

Starting from the AF1 phase, which sustains only spin-waves, the field restores the AF2 phase and

its associated spin-fluctuations. In contrast to the discrete spin-wave spectrum, such spin-fluctuations

which consist of a continuum of excitations involve more microscopic states. This leads to an increase

of the magnetic entropy and thus plays a major role in the inverse-MCE. It is to be noted that the

observed behaviour is opposite to the most common magnetic field effect that usually suppresses the spin-

fluctuations and consequently decreases the magnetic entropy. The latter leads to the direct MCE although

microscopic demonstrations of this more common mechanism are scarce as well. The suppression of

spin-fluctuations with magnetic field was demonstrated in the FM MCE compound MnFe4Si3 (see Section

4.5).

Finally, the non-collinear AF1 phase of Mn5Si3 is also responsible of the anomalous Hall effect with

a switch in electronic transport properties between AF1 and AF2 [53, 55, 112]. Therefore the search for

complex magnetic structures is not only motivated by magneto-thermodynamic, but also by electronic

properties.

5.8 Conclusions

In this study it is shown that among the two stable AF phases of Mn5Si3, the magnetic excitation spectrum

is different. The low temperature AF1 phase (T≤66 K) is characterized by well-defined spin-waves, while

the high temperature AF2 phase (66≤T≤100 K) has an unusual magnetic excitation spectrum. In the AF2

phase it is shown with polarized INS that propagative spin-waves and diffuse spin-fluctuations coexist. In

addition, a magnetic field of 10 T applied in the AF1 phase restores the fluctuations pattern associated

with the AF2 phase. It is evidenced that the modification of the magnetic excitation spectrum induced

by the magnetic field tracks the inverse MCE of Mn5Si3, the cooling by adiabatic magnetization, via the

associated change of magnetic entropy. Therefore, the need of designing functional materials for caloric

applications connects with fundamental questions of magnetism.
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Chapter 6

Investigation of phonon-magnon
interaction in the magnetocaloric

compound MnFe4Si3

6.1 Interaction between lattice and magnetic degrees of freedom

During the magnetocaloric cooling process an isothermal entropy change ∆Siso, which is the entropy

change at constant temperature T induced by a magnetic field change, takes place (see details in Section

1.2.2). ∆Siso is expressed as the sum of the individual entropies of the magnetic, lattice and electronic

degrees of freedom, ∆Siso=∆Sm+∆Sl+∆Se. The individual entropies are related to the configurational

entropy arising from magnetic disorder, excitation of lattice vibrations, and thermal occupation changes

of the electronic states, respectively. Interactions between them are usually not considered (in first

approximation), although the MCE requires an entropy transfer between the crystal lattice and the

magnetic spin system (the electronic contribution ∆Se is considered negligible). A possible mechanism

that could describe this entropy transfer is the phonon-magnon coupling.

Magnons and phonons are propagating disturbances of the ordered magnetic moment and the atomic

positions, respectively. The coupling or interaction between spin-waves and phonons is responsible

for several interesting phenomena which are reported in the condensed matter physics. For example,

one possible consequence of such coupling is the enhancement of anharmonic effects, as seen in the

triangular antiferromagnet (Y,Lu)MnO3 [113]. A magnetoelastic (magnon-phonon) coupling is believed

also to be responsible for the observed low-temperature anomalous spin dynamical behaviour in the

ferromagnetic manganese perovskites A0.7B0.3MnO3 (where A and B are rare-earth and alkaline-earth

elements, respectively) [114].

In general, the spin-wave and the phonon excitation spectrum can be modified in different ways due to

phonon-magnon coupling. A strong spin-phonon interaction can give rise to the broadening of spin-waves

[114] or phonon modes [115]. Another consequence of such coupling is the creation of energy gaps

in the magnon dispersion at the intersecting point of phonon and magnon branches, as reported in the

multiferroic YMnO3 [116]. Finally, the coupling between magnetic and lattice degrees of freedom can

generate dynamic mixed magnon-phonon excitations called electromagnons [117], which can be excited

by the electric field of light at the resonant frequency [118].



6.2. Experimental details

6.2 Experimental details

To study the spin and lattice dynamics and their interactions, a combination of IXS and INS experiments

is ideal to be carried out. To this aim, such experiments have been undertaken in single crystals of the

MC compound MnFe4Si3. IXS measurements were performed on the beamline ID28 at the European

Synchrotron Radiation Facility (ESRF). The incident photon energy of 17794 eV was produced by the

Si(9, 9, 9) Bragg reflection. The overall energy resolution was of 3 meV at full width at half maximum

(FWHM). A detailed description of the experimental setup can be found in Ref. [119]. The direction

and the size of the momentum transfer were selected by an appropriate choice of the scattering angle

and the sample orientation in the horizontal scattering plane. The analyzer arm was equipped with nine

Si analyzers allowing to record IXS spectra at nine momentum transfers simultaneously. It should be

noted that only the spectra from the second analyzer were evaluated, since for this analyzer Q is along a

high symmetry direction. The momentum resolution was about 0.26 nm−1 and 0.8 nm−1 in the horizontal

and vertical plane, respectively. The dimensions of the focused X-ray beam at the sample position

were 30×60µm2 (horizontal×vertical), which allowed the selection of a single crystal domain with a

typical mosaic spread of about 0.1 ◦ FWHM for the (3, 0, 0) and (0, 0, 2) Bragg reflections of MnFe4Si3.

The determined lattice parameters at T=300 K, a=6.8048 Å and c=4.728 Å, are in good agreement with

Ref. [56]. The sample was cooled down to T=90 K with a cryostream cold-nitrogen-gas blower and all

measurements were performed in transmission. The thickness of the single crystal was about 100µm.

