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Abstract

Due to the worldwide shortage of 3He and the price development caused by this, al-
ternative concepts of neutron detection are in demand. One possible alternative is a
ZnS/LiF scintillation detector with readout via wavelength shifting fibers. The presented
dissertation describes the development of a model of the physical frontend, which enables
computer-aided simulations with different configurations and conditions.

The model regards the microscopic structure of the scintillator during the tracking
of alpha and triton particles created by the conversion of a neutron at a °Li, as well as
the propagation of photons through the scintillator plate. In the first case, the structure
is simulated via randomly placed spherical grains, through which the charged secondary
particles are tracked. In the second case, the photons are subject to a random walk with
parameters dependend on the composition of the scintillator.

The model is validated in several steps, during which single aspects of the model are
verified. There is a good agreement between measurements and simulations of neutron
absorption and pulse height spectra of different scintillator samples.

A comparison with optical transmission measurements shows, that the simulated ef-
fective optical absorption coefficent is of the same order of magnitude as the measured
value of samples of one manufacturer, but is smaller by a factor of 6 than the value of
samples of another manufacturer.

For the validation of the entire model, measurements of a prototype are compared to
simulations. In order to compare the data event-wise, a detection algorithm based on
cluster finding is developed. Measurements and simulations are in good agreement, so the
model can be regarded as validated.

To optimize multiple parameters at the same time, a generalization of the Golden
Section Search can be used. This algorithm optimizes parameters with respect to an opti-
mization function, e.g. detection efficiency, which is calculated dependend on simulation

data. This way it is possible to optimize detector parameters for new developments.



Zusammenfassung

Aufgrund des weltweiten Mangels an *He und der damit verbundenen Preisentwicklung
sind alternative Konzepte zur Neutronendetektion sehr gefragt. Eine mogliche Alternative
ist ein ZnS/LiF Szintillationsdetektor mit Auslese durch wellenléngenschiebende Fibern.
Die vorliegende Dissertation beschreibt die Entwicklung eines Modells des physikalischen
Frontends, mithilfe dessen computergestiitzte Simulationen mit unterschiedlichen Konfig-
urationen und Bedingungen durchgefiihrt werden konnen.

Das Modell berticksichtigt die mikroskopische Struktur des Szintillators sowohl bei der
Propagation der Alpha- und Tritonteilchen, die durch die Konversion eines Neutrons an
einem °Li entstehen, als auch bei der Fortbewegung von Photonen innerhalb der Szintil-
latorplatte. Im ersten Fall erfolgt die Simulation durch zufillig platzierte kugelférmige
Korner, durch die sich die geladenen Sekundérteilchen bewegen. Im zweiten Fall sind die
Photonen Subjekt eines Random-Walks mit Parametern, die von der Zusammensetzung
des Szintillators abhangen.

Die Validierung des Modells erfolgt in mehreren Schritten, in denen jeweils ein Aspekt
des Modells iiberpriift wird. So zeigt sich eine gute Ubereinstimmung zwischen Messun-
gen und Simulationen von Neutronenabsorptionsverhalten und Pulshohenspektren ver-
schiedener Szintillatorproben.

Ein Vergleich mit Transmissionsmessungen optischen Lichts zeigt, dass der simulierte
effektive optische Absorptionskoeffizient in derselben Groflenordnung wie der gemessene
Wert bei Proben eines Herstellers liegt, jedoch um einen Faktor 6 kleiner ist als der Wert
von Proben eines anderen Herstellers.

Fiir die Gesamtvalidierung des Detektormodells werden Messungen eines Prototypen
mit Simulationen verglichen. Um einen eventbasierten Vergleich durchfiihren zu konnen,
wird ein Detektionsalgorithmus basierend auf Clustererkennung entwickelt. Messungen
und Simulationen sind in guter Ubereinstimmung, weshalb das Modell als validiert ange-
sehen werden kann.

Zur Optimierung von mehreren Parametern kann eine mehrdimensionale Verallge-
meinerung des Golden Section Search verwendet werden. Dieser Algorithmus optimiert
Parameter in Bezug auf eine Optimierungsfunktion, wie z.B. die Nachweiseffizienz, welche
in Abhéngigkeit von Simulationsdaten berechnet wird. So ist es moglich mithilfe des Mod-

ells Detektorparameter fiir Neuentwicklungen zu optimieren.
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Chapter 1
Introduction

A huge field in modern day physics is the analysis and characterization of new materials. It
is important to determine their structure and modes of excitation in order to explore their
potential in certain applications. Current interesting examples are multiferroic materials
for efficient and persistent RAM, the magneto-caloric effect for solid-state cooling devices,

and the self assembly of nano-particles.

A very common method to gain information about microscopic structures and pro-
cesses is scattering, where a probe is shot on the sample and the scattering pattern is
recorded. Physicists have access to a multitude of probes like x-rays, electrons and neu-

trons to name the most common ones.

Since neutrons carry no charge, they can interact with surrounding matter only via
strong, weak and magnetic interaction. Therefore, they can interact with the magnetic
structure of a material and provide information about it. Further, they scatter at nu-
clei directly and interact with the electrons of the material only due to their magnetic
moments. This is an advantage over x-rays and electrons, which are subject to compton
scattering and Coulomb interaction. So the latter two probes scatter stronger at atoms
with more electrons, and it is very difficult to resolve positions of atoms with low atomic

number, like hydrogen.

However, because they have no charge, the detection of neutrons scattered in a sample
requires very specific methods. In general, the optimal detection method depends on the

neutrons’ kinetic energy, as described in Chapter 2.

The kind of detector modelled and simulated in this work is aimed at the detection
of thermal neutrons with a kinetic energy of about 0.025eV. At this energy, neutrons
have a de-Broglie wavelength in the order of a few A and are well suited to resolve lattice

distances in scattering experiments.
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To detect thermal neutrons, usually *He gaseous detectors have been employed in the
past, because *He has a large cross section and can be used as neutron converter and
counting gas at the same time. Due to its low atomic number it is almost insensitive to
gamma radiation, which is a desired property for neutron detection.

However, because demand heavily outweighted supply since about 2005, *He has
become very expensive. The world’s main supplier for *He is the Department of En-
ergy (DOE) of the USA, which obtains it mainly as byproduct of the nuclear weapons
production and maintenance. For maximum efficiency, nuclear weapons require a certain
amount of tritium, which decays to *He with a half life of about 12 years and thus must
be replaced regularly. So the 3He production capacity of the DOE is determined mainly
by the size of the American nuclear weapons arsenal, and not by the demand for *He.

As of 2010 the annual production capacity of *He was approximately 8000 L [1], facing
a demand of about 65000 L per year [2], to which the main contribution is the demand
for 3He in neutron portal monitors at US borders. Such security sensitive applications
are preferred by the DOE, so the amount of 3He on the free market is scarce. This is
extremely problematic for detectors which require large amounts of *He, like for example
at the Japan Proton Accelerator Research Complex, where 100 000 L of 3He are needed for
planned neutron detectors. Therefore, several alternative developments have been started
with the aim to build more cost effective, *He free neutron detectors. Some of these efforts
are described in Chapter 2.

This work aims at the numerical simulation of a ZnS/LiF scintillation neutron detector
with Wavelength Shifting Fibers (WLSF), one of the alternatives to *He detectors. Four
detector banks of this type are being installed at the Six Anvil Press for High pressure Ra-
diography and diffraction (SAPHiR) instrument at the Forschungsneutronenquelle Heinz
Maier-Leibnitz (FRM-II).

The motivation behind this work is threefold. Beside the solely scientific interest in
understanding the interactions inside the scintillator plate, a working, validated model
of the detector can be a tool to estimate detection efficiency and spatial resolution for
different parameters or even new detector designs, without the need to build a new pro-
totype. Also, using such a model in combination with an optimization algorithm, one can
find optimal parameters for the detector depending on different applications. Finally, a
working detector system can be supported in the analysis by correcting the counting rate
for neutrons of different energies dependening on simulation results. Also, systematical
errors may be estimated and the readout analysis can be optimized.

There have been several attempts to simulate ZnS/LiF detectors. However, most of

them restricted themselves to the microscopic structure of the scintillator material and
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only examined how much energy gets deposited in the ZnS grains [3, 4, 5] and not the
amount of photons created or detected. One study tries to simulate such a detector system
including the WLSFs [6]. However, the model used there ignores the microscopic structure
of the scintillator and fiber cladding. This oversight greatly diminishes the usefulness of
the results obtained with that model. The existing models are discussed in more detail
in Chapter 4.

In this work a full detector model will be developed, which takes into account the
microscopic structure and the optical properties of the scintillator and WLSFs. In order to
validate the model it will be closely examined and checked by comparison to experimental
results.

Chapter 2 gives an overview over different detection methods for thermal neutrons
and describes WLSF detectors in detail. The software toolkit Geant [7], which is used
to simulate the detector, is introduced in Chapter 3. Chapter 4 outlines the model of
the detector and important implementation details of the simulation. The validation
of the model is discussed in Chapter 5, where different measurements are compared to
simulations. Chapter 6 introduces an optimization algorithm for the parameters of the
simulation and shows its application to an example function. Chapter 7 presents impor-
tant simulation results obtained by different simulations of the model. Finally, a short

conclusion and outlook is given in Chapter 8.



Chapter 2

The Detector

Neutrons with more than several hundred keV of kinetic energy can be detected by ob-
serving recoil nuclei from collisions between neutron and nucleus. This way it is possible
to gain information about direction and energy of the neutron. Since a neutron can im-
part up to (Ai—An? of its energy, where A is the atomic number of the collision partner,
light nuclei like hydrogen or deuterium are best suited for this [8]. If information about
the energy is not required, it is often simpler to moderate the neutrons by collisions in a
thermal bath in order to lower their kinetic energy. At thermal equilibrium with a 300 K
bath, the kinetic energy of neutrons follows a Maxwell distribution with an average of
kg 300K = 25meV.

Such neutrons are called thermal neutrons and they are frequently used in neutron
scattering experiments, because their de-Broglie wavelength of the order of 1A is well
suited to resolve lattice distances in solids. Due to their low kinetic energy, recoil nuclei
from elastic scattering processes are hardly detectable. However, there are several iso-
topes, which are able to capture these slow neutrons and subsequently decay under release

of higher energy.

Converter Reaction product Released energy Cross section
at 25 meV [b]
SHe SH+'H 0.764 MeV 5330
SLi ‘He + 3H 4.78 MeV 940
g "Li + *He (ground state, 6 %) 2.792 MeV 3840
"Li* 4+ *He (excited state, 94 %) 2.310 MeV
157Gd 18Gd + (yore™) ~ T2keV 255000

Table 2.1: Isotopes of helium, lithium, boron and gadolinium as neutron converters, according to [9]

10
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Important examples of capturing isotopes are given in Table 2.1. These examples are
interesting for detection purposes, because reaction products include charged nuclei which
are imparted with all or part of the reaction’s excess energy. Therefore, they are easier to
detect by conventional methods like proportional counters or scintillators. In essence, the
neutron, which is difficult to detect, is converted into easier detectable particles, which is
why these isotopes are called converters.

There is a trade off between the energy released and the cross section of a particular
reaction, so a suitable converter must be chosen depending on the application. *He has
been used because of its large cross section of 5330 b for thermal neutrons. The relatively
low amount of released energy can still easily be detected in a proportional counter, which
contains the *He.

The neutron capture of *"Gd with a huge cross section of 255000b for thermal neu-
trons does not result in the emission of fast nuclei. Rather, the excited state of **Gd
deexcites via emission of a gamma photon or via internal conversion, where the excess
energy is transferred to an electron of an inner shell, which is then emitted from the atom.
The low excess energy of 72 keV makes it difficult to detect such a reaction in the presence
of background. Further, *"Gd is not very abundant and not easily enrichable due to the
small relative mass difference to other gadolinium isotopes. For these reasons gadolinium
is not very well suited as a converter in most applications.

The boron reaction shows a smaller cross section than *He, but it releases much more
energy. If the boron is enriched in '1°B, BF; can be used as counting gas with integrated
converter, like the more popular *He [10]. However, it cannot be operated at pressures as
high as ®He, and since the cross section of B is lower than that of *He, BF; detectors are
always inferiour. Further, the gas is toxic, which makes it dangerous to handle, especially
when large quantities are needed.

A safer application is the coating of counting tube cathodes with a boron compound
such that either the lithium nucleus or the alpha particle of the boron neutron capture
reaction enters the tube and can be detected [11]. However, the coating must be thin
so that secondary particles reach the counting gas, which leads to a restricted efficiency.
Such detectors are well suited for monitoring purposes. For scientific applications, which
require a good efficiency, special stacked arrangements are necessary. It is also possible
to use enriched boron in combination with a scintillator, like mixtures of boron oxide and
zinc sulfide or boron-loaded plastic or liquid scintillators [9].

Finally, ®Li is the converter which releases the most energy after neutron capture.
Since there is no gamma emitted as reaction product, all the excess energy is imparted

on the recoil nuclei. This makes it interesting for scintillation detector systems in which
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very bright scintillation flashes are needed.

A good material for neutron detection is europium doped lithium iodide (Lil:Eu) with
the lithium enriched in °Li. It can be grown as single crystal and has an excellent neutron
response. However, it is also sensitive to gamma radiation, such that it is not suited for
environments with high background rate. It is further hygroscopic which requires sealed
containment in order to prevent the scintillator from dissolving due to moisture. Because
of these difficulties, Lil:Eu is not widely used.

Cerium doped °Li-glass is a widely used scintillator which directly incorporates the
neutron converter. It has a very fast response, so it is well suited for applications with
high counting rates [12]. However, the light yield is smaller than that of other scintillators
and an indistinguishable response to gamma radiation may appear.

The use of lithium fluoride enriched in °Li as converter in combination with silver
doped zinc sulfide as scintillator is the basis for the detector modelled in this work. The
constituents are ground to microscopic size and bound in a matrix in order to ensure
close proximity. Due to the large amount of energy from the lithium neutron capture
and the zinc sulfide’s excellent scintillation response to alpha particles, the light yield is
very high. For this reason such compounds can be used in combination with cost-effective
light detection methods (like WLSF') on large sensitive areas. The long decay time of the
scintillator limits the counting rate, but also allows for an efficient gamma discrimination.
Due to the opaqueness of the mixture, the thickness of a single scintillator plate is limited
to about 500 pm.

2.1 Scintillation

Scintillation is the emission of light which follows ionization by radiation in certain ma-
terials. During its passage, an ionizing particle may collide with atoms, molecules or
electrons of the material and transfer part of its kinetic energy to them, thus exciting the
collision partner. These excitations will deexcite eventually and lose their excess energy
in some way. This so-called relaxation process might happen via emission of a photon or
by interactions with phonons, i.e. causing lattice vibrations and thus producing heat.

In order to exhibit observable scintillation, a material needs to be transparent to
light emitted in this way. Self absorption can be avoided, if the relaxation happens via
intermediate steps with low excitation cross sections. One possible intermediate step in
a crystal is an exciton, a state in which a conduction electron and a valence hole form a
hydrogen-like quasi-particle. Due to their mutual attraction, the energy of a combined

state is lower than that of a free electron and a photon created due to recombination of
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an exciton does not have enough energy to lift an electron from the valence band to the
conduction band.

For inorganic crystals intermediate states can be introduced by doping the material
with appropriate impurity atoms. ZnS for example has a band width of 3.9eV [13] and
is doped with silver for the use in ZnS/LiF scintillators. The Ag™ ions replace Zn?" ions
and thus have an additional local negative charge. Therefore they are electron donors
and can fill vacancies in the valence band of ZnS. With the resulting net positive charge,
electrons of the conduction band can be trapped and transferred to an excited state of the
silver ion. The subsequent decay into the ground state happens under emission of a 2.7 eV
photon, which has too little energy to excite an electron in the valence band. It could be
reabsorbed at another silver site, but since they are sparsely distributed throughout the
crystal, the probability for that is low.

Conduction electrons and valence holes can reach such recombination centers if they
form excitons. In that state they can travel the crystal freely until they are trapped at

an impurity and eventually recombine.

2.2 Photon Detection Methods

In the case of scintillation techniques, it is further necessary to convert the optical signals
which are emitted by the scintillator into electronic signals for digital processing. This
can be done using Photo-Multiplier Tubes (PMT) or Silicon Photo-Multipliers.

Usual photo sensors used in cameras, like CMOS or CCD chips, are very cheap, since
they are massively produced. However, these devices collect light in an integrating manner
and are read out periodically, meaning that timing information is lost. The information of
exactly when an event occurs is essential for some applications like Time of Flight (TOF).
Further, it is possible to distinguish between neutron and gamma events depending on
the pulse shape if the scintillator has a different response to gammas. Without timing
information this is impossible, so camera sensors are unsuitable for many applications in
neutron detection.

A PMT operated in pulse mode can give very precise timing information and can even
resolve single photons. The sensitivity to single photons is necessary if one uses a WLSF
readout. There exist two distinct detector designs for a position sensitive detector using
PMTs and a scintillation screen.

The first is the Anger-camera, which is an array of PMTs mounted a certain distance
behind the screen. The light flashes of neutron events spread out on their way to the anger

camera and are detected in several PMTs at the same time. This allows for reconstruction
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of the position by taking the mean position of the illuminated PMTs weighted by their
signal strengths. This way one can achieve a precision higher than the diameter of each
single PMT.

The other design makes use of WLSFs for position reconstruction (see Section 2.3).
Only the ends of the fibers have to be monitored, which means that the required PMT
surface is proportional to the plate’s edge length. In relation to Anger-cameras, which need
a PMT surface proportional to the scintillator’s surface, this is a cost-effective advantage in
case of large scale detectors. However, the use of WLSF's requires a very bright scintillator,
because only a small fraction of the scintillation light is carried along the fiber and reaches
the PMTs.

2.3 WLSF Detector Type

The detector of interest to this work is a posi-

tion sensitive ZnS/LiF scintillation detector for

i 14
/i

LI

F thermal neutrons with position reconstruction via
~ WLSFs.

n The reaction products of the neutron capture

y 7 m—
y 7im—
y /A — L i —
L

are detected via ZnS, a scintillating material with
very high light yield. The light is captured by the
WLSFs, which guide a small fraction to PMTs,

where they are detected and converted into elec-

trical signals for subsequent digital processing.

The scintillator plate contains LiF and ZnS

Fig. 2.1: A neutron causes the scintilla- ) o ) _ ) )
tor plate to emit a bright flash, the pho-  grains. The LiF is enriched in °Li, which has a
tons of which are shifted in wavelength

by the WLSFs and carried along to the
PMTs, where they are detected. as mentioned in Table 2.1. If the highly energetic

high cross section for capturing thermal neutrons,

alpha and triton particles created in such an event
pass through ZnS, the ionization causes scintillation.

Since the scintillator plate is not homogeneous and the refraction indices of its con-
stituents highly differ (at 450 nm they are 1.4 for LiF [14] and 2.47 for ZnS [15]), the light
is scattered heavily before exiting on either side. This limits the practical thickness of the
plate, because it gets opaque to its own light.

As depicted in Figure 2.1, there are two orthogonal layers of WLSFs. They absorb
light emitted by the scintillator and reemit photons with longer wavelengths isotropically.

By total reflection some photons are carried along the fiber to the PMTs.
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One can discriminate against thermal noise in the PMTs by performing a coincidence
measurement between the two layers. The position of the neutron event can be recon-
structed by averaging over all horizontal and vertical fibers separately, and thus obtaining

the horizontal and vertical positions respectively (see Section 5.4.1).

2.4 The Scintillator Plate

If a neutron is captured by a °Li nucleus in one of the LiF grains,

the nuclear reaction results in the creation of a triton (*H nucleus)
and an alpha (*He nucleus) particle with total kinetic energy of
4.78 MeV. Since there are no other reaction products, no energy is
lost to other recoil particles.