Unpolarized and polarized INS measurements were carried out on the cold TAS IN12 at the ILL. IN12

was setup in W configuration with a fixed kf=2 Å−1 and a fully focusing setup was employed. The single

crystal of MnFe4Si3 was mounted on an aluminium sample holder and oriented in the (a*,c) scattering

plane of the hexagonal lattice. For unpolarized INS measurements the sample was cooled down to the

base temperature T ≈1.5 K with a 4He flow cryostat (configuration "A" in Table 4.1 in Section 4.2). For

polarized INS measurements the same procedure as described in Section 4.2 was followed.

6.3 Investigating the lattice dynamics of MnFe4Si3 with IXS

In this chapter the same convention as described in Section 4.3 will be used: Q=G+q (all vectors

are expressed in reciprocal hexagonal coordinates). To determine the low-lying (E≤40 meV) lattice

excitations along the high symmetry hexagonal directions, IXS measurements were mainly carried out

around the zone centers G=(3, 0, 0), G=(5, 0, 0) and G=(0, 0, 4). Therefore, the MnFe4Si3 single crystal

was oriented in two different scattering planes. For measuring the transverse phonon propagating along [1

0 0] and polarized in 〈1 2 0〉 and the phonons along the Γ−K−M directions the sample was oriented in

the (a*,b*) scattering plane of the hexagonal lattice. In order to measure phonon branches along the Γ−A

and Γ−M directions the (a*,c) scattering plane was selected. All IXS measurements were performed in

the Stokes (E >0) and the anti-Stokes (E <0) side.

In order to fit the IXS spectra the Fit28 software (provided at the ID28 beamline) was used. The

elastic line was fitted with a Lorentzian function centered at E=0 meV. The phonon energies (centers),

linewidths (FWHM) and amplitudes were determined by using a damped harmonic oscillator (DHO)

profile function. The functions (Lorentzian and DHO) were then convoluted with the experimentally

determined resolution function. The ID28 instrumental energy resolution has a pseudo-Voigt profile with

2.71(2) and 3.3(1) meV FWHM of the Gaussian and Lorentzian components and a mixing parameter
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of 0.63(2). The detailed balance of the model was taken into account by the Bose factor and a constant

background with zero slope was assumed. The IXS spectra were fitted by keeping all the fit parameters of

the excitations unconstrained and by using a χ2 minimization routine.

A characteristic energy scan of IXS with the best fit results measured at q=0.3 r.l.u. around the G=(5,

0, 0) zone center is shown in Fig. 6.1(a). For clarity only the Stokes side is plotted. The first peak centered

at E=0 meV is the elastic line. Three additional peaks that are identified as phonon excitations are very

well pronounced. The peaks found at 12.6(2), 22.5(4) and 29.5(3) meV correspond, respectively, to a LA,

LO1 and LO2 mode along the Γ−M direction. Fig. 6.1(b) shows selected IXS spectra for the out-of-plane

polarized transverse acoustic phonons propagating along the Γ−M direction (TA[1 0 0]〈001〉) for the

indicated Q=(0+q, 0, 4) values. The scans are characterized by a weak elastic contribution and two

symmetric features, the Stokes and anti-Stokes peaks of the corresponding phonons.

Figure 6.1: IXS spectra obtained at ID28 at T=90 K around (a) Q=(5.3, 0, 0) and (b) Q=(0+q, 0, 4).
The experimental data are shown with the best fit results (full red lines: total fit, dashed lines: elastic
lines, individual full lines: phonon excitations). The counting time per point was 1 minute. The spectra in
(b) are shifted for clarity along the vertical direction by 0.025 normalized counts, conserving the same
intensity scale.

Fig. 6.2 shows the phonon dispersion curves collected along the Γ−A, Γ−M and Γ−K−M directions

of the hexagonal symmetry. Points belonging to the same acoustic branch are connected with dashed lines,

which extrapolate the acoustic phonon dispersion curves to q=0. The remaining experimental data points

belong to longitudinal (LO) or transverse (TO) optic modes. The majority of the acoustic phonon branches

along the Γ−A, Γ−M and Γ−K high symmetry directions could be traced throughout the Brillouin zone.

The sound velocity was derived from the slope of the acoustic phonon dispersion in the low q limit

and for low energy transfers (E≤10 meV) by a linear fit. The elastic tensor for hexagonal symmetry

contains 5 independent elastic moduli Cij [108]:

Cij =



C11 C12 C13 0 0 0

C12 C11 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66 = C11−C12
2


(6.1)

From the available experimental data four of them could be determined, namely C11, C33, C44 and C66

(or C12 indirectly). Table 6.1 provides the list of the investigated phonon branches, the Brillouin zones
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were they were measured and the calculated sound velocities and elastic moduli of the acoustic modes.

The calculated elastic moduli are in reasonable agreement (within 98 %) with the reported results from

resonant ultrasound spectroscopy of Ref. [59]. The largest deviation (of about 10 %) is found for C11 (and

correspondingly for C12).

Figure 6.2: Experimental phonon and magnon dispersion curves for MnFe4Si3 along the high symmetry
(hexagonal) Γ−A, Γ−M and Γ−K−M directions. Upward triangles, squares, downward triangles and
diamonds correspond, respectively, to LA, TA, LO and TO phonons measured with IXS at T=90 K.
Dashed lines are guides for the eyes that extrapolate the acoustic phonon dispersion curves to q=0. Circles
correspond to magnons measured with INS. The solid line represents the spin model described by a
Heisenberg-type Hamiltonian (see details in Section 4.3). The inset shows a sketch of the high symmetry
hexagonal reciprocal directions.