As the kinetic energy of the incident neutron (25 meV for thermal
neutrons) is insignificant compared to the released energy, the energy

imparted on each particle is always the same due to conservation of

momentum (i.e. p, = —p)

Fig. 2.2:
Schematics of
a neutron hitting
With the sum being E, + E; = 4.78 MeV and the mass ratio  a LiF grain in the
scintillator and
causing the emis-
sion of a triton and

E., =2.05MeV an alpha particle.
(2.4.2)
Ey =273 MeV

Eo _ mipe _ me (2.4.1)
Et map% me o

between the particles being 4:3, the energy divides as

As charged particles, the triton and alpha lose their kinetic energy mostly due to
ionization of the surrounding material, which causes the scintillator ZnS:Ag to scintillate.
In order to increase the brightness of the scintillation flashes, a large amount of ZnS in the
scintillator is advantageous. However, this leads to a smaller amount of %Li nuclei, and
thus to a lower neutron conversion efficiency. A compromise must be found depending on
the actual application.

With energies as in (2.4.2), the triton has a range of about 30 pm in ZnS and LiF, and
the alpha has a range of about 5pm [16]. This means, that in order for the particles to
be able to leave their origin LiF grain and enter a ZnS grain to create scintillation light,
the grain sizes of LiF grains must be sufficiently small.

The scintillation light is emitted isotropically in all directions. Since the plate does not
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consist of a homogeneous material, but rather a matrix of microscopic grains with highly
different refraction indices (npir = 1.4 at 450 nm [14] and ny,s = 2.47 at 450 nm [15]), light
is heavily scattered inside it, which gives rise to the scintillator’s opaqueness. Further-
more, ZnS is not transparent to its own scintillation light, and thus may reabsorb some
scintillation photons traversing ZnS grains. These effects limit the possible maximum
thickness of the plate to about 500 pm.

2.5 Wavelength Shifting Fibers

Using a WLSF readout enables the construction of large area detectors at affordable
costs. A large area is needed for neutron diffraction measurements of samples with sizes
of several cm, because then the detector must be positioned at a certain distance to
minimize parallactical effects. In order to cover a large solid angle at such distances,
several m? of sensitive detection area are required.

A WLSF is a conventional optical fiber containing flourescent dye. The dye parti-
cles absorb photons with short wavelengths and reemit photons with longer wavelengths
isotropically. A certain fraction of reemitted light is guided along the fiber via total
reflection at the boundary.

If such a fiber is placed along the scintillator, it will carry a light pulse whenever a
neutron event happens near it anywhere along its length. The brightness of this pulse
will be proportional to the amount of scintillation light passing through the fiber. This
amount in turn depends on the distance between fiber and the event’s position and of the
event’s brightness itself. Also, obstruction of adjacent fibers can attenuate the light flash.
Overall, the fibers closest to the event are likely to carry the most photons, such that the

position of the event can be deduced from the distribution of photons over the fibers.

2.5.1 Internal Reflection and Fiber Cladding

The angle of total reflection at the boundary of the fiber de-

pends on the refractive indices of the bordering materials and

ni E
91 eflected is determined by Snell’s law nqsin(f;) = ngsin(fy) (see Fig-
39 ure 2.3). If the sine of 6; exceeds ny/ny, there is no valid value
n \K for 6, and refraction is forbidden. This means, that all light is
2 refracted

reflected internally. So we have

Fig. 2.3: A light ray

is reflected/refracted at n

. 2
a medium boundary Ototal = arcsin (n—l) (2.5.1)
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for the minimum inbound angle in order to get total reflection. So, a photon, which is
emitted from the center of a cylinder, must have an angle of less than 90° — 6., With the
cylinder’s center axis to be reflected totally and thus be guided along the cylinder (see

Figure 2.4). The integral of all angles which lead to total reflection is then

2 %_etotal
Q= /d¢ /dz? sin(9) = 21 (1 — cos (g - em)) —or (1 - @> (2.5.2)
n
0 0

This is the solid angle for light guided in only

one direction. If we take into account the opposite
direction as well, the fraction of the whole solid

angle becomes (1 — Z—i) This is the approximate

\
value for the fraction of light trapped within the !
fiber in the wavelength shifting process. The ac- |

tual value is higher, because if a photon is emitted /

from an excentric position, there are additional
Fig. 2.4: Opening angle of the light

directions, which give rise to helical movement
’ & cone, which is guided along the fiber

through the fiber. Calculating the exact fraction
is cumbersome and does not yield an analytical result. Since it is not of great importance,
it is not discussed here.

In our case, the fiber is made out of Polystyrene (PS), with a refractive index of
ny = 1.59. At a boundary with air (ny &~ 1), this would yield a total reflection angle of 42°
and a trapping fraction of about 33 %. However, the boundary with air almost certainly
does not exist all the way to the PMT, where the photons need to arrive. The fiber will
be mounted somehow and therefore needs to be in contact with a mechanical structure.
At these contact points, much light previously trapped in the fiber might be absorbed,
refracted or otherwise scattered. Another source of light loss can be impairments of
the surface polish, may they be of permanent nature like fissures or scratches, or only
temporary like smudges of oil or dust.

Due to these unknown losses the fiber would not be well defined, which would make
a comparison between the light gain from different fibers impossible, and thus lower the
spatial resolution. To counter this, one usually uses so-called cladded fibers. These are
fibers with a PS core and an additional outer layer with a lower refractive index. The
inner optical boundary is protected by the cladding and its existence is ensured along the
whole length of the fiber.

The manufacturer Kuraray offers two types of cladding: single cladding and multi
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cladding [17]. A single cladded fiber consists of a PS core and a cladding out of Poly-

methylmethacrylate (PMMA). The multi cladding also consists of these two layers, with

an additional cladding out of Fluorinated polymer (FP), as shown in Figure 2.5. The

thickness of each cladding layer constitutes 3% of the total fiber thickness.

3%
13%

Sketch of the fiber multi-

Fig. 2.5:

cladding geometry. Only the innermost

PS-layer contains dye particles. A fiber

with single cladding simply lacks the
outermost layer.

. ns
01 = arcsin [ — | ,
ni

From the optical point of view it is uneces-
sary to insert the PMMA layer between PS and
FP, because this intermediate layer does not in-
fluence the angle of total reflection. To see this,
let’s call the refractive indices of PS n; = 1.59,
of PMMA ny = 1.49 and of FP ng = 1.42. The
total reflection angle between PMMA and FP is
0,_,3 = arcsin <Z—;> In order to hit at this an-
gle, a beam of light must be refracted at the
PS/PMMA boundary according to Snell’s Law:

nq sin(f;_2) = nysin(fa—3) = nz. This gives

(2.5.3)

which is independent of ny. So, the reason to include the intermediate layer may be

ease of manufacture, adhesion problems or even bending properties.

undesirable desirable

\ S

Fig. 2.6: Photons which are reflected
at the boundary between outermost
cladding and air are subject to uncon-
trollable imperfections at that bound-
ary. They are not guaranteed to reach
the PMT and are thus undesirable.

Equation (2.5.3) reveals another problem: if
the cladded fiber is placed in air, the angle of total
reflection is determined at the unprotected bound-
ary between air and outermost cladding, as shown
in Figure 2.6. To eliminate photons, which are
trapped at the air boundary, one can add an ab-
sorbing agent in the outermost cladding layer [18].
The absorbance of the outermost layer should not
be very large, because it would otherwise absorb
too much of the incident scintillation light. On

the other hand, the attenuation must be strong

enough to absorb most of the undesired photons before they reach the PMT. For a more

detailed consideration, see Section A.1. This way the fiber is guaranteed to be well defined

under any circumstances.
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2.6 Development for SAPHiR

SAPHIR is an instrument under construction at the FRM-II. With the six independently
adjustable anvils it will be able to create environments of up to 15 GPa pressure for samples
of up to 20mm? volume. The instrument can be operated in radiography mode, where
the neutron beam is continuous, or in TOF diffraction mode, where a chopper divides
the beam into short packages, which disperve according to differing neutron velocities. In
TOF mode the neutron wavelength ranges from 1 A to 2.4 A.

The anvils compressing the sample volume cover much of the solid angle and absorb
neutrons scattered towards them. Thus, only neutrons scattered forward, backward or
perpendicular to the neutron beam can be observed, as indicated in Figure 2.7. The
forward and perpendicular directions will be occupied by ®He proportional counters.

Backscattered neutrons will be detected by four WLSF detector banks developed at the
Zentralinstitut fiir Engineering, Elektronik und Analytik (ZEA-2) in Jiilich. The detector

2 gpatial resolution, better than 1ps time resolution and

requirements are 2.5 X 2.5 mm
counting rates of a few 10kHz. The detection efficiency is required to be larger than 50 %
for 1 A neutrons.

To meet the requirement of efficiency, the detector consists of two 500 pm scintillation
screens from the manufacturer ELJEN Technology (ELJ) with a 2:1:1 ZnS:Ag/LiF /Binder
mass ratio. The two WLSF layers run between the scintillator plates and both ends are
bent towards the back, where they are read out by 8 x 8 Hamamatsu Multi Anode Photo

Multiplier Tubes (MaPMT). ”Multi Anode” means that there is one square shaped photo

Figure 2.7: Schematic of possible detection directions at the SAPHiR instrument with the sample in
the center, four anvils on each side and the neutron beam incoming from the left. The top
and bottom anvils are not shown. The anvils exerting pressure on the sample cover much
of the solid angle. Thus, only neutrons scattered forward, backward or perpendicular can
be examined.
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cathode for multiple anodes and their respective dynode chains positioned in an 8 x 8 grid
behind it.

The fibers have a thickness of 1 mm
and are placed with 1mm gaps in be-
tween them. In one direction there are
128 fibers read out by two MaPMTs, in
the other direction there are 192 fibers
for three MaPMT's, which determines the
sensitive detector area of one detector
bank to be 256 x 384 mm?2 As shown
in Figure 2.8, both ends of each fiber
are read out by the same MaPMT pixel

|
|

in order to increase the light output per

Fig. 2.8: Fiber guidance in the detector. On neutron event and thus the detection ef-
the top there is the orthogonal WLSF array sand-

wiched by scintillator screens (not visible). The

fibers are bent backwards and merged into five bun- Each MaPMT is controlled and read
dles, and a MaPMT is mounted behind each bun- ) hich .
dle. Note that opposite ends of each fiber are fed out by its own board, which contains a

into the same MaPMT pixel. Multi-Anode ReadOut Chip (MAROC)

for adjusting amplifier gains for different

ficiency.

channels independently and for discriminating the resulting signals. The individual ad-
justment of gains is necessary because of non-uniformities across pixels of the MaPMT.
The trigger data of the MAROC is collected on a concentrator board, which is connected
to all five modules and checks the data for coincidence between layers. The concentrator
board is also responsible for the synchronization between the modules, which add a time
stamp of 2ns resolution to each photon event.

The four detector banks have already been delivered to the University of Bayreuth
and are ready for installation at SAPHiR. The ZEA-2 is now working on improving the
event reconstruction algorithm as well as an automatic system for adjusting the channel
gains of the MaPMTs.

When the detector banks will be in use, the concentrator board will perform the anal-
ysis of photon events and send information about position and time of any neutron events
to the lab computer. In contrast to this, all photon data including channel number and

timestamp was stored for offline analysis during the measurement described in Section 5.4.
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Simulation Toolkit Geant4

Geant is an acronym for ”Geometry and Tracking” and names a software library for the
simulation of particles in matter, developed and maintained by CERN [7]. It is able to
simulate a wide variety of particles, including leptons, hadrons, neutrinos, photons and
atomic nuclei. In a Geant simulation such particles are tracked in their surrounding matter
in discrete steps, during which physical processes influence the state of the particles.

Particles which are tracked by Geant do not interact with each other, but only with
the surrounding material. This means that two particle tracks are independent of each
other and can be calculated in arbitrary order. Therefore, Geant cannot fully simulate
whole experiments, but it is perfectly capable to simulate detectors.

In the simplest case, the user defines the geometry and material properties of the
setup, specifies which physical processes are to be taken into account in the simulation,
and chooses the initial particles. The initial particles are then tracked by the program
until they decay or lose enough kinetic energy to fall below a threshold. At every step
it is possible for processes to create secondary particles. However, these secondaries will
only be tracked, if their kinetic energy is above the threshold.

It is possible to declare some parts of the detector to be sensitive detectors in order
to obtain results from the simulation. They will be informed of any changes a particle
undergoes inside them, and are thus able to e.g. count the amount of energy deposited in
them.

3.1 Geant API

The version of Geant used in this thesis (Geant4) is written in C++, making use of

modern object oriented programming design. To run a Geant simulation, it is necessary
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to implement derivatives of the purely virtual interface classes cavuserbetectorConstruction ,
G4VUserPhysicsList and G4VUserPrimaryGeneratorAction , il Which the detector definition, the set
of applicable physical processes, and the initial particles must be defined respectively.
While implementing these three classes is mandatory, there are many purely virtual
classes, which offer rich interfaces to the simulation. Implementing and deploying these
enables access to and manipulation of nearly any aspect of the simulation, which makes

Geant a very flexible and versatile tool.

3.2 Stepping and Processes

A Geant4 program is a finite-state machine, which tracks the trajectories of particles in
discrete steps and applies physical processes to them depending on the particle’s type,
charge and energy, as well as the surrounding material’s properties.

The central part of the tracking process is the casteppinghanager , which processes each
discrete step of each trajectory. At the beginning of each step, it queries all active phys-
ical processes, which are applicable to the particle, to propose a step distance. The
GasteppingManager Will then choose the shortest step distance proposed and in turn inform
the processes about it.

A default implementation of the stepping distance calculation, which is used by a
multitude of predefined physical processes in Geant, can be found in the cavpiscreteProcess
class. It begins with drawing a positive, real exponentially distributed random number
& with expectation value one. £ is stored in the currentinteractionrength field of the super
class cavprocess .

During every step taken by a particle, to which a process is applicable, the process
will propose a step distance which is the product of itS currentinteractionLengtn and its
mean free pathlength obtained by a call to the function cetMeanFreeratn() . After each step
the quotient of actual step length and current mean free path is subtracted from the
currentInteractionLength . 1his number is used in the next iteration, instead of drawing a
new random number. This approach omits many costly drawings of random numbers,
and still handles a non-constant mean free path length correctly. This means, that user
processes only have to implement the cetMeanFreeratn() method and the actual effect of the
process, if they extend this class.

There are three distinct process callbacks for three different situations and purposes.
atRestboIt() 1S called at the beginning of stepping if the kinetic energy of the particle is
below a threshold. The particle is then numerically treated as stopped and processes like

radioactive decay may delay the particle’s termination. alongstepport() is used to apply a
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”continuous” effect on the particle. For example, the influence of an electromagnetic field
on a charged particle is such a continuous process and needs to be applied all along the
trajectory. The poststepport() method is to be used for event-like effects. At each step only
the poststepport() method of the process, which proposed the smallest step length, is called.
Thus, the poststepport() method is called for every process once the currentinteractionLength
of that process reaches zero.

The communication between stepping manager and different processes is conducted
via a protected field apParticiechange defined in the interface caverocess . During the *port0
methods, processes may store any changes to the particle in this object. There is the
possibility to change position, momentum, polarization etc. Processes may also initialize

the creation of new daughter particles, so called secondaries, via this method.

3.3 Scintillation Process

Scintillation is already part of the Geant4 toolkit, and is implemented in e4scintillation , &
subclass of cavrestDiscreteProcess . This means that it implements the methods atrestpo1t()
and poststepbolt() and respectively cetMeanLifeTime() and GetMeanFreePath() . Both methods are
implemented equally: they check whether the surrounding material is an active scintillator
and, if that is the case, check how much energy has been deposited in the material during
the current step. Then a number of photons proportional to the deposited energy is
created, with random directions and polarizations. The wavelength of a scintillation
photon is also determined randomly, according to a distribution defined in the material
properties of the surrounding material. The proportionality constant between deposited
energy and number of photons has to be specified by the user and is not subject to any
checks of conservation of energy. That means the user is responsible for checking the
values for sanity.

In order to be a scintillator, an object’s material must have several properties set.
It is possible to define two scintillation components with different decay times and en-
ergy spectra. The decay times of the components are defined by the material properties
rasTTIMECONSTANT and scowrzveconstant . The fraction of how many photons are created in
the fast or slow mode is given in vieLbratio. rastcovponent and stowcomponent are lists of
energy-value pairs and describe the emission spectrum of the scintillation light. The use
of two different components enables the simulation of different pulse shapes for different
ionizing particles. This is of main interest in the case of pulse shape discrimination when
discriminating against e.g. gamma particles.

SCINTILLATIONYIELD is the amount of photons created per energy. After each step a num-
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ber of photons is created equal to the product of this number and the amount of energy
deposited in the material. There is also the possibility to set a multiplicative factor for
the scintillation yield via setscintillationYieldFactor() , @ method of eascintiliation . The cre-
ated photons have random direction and random polarization, and an energy distributed
according to rastcowponent or stowcowponent , depending on the mode in which the photon

was created.

3.4 Wavelength Shifting Process

Geant4 includes a process for wavelength shifting in the class eaopwrs . It is a subclass of
GavDiscreteProcess which implements the functions cetMeanFreepath() and PoststepdoIt() . Since
only optical photons should be absorbed by WLS materials, this process only applies to
particle objects of the caopticaipnoton class.

The mean free path depends on the photon’s energy and must be defined for every
wavelength shifting material in the material property wisasstencta . This property must be
defined as a list of energy-value pairs, where the values in this case are the absorption
lengths of photons of the given energy.

poststepboIt ) Stops and Kills the optical photon for which it gets activated and creates
a secondary optical photon at the last position. The wavelength of the new photon is
determined randomly according to the distribution provided in the material property
wLscomponenT . Direction and polarization are completely random. The new photon starts
at a random time after its absorbtion, distributed exponentially with mean defined in the
material property wLsTIMECONSTANT .

If the material property w.sveanvvmsereHoToNs is defined, the WLS-process creates not one
emitted photon per absorbed photon, but a random poisson-distributed amount. Without
this parameter exactly one shifted photon will be created, which is needed in our case. It
is noteworthy that like the scintillation process, this process does not check conservation
of energy, i.e. it is possible for the created photons to have more energy than the original

absorbed one.



Chapter 4

Description of the Model

The first computer aided simulation of a ZnS/LiF detector was reported in 1975 [3].
The model used in this simulation consists of a slab geometry, with 10 pm ZnS:Ag slabs
alternating with LiF slabs of a thickness dependend on the mass ratio. A neutron event is
simulated as triton and alpha particles starting in a random position inside a LiF slab in a
random opposite directions. The amount of energy deposited in ZnS:Ag is approximated
by the inersection of the particle’s paths with ZnS:Ag slabs. The range of the particles

needs to be determined experimentally and is used as path length.

This crude aproximation ignores the influence of the binder material as well as the
LiF grain size. Further, the deposition of energy along a charged particle’s path through
matter is not constant. Since the cross section of such a particle increases with decreasing
velocity, most of its energy is deposited at the path’s end. The simplicity of the approach

can probably be ascribed to the available computer hardware at that time.

There have been two further attempts to improve this model in recent years. Stephan
et al. used randomly placed spheres of ZnS:Ag inside a 5Li loaded glass binder as a model
for the scintillator material [4]. Parameters in their simulations include the radius of the
spheres and the volume fraction of ZnS:Ag. It is unclear whether overlap between different
spheres is allowed in their model. An alpha/triton pair is allowed to start anywhere in the
surrounding ®Li-loaded material and is tracked using a modification of the heavy charged

particle transport code SRIM.

Sadly, the data given in [4] is contradictory. In the sub-micrometer limit of grain sizes,
the average energy deposited in the ZnS grains should be proportional to the volume
fraction of ZnS. For several volume fractions an average deposited energy twice as large

as the correct value was reported. This limits the comparability with their data.

Yehuda’s approach was to simulate the propagation of alpha and triton within ZnS:Ag

25
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spheres ordered in a regular fcc lattice [5]. Ordering the grains in a fixed pattern is a
computationally inexpensive method of placing the grains. However, it is a contrast to the
random distribution in real scintillator materials. This leads to an incorrect distribution
of empty space between the grains and can distort the results.