Table 6.1: Summary of the investigated phonon branches of MnFe4Si3 with IXS at T=90 K with the
direction of the momentum transfer, the propagation and polarization vectors of the phonons, and the
calculated sound velocity (υ) and elastic moduli (Cii). The parameter q is always positive. The density
for MnFe4Si3 is ρ=6.368 g/cm3.

Mode Brillouin zone Momentum Transfer Propagation vector Polarization vector υ (m/s) Cii (GPa)

LA[0 0 1] (0, 0, 4) (0, 0, q) [0 0 1] 〈0 0 1〉 7056(5) C33=317(1)
LO[0 0 1] (0, 0, 4) (0, 0, q) [0 0 1] 〈0 0 1〉 − −

TA[0 0 1]〈100〉 (3, 0, 0) (0, 0, q) [0 0 1] 〈1 0 0〉 3460(3) −
TO[0 0 1]〈100〉 (3, 0, 0) (0, 0, q) [0 0 1] 〈1 0 0〉 − −

LA[1 0 0] (5, 0, 0) (q, 0, 0) [1 0 0] 〈1 0 0〉 6773(14) C11=292(1)
LO1[1 0 0] (5, 0, 0) (q, 0, 0) [1 0 0] 〈1 0 0〉 − −
LO2[1 0 0] (5, 0, 0) (q, 0, 0) [1 0 0] 〈1 0 0〉 − −

TA[1 0 0]〈001〉 (0, 0, 4) (q, 0, 0) [1 0 0] 〈0 0 1〉 3320(1) C44=70(1)
TA[1 0 0]〈120〉 (3, 0, 0) (−q, q, 0) [1 0 0] 〈1 2 0〉 3613(4) C66=83(1)

LA[1 1 0] (3, 0, 0) (q, q, 0) [1 1 0] 〈1 1 0〉 6430(190) −
LO1[1 1 0] (3, 0, 0) (q, q, 0) [1 1 0] 〈1 1 0〉 − −
LO2[1 1 0] (3, 0, 0) (q, q, 0) [1 1 0] 〈1 1 0〉 − −

TA[1 1 0]〈110〉 (3, 0, 0) (−q, 2q, 0) [1 1 0] 〈1 1 0〉 3671(5) −
TO[1 1 0]〈110〉 (3, 0, 0) (−q, 2q, 0) [1 1 0] 〈1 1 0〉 − −
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6.4 Investigating possible phonon-magnon interaction in
MnFe4Si3 with INS and IXS

The combination of INS (see Section 4.3) and IXS measurements allowed to unambiguously determine the

magnetic and lattice excitations of the MC compound MnFe4Si3. The individually measured excitations

indicate that the spin-waves intersect with the phonon branches along the Γ−A and Γ−M directions (see

Fig. 6.2). Along the Γ−A direction the magnon crosses the TA[0 0 1]〈100〉 and the LA[0 0 1] phonon at

q=0.05 r.l.u. and q=0.10 r.l.u., respectively. For the Γ−M direction a more remarkable feature is evidenced;

the magnon branch close to the zone boundary falls exactly between the two TA phonons, namely the

TA[1 0 0]〈001〉 (red squares in Fig. 6.2) and the TA[1 0 0]〈120〉 (blue squares in Fig. 6.2).

The widths of the phonons in the vicinity of the crossing area with the magnons along these two high

symmetry direction show a different behaviour. Along the Γ−A direction the widths of the phonon peaks

remain unchanged with increasing q (see Appendix A.3) in contrast to a remarkable q-dependent width

broadening of the TA modes along Γ−M (see Fig. 6.1(b)). The large broadening is better visualized in

Fig. 6.3(a), where the convoluted with the instrumental resolution FWHM of the TA[1 0 0]〈001〉 and the

TA[1 0 0]〈120〉 phonon as a function of q throughout the whole Brillouin zone are shown. The increasing

broadening of the widths coincides with the magnon crossing and in fact the TA phonon linewidths

increase more by a factor of 10 from that measured at q≤0.40 r.l.u..

Figure 6.3: (a) FWHM and (b) integrated area as a function of q for the TA phonons (measured with IXS)
along the Γ−M direction at T=90 K. The lines in Fig. (a) are guides for the eyes. The line in Fig. (b)
corresponds to a fit as explained in the text.

In Fig. 6.3(b) one can find the energy integrated area of the TA[1 0 0]〈001〉 as a function of q. For an

acoustic phonon the energy integrated phonon intensity for a constant Q scan can be written as [120]:

∞∫
−∞

I(Q, h̄ω)d(h̄ω) = A
1

1− e−
h̄ω(q)
kBT

(h̄Q)2

h̄ω(q)
cos2β, (6.2)

where ω(q) refers to the acoustic phonon frequency, β is the angle between Q and the unit vector along

the phonon polarization direction and A is assumed to be a constant. In Eq. 6.2 the h̄ω(q) term can be

substituted by υh̄q, since the experimentally determined dispersion curve for the TA[1 0 0]〈001〉 seems to

be linear in most part of the Brillouin zone. The experimental data in Fig. 6.3(b) are well described by

such a fit. This indicates that around G=(0, 0, 4) in transverse geometry (q ‖[1 0 0]) and in the energy
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transfer range of −15 < E <15 meV only single phonon excitations are measured. Therefore, the large

width broadening shown in Fig. 6.3(a) might not be caused by a merging of the TA[1 0 0]〈001〉 with low

lying TO phonons that cannot be resolved due to instrumental resolution limitations.

Figure 6.4: Colour map constructed from Q scans around Q=(Qh, 0, 2) at constant energy transfers
2≤E≤12 meV at T=1.5 K. Data were obtained with unpolarized neutrons at IN12. Circles, squares and
diamonds correspond, respectively, to magnons, TA and TO phonons, as determined from unpolarized
and polarized INS data (see details in text). The lines are guides for the eyes.

To clarify if the broadening of the TA[1 0 0]〈001〉 phonon is due to spin-phonon interaction, INS

measurements were performed in a Brillouin zone where both types of excitations are observed with

good resolution. To this aim, constant E scans around Q=(Qh, 0, 2) were carried out at energy transfers

below 14 meV at T=1.5 K with unpolarized neutron beam at IN12. The resulting TA phonon and magnon

dispersion curves are shown in Fig. 6.4 in the form of a colour map. For energy transfers 2≤E≤7 meV

the phonon and the magnon are well separated, although they originate from the same zone center G=(0,

0, 2). Magnetic and lattice excitations for the constant E scans (for E≤7 meV) were fitted with Gaussian

functions. Consistently with the dispersion curves along the Γ−M direction (see in Fig. 6.2), the dispersion

relations as a function of q (see Fig. 6.4) for the TA[1 0 0]〈001〉 phonon and the magnon for E≤7 meV

are linear and quadratic, respectively. For increasing energy transfers and close to the Brillouin zone

boundary, an increase of intensity is observed. However, the signal arising from the individual excitations

cannot be distinguished from the unpolarized INS data.

To disentangle the lattice and magnetic excitations at E >7 meV, constant E and constant Q scans

with polarized neutrons were carried out at IN12. Figs 6.5(a)-(e) show such characteristic scans around

Q=(Qh, 0, 2) in the NSFzz and SFzz channels (see Eq. 2.24 in Section 2.2.6.2 and further details in Section

4.3). In the Q scans shown in Figs 6.5(a)-(c) as the energy transfer increases both excitations approach

the Brillouin zone boundary and until E=9 meV they do not intersect. The crossing of the TA[1 0 0]〈001〉

phonon and the magnon is observed at E=10 meV and at the intersecting point the intensities of the modes

are almost equal (see Fig. 6.5(c)). For measurements close to the zone boundaries where the dispersions

become flat, constant Q scans were employed (see Figs 6.5(d)-(e)). Such scans are characterized by a

broad peak observed in the SFzz channel that corresponds to spin-wave scattering and by two very well

defined peaks observed in the NSFzz channel identified as phonon excitations. The peaks appearing in the

NSFzz channel were fitted with DHO functions and correspond to a TA and a TO mode. Commonly with

Fig. 6.3(a) the linewidth of the TA[1 0 0]〈001〉 phonon is increasing with q, but to draw firm conclusions
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6. Investigation of phonon-magnon interaction in the magnetocaloric compound MnFe4Si3

Figure 6.5: Typical polarized INS spectra obtained at IN12 at T= 1.5K around Q=(Qh, 0, 2) in the
NSFzz and SFzz channels. A vertical magnetic field of Hz=1 T is applied parallel to the b-axis of the
hexagonal system. The monitor counts for all scans were 2·106. Figs (a)-(c) show raw data from constant
E scans and the lines indicate fits with Gaussian functions. Figs (d)-(e) show constant Q scans where
the background is subtracted and the lines for the NSFzz and SFzz channels represent fits with DHO and
Gaussian functions, respectively.

concerning the intrinsic linewidth the scattering function should be convoluted with the 4D instrument

resolution. In addition, it should be noted that the combination of the constant E and constant Q scans

points to a "kink" in the magnon spectrum along the Γ−M direction occurring around the crossing points

of the phonon and magnon modes at q=0.45 r.l.u. (see Fig. 6.4). This observation might hint to an opening

of an energy gap or discontinuity in the magnon spectrum which could indicate possible phonon-magnon

coupling.

6.5 Nuclear-magnetic interference

In order to further investigate a possible phonon-magnon interaction, polarized INS experiments were

performed using spin flippers before and after the sample to access the four possible longitudinal polarized

INS cross-sections NSF++
zz , NSF−−zz , SF+−

zz and SF−+
zz , where + and − stands for flipper on and off,

respectively. The polarized INS experiments were undertaken under a vertical magnetic field of Hz=1 T

giving rise to a single domain FM sample (see details in Section 4.2). Figs 6.6 show unpolarized and

polarized constant E neutron spectra obtained at T=1.5 K around Q=(Qh, 0, 2). The peaks observed in

both spectra are peaked in the sameQh positions and are more prominent atQh <0 due to the instrumental

resolution focusing conditions. As can be seen in Fig. 6.6(b) the magnon has equal intensity in both SF

channels (SF+−
zz and SF−+

zz ) as expected, in contrast to the TA[1 0 0]〈001〉 phonon that has significant
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intensity in only one NSF channel (NSF++
zz ), while in the other NSF channel (NSF−−zz ) the intensity is

equal to the background level. Such unbalance of intensities between the two NSF channels could be

attributed to the nuclear-magnetic interference (NMI) term: I++
NSF − I

−−
NSF = 2 | P0Rz | (see Eq. 2.25 in

Section 2.2.6.2). This complete cancellation of intensity in the NSF−−zz channel is observed in the TA[1 0

0]〈001〉 phonon mode for low energy transfers, e.g. at E <6 meV, far below the crossing point of phonons

and magnons (see Fig. 6.7(a)). Close to the Brillouin zone boundary and at the intersecting point of

phonons and magnons (see Fig. 6.4 and Fig. 6.5(c)) the intensity is restored in the NSF−−zz channel as can

be seen in Fig. 6.7(b).