Both approaches track the energy deposited in ZnS:Ag through ionization processes,
which is a good improvement with respect to the path intersection model. However, some
questions still cannot be answered. Both models do not regard the size of LiF grains, in
which alpha and triton particles are created. Due to the finite length, a certain amount
of energy is always deposited in the LiF, an effect which should not be disregarded since
typical LiF grain sizes are of the order of the alpha particle’s range in the scintillator. Fur-
ther, both models use spheres of identical sizes. Thus, the influence of different variances
of radii distributions cannot be examined.

An attempt at simulating a ZnS/LiF detector with WLSF readout has been reported
in [6]. There the scintillator is modelled as a homogeneous structure, where the entire
energy of the neutron capture process gets deposited. No attempt at simulating the
microscopic structure is made. The model uses a light yield of 160000 photons per
neutron given in [19], which is the value for an optimized configuration and not readily
generalizable to any ZnS/LiF scintillator.

The WLSFs are modelled as simple cylinders without cladding. Therefore, the trap-
ping efficiency depends on the refractive index of the surrounding material. This is gen-
erally an undesired behaviour as discussed in Section 2.5.1. These oversights diminish the
usefulness of the results.

In this work, the physical front end of the detector described in Chapter 2 is modelled
including the microscopic structure for alpha and triton propagation, the creation and
propagation of photons inside scintillator plate and WLSFs, and photon detection in
PMTs. As such, it is currently the most complete model of a ZnS/LiF scintillation
detector with WLSF's to the author’s best knowledge.

The model was implemented using Geant4 (see Chapter 3). To be able to easily adapt
the model to future needs each component is defined in its own module. The different
modules are a grain box, the scintillator plate, the WLSF layers, and a photon counter.
Each module can be activated or deactivated during runtime and will then be added to
or removed from the simulation.

Many parameters of the simulation are freely adjustable. Names and default values
of these adjustable parameters used by the different modules are shown in tables 4.1,
4.2, 4.3 and 4.5. In every simulation described in this work the default values have been

kept, if not otherwise stated. Figure 4.1 shows the simulation of one neutron event in
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the final model. Visible in this image are the scintillator plate, WLSF array and paths of
scintillation (blue) and wavelength shifted (green-brown) photons.

The modelling of the microscopic
structure of the scintillator plate consti-
tutes a central part of this thesis. Since
the plate consists of two types of grains
bound together in a matrix, with grain

sizes being in the order of 10 pm, and the

scintillator plate having a volume in the
order of 10cm?, a full description of the

scintillator plate with grains is impracti-

cal. It would require about 10° geomet-

Fig. 4.1: One event simulated in Geant with
our model. The blue lines correspond to scintilla-
and positions, which exceeds the compu- tion photons, the green-brown lines are wavelength
shifted photons guided by the WLSFs. In order
for the picture to show something discernible, the
chine. scintillation yield factor has been set to 0.05

ric entities with randomized parameters
tational power of a standard desktop ma-

Fortunately the microscopic structure
does not influence all aspects of the simulation. Since neutron capture is a singular event,
structure correlations on the microscopic scale are unimportant for this process. Thus,
the scintillator can be treated as a homogeneous material with a certain %Li density for
the purpose of neutron propagation.

However, the question of how much energy is deposited in the scintillating material
ZnS:Ag cannot be answered accurately without taking the microscopic structure into
account, because alpha and triton particle deposit energy during many collisions in the
surrounding matter. The alpha particle’s range in the scintillator is about 5um [16],
which is of the same order of magnitude as the grain sizes. Therefore, in order to study
the energy deposition in ZnS:Ag, the propagation of alpha and triton through the grain
structure is simulated by the grain box module described in Section 4.1.

As described in 2.4, the propagation of photons in the scintillator is also influenced by
the microscopic structure. The light is heavily scattered while propagating through the
material and the amount of scattering depends on microscopic parameters. Section 4.2

describes two different models for propagation of photons inside the scintillator plate.
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variable name symbol default value description
/var/global /partLiF OLiF 1 Mass fraction of LiF
/var/global /partZns Oz 2 Mass fraction of ZnS:Ag
/var/global/partBinder ¢binder 1 Mass fraction of binder material
/var/global/grainSizeLiF SLiF 2.5 pm Grain size of LiF grain at origin
/var/global/grainSizeZnS S7nS 7.5um Grain size of ZnS grains
/var/global/sizeDeviationLiF Ofip 0.4 Relative deviation of LiF' grain size
/var/global/sizeDeviationZnS Oy g 0.4 Relative deviation of ZnS grain size
/var/global/binderDensity Pbinder lgem™ Density of the binder material
/var/grainbox/grainBoxLength lbox 100 pm Length of the module volume
/var/grainbox/grainBoxWidth Whox 40 pm Width of the module volume

Table 4.1: Parameters used by the grain module with their respective default values.

4.1 Grain Box for Alpha and Triton Particle

Fig. 4.2: Exemplified placement of ZnS
spheres in the grain box module. The
radii and placements of spheres are ran-
dom, but without overlap. The dimen-
sions of this box are 40 x 40 x 100 pm?.

yield of eascintillation .

The grain box module simulates the propagation
of alpha and triton particle within the microscopic
structure of the scintillator in order to determine
the amount of energy deposited in ZnS grains. At
the beginning of each event the grainbox is popu-
lated randomly with microscopic grains as shown
in Figure 4.2. Also, an alpha and a triton particle
with opposite directions of momenta and kinetic
energies as in (2.4.2) are created at the center of
the box. In order not to influence any other part
of the simulation, the grain box is placed outside
of the scintillator plate and influences the rest of

the simulation only by adjusting the scintillation

Alpha and triton particles are created during every event, regard-

less of whether the neutron is captured or not. In fact, they are always tracked before

the neutron, so that the scintillation yield is already determined when the neutron is

captured. This means that the module can be used as a stand-alone model for examining

the energy deposition in ZnS grains.

The grains are modelled as spheres of varying radii, scattered throughout the box.

Although real grains are unlikely to be exactly spherical, they usually attain shapes similar

to convex polyhedra during the grinding process, as electron microscopic images show.

So, spheres are a good first order approximation.
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Initial tests revealed that including placement of LiF grains explicitly in the simulation
is very costly with respect to memory requirements and simulation time. This is due to
their much smaller grain size (commonly about 2 pm to 3 pm) so that there are an order
of magnitude more LiF grains than ZnS grains. Since the distinction between energy
deposited in LiF grains and energy deposited in the binder material is unimportant to
the simulation, it is possible to incorporate lithium and fluor in the binder. However,
care must be taken that the alpha and triton particles do not start inside a ZnS grain.
To ensure this, there is a region placed such that it contains the origin, with a radius

corresponding to the LiF grain size, and in which no ZnS grain can be placed.

In each event in which the grain box module is enabled, the alpha and the triton
particles are tracked first. This way the energy deposited in ZnS grains can be deter-
mined before the neutron is captured and deposits 4.78 MeV in the scintillator plate. The
yield factor of cascintililation is changed via setscintillationYieldFactor() to the amount of
deposited energy divided by 4.78 MeV. There are no photons created directly in the ZnS

grains of this module, because the grain box is placed outside the scintillator plate.

The volume needs to be long enough for the triton particle not to escape. The large
number of collisions on the triton’s path lead to a very small fluctuation in the path
length. So, fortunately almost all tritons have a range very close to 30 pm. Further, the
volume’s lateral dimensions should be large enough to contain even the largest grains.
With a default ZnS grain size of 7.5 um, a box with dimensions 100 pm x 40 pm x 40 pm is
sufficient for this. In case of simulations with smaller or larger grain sizes, it is possible to

adjust the parameters via variables /var/grainbox/grainBoxWidth and /var/grainbox/grainBoxLength .

4.1.1 Radii of the Grains

The influence of grain size and volume ratio of ZnS has been examined in [4]. Unlike
in their model, where the radii of all spheres are equal, our model allows for a certain
variability in grain sizes, in order to examine the influence of the variance of radii on
energy deposition. To determine radii for the single grains, it is necessary to choose a
probability density function p,(r) with mean (r) and variance Ar? := (r2)— (r)* according

to grain size sz,g and relative deviation o7 g:

(r) =55, Ar = Zhs CES (4.1.1)
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An obvious choice might be a normal distribution

)2
L e (4.1.2)
2m

Py (r)dr =
o

with ¢ = szps/2 and 0 = 03,q - Szas/2. However, for large relative deviations o3 g,
the probability for generating negative radii from this distribution cannot be neglected.
The distribution would have to be cut off at » = 0, which would change the mean and
the variance to analytically unobtainable values. Therefore it would be difficult to find
parameters 1 and o such that mean and variance match the target.

Instead of cutting the probability density off, it is possible to replace it with the
probability density function of a gamma distribution. This function is zero for r < 0 and
thus negative radii are avoided, and for (r) > Ar, the gamma distribution is close to the
normal distribution [20].

Due to a limitation in Geant, which

—(r) _ 2.0 Ar _ 0.‘8 prohibits the creation of spheres with radii
---(r)=5.0, Ar =2.0 smaller than 10nm, the gamma distribu-
& 041 | tion must be shifted by ro = 10 nm:
=
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o

Fig. 4.3: Shifted gamma distribution for two
sets of parameters. For this plot a shift of 0.1 mm
(4.1.3)
was used.

The form of p,(r) is shown in Figure 4.3 for different parameters. The values of k£ and
¥ must be chosen such that (4.1.1) is fulfilled. To achieve this, it is necessary to calculate

the first two momenta of our shifted distribution:

77’ pr(r /dt ﬁ%(tﬁ +79)"

- n ﬁmrg—m i m+k—1_—t - n m, .n—m g
O(m)W/dtt € = E m ) () 11 <k+l>
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In the last step we made use of the fact, that I'(k + 1) = kI'(k). With this general

formula we obtain expressions for (r) and Ar:

(ry=ro+ vk
(4.1.5)
Ar =/ (r2) = (P =VEk -0

Inverting this system of equations yields the necessary values for k£ and -

. <<r> — r0)2 _ (Szns — 2r0>2
Ar Tzns " 5208 (4.1.6)

19 — ATZ — (UEHS ' SZHS)2
(ry—ro  2(Szas — 270)

With these parameters (4.1.3) is completely determined. How gamma distributed
random numbers are generated is extensively discussed in [20]. In our simulation we use
the Randcamma class of the cuaer library, which is part of Geant. The shift is realized by
addition of rg to every generated random number.

The number of spheres depends on the overall volume of ZnS:Ag divided by the spheres’
mean volume. The volume of ZnS:Ag depends on mass ratios ¢x and material densities
px and can be calculated from (A.2.3). The expectation value of a spherical volume with

random radius distributed as in (4.1.3) can be calculated using (4.1.4)

4 4
(Viphere) = §7T<7"3> =37 (rg + 3kUrg + 3k(k + 1)0%rg + k(k + 1) (k + 2)0°)
4.1.7)
_ 4 5zns)? .2, 205" (
() (1t ).

4.1.2 Placement of the Grains

After determining the number of spheres and their radii, it is necessary to place them in
the grain box volume without overlap. Prohibiting overlaps in the placement of grains
is important in order to maintain the volume fraction. An overlap between two ZnS
spheres would reduce the total volume of ZnS:Ag in the material, and in turn could
distort the amount of energy deposited in it. The process of manufacturing scintillator
screens involves mixing the grains very thoroughly in prolonged motion before adding the
binder material and hardening it. Therefore it stands to reason that the grain placement
is close to the distribution of fluid particles in thermal equilibrium.

One possibility to find positions for the grains would be to add them sequentially and



32 MODELLING A WLSF NEUTRON DETECTOR

randomly place each sphere at a possible position, such that it does not overlap with
any other already placed sphere. However, according to [21] the distribution of distances
between neighbouring spheres resulting from this method fundamentally differs from the
one present in a fluid of spheres in thermal equilibrium.

In order to better approximate such a kind of
placement, another method is employed as out-
lined in Algorithm 1. All spheres are placed com-
pletely randomly in the volume without regard for
overlaps in line 4. After that, spheres which over-
lap are moved apart. This may result in new over-
laps, so this step of removing overlap has to be
repeated iteratively in the loop in line 6 until a
configuration without overlap is reached. In or-

der to prevent infinite loops one needs to define
Fig. 4.4: Schematic of how far apart

two spheres need to be moved in order
to remove an overlap algorithm terminates. In this case a warning is

a maximum number of iterations, after which the

printed to inform the user of possible inaccuracies

in the simulation.
Figure 4.4 shows two overlapping spheres at positions Z; and #s which have to be
moved apart to remove the overlap. If the new positions are 7/, the displacement
vectors are ¥/ = U172 — T1/2. After displacement, the distance of the spheres should be

greater than the sum of their radii. So the minimal requirement is

Yo — | =11+ 12 = R. (4.1.8)

We attribute a mass m;/, to each of the spheres and require that the center of mass

does not change due to the displacement:

MY + Malo = My L1 + Mol (4.1.9)

= m1171 = _mQUQ

This way it is possible to have large spheres move less than small spheres, which
minimizes the risk of creating new overlaps due to the displacement. A suitable mass
value is proportional to a sphere’s volume, with one exception. The LiF-sphere at the
origin should stay in place, so it gets an arbitrarily huge mass of mg = 1 x 10*2". From
(4.1.9) follows, that the displacement vector must be proportional to the mass of the other

sphere. Due to the symmetry of the problem, we choose the displacement vectors to be
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Algorithm 1 Placement of spheres

Require: k,,,.: maximum number of iterations

Require: b= (b,,b,,b,)T: size of the grain box

Require: N,ry,...,ry: number of spheres and radius of each one
Require: my, ro: mass and radius of void region

1
2

3:

10:
11:
12:
13:
14:
15:
16:

17:

18:

19:
20:
21:

22:
23:
24:

D X %b + random vector with length smaller than rg
: for alliin {1,..., N} do
m; <1}
Z; < random position in grain box
k<« 0
repeat
k+—k+1
Noy < 0 > number of overlaps
for all i in {0,... N} do
for all pairs i < jin {0,...,N} x{0,...,N} do
Ty < CLOSEST MIRROR(;, 7, b) > algorithm 2
R+ T + T
if d < R then

nO'U nOU+1
. . R—-d m,
U; < U; +

y mi+mj(fi_fm) > see (4.1.11)

Uj < U; + (T — ) > see (4.1.11)
for all ¢ in {0,--- ,N} do
§ < random number between 1.1 and 1.3
Z; « MODULUS(Z; + &3, b) > algorithm 3
until n,, = 0 or k£ > kpax
if n,, > 0 then

print a warning!

parallel to the connection vector #i2 = A - mg)1(Z1/2 — ¥2/1). Plugging this into (4.1.8)

we obtain the proportionality factor A:

R S ‘fg +172 — fl — Ull = |fQ — fl + /\(m1 +m2)(fQ — fl)’
= ’1 + /\(m1 +m2)| . |ng — fll
— (4.1.10)
= A\ > R—_d V. )< _R—_’_d
d(m1 +m2) d(m1 —|—m2)

We obtain two solutions for A and choose the one which does not move the spheres
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through each other, so that the minimal displacement vectors used in lines 17 and 18 are

. R—d m . .
V2 = 7 2L (Z1/2 — Top1) (4.1.11)

my + me

This is the displacement necessary for the spheres to exactly touch each other after
the displacement. Due to numerical inaccuracies, such a displacement could result in a
state, where the numerical distance d is smaller than the required distance R, but the
resulting displacement vectors are too small for the floating point precision to change the
position vectors at all. This is why each displacement vector is multiplied with a random
number between 1.1 and 1.3 in line 21

For a performance boost, it is advisable to implement an octree structure, which omits
distance checks between spheres which are far apart from each other. This is especially
advantageous when the grain size sz, is very small and there are many spheres to place.
Care must be taken for periodic boundary conditions described below to be implemented
correctly in the octree structure.

At each iteration of the placement algorithm, all overlapping pairs of spheres are
examined and the displacement vectors are summed up. Then the displacement of all
spheres is done simultaneously, and the next iteration is started.

When moving a sphere, it may happen that the new position lies outside the grain
box. To prevent this, periodic boundary conditions are enforced. This not only means
that movement of a sphere beyond a boundary results in a movement to the other side of
the box as in Algorithm 3. When a sphere is placed closer to a boundary than its radius,
such that it sticks out of the boundary, it should "feel” the overlap with spheres on the
other side of the grain box. To facilitate this, Algorithm 1 does not simply calculate the
distance between two sphere positions, but rather the distance between closest mirrors,
which is calculated by Algorithm 2. This function generates all possible mirror positions
of one of two spheres with respect to the grain box boundaries and returns the one which

is closest to the unmirrored sphere.

Algorithm 2 Calculate which mirror point of 75 is closest to 7';

-

1: function CLOSEST MIRROR(#, #, b)

2 mirrors < list containing the tuple {|7) — 3|, 23} as single element
3: for all (s;,s,,s.) in {—1,1} x {—1,1} x {—1,1} do

4: T = To + (Sz - by, Sy - by, s, b,)T

5 add {|71 — Zp|, T} to mirrors

6 {d,Z,,} « distance-vector tuple from mirrors with smallest d

7 return 7,,
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Algorithm 3 Calculate modulus of vector  w.r.t. the bounding box b

-,

1: function MODULUS(Z, b)

2 X1, To, T3 <— components of ¥
3 b1, by, b3 < components of b
4 for all 7 in {1,2,3} do

5: while z; < 0 do

7 while z; > b; do

8 Ti 4 x; —b;

9 return (z, 19, 23)7

After determining the positions, the spheres are

added to the grain box volume. Each sphere close to

a boundary is copied to the opposite side of the grain
box as shown in Figure 4.5.
The periodic boundary conditions together with

the prohibition of overlap ensure that the full volume

of every ZnS sphere lies inside the grain box at each

| o

run. Thus, the volume ratios are not distorted by

geometric effects and only vary due to the grain radii
Fig. 4.5: A sphere close to a box

being randomly distributed. boundary is copied to the opposite
side and the copy is checked for
overlaps as well. The darker area
represents the active volume inside

4.2 Scintillator Plate the grain box, the lighter area is not

part of the simulation.

The scintillator plate is modelled as a rectangular

plate with adjustable width, height and thickness. Its material is a homogeneous mixture
with the same constituents as the grain box: ZnS:Ag, LiF and the binder material with
their respective mass ratios. The probability for the capture of an incoming neutron de-
pends on the kinetic energy and the density of %Li nuclei in the scintillator plate. The
energy dependence can be found in [9] (see Figure 4.6) and is included in the Geant’s
inelastic neutron scattering database canora.2 . The oc E~'/2 dependence can be explained
by the fact that neutrons with smaller energy are slower and therefore stay in the vicinity
of a SLi nucleus for a longer period of time. Thus, the overlap of wave functions of neutron
and nucleus integrated over time is larger, which leads to an increasing probability of the
neutron tunneling into the nucleus. The time spend close to a nucleus is directly propor-

tional to the inverse of the neutron’s velocity, and for non-relativistic neutrons v < v E



variable name symbol  default value description
/var/scint/thickness d 0.4 mm Thickness of scintillator plate
/var/global/width w 5cm Width of scintillator plate
/var/global/height h 5cm Height of scintillator plate
/var/global/scintYield — 1 Scintillation yield factor
/var/scint/aluminiumMount - false Whether to use an alu-
minium plate behind scintil-
lator
/var/scint/doubleScint - false Whether to place a second
scintillator behind WLSF
screen
/var/global/gapLength g 2 mm Gap between both scintilla-
tors
/var/global/partLiF ¢LiF 1 Mass fraction of LiF
/var/global/partZnS Ozns 2 Mass fraction of ZnS:Ag
/var/global/partBinder beinder 1 Mass fraction of binder ma-
terial
/var/global/grainSizeLiF SLiF 2.5 pm Grain size of LiF grains
/var/global/grainSizeZnS S7nS 7.51m Grain size of ZnS grains
/var/global/binderDensity Pbinder lgem™3 Density of the binder mate-
rial
/var/scint/binderAbsorptionLength  Abinder/ Al 0.4mm Optical attenuation length of
binder or effective attenua-
tion length
/var/scint/binderRindex Nbinder 1.41 Refractive index of binder
material
/var/scint/surfacePolish - 0.1 Value for smoothness of the
scintillator’s surface
/var/scint/scintYieldZnS C 250 keV‘l Absolute scintillation effi-
ciency of ZnS:Ag
/var/scint/fastTimeScint Tf 60 ns Decay time for fast scintilla-
tion mode
/var/scint/slowTimeScint Ts 1ps Decay time for slow scintilla-
tion mode
/var/scint/yieldRatio - 0.5 Ratio of photons in fast de-
cay mode
/var/scint/primaryParticleType — 0 0 = neutrons, 1 = photons
/var/scint/nunberPrimaryParticles  Nprimary 1 Number of particles per
event
/var/scint/neutronEnergy Ekin 25 meV Neutron’s kinetic energy
/var/scint/photonWavelength )\p 402 nm Initial phOtOIl,S Wavelength
/var/scint/photonInteractionType - 1 0 = random Walk, 1 = effec-

tive absorption length

Table 4.2: Parameters used by the scintillator plate module with their respective default values.
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Fig. 4.6: Cross section ¢ for a neutron capture
of a SLi nucleus depending on the neutron’s ki- Fig. 4.7: Emission spectrum of ZnS:Ag depen-
netic energy. Source: [9] dent on the photon wavelength.

leads to the observed behaviour. The irregularities which occur for energies above 10 keV

are resonance peaks, where the neutron energy equals an excitation energy of the nucleus.