Figure 6.6: Inelastic spectra obtained with (a) unpolarized and (b) polarized neutron beam at IN12 around
Q=(Qh, 0, 2) for E=4 meV energy transfer at T=1.5 K. The symbols + and − refer to flipper on and off,
respectively. For the polarized spectra a constant vertical magnetic field of Hz=1 T is applied. The lines
indicate fits with Gaussian functions.

Figure 6.7: Raw data obtained at IN12 with polarized neutrons from two NSF channels at T=1.5 K (a)
below and (b) at the crossing point of phonons and magnons. The spectra were measured around Q=(Qh,
0, 2) at different constant energy transfers and under constant vertical magnetic field Hz=1 T. In Fig. (a)
the full and open symbols correspond to the NSF++

zz and NSF−−zz channel, respectively. The lines indicate
fits with Gaussian functions.

To characterize the evidenced NMI term in MnFe4Si3, its temperature dependence was studied above

and below TC (see Figs 6.8). Inelastic (around Q=(Qh, 0, 2) at constant energy transfer E=4 meV) and

elastic (around the Bragg position Q=(0, 0, 2)) spectra were collected in the NSF++
zz and NSF−−zz channels

under a vertical magnetic field of Hz=1 T. During the temperature change the lattice parameters were

corrected when necessary. As can be seen in Fig. 6.8(a) in the PM state (T=315 K) an unbalance of
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intensities is observed between the two NSF channels for the TA[1 0 0]〈001〉 phonon. As the temperature

decreases, the intensity I−−NSF decreases drastically and at T=290 K equals almost to the background level.

Fig. 6.8(e) shows the temperature dependence of the NMI term. It depicts the difference of the phonon

intensities in the two NSF channels in the peak position Q=(−0.15, 0, 2) at 4 meV. The background

measured at Q=(−0.30, 0, 2) at 4 meV was subtracted and the measured intensity was corrected by the

detailed balance factor. For the elastic scans at the Bragg position Q=(0, 0, 2) a similar unbalance of

intensities is evidenced in the two NSF channels, however, a complete cancelation in intensity is not

observed. For elastic scattering the difference of intensities between the two polarization channels equals
elI++

NSF −el I−−NSF = 4FN (Q)FM (Q) (see Eq. 3.1 in Section 3.2) and its temperature dependence is shown

in Fig. 6.8(f). It seems that the temperature dependence of the inelastic and elastic NMI term mimics

the one of the magnetic order parameter (with finite value above TC due to the finite magnetic field of

Hz=1 T, see Appendix A.4). Measurements of the LA[1 0 0] and TA[0 0 1]〈100〉 branches and in other

Brillouin zones reveal NMI term as well, but with sizeable intensity in both I++
NSF and I−−NSF channels. The

corresponding raw data and the temperature dependence of the inelastic and elastic NMI term can be

found in the Appendix A.4.

Figure 6.8: (a)-(d) Polarized INS spectra around Q=(Qh, 0, 2) at constant E=4 meV obtained at different
temperatures. Temperature dependence of (e) 2| P0Rz |= I++

NSF − I
−−
NSF and (f) 4FN (Q)FM (Q) =el

I++
NSF −el I−−NSF (see details in text). The lines in Figs (a)-(d) and Figs (e)-(f) indicate fits with Gaussian

functions and guides for the eyes, respectively. All data have been collected under a vertical magnetic
field of 1 T at IN12.

6.6 Discussion

The combination of IXS and INS measurement allowed to determine the low lying lattice and magnetic

excitations in MnFe4Si3 single crystals. The observed broadening of the phonon linewidths at the crossing
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points of TA phonons and magnons along the Γ−M might be attributed to phonon-magnon coupling [115].

Indications of a "jump" in the spin-wave spectrum close to the Brillouin zone boundary also point to this

direction. While performing longitudinal polarized INS experiments in order to establish phonon-magnon

interaction, an unbalance of intensities between the two NSF polarization channels was observed for the

TA[1 0 0]〈001〉 phonon mode. This effect is ascribed to the NMI [78].

The NMI term is reported in polarized neutron diffraction experiments aiming to measure magnetic

form factors and spin densities [78]. The NMI terms are not often reported in INS experiments and, to

the knowledge of the author, were never observed for magnetic excitations. This is related to the fact

that NMI correlation functions are linear in the magnetic operator and their observation is conditional

upon the breaking of certain symmetry in the system (time reversal or/and parity). In the present case, the

applied magnetic field (resulting in a single FM domain in the sample) meets this condition. Among other

ferromagnets, a similar unbalance of intensities as the one observed here in the two NSF channels was

reported in the phonon spectrum of Ni and Fe [121] and of Fe65Ni35 [122]. Its origin was attributed to

magneto-vibrational scattering; a term which is elastic in the magnetic system and inelastic with respect

to the phonons [70].

In the case of MnFe4Si3, a rather unusual feature is observed. It is evidenced that for the TA[1 0

0]〈001〉 phonon mode a complete cancelation of intensity in the NSF−−zz channel occurs in the whole

energy range of the phonon spectrum before the crossing point with the magnon. At the intersecting

point of phonons and magnons the intensity is partly restored in the NSF−−zz channel and a significant

NMI term is still remaining. The temperature dependence of the NMI term in the low lying part of the

dispersion mimics the one of the magnetic order parameter. This might suggest that the observed NMI

term is elastic in the magnetic subsystem, which in return could hint to magneto-vibrational scattering.

However, it is not clear yet if it is originating from magneto-vibrational scattering as claimed for other

FM compounds [121, 122] or from more "exotic" scattering involving in a different manner interaction

between magnetic and lattice degrees of freedom. Since changes in temperature and low magnetic fields

are major parameters for the MCE, further studies of the inelastic NMI term in MnFe4Si3 are necessary

under the influence of the above mentioned external parameters. This might be an essential step towards

understanding the origin of the behaviour of the NMI term in this compound.

6.7 Conclusions

In the MC compound MnFe4Si3 the phonon modes were unambiguously determined by IXS measurements,

while the magnon modes were unambiguously determined by a combination of unpolarized and polarized

INS data. It is demonstrated that along the Γ−M high symmetry direction of the hexagonal system,

the magnon branch close to the zone boundary intersects with the TA[1 0 0]〈001〉 phonon branch. At

the intersecting point there are hints of a "kink" in the magnon spectrum, while the phonon linewidths

increase abruptly. Moreover, it is evidenced that for this particular phonon mode the complete cancelation

of intensity observed in the NSF−−zz channel in the low energy part of its dispersion, that is attributed to

NMI, is lifted exactly at the intersecting point of the modes. Altogether these observations could point to

possible phonon-magnon interaction. Establishing the origin of the observed NMI in this system could

pave the way for first microscopic explanations of the MCE not only in MnFe4Si3, but also in other MC

compounds.
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Chapter 7

Summary and Outlook

Caloric effects are inherent to magnetization processes. The degree of order of a magnetic system

determines the number of accessible states, which in turn defines its magnetic entropy. The Maxwell

relation
(
∂S
∂H

)
T,p

=
(
∂M
∂T

)
H,p

relates the entropy S(T,H) and the magnetization M(T,H) of a system

under constant pressure. This shows that any temperature dependence of the magnetization is coupled

to an entropy change when varying the magnetic field. Two well-known realizations are the adiabatic

demagnetization of PM salts to reach sub-Kelvin temperatures and the giant MCE observed near room

temperature magneto-structural phase transitions.

The MCE can be potentially exploited for magnetic refrigeration. Several MC materials made for

abundant, cheap and non-toxic elements, such as the Mn5−xFexSi3 series, have been proposed for solid

state cooling devices. In order to highlight the major components at play and to finally optimize the MC

materials in view of applications, microscopic studies with a probe that reveals the magnetic response of a

system as a function of the wave-vector q and energy E could be ideal. To this aim, INS measurements

were performed on single crystals of the MC compounds MnFe4Si3 and Mn5Si3.

The FM compound MnFe4Si3 could be used for application if optimized, since it exhibits a transforma-

tion from the PM state to the FM phase close to room temperature (TC=305 K). Spin-wave measurements

at T=1.5 K reveal a strong anisotropy of the magnetic exchange interactions along the (h00) and (00l)

reciprocal directions of the hexagonal system. Spin-wave simulations using the Heisenberg model for

magnetism and two FM exchange interactions with values 2SJ1=−4 meV and 2SJ2=−18 meV are suffi-

cient to describe the experimentally obtained acoustic magnon spectrum. The strong anisotropy of the

magnetic exchange interactions along the in plane and out-of plane hexagonal directions manifests also in

the q-dependent linewidths (Γq) in the PM state. The experimental data obtained at T=315 K for the Γq

could be well described both with a model for localized Heisenberg FM, as well as, a model for weak

itinerant FM. On the other hand the bare spin correlation lengths ξ0 are smaller than the lattice parameters

a and c, which points to a localized feature of the magnetism of MnFe4Si3. Such short range magnetic

correlations in the PM state might be important ingredient for the MCE in MnFe4Si3. In the present study

it is also demonstrated that the in- and out-of-plane spin-fluctuations, which are isotropic around TC , can

be suppressed by a magnetic field of 2 T. The observed suppression of the spin-fluctuations is qualitatively

well described by a model that estimates the q-dependent susceptibility under a finite external magnetic

field using the Landau theory for the magnetic fluctuations.

The parent compound Mn5Si3 exhibits two first order phase transitions towards AF phases at



TN2≈100 K (AF2) and TN1≈66 K (AF1), respectively. The inverse MCE, the cooling by adiabatic

magnetization, is associated in Mn5Si3 with the AF1-AF2 phase transition. In this study, INS experiments

reveal that the low temperature AF1 phase (T <66 K) is characterized by well-defined spin-waves, while

the higher temperature AF2 phase (66< T <100 K) is characterized by a coexistence of spin-waves

and diffuse spin-fluctuations. It is also demonstrated that the modification of the magnetic excitation

spectrum at 50 K as a function of magnetic field is identical to the one as a function of temperature at

H=0 T. Therefore, one concludes that an external applied magnetic field in the AF1 phase restores the

fluctuations pattern associated with the AF2 phase. In contrast to the discrete spin-wave spectrum of

the AF1 phase, such spin-fluctuations consist of a continuum of excitations involving more microscopic

states. Consistently, this leads to an increase of the magnetic entropy and thus plays a major role in the

inverse MCE in Mn5Si3. The observed behaviour is opposite to the most common magnetic field effect

that usually suppresses the spin-fluctuations and consequently decreases the magnetic entropy (direct

MCE) as demonstrated by INS in the FM compound MnFe4Si3.

To investigate possible interaction between the lattice and magnetic degrees of freedom in MnFe4Si3, a

combination of IXS and INS measurements was used. The low lying phonon modes were unambiguously

determined by the IXS data, while the magnon modes were unambiguously determined by a combination

of unpolarized and polarized INS data. The up to now measured excitations hint to a "kink" in the

magnon spectrum along the (h00) direction occurring at the crossing point of the TA phonons and magnon

branches. It is worthwhile to note that the spin-waves near the Brillouin zone boundary along (h00) fall

exactly on the two TA phonons. Furthermore, one TA mode shows in polarized INS measurements an

unusual behaviour for both NSF channels, i.e. complete cancellation of intensity for one channel, which

could be assigned to a NMI term. The temperature dependence of the inelastic NMI term mimics the one

of the magnetic order parameter. This suggests that the observed NMI term is elastic in the magnetic

subsystem, which in return might hint to a magneto-vibrational scattering term like it was suggested for

other FM compounds, e.g., Fe and Ni. Further studies of the inelastic NMI term in MnFe4Si3 under the

influence of temperature and magnetic field are necessary in order to understand its origin and relate it

with the MCE.