When Geant determines that a neutron is captured by a %Li nucleus, the track is killed
immediately, and in its stead an alpha and a triton are created as secondary particles.
These particles traverse the scintillator plate and deposit energy along their paths. The

ionization processes responsible for this are already implemented in Geant.

The whole plate is defined as a scintillator by specifying the necessary material prop-
erties described in Section 3.3. Both rastcomponent and svowcomponent are set to the same
spectrum, which is shown in Figure 4.7. The constant properties are freely adjustable to
potentially enable adjustments to the decay time or scintillation efficiency of the scintil-

lator without need to recompile.

Because the whole plate is a scintillator, the total kinetic energy of 4.78 MeV con-
tributes to the creation of scintillation photons. In order to simulate the effect, that not
all energy is deposited in ZnS grains, the grain box module (see Section 4.1) adjusts the
scintillation yield to a value proportional to the energy deposited in ZnS grains of the
grain box. This way the amount of photons created depends on the energy deposited in
ZnS grains and varies statistically for each event. It also means that a simulation which
includes the creation of scintillation photons needs to have the grain box module enabled

in order to obtain correct results.
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4.2.1 Effective Optical Attenuation Length

The microscopic structure of the scintillator cannot be simulated across the whole scin-
tillator plate, because generating and randomly positioning ZnS and LiF grains would
require too much time and memory space. Therefore, the propagation of photons inside

the scintillator plate must be treated in a special way.

The easiest method is to define the material of the scintillator plate as an optically
homogeneous material with a certain effective photon attenuation length A;. This method
has the advantage of being very fast, because every photon will have only one tracking
step to be calculated inside the plate. Either the photon is absorbed inside the plate or it
reaches the surface. This method has the disadvantage, that microscopic parameters can-
not influence the simulation directly. In the best case, there is a well defined dependence
between parameters like mass ratio, grain sizes etc. and the effective attenuation length.
In the worst case, however, the effective attenuation length has to be measured for each
configuration, which would mean that the simulation cannot be extended to arbitrary pa-
rameters without a measurement of the optical parameters of a real sample. This would
limit the applicability of the model. To examine the dependence of the effective attenua-
tion length on microscopic parameters, measurements of the former have been conducted

for several scintillator samples (see Section 5.2).

4.2.2 Random Walk Pseudo Process

Another possibility is to define a custom process, which emulates reflection and refraction
at virtual material boundaries with random orientations. The boundaries are virtual in the
sense that they are not part of the detector geometry and only arise in the context of the
random walk process. Such a process can take into account microscopic parameters like
grain sizes and mass ratio and does not depend on an external macroscopic parameter.
The disadvantage of employing such a process is a long runtime because each photon
undergoes many hits and changes of direction inside the scintillator plate, which means

that many tracking steps are required for each scintillation photon.

The process needs to implement the function getmeanFreeratn() , which calculates the
path length a photon travels on average before hitting a boundary, and poststepbort() ,

which is called whenever a photon ”hits” a boundary.
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Calculation of the Deflection Angle

Keeping spheres as model grains, the angle under which a photon hits a grain surface can
be derived from geometrical considerations. As shown in Figure 4.8, the excentricity of
the photon equals the cosine of the angle between photon ray and surface normal. Since
the photon’s position is equally distributed over the projection circle (grey in the figure),
the probability for the photon to hit at a certain excentricity r is proportional to the
circumference of a circle with radius r. So, including a normalization factor, the cosine of

the incident angle of the photon is distributed according to the distribution function

Peos(o) = 2 cos(8), for 0 < cos(#) < 1. (4.2.1)

0 does not fully determine the surface normal. One also needs to fix the lateral angle
¢ randomly. As our model grains are spheres and thus radially symmetric, each possible

value for ¢ between 0 and 27 is equally probable.

As shown in Figure 4.9, a photon changes its direction by the angle 0,.q or 0,.¢ depend-
ing on the incident angle #; and on whether it is reflected or refracted. If it is reflected,

the excident angle equals the incident angle and the deflection angle is

Orett = 7 — 20, (4.2.2)

reflection

[

photon

reflected/photon

Fig. 4.9: An incident photon will change its di-
rection by the angle of either 0,¢q or O, depend-
ing on whether it is reflected or refracted.

Fig. 4.8: Schematic of a photon hitting a sphere.

The excentricity of the ray is the cosine of the hit

angle #. Since the ray can hit the projection of

the sphere anywhere with equal probability, the
cosine is distributed linearly.
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If a photon is refracted, the angle of refraction is given by Snell’s law: sin(fy) =
Lsin(6;). With this, the deflection angle is

Orer = 01 — 05 = 0 — arcsin (E sin(Ql)) ) (4.2.3)
N2
Given the lateral angle ¢ and the deflection angle 67 = O.en/rerr the photon’s new

direction vector in Carthesian coordinates where the z-axis coincides with the initial

direction of the photon is

sin(fa) - cos(o)
(0a,¢) = | sin(fa)-sin(p) | . (4.2.4)
cos(0)

The new global direction vector is then obtained by multiplying it with a rotation
matrix which maps the z-axis to the initial global direction, as defined by (A.3.6).

Only the sine and cosine of 6r and ¢ are needed, so it is more efficient to determine
those values directly instead of invoking the trigonometrical functions. For ¢ this can be
achieved by repeatedly drawing two uniformly distributed random numbers z and y from
the interval [—1, 1] until a pair is drawn which fulfils 22 +y* < 1. For such a pair one can

L and sin¢p = —-~

assign cos ¢ = )
g (b /$2+y2 ’z2+y2

The sine and cosine of O are different for reflected and refracted photons. In case of

a reflected photon as in (4.2.2) the cosine is
cos(fa) = cos (7 — 20;) = — cos(20;) = sin®*(0;) — cos*(6;) = 1 — 2cos*(#;).  (4.2.5)

In case of refraction we get from (4.2.3)

2
cos(fp) = cos (91 — arcsin <E sin(&l))) = cos(@l)\/l - (E sin(01)> + A sin?(6,),
N9 no n2

(4.2.6)

where the sin®(6;) can be replaced by 1 — cos?(6;), so that it is sufficient to determine

the cosine of the incident angle, as per (4.2.1). For that, one needs to generate random
numbers which follow the given distribution.

There are many available algorithms for creating uniformally distributed random num-

bers between 0 and 1. Applying a function f : [0,1] — R to random numbers generated

in this way, one creates random numbers with a different distribution. The cumulative

distribution function is then
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Py(f(z) <n) = /dx 1 (4.2.7)

f(x)<n

If we assume f to be continuous and monotonically increasing, we can invert it and
write integral boundaries if f(0) <n < f(1):

P(f(x) <) = /dm 1= f'(n) (4.2.8)

pi(n) = d%fl(n) (42.9)

So, in order to generate random numbers following the distribution function (4.2.1),

where 7 corresponds to cos(f), we need a function f(z) such that
d . 1 2
d—nf m=2n = f~m=n = f(x) =V (4.2.10)

Therefore, cos#; can be obtained by taking the square root of an uniformally dis-

tributed random number between 0 and 1.

Whether a photon hitting the medium bound-
ary with change of refractive index from n; to ns
will be reflected or refracted is governed by Fres-
nel’s law [22]. The probabilities depend on the po-

larization of the photon with respect to the plane

spanned by the boundary’s normal vector and the

propagation vector of the photon (see Figure 4.10).
Fig. 4.10: The s-polarized and p-
polarized planes for a photon hitting a
ability for reflection is planary medium boundary.

2
"1 cos(fy) — \/1 "1 sin 91))

2 b
L cos (01) + \/1 o Lsin 01)>

For s-polarized (perpendicular) photons, the prob-

2

pfeﬂ(el) -

(4.2.11)
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Algorithm 4 Determine change of direction

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:

15:

16:
17:
18:
19:
20:
21:
22:
23:

24

25:

function PostSTEPDOIT(track, step)
m < current material of track
if m equals binder material then
m* <— random material, weights according to Wx defined in (4.2.15)
else
m* <— binder material
E + current kinetic energy of track
ny, ny < refractive index of m and m* for energy F
X < uniformly distributed random number in [0, 1]

cos, sin < /X, V1 —x > cos(fy),sin(f;) according to (4.2.10)
X ¢ uniformly distributed random number in [0, 1]
if X < 2(piq + plg) then > reflection, see (4.2.11) and (4.2.12)
cosd + 1 — 2cos* > cos(fa) according to (4.2.5)
else > refraction
2
cosd < cosy[1 — (%sm) + Z—;smz > cos(fa) according to (4.2.6)
sind < /1 — cosd?
repeat

x,y < uniformly distributed random numbers in [—1, 1]
until 2% + 32 < 1
r<— /2% + 12
sinp, cosp < x/r,y/r > sin(¢) and cos(¢)
P < (sind - cosp, sind - sinp, cosd)”
(e1, e, e3) < current photon direction

€9 eing e/ 1—é€2

1
A —— | —a eang  egy/1 — €3 > according to (A.3.6)
Vi-es 0 —(1—e€3) e3/1—¢€3
return A - p > new direction in global coordinates

for p-polarized (perpendicular) photons it is

26 = cos(6y) — Z—;\/l — (Z—; sin(91)> | i)

cos(6y) + Z—;\/l — <Z—; sin(gl))Q

Unpolarized light contains s-polarized and p-polarized photons in equal parts and is

reflected with the combined probability 3 (p,q + Phg)- In the case of scintillation light the

photons are created with random polarization, which means that this is the appropriate

probability of reflection.

A summary is given by Algorithm 4. The algorithm starts with determining the cosine
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of the lateral angle in line 10. Then an equally distributed random number between 0 and
1 is drawn and compared with £(p54 + phyg) in order to determine whether the photon
is reflected or refracted. Depending on that, the cosine of the correct deflection angle is
calculated according to (4.2.5) or (4.2.6) whereupon it is possible to calculate the new

photon direction in line 22, which is subsequently rotated to global coordinates.

2
One should note that the expression \/ 1— <Z—; sin(91)> is needed in (4.2.6) as well as

in (4.2.11) and (4.2.12), so that it is advantageous to calculate it only once and store it

for subsequent use.

Mean Free Path

The mean free path of a photon before it hits a grain boundary can
be calculated as the inverse stopping probability in an infinitesimal
slice of material. Consider a slice shown in Figure 4.11 with frontal
area L? and thickness A,. The number of grains of type X contained

. . hoton
in this slice is P

5
-~

V. L?A,
Ny = 22X = L (4.2.13) L
(vx) a23) (vx) S or \
where vy is the volume of a single grain and X can be either ZnS Ay

or LiF. The cross section ox of a grain is the geometrical expectation  Fig. 4.11: Simple
model of a material

slice of a grained
values it is possible to calculate the probability that a photon passing material

value of the projected surface of one grain, i.e. ox = (ax).With these
through the slice L2A, interacts with a grain of type X:

N
P(interaction with X) = IXX (ax) | _ox A, =Wx - A, (4.2.14)

L? <Ux> Z(ﬁ—z:

where in the last step we defined the interaction weight Wy of the material X. This
approximation is only valid for small A, (because of obstruction effects), and in this limit
the interaction probablilities of ZnS and LiF can be added together:

A
P(A,) := P(interaction in L?A,) = A, Z Wx = Tx’ (4.2.15)

ZnS,LiF

where in the last step we defined [, which later turns out to be the mean free path
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length

[ = (Z WX) . (4.2.16)

ZnS,LiF

To obtain the attenuation law dependent on the path length z, we divide the path
into N slices of thickness A, = x/N and calculate the probability of the photon not

interacting in the first N — 1 slices and then interacting in the last slice:

P(z,N) = (1 - P (%))Nl P (%) . (4.2.17)

In the limit N — oo the probability density P(z, N)/A, becomes the exponential

function

~|8

p(x) = lim Pz, N)

. 1
MTA =Jm ;(1-5) = (4.2.18)

W) T

and it follows that [ is the mean free path of a photon.

The quotient of mean cross section and mean volume depends on the geometry of

the grain type. For instance, spherical grains with fixed grain radius of Rx = % yield
(ax)
(vx)

= ﬁ. Spheres with a normally distributed radius Ry + ARx yield

AR
(ax)  w(r?  RY+AR:, 3 1t (R_XX) (£2.19)
vx)  5m(r%) 5 (R% +3RxARY) 4Rx | 4 <Aﬁ>2 2.
Rx
Similarly, a Gamma distribution of radii leads to
1 ARx 2
+(5)
lax) _ 3 o ’ ! (4.2.20)

= ‘ 2 1= ‘ 2"
x) - ARx g (aRe) 1o (8he)" AR o (40)

The extra factors for the case with varying radii are plotted in Figure 4.12. For finite
variance the factor is smaller than one, which means that the mean free path length is
larger than in the case with fixed grain radii. This would also translate to an increased

effective attenuation length due to less scattering.

Finally, a shifted gamma distribution as defined in (4.1.3) yields
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2
AR

Oé | (ax) 3 1+<Rxx>

0:6* \\\ h <UX> 4R~ 1+3<ARRX>2+2<ARRX>4 (1—E_O>_1
Jl— L2 T X X X

82 | 1+i5m2 ~“7~ (4221)
'O 14222 | However, for values r9/Rx ~ 1073 as in our case, this

0 0.2 04 06 0.8 1 . e g . . .
" function is indistinguishable from the result of a simple

gamma function. In our simulations we therefore use (4.2.20)
Fig. 4.12: Plot of the . .
extra factors of (4.2.19) for calculating the mean free path length for optical photons

and (4.2.20) withrespect to ipy the scintillator plate.
the case with fixed radii.

As a photon encounters a virtual grain boundary it is nec-
essary to determine the grain type in order to obtain the refractive index at the boundary.
The probability to hit a certain grain is distributed according to the weigths W intro-
duced in (4.2.14). In the simulation a uniformally distributed random number is drawn
from the interval [0, W7,s+ Wiir| whenever a photon hits a virtual boundary. If this num-

ber is below Wy,s, the process assumes that a ZnS grain was hit, a LiF grain otherwise.

If the photon is refracted, the random walk process
considers the photon to enter the grain. This changes
optical properties like refractive index and optical atten-
uation length, but also the mean free path of the ran-
dom walk process itself, because the path length then
depends on the grain size only and not on the grain den-
sity. The average section length of a line intersecting a

sphere of radius r at random excentricity is

T

27
1 4 : .
I, = — /dp d¢ - 2 /Tg — pg _ §T7 (4.2.22) Fig. 4.13: The path travelled
mr
0

through a sphere of radius r at ex-
0 centricity p. In this consideration

we have © = 2/72 — p2.

where p is the excentricity as shown in Figure 4.13.

Therefore, %s x is adopted as the new mean free path of the random walk process.

If a virtual boundary is encountered while the photon is inside a virtual grain, the
medium beyond the boundary is always considered to be the binder material. If the
photon is refracted, it enters the binder material again, if it is reflected, it stays inside
the grain. This way, the attenuation lengths of different materials excert an influence

proportional to the distances the photons travel inside them.

Due to the composite structure of the scintillation material, the surface of the scin-
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tillator plate is not smooth, but rough. Since Geant treats boundary surfaces as smooth
and polished per default, it is necessary to define its roughness. That way, whenever
an optical photon hits the scintillator surface, the normal vector used for reflection or

refraction will be randomly altered.

4.2.3 Mie-Scattering

The scattering of light at perfect spheres has already been solved analytically in 1908 by
Gustav Mie [23]. The solution was approximated for spheres of radius similar to the light’s
wavelength by Henyey and Greenstein in 1941 [24]. This approximation is implemented
in the Geant process caopuienc , and is readily available.

However, this process handles scattering processes as singular events. At no time is
the photon considered to be inside a particle, and thus only the attenuation length of the
binder material is considered. This attenuation length would either have to be modified
like in Section 4.2.1 or an additional custom process would have to emulate the absorption
in ZnS grains. Further, the approximation was done for the very diluted interstellar dust
particles. It is unclear if it holds for very densely packed grains.

Geant’s implementation of the Mie process is designed for one type of particles only,
and since Zn§S and LiF grains have different sizes and refractive indices this is not sufficient.
So, in order to use the Mie process in our simulations, further extensions to the library or a
custom implementation of the process would be required. Because of the approximation’s

shortcomings discussed earlier, this has not been done in the scope of this work.

4.3 Wavelength Shifting Fibers

The WLSF's are naturally modelled as long straight cylinders running along the scintillator
plate. The bend at the edge of the plate, which leads the fibers back to the PMTs; is
very sharp. This way is it possible to place several detector modules next to each other
with little dead space in between them. After the sharp bend, the fiber continues on an
arbitrary path to the PMT. In our model we include the sharp bend at the edge, but
keep the following part straight. So, the model of a fiber consists of two to three cylinders
joined by one or two quarter tori, depending on whether both fiber ends are read out or
not.

The length of the straight fiber segments is as long as the scintillator plate is wide,
or high respectively. The thickness of the fiber and the distance between two fibers is

adjustable independently for both layers. Further adjustable geometric parameters are
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variable name symbol default value description

/var/global/width w 5cm Length of horizontal fibers

/var/global/height h 5cm Length of vertical fibers

/var/wls/distanceToPMT b 30 cm Length of fiber segments from scin-
tillator to PMT

/var/wls/thickness dy 0.1cm Fiber diameter

/var/wls/bendRadius b 6 mm Bending radius at scintillator
edges

/var/wls/claddingRatio - 0.03 Quotient of cladding thickness and
fiber radius

/var/wls/dyeConcentrationPPM Pdye 200 Dye concentration in parts per mil-
lion

/var/wls/dyeType - 7 Dye type: 7, 8 or 11 (see Flg—
ure 4.14)

/var/wls/claddingAbsLength Ae 5 mm Optical attenuation length in the
outer cladding

/var/wls/duplexReadOut - false Whether both fiber endings should
lead to PMTs

/var/wls/multiCladding - true Whether WLSF has two cladding
layers

/var/wls/gapBetweenFibersHori Jn 1mm Distance between two horizontal
fibers

/var/wls/gapBetweenFibersVert [ 1 mm Distance between two vertical
fibers

/var/wls/quantumEfficiency Dq 0.25 Detection efficiency of PMTs.

Table 4.3: Parameters used by the WLSF module with their respective default values.

bending radius and the segment length leading back to the PMT.

The fiber cladding is realized by a concentric hierarchy of cylinders and tori. The
outermost structure represents the outermost cladding material, and contains the next
layer as daughter volume and so forth. It is possible to choose single cladding and double

cladding for the simulation.