In future one next step for both compounds could be the combination of experimental and theoretical

studies. Determining further the low energy optic phonons along the high symmetry reciprocal directions

and comparing the experimentally obtained dispersions with DFT calculations might help to understand

the electronic ground states of these systems. Exploring possible optic magnon branches with INS will

allow to determine all exchange interactions for Mn5Si3 and MnFe4Si3. Additional studies of the effect

of temperature and magnetic field on the lattice and magnetic excitations, as well as phonon-magnon

interactions can be envisaged. The knowledge of the fundamental interactions like the lattice excitations

in parallel to the spin-wave spectrum could be an essential step towards understanding the mechanisms of

the MCE (direct and inverse) and might help designing new materials in the future.
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Appendix

A.1 Spin-wave simulations of MnFe4Si3

A.1.1 Input file for SpinWave software package

The SpinWave software package uses linear spin-wave theory for simulating magnon spectra [86]. The

SpinWave input file is a simple .text file that can be edited with any standard editor. Below one can find

the .text file used to describe the magnon spectrum of MnFe4Si3.

! ——————————————-

! MnFe4Si3
!

! definition of the magnetic unit cell

!

AX = 6.78

AY = 6.78

AZ = 4.72

ALFA= 90.0

BETA= 90.0

GAMA= 120.0

!

! ——————————————-

! position of the spins

! NOM=name of the spin, SD2 = spin 1/2

! (SX,SY,SZ) or PHI, THETA initial guess of the spin directions

! (CX,CY,CZ) CEF axis, B20 = stevens coefficient, describing the anisotropy

!

I=1, NOM=S1, X= 0.23556, Y= 0.00000, Z=0.75, PHI=120, THETA=90, CZ=1, B20=0.1

I=2, NOM=S1, X= 0.00000, Y= 0.23556, Z=0.75, PHI=120, THETA=90, CZ=1, B20=0.1

I=3, NOM=S1, X= 0.76444, Y= 0.76444, Z=0.75, PHI=120, THETA=90, CZ=1, B20=0.1

!

I=4, NOM=S1, X= 0.76444, Y= 0.00000, Z=0.25, PHI=120, THETA=90, CZ=1, B20=0.1

I=5, NOM=S1, X= 0.00000, Y= 0.76444, Z=0.25, PHI=120, THETA=90, CZ=1, B20=0.1



A.1. Spin-wave simulations of MnFe4Si3

I=6, NOM=S1, X= 0.23556, Y= 0.23556, Z=0.25, PHI=120, THETA=90, CZ=1, B20=0.1

!

! ——————————————-

! couplings (anisotropic in that case but diagonal)

!

I1=1, I2=5, J1=−18, D1=2.9

I1=2, I2=6, J1=−18, D1=2.9

I1=3, I2=4, J1=−18, D1=2.9

!

I1=1, I2=6, J1=−18, D1=2.9

I1=2, I2=4, J1=−18, D1=2.9

I1=3, I2=5, J1=−18, D1=2.9

!

I1=1, I2=4, J1=0, D1=4, J2=−4, D2=4.4

I1=2, I2=5, J1=0, D1=4, J2=−4, D2=4.4

I1=3, I2=6, J1=0, D1=4, J2=−4, D2=4.4

!

! ——————————————-

! definition of the scan

!

Q0X=0.00, Q0Y=0.00, Q0Z=0.00

DQX=0.01, DQY=0.00, DQZ=0.00

NP=1001

!

! ——————————————-

! calculation

!

! name of the output file

FICH=Fout.txt

!

FFORM

! method, with REG a regularization term (should be small compared to J)

CALC=2, REG1=0.05, REG2=0.05, REG3=0.05

!

! MF iterations to find the stable structure

MF, NITER=100

! WMAX= max energy, NW number of energy points, SIG=energy width

WMAX=100, NW=100, SIG=1
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A.1.2 Simulation of optic magnons and powder average of MnFe4Si3

The spin-wave model using two FM exchange interactions with values 2SJ2=−18 meV and 2SJ1=−4 meV

generates optic magnons at energy transfers 30<E<60 meV along the (00l), (h00) and (hh0) directions.

Fig. A.1(a) shows optic magnons along the (h00) direction. The corresponding calculation of the powder-

averaged spin-wave spectrum of MnFe4Si3 is shown in Fig. A.1(b).

Figure A.1: Simulation of (a) optic magnons along the (h00) direction and (b) powder average of MnFe4Si3
using two FM exchange parameters with values 2SJ2=−18 meV and 2SJ1=−4 meV. The vertical white
dashed line indicates the Brillouin zone boundary.

The optic magnon modes are strongly affected by introducing in the spin-wave model an additional

coupling 2SJ0 between the magnetic atoms located on a triangle (shortest distance 2.775 Å) in the same

distorted [MnFe]6 octahedra (see Fig. 4.6 and Table 4.2 in Section 4.3). If the exchange interaction is FM,

e.g. 2SJ0=−50 meV, then the optic modes shift to higher energies, while the in-plane acoustic magnon

modes remain unaffected (see Fig. A.2(a)). If the exchange interaction is AF, e.g. 2SJ0=10 meV, then the

optic modes shift to lower energies and the acoustic modes are also modified (see Fig. A.2(b)). From the

obtained data shown in Fig. 4.5 in Section 4.3 it is not possible to determine the interaction 2SJ0.