Finally, the PMTs are modelled as simple cylidric slabs of glass, which detect photons
entering them. There is the possiblity to specify the PMT’s efficiency p,. If such a
number between zero and one is specified, a hit is only registered with probability p,.
This probability models the photo cathode’s quantum efficiency as well as any further
sources of loss in the signal chain. It is not strictly necessary to use this feature, since it

is possible to randomly filter photon events during analysis.
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- \ The WLS dye is characterized by its
é ' absorption- and emission spectra, and for our
5 simulation we adopted the spectra provided by
=]

2 0 the manufacturer Kuraray (see Figure 4.14).
% These spectra are read into the program from
£ files, which contain the data in plain text,
1 . :

e : and set as material properties wisassienets and

| |
400 500 600

wLscowponent  (see Section 3.4) of the core ma-
wavelength [nm)]

terial. Kuraray’s Y-11 dye has a decay time
Fig. 4.14: Dye’s emission (above 0) and  of 12ns [26], which is used as the decay
absorption (below zero) spectra of optical . . . . . .
light for three different dye types, provided ~ tilie in the simulation via material property
by the manufacturer Kuraray [25]. wLsrrMEcONSTANT . ['he decay times of Y-7 and Y-8
are of the same order of magnitude as Y-11 [27]
and thus insignificant in comparison with the decay time of the scintillator. This is why
the decay time is the same for all dye types in our simulations.
The form of absorption spectra is always the same as shown in Figure 4.14, but absolute
values of attenuation lengths depend on the dye concentration, which is adjustable via
/var/wls/dyeConcentrationPPM . 1 he attenuation of two dyed fibers, where one fiber is twice as
long, but has only half the dye concentration, is equal, because the amount of dye particles
in both fibers is the same. More generally, given an arbitrary multiplicative factor y, light
traversing the length x - d of a fiber with dye concentration pgye is attenuated by the same
amount as light traversing the length d of a fiber with dye concentration x - paye. Thus,

the transmitted intensity must depend on the product of the two and can be written as

I(N) = I(N) - e FVpased (4.3.1)

where A is the wavelength and k() is a wavelength dependent proportionality factor.
The wavelength dependence of k() has been measured by KURARAY for different dye
types and the results are shown in the absorption part of Figure 4.14. The absorption

length is defined as the inverse coefficent of the exponent:

1
k(A)pdye

In order to obtain absolute values for k()), the transmittance I/1, needs to be mea-

>\dye = (432)

sured with monochomatic light of wavelength A\ and fixed thickness and dye concentra-
tion. Then, the absolute value of k(\) at this wavelength can be calculated from (4.3.1).
The results of measurements conducted by KURARAY are shown in Table 4.4. Fig-
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dmm] Mpfnm] I/1[%] k(\,)[ppm~'mm™"]

dye type  paye[ppm]
Y7 24.8 10 439 3.61 0.0134
Y8 34.5 10 455 4.49 0.0090
Y11 18.2 10 430 6.89 0.0147

Table 4.4: Results of transmission measurements conducted by KURARAY. For each dye type a 10 cm
cube with dye concentration pgy. was illuminated at the wavelength A, of maximum absorp-
tion of the dye type. The resulting value for k(),) can be used to obtain a value for the

absorption length of a WLSF.
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wavelength [nm)] wavelength [nm)]

Fig. 4.15: Total optical attenuation length de- Fig. 4.16: Absorption length of a photon in a
clear fiber depending on its wavelength according

pending on photon wavelength for a dye concen-
tration of 1 ppm~!. to [28].

ure 4.15 shows the absolute values for the attenuation length A4y for a dye concentration

of paye = 1ppm~'. For a different dye concentration these have to be multiplied with a

factor of (paye[ppm])~" according to (4.3.2).
The absorption length for optical photons in the fiber (besides absorption by the WLS
process) is defined as the absorption length of a clear fiber according to [28] as shown in

Figure 4.16. This property is independent of dye concentration or any other parameter.

The outermost cladding receives a much shorter absorption length, as described in
Section 2.5.1. For simplicity it is adjustable and constant for all photon energies because
there is no data provided about it. A default value of about 5mm seems appropriate,

given that undesired photons travel at least 1.29 cm inside the outer cladding when guided

along a 30 cm fiber (see Appendix A.1).
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variable name symbol default value description

/var/photoncounter/width Wpe 30.0 mm Width of the cylinder

/var/photoncounter/thickness - 0.01 mm Thickness of the cylinder

/var/global/gapLength g 0.4cm Needed for correct placement

/var/photoncounter/distance Ipe 0 mm Distance between cylinder and scin-
tillator plate

/var/photoncounter/rindex Npe 1.5 Refractive index of the cylinder’s
material

Table 4.5: Parameters used by the photon counter module with their respective default values.

4.4 Photon Counter

The photon counter is a small module for counting photons which exit the scintillator
plate. It consists of two oblate cylinders defined as sensitive detectors in front and back
of the first scintillator plate. The dimensions of the cylinder and its distance to the scin-
tillator can be adjusted freely by setting the respective variables mentioned in Table 4.5.
This way it is possible to simulate measurements of scintillator samples without WLSFs.
In this case, the refractive index can be set to that of a PMT’s photo cathode such that
it simulates a PMT mounted behind the scintillator plate.

However, with refractive index equal to that of air, it is also possible to use the photon
counter in simulations including WLSFs. The photon counter stores not only the amount
of photons passing through, but also the photons’ positions and whether they exited on
the front or on the back of the scintillator. This way it is possible to get a picture of how

the exiting photons are distributed across the surface.



Chapter 5

Validation of the Model

A validation of the model is necessary in order to be able to trust its results. Since the
detector consists of several parts it would be very difficult to directly validate the model
as a whole. Therefore, the different parts of the model were validated separately at first.
For this, simulations of single modules have been carried out and the results compared to
theoretical expectation and/or experimental measurements. Finally, the entire detector

model was simulated and compared to measurements of one of the detector banks for

SAPHiR.

5.1 Neutron Attenuation in the Scintillator Plate

A simple validation step is to compare the neu-

tron absorption of the scintillator plate in simu- sample monochromatized
. . .. neutrons

lation and measurements. This way it is checked

whether the neutron cross sections and mass ratios *He counter l\ —

are calculated correctly. horon carbide diaphragm

Figure 5.1 shows the setup of the measure- Fig. 5.1: Sctup of a neutron absorption
ment. A monochromatic neutron source provides measurement.

neutrons with a single wavelength. Using a *He

proportional counter the neutron flux is measured with and without a scintillator sample
between source and detector. The transmission rate is the quotient of the two measured
neutron fluxes. In this measurement the scintillator plate only functions as an absorber
and not as a detector itself. A monochromatic neutron source is necessary, because the
lithium’s cross section for neutron capture depends on the kinetic energy of the neutron

as discussed in Section 4.2.

51
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The measurement described here was conducted by Ralf Engels and Giinter Kem-
merling in February 2013 at the HEiDi instrument at the FRM-II [29]. HEiDi utilizes
neutrons from a hot neutron source, monochromatized via a Germanium single crystal.
During the measurement the reflexes (422) and (311) were used, which give two different
neutron wavelengths (see Table 5.1). In order to get a well defined beam, a boron carbide
diaphragm with hole diameter of 2 cm was placed in front of the sample. The '°B inside
the diaphragm (approximately 20 % of natural boron is !B) absorbs all neutrons which

do not pass through the diaphragm’s hole.

Table 5.1 shows most of the results mentioned in [29]. We exclude measurements of
ELJ scintillators which were backed by a Mylar foil. Because the Mylar’s polyethylene
contains hydrogen, neutrons passing through the foil may scatter there and miss the *He
detector. This way the measured absorption is too high. Here we include only ELJ
samples backed by an aluminium foil, which has a very low interaction probability. The
Applied Scintillation Technologies (AST) samples are without backing, so all of them are

included.

In order to compare simulation and measurement it is necessary to determine the
microscopic parameters mentioned in Table 4.1. The mass ratios, grain sizes, and the
densities of ZnS and LiF are readily available in sample specifications. However, the
density of the binder material is usually not provided by manufacturers and needs to be
obtained from the measurements. This is possible by measuring the absorption coeffi-
cient of the scintillator material and calculating which binder density leads to such an

absorption coefficient.

The lithium’s cross section o is defined as the quotient of the absorption coefficient

p=\! and the particle density ny; of °Li:

o= (5.1.1)

a 7L
o depends on the neutron’s wavelength and can be obtained from Figure 4.6. The
attenuation coefficient can be obtained by absorption measurements. If the neutron beam

intensity is Iy before passing the scintillator and I afterwards, the absorption coefficent is

_ In(h/1)

R (5.1.2)

The particle density is the total number Ny; of Li nuclei divided by the total volume.

Nii in turn is the total mass of LiF divided by the combined mass of °Li and fluorine
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nuclei, such that

Ny 1 My, Vii PLiF OLiF 1
NLi = = =" = s . (5.1.3)
% Vo my+myp Vo my+mp (A23) Z p_;( mr; + mg

The sum over X in the denominator contains a term for the binder, which is the single
dependency on the binder density. Combining (5.1.1) and (5.1.3) yields an expression for

the binder density after a few trivial transformations:

oLr-d-o o PLiF o ¢Zns)_1
(

5.1.4
myi+mp)In(lo/I)  pur  Pzns ( )

Pbinder = ¢binder . ((

Mass fractions ¢ x as well as the thickness d are provided by the manufacturers of the
samples and the densities of ZnS:Ag and LiF are given in Appendix A.2. The masses of
°Li and F are my; = 9.9883 x 1072*g and mp = 3.154 x 1072 g [30, 31]. The quantity
to be measured is the transmission ratio /Iy, which determines the value for the binder
density.

As Table 5.1 shows, the measured
binder densities show some tendencies. — Scintillator diaphragm
For all measurements with a neutron
wavelength of 1.1695 A the binder density
is lower than for the respective measure-
ment at 0.794 A. This might indicate a

systematic difference in the measurement

neutron source

BT

—d—

with the two neutron beams.

With the exception of the 4:1:1 AST F{g..5.2: An 1nc.oherent. neutr.on beam passes the
scintillator plate in a conic section. Almost all neu-

scintillators, the calculated binder den- trons traverse a distance longer than d.

sity decreases with increasing thickness.

One might assume that this behaviour is due to the imperfect collimation of the neutron
beam. If we assume a setup as shown in Figure 5.2 with an isotropic neutron beam where
a neutron under the angle 0 < 6 < ¢ travels a distance d/ cos through the scintillator

plate, the beam intensity behind a scintillator plate of thickness d is

4 2
1 . __a cos )1
) 10 J0 sing exp (~ 525 ) L
I § 2w 1—cosd y?
Jdo [d¢ sin6 1
0 0

where we substituted y = 1/cosf. If we calculate the effective binder density pi;, 4o



54 MODELLING A WLSF NEUTRON DETECTOR

as in (5.1.4) with I/I, from 5.1.5, we get a value which decreases with d as can be seen in
Figure 5.3 for an opening angle of § = 0.3 &~ 17°. However, this figure shows, that even
for such a large opening angle the measured binder density varies by only 0.002 % over
the thickness range of 0.2 mm to 0.4 mm, so the geometric effect can be ruled out. As of

now it is unclear what causes the apparent decrease of binder density.

Another interesting fact is that for AST

scintillators the binder density seems to in-

crease with increasing ZnS mass ratio, while for
ELJ scintillators it seems to decrease. If LiF
and binder mass ratios stay fixed while the ZnS

ratio increases, a configuration will be reached,

p’;inder/pbinder

where there is not enough binder material in

‘ ‘ the mixture to fill out the whole interior space
0.1 0.2 0.3 0.4

d [mm)]

between the grains, so that air pockets can form
inside the scintillator. In such a case the den-

Fig. 5.3: Dependence of the effective  sity of the material between the grains would

binder density p;;,4., O the scintillator

thickness d for an opening angle § = 0.3 ~

17°, which is already a very large value. No-  Why the binder density increases in the case of

tice that the change in binder density is in

fact small, since the vertical axis is shifted
by 1.58348 gcm 3.

decrease, as is the case with ELJ scintillators.

AST scintillators is an open question.

For our simulations we chose to use different

binder density values for samples of different

manufacturers, because it stands to reason that different binder materials have been
used. For AST scintillators we use the average of all binder densities of AST samples
in Table 5.1, while for ELJ scintillators we exclude the two 3.2:1:1 samples. These two
samples show a binder density which is much lower than the otherwise very similar values.

The results are:

Do = 1.58gem™,  plld = 1.98gcm™ (5.1.6)

Table 5.1 also shows a comparison between measurement and simulation of the neutron
absorbtion rate. The simulated values fit quite well with the measurement except for
ELJEN’s 3.2:1:1 scintillators, which show an abnormally low binder density as discussed
earlier. In summary, the experiments described in this section are able to validate the
aspect of neutron capture in the scintillator plate and also provide values for the binder
densities of AST’s and ELJEN’s scintillators.
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—
High Voltage
d
( )
\ 4
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\_ J
ADC / Shaping Attenuator
Amplifier

Figure 5.4: Setup for transmission measurements. The PMT signal is amplified in a pre-amplifier and
then, if necessary, attenuated by some factor of 2. After a shaping amplifier creates pulses
for the ADC to digitize, the computer records the pulse data in a histogram.

5.2 Light Attenuation Measurements

In order to examine the propagation of light inside the scintillator plate and to vali-
date our optical processes, the transmission of light emitted by a blue Light Emitting
Diode (LED)was measured for several scintillator samples.

The common setup of measurements is shown in Figure 5.4. A blue LED directs a
pulsed beam at the target, of which we want to measure the optical transmission. The
LED is mounted behind a very narrow diaphragm with 0.5 mm hole diameter in order to
illuminate only a small region of the target. The target is mounted directly in front of a
PMT, in which transmitted photons are detected.

The PMT produces signals, which closely resemble the pulse shape of the light source.
Due to capacitative effects, the signal has a small intrinsic rising and falling edge. These
signals are fed into a pre-amplifier, which integrates the signal by collecting charges on
a capacitor, which slowly discharges through a high-Ohmic resistor. The discharging
current is amplified, so that signals with sharp rising edges and long tails are produced.

This way longer lasting pulses of the LED result in higher signals from the pre-amplifier.



CHAPTER 5. VALIDATION OF THE MODEL 57

The differential shaping amplifier creates gaussian pulses, which the Analog Digital
Converter (ADC) can easily convert into digital signals. The attenuator between pre-
amplifier and shaping amplifier is necessary because the possible output range of the
pre-amplifier is much larger than the possible input range of the shaping amplifier before
it goes into saturation. Besides the unipolar signal output which is fed into the ADC, the
Shaping amplifier has a second, bipolar signal output, so that it is possible to monitor the
bipolar signal on an oscilloscope and adjust the attenuation factor in case of saturation.

The ADC digitizes the pulse heights of the unipolar signals and sends that information
to a PC, where the values are binned in a histogram. This way we obtain information

about the pulse strength of the light reaching the PMT after passing the target.

5.2.1 Light Source

The blue LED is driven by a pulse generator

and provides pulses of blue light with a spec- A 1072 |
trum in the range of the ZnS:Ag emission spec- _ — LED

i ) = --- ZnS:Ag
trum. Figure 5.5 shows a comparison of the & 3| !
optical emission spectra of LED and ZnS:Ag. E 9| |
The amplitude of the pulses is kept constant in é p
order to prevent damage to the LED, so that £ Ly s |
the intensity of pulses is varied by changing the 0 L ! ety

400 450 500 550

pulse width.
wavelength [nm]
To determine the absolute absorption rates
Fig. 5.5: Emmission spectra of the scintil-
lator material and the blue LED used in the
transmission measurements.

of different targets, it is necessary to calibrate
the LED pulse. Therefore the PMT’s response
to the LED without target was measured for
several pulse widths. However, the pulse widths necessary to generate measurable signals
with scintillator targets lead to signal saturation in the pre-amplifier when the beam is
not attenuated.

Therefore, we measured the transmissions for several pulse widths of several optical
attenuators — in our case sheets of paper — while insuring that attenuators of similar
strength have several pulse widths in common. The result is shown in Figure 5.6(a).
To obtain the initial pulse strengths, one can now patch the intensity curves of different
attenuators together by calculating the mean attenuation factor for overlapping regions
and multiplying the data of stronger attenuators with this factor. The result is shown in

Figure 5.6(b).
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Figure 5.6: Calibration measurements for the LED. (a) shows the measured light intensity reaching
the PMT with different number of absorbers plotted against the pulse width. The different
measurements are patched together in (b) and show the total intensity of the non-attenuated
pulse which can be used as basis for total absorption measurements.

5.2.2 Absolute Light Transmission

For the absolute transmission measure-

—. 4,000 F ‘ 7 ments, the target in Figure 5.4 con-
E ’,ZE sists solely of a scintillator plate. There
_%‘ 3,000 ',E | are samples from two manufacturers,
g A namely AST and ELJ. The AST sam-
i 2,000 - —— AST 0.2mm || Ples vary in thickness from 0.2mm to
S -0- AST 0.3mm 0.4mm and have a ZnS to LiF ratio
% 1,000 - _X gﬁ?g;ﬁﬁl | of 2:1, 3:1 and 4:1. As discussed in
g ol -7-ELJ 0.5mm | | Section 5.1, several of the ELJ sam-

| | I . . . .
500 1,000 1.500 ples have an aluminium backing, which

pulse width [ns] is completely opaque for visible light.

Therefore only two samples with My-
Fig. 5.7: Total transmission signal strength of cer-
tain scintillator samples at different pulse widths. The
AST samples shown are the ones with 4:1 ZnS/LiF ra-  measurements. The used samples had

tio.

lar backing could be used in these

thicknesses of 0.32mm and 0.5mm,
and a ZnS:Ag/LiF ratio of 2:1.

The transmission of each sample is measured at several pulse widths. Figure 5.7
shows the transmission signal strengths of several samples depending on five different
pulse widths each. The quotient of the transmission signal strength and the initial signal

strength (see Figure 5.6(b)) then yields the transmission factor, which is constant for each
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serial no.  thickness ZnS:Ag/LiF  transmission
[mm] ratio rate [%]
23166 0.2 2:1 0.81(3)
23168 0.3 2:1 0.73(2)
23173 0.4 2:1 0.66(2)
e 23174 0.2 3:1 0.69(2)
£ 23178 0.3 3:1 0.71(2)
23182 0.4 3:1 0.539(18)
23184 0.2 4:1 0.88(3)
23188 0.3 4:1 0.63(2)
23191 0.4 4:1 0.546(18)
= 4085-05-01 0.32 2:1 2.98(9)
= 4085-06-01 0.5 2:1 1.37(5)

Table 5.2: Absolute transmission values of several samples using the LED light source.

sample and is shown in Table 5.2.

Figure 5.8 visualizes the data in a semi-logarithmic plot. The transmission of AST
scintillators loosely follows an exponential attenuation law with axis intercept of about
one percent. The fact that it differs from 100 % (full transmission at zero thickness) can
be ascribed to surface effects, such as partial reflection of the incoming beam, which are
independent of the sample’s thickness. How much of the light is lost at which surface
cannot be discerned from the data.

Also, it is not possible to differentiate between samples of different ZnS:Ag/LiF ratios
with regard to an optical attenuation length. Their values are too entangled to make
significant statements about the dependence of the attenuation length on compositional
parameters. It is further noteworthy that the AST 3:1 0.3mm sample has a higher
transmission rate than the thinner AST 3:1 0.2mm sample. Although the difference
is not significant (0.71(2) % vs 0.69(2) %), it hints at poor homogeneity in our samples.

Since only two ELJ samples have been measured, the number of fit parameters of
the exponential attenuation law equals the number of degrees of freedom. Thus there
is no possibility for error estimation, and the validity of the exponential law cannot be
confirmed. However if we assume its validity, it means that ELJ scintillators have smaller
surface effects, which lead to a higher total tranmission rate, but their effective attenuation
length is shorter. In the WLSF detector, light will be produced in ZnS grains inside
the scintillator, so the influence of surface effects will be not as significant as in the
transmission measurements. This is why the AST scintillators might be a better choice

than ELJ. However, in order to confirm this, measurements of additional ELJ samples
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Figure 5.8: Absolute transmission values of several samples using the LED light source. The thickness
dependent transmission value was fitted for different manufacturers. Since there are only
two data points for ELJ, there is no error estimation. The fact that the transmission at
zero thickness does not equal unity can be attributed to surface effects.

are necessary.

5.2.3 Comparison With Simulations

The two models of photon propagation described in sections 4.2.1 and 4.2.2 require dif-
ferent input parameters. As the model of effective attenuation length does not depend
on microscopic parameters, it requires only the scintillator thickness and a value for the
optical attenuation length. The latter is a result of the measurement described above.

The model of virtual grain boundaries requires scintillator thickness, mass ratios,
and grain sizes, as well as density, refractive index, and absorption length of the binder
material. Similar to the binder density in Section 5.1, other properties of the binder
material are not easily available and have to be guessed or estimated.

Early studies of ZnS/LiF scintillator plates reported the use of Polyethylene (PE) [32],
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Figure 5.9: Simulated optical transmission factor for the compositions measured in the experiment.
The results were obtained by using modules of scintillator plate and photon counter and
optical photons as primary particles. (a) was simulated using the random walk process
described in Section4.2.2. Binder densities were chosen according to 5.1.6, the attenuation
length of the binder material is Apinger = 20cm. In (b) an effective attenuation length has
been used according to values fitted in Figure 5.8. Since this value has been fitted without
regard to mass ratios, the only parameter is the scintillator thickness.

process type manufacturer ZnS/LiF  a [%] g [mm)]
AST 2:1 95  0.17
random walk o AST 3:1 95 0.15
andom walk process AST 4:1 99 0.14
ELJ 2:1 8 0.19
| , AST — 62 0.5
effective attenuation length ELJ o 59 0.22

Table 5.3: Parameters of an exponential fit of the form a - exp(—d/Aeg) to the simulation results shown
in Figure 5.9.

Lucite (i.e. PMMA) [33] or epoxy [34] as binder material. With an attenuation length of
0.45mm at 404 nm [35], PE probably is not a favourable choice for a binder, because it
might absorb a significant fraction of the scintillation light. With an attenuation length
of the order of 1.5m at 440nm [36], PMMA is much better suited. Since there are many
types of epoxy compounds, including some which are completely opaque when hardened,
it is not possible to give an estimate for its attenuation length. Thus, manufacturers can
choose from a wide set of materials and usually do not provide information about their
choice. In our simulations a somewhat arbitrary value of Apjnqer = 20 cm was chosen,
independent on the exact wavelength. Thus the binder material is effectively transparent

to the scintillation light.
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The simulation results are shown in Figure 5.9 and summarized in Table 5.3, which
shows fit parameters of an exponential function fitted to the results shown in the fig-
ure. The simulation using the random walk process shows a discernible dependence on
the composition of the material. Simulations with a larger ZnS mass ratio show a lower
transmission factor, and the table shows that the fitted effective attenuation length de-
creases with an increasing amount of ZnS:Ag. This is due to the increased fraction of path
length spent in ZnS grains, which exhibit the strongest absorption. The trend of higher
7/nS ratio leading to worse transmittance can also be guessed from the measurements in
Figure 5.8 for thicknesses of 0.3 and 0.4 mm.

The strong surface effects observed in the measurements are captured by neither model.
The values of y-intercept of the exponential fits to the measurements in Figure 5.8 of
1.05(14) % and 11.9% are orders of magnitude smaller than the values obtained in sim-
ulations. A reason for this might be a high reflectance of ZnS of about 90 % [37], which
are not included in the simulations.

The absolute value of the effective absorbtion length simulated with the random walk
model are in the range of 0.14 mm to 0.19 mm, which is about a factor 4 too small for AST
and a factor 1.4 too small for ELJ scintillators. Possible reasons for the shortcomings are
discussed below.

In order to examine the influence of the

o ZnS mass fraction ¢z, on the effective attenu-

031 | ation length, further simulations of the random

g 0.95 | | walk model have been conducted with mass ra-
- O tios ranging from 0.5 to 4.5. For each value,
< 02 O 5 | the transmission of scintillator plates of thick-
0151 © 0o 5 oo | nesses ranging from 0.1 mm to 0.9 mm was sim-

: : : : ulated and the results fitted by an exponential

1 2 3 4

bans function. The result is shown in Figure 5.10.

Over the whole plausible range of ZnS mass
Fig. 5.10: Effective attenuation length
obtained from exponential fit to simula-
tions with different scintillator thicknesses  tive attenuation length varies between 0.15 mm
for each ZnS mass fraction ¢z,s. The simu-
lations use the photon counter module and
the scintillator plate, in which the random  of 40%. However, if one is considering only

walk process is used for photon propagation. dzns < 2 the difference is only about 20 % which

might not be resolvable in measurements due to

ratios from ¢z, = 1 to ¢zus = 4, the effec-

and 0.25mm, which is a significant difference

inhomogenities in the scintillators, as was the case with our samples.

The reason for the shorter effective absorption lengths in the simulations might be that
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it happens that photons travel a large distance inside one single grain as Figure 5.11 shows.
It happens that a photon travels more than 20 or even 40 pm inside a single grain which is a
much longer distance than the mean ZnS grain size of 7.5 nm. This is due to the fact, that
the step length proposed by a Geant process is distributed exponentially by default, which
means that there is no upper limit to the possible step length. A possibility to improve
this behaviour might be to override the PpoststepGetPhysicallnteractionLength() method with a
custom bounded distribution.

The model of an effective attenuation length Apinger for the whole plate material has
also been examined in further simulations. Figure 5.12 shows the simulated effective
optical attenuation length dependening on the input parameter Apjuger. Again, it has
been obtained by simulating the transmittance of several different thicknesses for each
input and fitting an exponential attenuation function to the result. For small A qer it
closely follows the identity as expected, but for larger values it begins to visibly deviate
from the identity. This deviation can be explained by geometric effects. Since the surface
is rough, photons are refracted in a random direction upon entry and have a longer travel
distance through the material.

In conclusion, this validation measurement revealed some discrepancies between mea-
sured effective attenuation length and the one simulated with the random walk process.
This might be addressed by further measurements and by improvements of the algorithm.
Using an effective attenuation length in the first place gives results as expected, except for

a small geometric effect. However, care must be taken when generalizing to unknown com-
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positions, because microscopic parameters probably excert an influence on the effective
attenuation length.

Both processes do not show the huge attenuation due to surface effects, which are
apparent in the measurements. Because neutron events happen inside the scintillator
plate, only effects at the exit surface play a role for the neutron detector. Unfortunately,
our measurements do not allow differentiation between contributions from both sides.
The effect of the surface where the light enters the plate might be examined by measuring

the amount of light backscattered from the scintillator sample in a future measurement.

5.3 Light Intensity Measurements

Experiments conducted in 2010 by Ralf Engels and Jakob Schelten examine the bright-
ness of light flashes of ZnS/LiF scintillators in order to evaluate the usability of different
scintillator types in large scale position sensitive neutron detectors [38]. During the mea-
surements pulse heights of different scintillator samples under neutron irradiation were
recorded. These measurements can be compared to simulations of the grain box model in
order to validate the model of the microscopic structure.

The simulation of the grain box model gives an estimate of the distribution of energy
deposition inside ZnS grains. This distribution cannot be compared directly to measured
results, because the pulse height spectrum also depends on light attenuation inside the
scintillator plate. For the comparison, the propagation of photons was not simulated, but
rather calculated analytically by assuming an effective absorption length as described in
Section 4.2.1.

The neutron source for the measurements was the Kleinwinkel-Streuanlage at the
FRM-IT in Munich. The thermal neutrons from the reactor were monochromatized to
a wavelength of 4A. A PE sample in the beam scattered neutrons isotropically and
the targets were mounted behind a boron carbide diaphragm positioned at an angle of
90° of the PE sample. The diaphragm was used to ensure a well-defined neutron flux
by absorbing all neutrons not passing through a circular hole, so that the samples are
irradiated equally.

For these measurements scintillator samples of AST were used. They were mounted
directly between diaphragm and a PMT, which measured the brightness of scintillation
pulses. After passing a similar signal processing chain as the signals in the absorption
measurements (see Section 5.2), the signal height was digitized in an ADC and binned in
a histogram.

The intensity spectrum of scintillation flashes is very broad and overlaps with signals
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from undesired sources like gamma radiation or thermal fluctuations in the PMT. Be-
cause of this it is necessary to filter out most of these background signals via the ADC’s
threshold, which means that the pulse height spectrum is not recorded entirely and low

intensity pulses are cut off.

5.3.1 Expectation

The PMT was not calibrated, so there is no possiblity to obtain the number of photons
per event. However, the signal pulse height is proportional to the brightness of the scintil-
lation flash, so there is a proportional connection between the number of photons exiting
the scintillator and the PMT’s signal strength. Thus, we can expect the spectrum to be
like (A.4.5) with an additional proportionality factor for the argument and the overall am-
plitude. The ADC digitizes the signal strength with a certain accuracy, and counts data
in a histogram with discrete channel number x € {0,1,..., Xmax}. To obtain the expecta-
tion for the histogram, one therefore needs to integrate the continuous intensity spectrum
(A.4.5) over each bin, which means an integration from ~yx to y(x + 1), where v is the
proportionality constant between channel number and number of detectable scintillation

photons:

v(x+1)
I(x) =k /dN pn(N) (5.3.1)

Here, k is the number of neutron events inside the scintillator plate and py (V) is the
probability density of N photons exiting the scintillator plate on one side after a neutron
event, as calculated in Appendix A.4. Under the assumption that py(N) does not change
significantly over the bin width, one can approximate the integral with the product of bin

width and function value:

100~ ko) "k fae S (S) s

Here, h(z) is the probability distribution of an event happening in depth x given in
(A.4.6). () is the extinction factor of scintillation light, which describes the fraction
of the photons that exit the scintillator after a neutron event at depth z. It is derived
in (A.4.3) by geometrical considerations. Since neutron energy, mass ratios and binder

density (1.58 gem ™3, see (5.1.6)) are known, it is possible to calculate the neutron’s at-
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tenuation length A, which is needed in h(z), by combining (5.1.1) and (5.1.3):

mpi +mp) - > X
An:( - U.;L).FZ"X, (5.3.3)

where o can be obtained from Figure 4.6 and the atomic masses my; and my are given
in Section 5.1. In this case, it is also possible to calculate k as a fraction of the total

number of neutrons K which pass through the scintillator during the measurement:

k= (1 - e‘%> K (5.3.4)

K depends on the experimental setup and can be measured. A measurement with a
lithium-glass scintillator yielded a rate of 729000 neutrons in 10 min. All further pulse
spectra were obtained in 10 min measurements as well, so we have K = 729000. The

unknown values A\; and C'/~v must be fitted to the data.

5.3.2 Results

Figure 5.13 shows three mea-

ZnS/LiF  dpm]  Amm]  C/y[MeV™] 2 ngp sured pulse height spectra of
different samples, as well as a
fit of (5.3.2), with fit param-

eters given in Table 5.4. The

2:1 450 0.438(2)  130.5(3) 2460 820
4:1 450  0.328(3)  108.2(4) 1250 1530

4:1 225 0.205(3)  104.4(7) 1600 2280 ol St the data very

Tab. 5.4: Fit values for samples shown in Figure 5.13 according well, and the fit parameter
to (5.3.2) with the x? values for this fit and the fitted exponential  for /7 seems stable. Even
function.

though the fit parameter for
A, varies by a factor of 2, which seems very large, the tendency that a larger ZnS mass ratio
leads to a smaller effective optical attenuation length is consistent with results described
in Section 5.2.

The fit parameters for different fits show some inconsistencies. While the value for \;
shows the expected trend of increasing for decreasing ZnS mass ratio, it should be similar
for the two samples where the ZnS mass ratio is identical. The different sample thickness
should not have an influence on the optical attenuation length. Further, the value for C'/~
should be equal for all three samples. The deviation of 20 % for the 2:1 sample cannot be
explained.

Unfortunately the spectra have been cut off just above the point where the fit shows

a change in slope. This was probably intentional at the time of the experiment, as the
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Figure 5.13: Results of light intensity measurements of different scintillator samples irradiated by 4 A
neutrons, with fits according to the expectation in (5.3.2) and an exponential function.
The single spectra are offset by 50 channels for better visibility.

increasing slope might be mistaken for the onset of background radiation. The additional
information of the slope onset might have improved the fits significantly and yet increased
the trust in the validation of the grain box module.

However, in comparison with the exponential fit, the result of our model is a clear
improvement at higher channels, where the measured signal starts to decrease faster than
exponentially. Our model captures this feature well for the 4:1 samples and to some extent
also for the 2:1 sample. The y? values of the model fits are better for the 4:1 samples as
well. This shows that the model of the grain structure is able to simulate the distribution

of energy in ZnS grains realistically.
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5.4 Prototype Measurements

In order to validate the model of the detector system as a whole, measurements of a single
detector bank for the SAPHiR instrument as described in Section 2.6 have been compared
with simulations of the model in its entirety. The measurements were conducted in 2013
by Ralf Engels at the TREFF reflectometer at FRM-2 reactor in Munich.

As a reflectometer, TREFF is designed to examine larger structures on the nm-scale,
like thin films. For this task neutrons with longer wavelengths are better suited. The
TREFF instrument uses neutrons with a wavelength of 4.73 A in order to resolve these
larger structures. At this wavelength, the two detector plates of the detector have a
combined conversion efficiency of about 98 %.

This value can be obtained by extrapolation of the absorption coefficient of 39.7 %
from Table 5.1 for the 2:1 500 um ELJEN sample at 1.17 A. Here we have two 500 pm
plates instead of one, which translates to an exponential factor of 2 in the transmittance.
Since Y o & B2
the wavelength of the neutrons at TREFF is 4 times longer than at HEiDi. Thus the
conversion efficiency must be 1 — (1 — 0.397)® ~ 0.98.

o A, there is an additional exponential factor of 4 because

In order to examine the scintillation detector, several different measurements were
conducted, including a reference measurement without neutron irradiation. The spatial
resolution of the detector was examined in several measurements with different boron
carbide diaphragms. Here we restrict ourselves to the reference measurement as well as one
measurement with a 1 mm slit diaphragm at a distance of 10 cm from the detector. This
measurement was arbitrarily chosen, since we are mainly interested in the comparability

of photon counts and duration of neutron events in this context.

5.4.1 Event Reconstruction Algorithm

The data provided by the PMTs consists of single photon events with timestamp and
channel information. Besides signals resulting from neutron events, there are contributions
due to gamma radiation and thermal noise in single PMTs. Recognizing single events is
only possible, if the time difference between two noise photons is much longer than the
time difference between two photons which belong to the same neutron event. In this case
neutron events cause several photons to arrive in rapid succession on neighbouring fibers.
Thus, events can be recognized by finding clusters of photons close to each other in both
layers and by checking for coincidence of two clusters between the layers.

Algorithm 5 describes how clusters can be found in a stream of photon data, where
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each photon event consists of timestamp, channel and layer information. For each photon
it is checked, if this photon fits into any existing cluster in line 5. If it fits to exactly one
cluster, it is simply added to this cluster. If it fits to multiple clusters, then those clusters
are merged and the photon is added to the resulting single cluster. If none of the existing

clusters are fitting, a new cluster is created with the photon as single constituent.

Algorithm 5 Clustering of photons

1: clusters <— empty list
2: while there are more photons do

3: p < next photon

4: for all c in clusters do

5: if p FITS TO ¢ then > algorithm 6
6: if p has no cluster yet then
7 put pin c

8: else

9: remove ¢ from clusters
10: merge ¢ with cluster of p
11: if p has no cluster yet then
12: ¢ < new cluster containing p
13: add c to clusters

The question whether or not a photon fits to a cluster is addressed in Algorithm 6.

The basic idea is to define the distance between two photons p and ¢ as

d(p,q) = (@)z + (%)2 (5.4.1)

where t,,/, is the timestamp and n,/, is the channel number of p and ¢ respectively.
The constants 7 and n. are parameters of the algorithm. A photon fits to a cluster, if and
only if it is from the same layer as other photons of the cluster and its distance to at least
one of those photons does not exceed 1. Two photons from the same channel can have a
time difference of at most 7 in order for them to be part of the same cluster, and photons
detected at the same time can be at most n. channels apart. As a reasonable value for
7, the decay time of the scintillator of about 1ps [12] should not be exceeded. For n. a
value of 2.5 has been chosen for the following analysis. This way photons separated by
two channels can form a cluster, larger differences are forbidden.

As a performance boost, it is possible to define a bounding box for large clusters,
which contains the smallest and largest timestamp and channel number of the cluster’s
photons. A new photon can be compared to these bounds and if it does not fit, it can be

rejected before comparing it to every photon already in the cluster.
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Algorithm 6 Check if photon fits to cluster

Require: 7: maximum duration between clustered photons

Require: n.: maximum channel distance between clustered photons

1: function p FITS TO ¢ (p is a photon event, ¢ is a cluster)
tp, Ny, I, < timestamp, channel and layer of p
for all ¢ in c do

tg, Ng, lg + timestamp, channel and layer of ¢

return True
return False

if ((t, —t,)/7)*+ ((n, —ng)/n.)* <1and [, =, then

If the photon stream is ordered with respect to photon timestamp, it is possible to

rule out very old clusters for new photons. If the newest photon of a cluster is older than

t, — 7 at line 3 in Algorithm 5, no further photon will fit to it and thus it can be removed

from clusters and stored in a list of finished clusters. Thus, the number of active clusters

remains low and the execution time of the for-loop in line 4 does not increase over time.

This can always be done offline with sorted data.
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Fig. 5.14: Two dimensional histogram of photon clusters found by

Algorithm 5 in the data of a neutron measurement. The histogram

plots the duration of a cluster versus its size logarithmically. The

black line indicates a possibility to differentiate between fast clusters
and slow clusters.

In a scenario where
such an algorithm is em-
ployed in situ during the
measurement for data re-
duction, multiple ADC
units collect data paral-
lely, so there might be a
delay in the data transfer
of one ADC module which
leads inversions with re-
spect to time ordering.
In that case the condi-
tion should be relaxed to
finishing clusters if their
newest photon is older

than ¢, — a7 with a@ > 1

in order to increase the robustness. The finished clusters are not stored, but passed to

the coincidence finding algorithm described below.

Figure 5.14 shows the result of the cluster finding algorithm on the data of one mea-

surement. The data was comprised of 8164472 sets of timestamp, channel, and layer
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information for single photons, of which around 34 % were discarded as single-photon
clusters. The remaining 66 % were organized into 1054 285 clusters with an average size

of 5 photons per cluster.

The black demarcation line visualizes the differentiation of two distinct types of clus-
ters. Clusters above the line are somewhat smaller and slower. Figure 5.15(a) shows
clusters found in the data of the reference measurement with the neutron beam turned
off. Both measurements had the same duration, so that it is possible to subtract the
reference measurement from the measurement in Figure 5.14. The result is shown in Fig-
ure 5.15(b) and clearly shows that neutrons cause the slower kind of clusters, above the

demarcation line, and the clusters below it belong to the background.

After the photons have been ordered into clusters, it is possible to match clusters from
different layers to form neutron events. To this end, Algorithm 7 first sorts the clusters
found by Algorithm 5 in two lists according to their layer and evaluates how well any pair
of clusters from different layers scores. This is done using the SCORE-function defined
in Algorithm 8, which first checks if the timestamps ¢/, of the first photons fall within
a coincidence window of 2t.. If so, the score is the product of the cluster sizes with the
gaussian factor exp ((t; — t2)?/t?), otherwise the score is zero. Thus, big clusters close
to each other get large scores. t. should be significantly smaller than the decay time of
the scintillator, but not too small since only few photons reach the PMTs, and thus the
difference in time stamps may vary significantly due to statistical effects. For the following

analysis, a value of t, = 200 ns has been chosen.