Figure A.2: Simulation of the magnon spectrum of MnFe4Si3 along the (h00) direction using FM exchange
parameters with values 2SJ2=−18 meV and 2SJ1=−4 meV and introducing another exchange interaction
2SJ0. Resulting spin-wave simulations (a) for 2SJ0=−50 meV (FM exchange interaction) and (b) for
2SJ0=10 meV (AF exchange interaction). The vertical white dashed line indicates the Brillouin zone
boundary.
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A.2 Additional INS spectra of Mn5Si3

A.2.1 Unpolarized INS spectra of Mn5Si3 in the AF2 phase

Fig. A.3 shows unpolarized INS spectra around Q=(Qh, 2, 0) at different constant energy transfers in the

AF2 phase. It seems that the overall signal consists of several ill-resolved peaks.

Figure A.3: Raw data obtained at 2T1 with unpolarized neutron beam around Q=(Qh, 2, 0) at different
constant energy transfers in the AF2 phase (T=80 K).

A.2.2 Unpolarized INS spectra of Mn5Si3 in the PM state

INS spectra in the PM state with the corresponding HWHM (as obtained from fits with Lorentzian

functions) are shown in Figs A.4. Concerning the signal arising from the spin-fluctuations (see Section

5.5.2), the width of the fluctuations in the AF2 phase in Fig. 5.10(c) is fixed to the one of the PM state (see

Fig. 5.10(a)). This is the simplest possible hypothesis and it is rationalised by the temperature and energy

Figure A.4: (a) PM scattering at different temperatures at constant energy transfers of 5 meV around
Q=(Qh, 2, 0). Solid lines represent fits with Lorentzian functions and the black dashed line the background.
Data were obtained at 2T1. (b) HWHM as obtained from fits with Lorentzian functions at different
temperatures at E=5 meV (raw data shown in Fig. (a)) and at different energy transfers at T=120 K (raw
data shown in Fig. 5.9(b)). The red dashed line indicates the average value of HWHM for 5 meV energy
transfer.
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variation of this width in the PM state shown in Figs A.4. In the limited range of the studied parameters (3,

5, 7 meV), this width is weakly temperature and energy dependent. It is then dominated by "a constant"

term, which could be seen as an intrinsic parameter of the system. This value is assumed to be robust to

the AF2 phase.

A.3 Additional IXS spectra of MnFe4Si3

Figure A.5: IXS spectra obtained at ID28 at T=90 K around (a) Q=(3, 0, Ql) and (b) Q=(0, 0, Ql). The
solid lines indicate phonon excitations. The counting time per point was 1 minute. The spectra in (a) and
(b) are shifted for clarity along the vertical direction by 0.001 and 0.004 normalized counts, respectively,
conserving the same intensity scale.

A.4 Additional polarized elastic and inelastic neutron spectra and
temperature dependence of the magnetization of MnFe4Si3

Figure A.6: Raw data obtained at IN12 with polarized neutrons from two NSF channels at T=315 K
around the Bragg positions (a) Q=(0, 0, 2) and (b) Q=(2, 0, 0). The lines indicate fits with Gaussian
functions.
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A.4. Additional polarized elastic and inelastic neutron spectra and temperature dependence of the
magnetization of MnFe4Si3

Figure A.7: Polarized INS spectra around (a) Q=(Qh, 0, 0) and (b) Q=(3, 0, Ql) at constant E=4 meV
obtained at T=1.5 K. Temperature dependence of the NMI term for the (c) LA[1 0 0] and (d) TA[0 0
1]〈100〉 phonon modes. (e) Temperature dependence of the NMI term for the Bragg position Q=(2, 0,
0). Data points in Figs (c) and (d) correspond to the difference of phonon intensities I++

NSF − I
−−
NSF in the

peaks Q=(2.925, 0, 0) and Q=(3, 0, 0.1) at 4 meV, respectively. During the temperature change the lattice
parameters were corrected when necessary. The counting time was 8 minutes per point. The lines in
Figs (a)-(b) and Figs (c)-(e) indicate fits with Gaussian functions and guides for the eyes, respectively. All
data have been collected under a vertical magnetic field of 1 T at IN12.

Figure A.8: Temperature dependence of the magnetization of MnFe4Si3 under different magnetic fields
(courtesy of P. Hering). The magnetic fields are applied parallel to the b-axis of the hexagonal system of
the single crystal sample.
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List of abbreviations

ADM adiabatic demagnetization

AF antiferromagnetic

BG background

∆Siso isothermal entropy change

∆Tad adiabatic temperature change

DHO damped harmonic oscillator

ESRF European Synchrotron Radiation Facility

FI ferrimagnetic

FM ferromagnetic

FOPT first-order phase transition

FWHM full width at half maximum

HWHM half width at half maximum

ILL Institut Laue Langevin

INS inelastic neutron scattering

IXS inelastic X-ray scattering

LA longitudinal acoustic

LLB Laboratoire Léon Brillouin

LO longitudinal optic

loc localized

LPA longitudinal polarization analysis

MC magnetocaloric

MCE magnetocaloric effect

MF molecular field

MLZ Heinz Maier-Leibnitz Zentrum



NMI nuclear-magnetic interference

NSF non-spin flip

PG pyrolytic graphite

PM paramagnetic

SF spin flip

SOPT second-order phase transition

TA transverse acoustic

TAS triple axis spectrometer

TO transverse optic

VS velocity selector

wi weak itinerant

WP Wyckoff position
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