Each cluster might be part of multiple pairs. However, one cluster can be counted

for only one event, so it is necessary to assign at most one partner to each cluster. In
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Figure 5.15: Correction of background signals. (a) shows the cluster finding algorithm applied to a
measurement without neutron irradiation. In (b) this background has been subtracted
from the histogram in figure 5.14.
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Algorithm 7 coincidence matching

Require: clusters from algorithm 5

Require: s,,: minimum score for a pair of cluster
1: ay,ay < clusters from clusters with photons from layer 1/2
2: pairs, events <— empty lists
3: for all ¢; in a; do

4: for all ¢ in a, do

5: s < SCORE(¢eq, ¢2) > algorithm 8

6: if s > s, then

7: add {s, c1, c2} to pairs

8: while pairs is not empty do

9: {s, 1,2} < triple in pairs with largest score s

10: remove {s, c1, c2} from pairs

11: if ¢; in a; and ¢y in a; then © If one cluster has been removed already, skip the
pair

12: remove ¢; from a; and ¢y from as

13: 712 < average photon channel of cluster c¢;

14: t «+ earliest timestamp of ¢; and ¢ combined

15: add {t,x1,x2} to events

our algorithm this is done by picking pairs in succession, sorted by their score, with the
highest score getting picked first. Thus, large clusters are paired with other large clusters.
The idea behind this is that neutron events have varying brightness, and if two events
happen at the same time at different positions, they will cause two clusters on each layer.
If one neutron event was brighter than the other, it is possible to reconstruct both events
correctly by matching the larger clusters and the smaller clusters respectively.

In order to be stored, the score of a pair of clusters needs to be larger than a certain
threshold s,,,, which prevents the detection of events with too few photons. In the following
analysis a value of s,, = 4 has been chosen, which requires about 2 photons per cluster

with perfect coincidence. If the coincidence is worse, more photons are necessary for the

Algorithm 8 scoring for pairs of clusters

Require: t.: coincidence time
1: function SCORE(cluster ¢y, cluster ¢s)

2: t1,ty < time of earliest photon of ¢; and ¢y
3: if |t; — to| > 2t. then
4: return 0
5: ni,ng < size of clusters ¢; and ¢y
(=)
6: return niny exp -
C
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score to be registered.

The position of a neutron event can be reconstructed via the channel distribution
of its two clusters. The easiest method, which is also used in this work, is to take the
average channel number of all photon events of a cluster. Knowledge of the fiber thickness
and distance can then be used to estimate the vertical and horizontal position on the
scintillator screen. A more elaborate approach might be a gaussian fit to the channel
distribution. This way the position of neutrons at the border would be estimated more
accurately.

The performance of Algorithm 7 can be increased by sorting clusters by starting time
and checking the score only for those clusters which are not further apart than 2¢.. In
order to be applicable in in situ analysis, this algorithm needs to be modified as well.
As the in situ cluster finding algorithm described earlier returns a finished cluster, it
needs to be buffered and its score with already buffered clusters needs to be calculated.
Then, if the clusters with the currently highest score date back more than 2¢. before the
oldest unfinished cluster, they can be removed from the buffer and given to the laboratory
computer as detected neutron event.

The result of matching clusters from Figure 5.14 is shown in Figure 5.16. The algorithm

250
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Figure 5.16: Position reconstruction via coincidence matching of clusters as described in Algorithm 7.
The underlying data is the same as in Figure 5.14. As the distribution of neutron events
suggests, this measurement was conducted with a 1 mm wide slit diaphragm in front of
the scintillator plate at a distance of 10 cm.
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matched only 129 699 neutron events, leaving 75 % of clusters unmatched. This large rate
stems from the fact, that most of the small clusters are not matched, as the analysis of the
size of unmatched clusters in Figure 5.17 shows. This rejection mechanism is by design
a part of the algorithm. The score function penalizes small clusters and thus it is less

probable for them to exceed the score threshold.

The figure reveals an-

other important fact. None

104 < of the large clusters be-
»  low the demarcation line
—_— 3 ) . . .
z 10 £ (white in this figure) are
=l =
.Q ©  matched. Large clusters
= 107 T :
= <  cannot be rejected due to
e et
S their size, because a clus-
10! : -
5 ter containing 30 or more
100 . 1 ' photons will get a mini-
10 10 10 mum score of 30 - e 2 =
St 4.1, so it will always ex-
Fig. 5.17: Rate of unmatched clusters depending on cluster size. ceed the threshold if there

is a coincident cluster. It
follows, that the clusters are unmatched solely because there is no coincidence cluster
accompanying them, which means that they did not originate on the scintillator plate.
Rather, it may be possible, that they are caused by gamma particles passing through the
WLSF bundles directly in front of the MaPMT.

The algorithm described above is capable of finding neutron events reliably when the
counting rates are sufficiently small. In particular, it is not capable of differentiating
between overlapping events at the same position, i.e. the second neutron arrives before
the scintillation flash of the first one fully subsided. A problem arises when the counting
rate increases to a point where almost all events overlap. In this case the clustering would
fail because all photons would be collected in one single cluster. These difficulties could
be addressed by a more intelligent algorithm for fitting photons to clusters. Such an
algorithm might reject photons which arrive after a maximum duration for a cluster, or

split a cluster when the photon density suddenly increases.
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Figure 5.18: Cluster finding Algorithm 5 applied to full simulations of the SAPHiR prototype. Pho-
ton events were rejected with probability p,, which emulates quantum efficiency of the
PMTs and further possible losses. The axis ranges and demarcation line are identical to
Figure 5.14.

5.4.2 Simulation Results

Figure 5.18 shows simulation results analysed by the same cluster finding algorithm as the
measured data in Figure 5.14. The simulation was carried out with parameters resembling
the SAPHIR prototype: two ELJEN 392 x 256 x 0.5 mm? scintillator plates with ZnS/LiF
ratio 2:1 sandwiching the multicladded 1 mm WLSFs. A gap of 1 mm between two fibers
leads to 128 channels in one direction and 196 in the other. Within the scope of this work,
this validation is the first one including the creation of scintillation photons. The default
scintillation efficiency was obtained by comparison of grain box simulations to literature,
as described in Section 7.4. Also, the matching effective optical attenuation length of
Abinder = 0.4 mm was used.

The PMT efficiency p, was set to one during the simulation and only reduced during

analysis via rejection of photon events with probability p, < 1. The four panels of
Figure 5.18 show results for p, = 0.02, 0.05, 0.1 and 0.25. The photo cathodes of the
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PMTs usually have a quantum efficiency of about 25 %, but the resulting histogram for
Py = 0.25 shows significant deviation from the measured result in Figure 5.15(b). It shows
an accumulation of photon clusters around a size of 70 photons and a duration of 3 ps.
These clusters are detached from an accumulation of clusters of two or three photons on
the left of the panel, which occur when some photons arrive later than 7 after a previous
photon in the same event.

For smaller efficiencies the separation is reduced and eventually vanishes for p, = 0.05.
The reason for this is simply that less photon events are accepeted and thus the clusters
get smaller. However, the number of small clusters also decreases, because the probability
that two or more late photons arrive together within a time of 7 decreases when there are
fewer photons.

The panel with p, = 0.05 already shows a good conformity with the measurements.
Except for very small ones, all clusters lie above the demarcation line and the distributions
are similarly shaped. However, in Figure 5.15(b) the counting rate per bin decreases from
about 1000 for clusters of size 10 to 10 for clusters of size 100, which is three orders of
magnitude. In the p, = 0.05 simulation the difference is only one order of magnitude,
which is why a still smaller efficiency might better fit the data.

This means that the simulation registers many more photons than the measurement.
A potential reason for this might be that the scintillation efficiency was chosen too high
(which is a concern, see Section 7.4), or that there is another source of attenuation not
regarded so far. One source might be surface effects discussed in Section 5.2.2, where
some photons are scattered, absorbed or reflected at the surface of the scintillator plate.
Photons guided along the fiber might also be scattered at defects created when bending
the fiber. This degradation is reduced by bending the fibers in a warm water bath, but
it cannot be prevented completely. These effects are not captured by the simulation
and might be examined by comparing measurements of the whole detector with different

scintillator compositions.

5.4.3 Optical Attenuation in Outermost Cladding

A further source for photon loss might be the optical attenuation in the outermost fiber
cladding. If it is very strong, scintillation photons may be absorbed in the cladding before
reaching the core. Then they would be lost for the wavelength shifting and thus less
photons would arrive at the PMTs. The default attenuation length A\, = 5mm used in
the simulation is a maximum value for which a fiber of about 30 cm length is still well

defined. It may be shorter in the fibers used for the prototype.
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surement is analysed again. For each neutron layer and the sum of both clusters.
event found by Algorithm 7 the size of the clus-

ter from the first layer divided by the overall size of the event was determined and the
result binned in a histogram. The result is shown in Figure 5.19. The distribution shows
a strong bias towards the first layer, with a peak at a ratio of about 80 %. There is a
small dip for a ratio of 50 %, however, this may be due to statistical fluctuations.

The same analysis with simulated data with different values for A. is shown in Fig-
ure 5.20. For these simulations an efficiency factor of p. = 25% was chosen, otherwise
the parameters are identical to the simulation presented in Figure 5.18.

Longer attenuation lengths show a very high peak at smaller ratios of about 60 %. At
this attenuation length the cladding absorbs almost none of the perpendicularly incident
scintillation photons. With a fiber thickness of dy = 1mm, the cladding has a thickness
of 15um. Travelling such a distance, an attenuation length of 1mm or even 10 mm
does not lead to absorption of more than two percents. This is why the absorption in
the first layer is only due to absorption in the dyed core of the WLSF. Because of the
good transparency of the outer cladding, many photons reach the core, and statistical
fluctuations are minimal. This explains the narrowness of the peak for large .. There is
even a second peak visible at a ratio of about 40 %, which indicates neutron events in the
second scintillator plate.

For smaller attenuation lengths, the photon absorption in the cladding increases.
Ae = 0.1mm leads to 14 % absorption of perpendicular photons, for A, = 0.0l mm it
is 78 %. The higher absorption leads to a smaller ratio of photons reaching the second

layer, because the probability that a photon passes a fiber without interaction decreases.
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Thus, only photon paths through the gap between two fibers of the first layer remain un-
obstructed. This leads to an increase of the peak ratio for shorter .. Since more photons
are absorbed in the cladding, less photons can contribute to the shifting process, such
that statistical fluctuations become stronger. This leads to a broadening of the peak.

Comparing the simulation re-
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Fig. 5.20: Normalized distribution of the fraction of  with a quantum efficiency of 25 %,
photons in the first WLSF layer according to simulations

with different optical attenuation lengths A, in the outer
cladding. 5.5 %, a value similar to p, = 0.05,

which shows good agreement be-

this results in a total efficiency of

tween simulations and measurement in Figure 5.18. However, as discussed earlier, this
value might still be too high, so the other sources of attenuation already mentioned must
be considered as well.

In conclusion, the validation of the model has been mostly successful. With a clustering
event reconstruction algorithm, the distribution of cluster size and cluster duration could
be reproduced using a fairly small photon detection efficiency. This small efficiency could

be explained by a short attenuation length in the outer fiber cladding of the WLSF's.



Chapter 6
Optimization

One aim of this work is the development of an optimization algorithm for the parameters
of the model. The parameters should be optimized with respect to detection efficiency
and/or position resolution. These detector characteristics can be obtained by the simu-
lation of several neutron events in the full detector model. For the detection of a neutron
event, for instance, a certain number of photons need to be detected in each WLSF
layer. Thus, the value to be optimized would be the fraction of simulated events in which
enough photons reach the PMTs. Naturally, the number of photons required depends on
the detection algorithm employed for the detector.

Because possible optimization functions depend on simulation results, it is not possi-
ble to calculate the gradient analytically in order to use it for steepest decent methods.
Calculating the gradient numerically would require a huge effort, because the change of
the function value under a very small change of the parameters is dominated by sta-
tistical fluctuations. Therefore, a numerical gradient obtained with insufficient data is

meaningless.

In cases where the gradient is unavailable and properties of the optimization function
are not known, commonly employed optimization algorithms are genetic or evolutionary
algorithms [39]. These imitate the biological process of evolution in that a population
of random solutions creates offspring via reproduction, mutation and recombination of
parameters. Better solutions, i.e. solutions where the optimization function has a higher
yield, exert a larger influence on the new offspring, so that bad solutions fade out. This

way the population of solutions converges towards an optimum.

However, a population of such an algorithm should be of substantial size in order for
the recombination of the fittest to yield enough diversity. To determine the fitness of

each solution, several hundred events have to be simulated. This adds up to a very long

79
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simulation time for only one generation.

Another popular optimization algortithm for such problems is called simulated anneal-
ing [40]. This algorithm simulates a random walk of a particle in the parameter space with
an optimization function as potential. A random step is always accepted if it improves the
optimization function. Otherwise it is accepted with the probability exp (—Af/T}), where
Af is the change of the function value between steps and T; is called the system temper-
ature at the time of the step. If the temperature is high, the probability of acceptance
is high even for steps which lower the function value. Thus, the algorithm avoids getting
stuck in local optima. The temperature is lowered slowly as the random walk proceeds,
which results in unfavourable regions being avoided. When the temperature eventually
reaches zero, the algorithm only accepts steps which improve the function value, and
therefore finds the current local optimum which usually is also the global optimum if the
parameters of the algorithm are suitable.

This algorithm also requires many function evaluations, because it should be possible
for the random walk to reach the whole parameter space at each temperature setting.
Otherwise, if the temperature is decreased too rapidly, there is a probability of finding a
local optimum only. Also, this algorithm compares function values between small steps
of parameters, which is heavily influenced by statistical fluctuations as discussed earlier.

This is why this algorithm is also ill suited to our problem.

6.1 Multi Dimensional Golden Section Search

The algorithm chosen for our task is a multi dimensional generalization of the Golden
Section Search (GSS). The one dimensional variant is one of the fastest optimization
algorithms which do not use a derivative (like e.g. the Newton method). As counterpart
to the bisection method for finding roots, the GSS divides a search interval and excludes
part of it in each iteration.

In order to find the maximum of a function f(z) on the interval = € [a,b] C R with
GSS, f needs to be unimodal on this interval, i.e. it is monotonically increasing between
a and the maximum and monotonically decreasing between the maximum and b. If this
is the case, we can choose any two points 1, x5 such that a < x1 < x5 < b and compare
the function values at these points. If f(x;) < f(z2), then f must be monotonically
increasing up to at least x1, so the optimum surely lies between z; and b. Otherwise, if
f(x1) > f(x2), the optimum must lie between a and x5. This way it is possible to narrow
the interval by successive function evaluations.

In order to minimize the number of iterations, the choice of z; and x, should be
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symmetrical, so that the length of the interval which can be excluded is the same regardless

of which function value is greater. If we choose

a—+b a—>

o6 0<e<l (6.1.1)

Ti/2 =

the interval is reduced by a factor of %(1 + &). In order to minimize this factor one
needs to choose an ¢ close to zero. However, if the function evaluation is costly, this is
not the fastest solution, because during every iteration two function values have to be
calculated. Since the point with larger function value lies inside the new interval, it is
possible to choose ¢ such that this point is used again, so that only one new function
evaluation has to be made per iteration. Without loss of generality, let us assume, that
f(z1) > f(x2) so that the new interval is [a,xs]. Then we want z; to be equal to the

greater of the new evaluation points:

a+ xo

T = 9 —5

a — To
2

=  EH4-1=0 =  &Gp=-2+V5 (612

The negative solution is discarded, since (6.1.1) requires £ to be positive, so we have
¢ =5 —2=0.236. The reduction factor per iteration is then 1(v/5 — 1) ~ 0.618, which
is the golden ratio ¢ and the namesake for this algorithm. Since one of the function values
can be reused, the golden ratio is also the reduction factor per function evaluation. In
the case of a very small £ two function evaluations are necessary per iteration, so the

reduction factor per function evaluation is always greater than /0.5 =~ 0.707.

To show the unimodality of a function is often a difficult task. However, if the function
is differentiable and the derivative has finitely many roots, the algorithm still converges
towards some local maximum or towards the boundary of the initial interval, even if the

function is not unimodal.

A multi dimensional generalization is given in [41] and is summarized in Algorithm 9.
The parameter space is generalized to a hyper-cuboid defined by the product of allowed
parameter intervals which are successively narrowed during iterations. In the algorithm
two vectors p and ¢ are used to keep track of upper and lower bounds of each parameter.
There are 2™ points of function evaluations, where n is the number of parameters or the
dimensionality of the optimization problem. The points are determined by starting from
the center of the hyper-cuboid and moving towards its corners by a fraction of €. In line 6
of the algorithm the displacements from the center are calculated component-wise from

binary direction vectors §'€ {—1,1}".
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Algorithm 9 Multi dimensional GSS

Require: n: number of parameters (dimensionality of optimization problem)

-

Require: b,,,x € R™: upper bounds of parameters
Require: b,,;, € R": lower bounds of parameters
Require: ¢: relative required accuracy

Require: &: excentricity of function evaluation points

L e p
2: (f(— proin
- 2
3: while |p’ — §° < €2 |bmax — bmin| do
4: mazx <— —0o0
5. for all §e {—1,1}" do
6: u;  s; 5(pi — @), for i € {1,...,n}
7: Feitp+q+u
8: f < FUNCTION_VALUE(rF) > see 10
9: if f > max then
10: max < f
11: U =
12: for all: € {1,...,n} do
13: if ©** > 0 then
14: ¢ < 5(pi + @) — uP™
15: else
16: Di < %(pz +qi) — u™
17: Result: value and error of ith parameter: %(pz +qi) £ %(pz —q) forie{1,...,n}
After evaluating the function, the parameter
max space needs to be restricted depending on the
[} [~ \
5 point with the maximal function value. As shown
=2 f(m schematically in Figure 6.1, each parameter inter-
3
i val [g;, pi] is cut off beyond the ith component of
the evaluation point opposite to the maximum.

Thus, the parameter volume is reduced by a factor
parameter 1 of (1(1 4 &))" at cach iteration. If £ is chosen as

Fig. 6.1: Schema of multi dimensional in the one dimensional golden section search, it is

GSS in two dimensions. The function  again possible to reuse the function evaluation re-
is evaluated at the four crossing points.
If the maximum is for example found

at the upper left point, the gray areais  evaluation is saved. It follows, that for this special
excluded for the next iteration.

sult of the maximum in the next iteration and one

case the volume reduction per function evaluation
is 71 instead of (3(1+¢&))2" in any other case.

While this is an advantage in the one dimensional
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Figure 6.2: Example of a non-unimodal function, where the two dimensional GSS cannot find the
maximum of (6.1.3) and does not converge towards the border.

GSS, for n > 2 the reduction factor for the golden section is larger than the one for very
small £&. However, with very small £ the distances between function evaluations are very
small, which is a problem as described above. For larger values of £, the advantage of the
resuable function value persits, which is why the GSS was chosen despite not being the
optimal method in general.

The requirement of unimodality is more strict in the multi dimensional case, because
it is possible to construct non-unimodal functions for which the multi dimensional GSS
does not terminate at a local maximum or at the initial boundary. An example of such a

function is shown in Figure 6.2, where the first three GSS iterations on the function

() = exp (—(W ~(v-3) ) -~ 2y (6.13)

for x and y between —1 and 1 is shown. The maximum is excluded in the second
iteration, and the algorithm converges on (0.2 —v/5)”, which is neither a local maximum
nor a point on the initial boundary.

However, this kind of behaviour does not only depend on the function itself, but also
on the starting parameters. Note that the function parameters had to be tuned with
respect to the points of initial function evaluation in order to fool the algorithm. An

initial parameter space only slightly smaller would have led to the maximum being found.
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An indication for such an error is, when the final result of the algorithm lies on the
boundary of an early iteration. If unimodality of the function is not certain, the validity of
the result needs to be checked by performing a further GSS around the alleged maximum.
If the second GSS gives some other, better result, the first solution was probably not a
local maximum. Of course, if the second GSS also shows convergence to an early boundary,

its result needs to be checked again.

6.2 Calculation of Function Values

One of the challenges of the optimization is the dependence of the function value on
costly simulations, which entails statistical fluctuations. In order to hold the number of
simulation runs as low as possible, a measure has to be developed by which an algorithm
can decide if further simulations for a certain set of parameters is necessary.

As a precursor to a more complete detection efficiency function, consider Figure 6.3
showing the distribution of energy deposited in ZnS grains obtained via simulations of
the grain box. Since the reconstruction algorithm needs a certain amount of photons
in order to detect an event, there is a threshold below which an event is undetectable.
This threshold can be translated to a threshold of minimal energy to be deposited in ZnS
grains. Thus, a rough estimate for the detection efficiency can be given by integrating the
number of events in which the deposited energy is sufficient and multiplying it with the

neutron conversion efficiency of the scintillator plate.
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Fig. 6.3: Distribution of energy deposited in Iteration
ZnS grains. If one assumes a threshold of en-
ergy needed to produce enough photons for the
neutron to be detected, the efficiency is the area
under the curves to the right of the threshold.

Fig. 6.4: Development of value and error of
mock-detection efficiency with the number of it-
erations.
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Algorithm 10 Calculation of function value at 7

Require: m: number of events per simulation run
Require: L: integral length
Require: f(7,%): function to be optimized, where ¥ is simulation data
Require: e(7, X): error of f(r,X)
Require: a: error factor
1: function FUNCTION_VALUEC(r)

2: > < initial state without simulation data
3: C + empty list
4: n,k <0
5: repeat
6: simulate m events and add results to X
7 add f(r,X) to C
8: k+—k+1 > Number of iterations
9: if k> L thegl
1 . . 2
10: s 7 isz;L (Cli] - Cli — 1))
11: if s> (a-e(F,%))? then
12: n <+ 0
13: else
14: n<n+1 > Number of consecutive iterations below threshold
15: until n > L

16: return f(7, %)

Given an arbitrary threshold of 1 MeV, Figure 6.4 shows the development of efficiency
value and its statistical error with the accumulation of simulation data. The value seems
to be leveled out after about 300 simulation runs, but it is actually steadily increasing
until there is a noticable kink after the 400th iteration. Thus, it is advisable to continue
the simulation to collect more data. During the optimization process the decision whether

or not to continue needs to be made automatically by a suited algorithm.

The final function value is reached when there is little change if more data is taken
into account. This can be checked by comparing the function value before and after a
simulation run. However, statistical fluctuations allow for those function evaluations to be
similar by chance. To have a robust check, the differences induced by many consecutive
runs should be taken into account. Since a change can be positive or negative, the average
of squares of the changes can be used as a measure for the evenness of the function. The
error of the function can serve as a value to compare against. However, the average change

should be much smaller than the error.

Algorithm 10 shows how a function value is calculated during our optimization process.
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It requires the definition of the integral length L, which is the number of change values
that are summed up after a new simulation run finished. In order to be able to sum them
up, function values are stored in a list C' in line 7. For each parameter set 7 at least
L + 1 runs with m events are simulated, so that there are at least L function differences
available for the sum. Starting from the (L + 1)th run, the average square change s is
computed in line 10 and compared to the square of the function error multiplied by a
factor o < 1.

If s is smaller, the algorithm does not directly terminate. It rather requires L consec-
utive checks to succeed in that manner. Only if that happens, the function terminates

and returns the function value containing all simulation data.

6.3 Example Optimization Function

The precursor function introduced in the previous section can be extended to take into
account the thickness of the scintillator by choosing a threshold dependent on it. Assuming

that the WLSFs need a certain amount of light and that the transmittance of light inside
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Figure 6.5: Function evaluations during a GSS of the precursor function defined in this section with
color coded function values. The mass ratio ¢z,g was restricted to 1 — 6 and the thickness
d to 0.1 — 0.6 mm. GSS-result: ¢z,s = 3.83(9),d = 0.574(9) mm with a detection efficiency
of 12 %.
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the scintillator plate is governed by «;(x) defined in (A.4.3), one can define the threshold

as

d
Jdx h(x)
E.(d) = E} — : (6.3.1)
6fdx h(x) - oq(x)

where d is the scintillator thickness, E? the energy required to create the amount of
light needed by the WLSFs, and h(x) the probability for a neutron event happening at
depth x defined by (A.4.6). The neutron attenuation length A,, which is needed for the
definition of A(x) and the neutron conversion efficiency of the scintillator plate, can be
calculated as (onr;)~!, where o is the neutron capture cross section of °Li and 7y, is its
nucleus density defined by (5.1.3). nr; depends on the mass ratios, so the composition
will not only influence the function through the simulation of energy deposition, but also
through a change in h(z).

The function is defined by counting all grain box events, in which more than E.(d) is
deposited in ZnS grains, dividing it by the total number of events and multiplying it by
the neutron conversion efficiency 1 —exp(—d/\,). An estimate for the error is the square

root of the count multiplied by the same factors.

Figure 6.5 shows a GSS of the maximum of this function with scintillator thickness
0.1mm < d < 0.6mm and ZnS mass ratio 1 < ¢z, < 6 as parameters, and the ar-
bitrary choice E? = 0.2MeV. The GSS finds the maximum at ¢z,s = 3.83(9) and
d = 0.574(9) mm.

The algorithm shows a reliable increase in the function value for consecutive GSS it-
erations until the point where the difference in mass ratio becomes about 0.1. At these
parameter distances the statistical fluctuations mentioned earlier in this chapter begin to
dominate the variation of function values. It would require much more data in order to
reliably compare function values that close to each other. However, this is not necessary
for optimizing the detector. Scintillator plates are usually not manufactured with sev-
eral digits of precision in their parameters. Thus, a rough estimate of the maximum is
sufficient.

The error returned by the algorithm depends entirely on the required accuracy . This
may lead to unreasonable error estimations for very small € because the algorithm does
not yet detect the strength of statistical fluctuations. As an improvement, the algorithm
could check for function values which strongly deviate from an interpolation estimate of

already calculated values and in such a case either terminate or increase the statistical
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requirements for function values.
In this example it might be advisable to check the validity of the result by performing
a further GSS around the maximum found in the first iteration. However, since this is

only a proof of concept, it has not been done.



Chapter 7

Further Simulation Results

7.1 Refractive Index of Binder Material in Random

Walk Process

The refractive index npinger 0f the binder ma-

terial is an unknown parameter of the ran- Q‘
dom walk model for photon propagation and 0.18 | 8
had to be guessed in Section 5.2. Since it = 4161 O © o o |
is unknown it might possibly be used as a fit % @ o -
parameter for the model. To test this, optical < 0.141 |
simulations with different values for npiuger 0.12 | :
have been carried out. For each value of - ‘ ‘ ‘
Npinder S€vVeral scintillator thicknesses d were 1 1.5 2 2.5
Tbinder

simulated in order to determine the effective

absorption length of the model via exponen-  Fig. 7.1: Effective optical absorption length

. Aeft Of the scintillator plate depending on the
tial fit. binder refractive index npinger. For each value
These simulations used only the scintilla- ~ Of 7Nbinder, the optical transmission was sim-
ulated for several scintillator thicknesses, and
an exponential attenuation law was fitted to

partjc]es were 10000 Optical photons with the results. The error bars indicate the confi-
dence of the fit.

tor and photon counter modules. Primary

wavelengths sampled according to the LED
spectrum shown in Figure 5.5. The binder material was chosen to have an optical atten-
uation length of Apinger = 20 cm and a density of ppinger = 1.58 gecm ™3, which is the AST
binder density determined in Section 5.1.

Figure 7.1 shows the fit results to our simulations. While the fitted effective attenu-

ation length does depend on npinger, the range of plausible values is 1.3 < Npinger S 2.2

Y
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in which the effective attenuation length varies between 0.11 mm and 0.19 mm. Further-
more, the attenuation length seems to have a maximum of about 0.19 mm for nyinqer ~ 1.4,
which is the default value used in the other simulations. This maximum is close to the
measured value for ELJ scintillators, but there were not enough statistics in the mea-
surements of ELJ samples for it to give a reliable value. The much more reliable value
for AST scintillators, A\; = 0.66(18) mm (see Section 5.2), is outside this range. There-
fore, variation of the refractive index of the binder material cannot explain the deviation
between measurements and simulations of the random walk model.

A reason for the maximum might be the optical similarity between binder material and
LiF grains (npp = 1.4 at 450 nm [14]). If npinger = nLir, the probability for reflection at a
binder/LiF boundary vanishes and the deflection angle upon “refraction” is zero. Thus,
the only light scattering component remaining is ZnS. With less scattering events, average
path lengths are shorter, and the effective attenuation length increases. This suggests
that a binder material should be chosen with a refractive index as close as possible to the

refractive index of LiF.

7.2 Variation of Grain Sizes

As mentioned in Chapter 4, the variation of the grain size of ZnS has already been
examined in [4]. However, the placement of LiF grains was not included in that model.
Therefore, starting points for alpha and triton pairs close to ZnS grains were more likely
than when considering the placement of a LiF grain first and placing alpha and triton
anywhere in it. For LiF grain sizes much smaller than the alpha particle’s range this effect
is not significant. However, typical grain sizes of LiF are of the order of 2 pm to 3pm,
which is about half of the alpha’s range of about 5pm [16].

Figure 7.2 shows the dependence of the average energy deposited in ZnS grains per
neutron event on the grain size of both grain types. While there exists a clear dependence
on both grain sizes, the influence is rather small. Varying one of the grain sizes between 3
and 9 pm while keeping the other one constant results in changes of about 10 % to 20 %.
Lower ZnS grain sizes were not examined due to the cubic dependence of the number
of grains on the inverse grain size and finding a valid placement for a large number of
grains is computationally expensive. The number of grains can be reduced by decreasing
the width and height of the grain box, but alpha and triton particles might get deflected
laterally and leave the grain box if it is too small.

Since the grain size of LiF is taken into account only for one sphere around the origin,

it is no problem to examine the behaviour for small LiF grain sizes. Figure 7.3 shows
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Fig. 7.2: Average amount of energy deposited . o
in ZnS grains for different grain sizes of ZnS and ~ Fig. 7.3: Average amount of energy deposited in

LiF grains. Results were obtained from simula- ZnS grains for LiF grain sizes smaller than 3 pm
tions of the grain box module with ZnS/LiF ratio ~ and default ZnS grain size of 7.5pm. The bars
2:1. For each point on a 1pm x 1pum grid 1000 indicate the root mean square deviation of the
events were simulated and the average energy cal-  distribution, the error is a factor 45 smaller since
culated. The space in between grid points was  each data point represents 2000 simulated events.

interpolated bilinearly. The linear fit shows that the average deposited

energy is decreasing for increasing LiF grain size.

the average deposited energy for small LiF grains at the default ZnS grain size of 7.5 pm.
The bars in the figure show the root mean square deviation of the distribution, not the
error of the average. Since each data point is backed by 2000 simulated events, the error
is smaller than the root mean square by a factor of V1999 ~ 45.

A linear fit shows a very gentle slope of 0.07MeV pm~!, which does not continue
beyond sy > 4 pm, as Figure 7.2 shows. For LiF of such a grain size, the alpha particle
leaves much of its energy inside its origin grain. Thus the probability that it reaches a
nearby ZnS grain to deposit energy there diminishes rapidly. Then the main contribution
comes from the triton particle, which is not heavily influenced by the size of the LiF grain
due to its longer range.

In conclusion, if the grain size of LiF is known to be about 2.5 um, neglection of this
grain size in simulations can result in errors of the order of 10 % to 15%. For detectors
based on a ZnS/LiF scintillator this is usually the case and thus the finite grain size should

be taken into account in all simulations.
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7.3 Influence of Variance in Grain Radii

Another novelty in our model is

3 ! __ the variability of radii of individ-
X . .
= _ - _ _ B 4 = ual grains. The radii are randomly
% ;% distributed according to a gamma
L | n
2 2 13 2 distribution with freely adjustable
SR O oA = . | 4 vari
2 5 expectation value and variance (see
3 . KE 12 2 Section 4.1.1). This enables us to
B B 1 1o B . . .
g - o - 1 1 g examine the influence of the vari-
% 1} ....... <> ------- — 1 E . .
< = ance of grain sizes on the energy de-
= . . .
oL 1y @ position in ZnS grains.

| | | |
0 0.1 0.2 0.3 0.4 0.5

. e Figure 7.4 shows the results of
relative deviation o7 ¢

simulations where the relative ZnS

Fig. 7.4: Influence of the relative deviation of ZnS grain
size on the amount of energy deposited in ZnS grains in
a 4:1 scintillator. The left axis denotes the energy for
circles, the right axis denotes the fraction of events in
which no energy is deposited in ZnS:Ag for diamonds.

grain size deviation oy ¢ was var-
ied between 0 and 0.5 with a grain

size of sz,s = 10pm. The influ-

Bars for the amount of energy represent the root mean
square. With 20000 events per data point, the error is
smaller by a factor of 140. Data points have been slightly
offset horizontally in order to increase readability. oy
was varied between 0 and 0.5 in steps of 0.1, szng was

ence on the average amount of en-
ergy deposited in ZnS grains does
not seem very high. However, the

energy changes from the maximum

Hopm. 1.73MeV at 05, = 0.1 to 1.61 MeV

at 07,5 = 0.5, which is a difference
of 7%.

The influence is mainly due to the increased number of events without energy deposi-
tion, as the diamonds in the figure show. That number increases from 1% to more than
4%. A reason for this effect might be that according to (4.1.7) the expectation value for
the volume of a sphere increases with increasing oy, o, so less spheres are placed in the
grain box such that the space between spheres gets larger.

It is peculiar that the maximum energy deposition does not occur at o ¢ = 0. It may
be worth further investigation in order to verify the non-zero minimum. If it persists, it

would mean that a small variance in grain sizes is beneficial to the detection efficiency.
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7.4 Scintillation Efficiency of ZnS:Ag

One of the necessary input parameters of the cavscintillation process is not known: the
absolute scintillation efficiency C' of ZnS:Ag. In the measurements described in Section 5.3
a value for C'/~y was obtained, but since the PMT was not calibrated, it is not possible to

determine v and thus C.

Fortunately, measurements which determined the number of emitted photons have
been carried out for several scintillator samples in 1969 by Spowart [42]. However, during
these measurements single neutron events were not resolved. Instead, the photo current
resulting from the neutron flux was measured. Thus, only the average number of photons
per neutron event was determined. The results are shown in Table 7.1.

The value for (Nei) given in [42] is directly proportional to the amount (N) of
photons passing through the photo cathode of the PMT. According to calculations in
that report, 45% of the light exiting the scintillator is bound to the photo cathode, so
(N) = 0.45(Neyit). Using the probability distribution px (V) from (A.4.5), the theoretical

expectation for (V) can be calculated in a similar manner as in Section 5.3:

o0

(V) = /dN N pw(N)

= [dz h(z) ZiN al(;\)f. C pE(al(;\)[- C)
: (7.4.1)

Tt ——a T = °
=]

0

o

C/dE E - pg(E) /dx h(z) ay(z)
= C(E)au),

with o;(z) and h(z) defined as in (A.4.3) and (A.4.6), and pg(E) being the distri-
bution of energy deposited in ZnS grains approximated by simulations of the grain box
module. In the third step we substituted the integration over N by integration over
E = N/a,(z)C, which is the energy deposited in ZnS:Ag. The two integrals factor out
and can be performed independently of each other. The last step is a definition of two

expectation values (E) and (oy),.
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mass ratio scintillator neutron number of

ZnS/LiF /binder  thickness attenuation photons emitted
factor per neutron hit

d[pm] 1 —1/1[%] (Nexit)

2:1:1 730 48 59000

2:1:1 250 16 157000

3:1:1 220 15 174000

6:1:1 210 8 157000

1:3:1 230 37 47000

1:6:1 230 41 27000

Table 7.1: Scintillation efficiency of some samples as reported in [42]. The neutron attenuation coeffi-
cient was measured using a manganese foil, and the number of photons emitted were obtained
by measuring the photo current of a calibrated PMT mounted behind the scintillators in a
defined neutron flux. The light output differs across samples due to differences in mass ratios

and thicknesses.
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Fig. 7.5: Simulated probability distribution of the
amount of energy deposited in ZnS grains after a neu-

tron event for all different mass ratios mentioned in
Table 7.1.

(E) can be obtained from simula-
tions of the grain box module with the
same mass ratios as in Table 7.1. The
ZnS grain size is set to 10 um which
is mentioned in [42] to be the optimal
grain size. The other parameters are
left at the default values shown in Ta-
ble 4.1.

Even though the neutron attenua-
tion factor is given, we cannot reliably
determine the binder density in this
case. The formula for the binder den-
sity (5.1.4) requires the cross section
of a single °Li nucleus, which depends

on the neutron energy. Since a ther-

mal neutron source without monochromator was used in [42] and the energy spectrum

of the source is not provided, the average neutron energy is unknown. The assump-

tion of monochromatic thermal neutrons (25 meV) yields binder densities in the range of

0.3gcem ™3 to 0.6 gcm ™. This value is much lower than that of common binder materials

which is why the more conservative default value of 1gem™

results are shown in Figure 7.5.

3 was chosen. Simulation

For the calculation of (¢y), the knowledge of attenuation lengths for neutrons A, and
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mass ratio scintillator ~ energy photon scintillation
ZnS/LiF /binder  thickness deposited transmission efficiency
in ZnS coefficient  at A\; = 0.41 mm
dum]  (BMeV]  (a) C.fkeV]
2:1:1 730 1.09 0.23 246
2:1:1 250 1.09 0.42 338
3:1:1 220 1.43 0.45 267
6:1:1 210 2.10 0.45 168
1:3:1 230 0.39 0.48 249
1:6:1 230 0.23 0.49 238

Table 7.2: Deposited Energy, photon transmission and scintillation efficiency for the configurations men-
tioned in Table 7.1. The latter two values were calculated at \; = 0.41 mm. This gives a mean
scintillation efficiency of C' = 249keV ~! and a root mean square deviation of AC = 55keV 1.

photons J; is necessary. The former can be obtained from the attenuation factor 1 — 1 /1

and the sample’s thickness d:

d

= 57D (7.4.2)

I = Iye >n e A\,

Under the assumption that all samples have the same optical attenuation length, one
can calculate the scintillation efficiency C; for each sample s and calculate the mean C'

as well as the root of the mean square deviation AC"
C= e
=z 8 ;
AC = 1Z(C —C)?
e’

(7.4.3)

Figure 7.6 shows the relative standard de-

viation AC/C' depending on )\; in the range

. .. 0 0.2 0.4 0.6 0.8 1
of 0mm to 1 mm, which shows a minimum at Nfmm]

A; = 0.41 mm. This means that this value for
Fig. 7.6: Relative standard deviation of the

the effective photon attenuation length is the  ;pgolute scintillation efficiency C of ZnS:Ag

best fit for our data. At this optical attenu- depending on the effective optical attenuation
. o . length A

ation length the mean scintillation efficiency

becomes C' = 249keV~! and the root mean square deviation AC = 55keV 1.

This value seems very high, especially when compared to the value of 100 keV~! for

gammas [43], and it is necessary to critically reflect on some of its aspects. One assumption
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that has been made is, that the effective optical attenuation length is the same for all
samples. However, as simulations in Section 5.2.3 suggest, increasing the fraction of ZnS
of a scintillator probably leads to a shorter optical attenuation length.

Another point to mention is the inconsistency of neutron attenuation length in Spowart’s
measurements for samples of equal mass ratios but different thicknesses. Using (7.4.2),
the attenuation lengths of the 2:1:1 samples in table 7.1 are 1.1 mm and 1.4 mm respec-
tively. Such a discrepancy of about 30 % also shows up for the values of the scintillation
efficiency Cy, as can be seen in table 7.2. So the relatively large variation in Cs may in
fact originate from these inconsistencies.

Further, since the photodetector was operated in current mode during the measure-
ments, single events could not be resolved. That is why only information about the mean
value and no information about the distribution of the number of photons per neutron
event were obtained.

However, our result is a first estimate of the scintillation efficiency of ZnS:Ag. In
conjunction with the effective optical attenuation length, it is suitable for simulations of
photons in a detector system using a ZnS/LiF scintillator.

A new measurement including a larger variety of sample configurations with well
known binder density, a monochromatic neutron source, and event based data collection
could address all problems discussed and combined with further simulations yield a much

more precise value for the scintillation efficiency of ZnS:Ag.



Chapter 8
Conclusion and Outlook

This work addressed the numerical simulation of a ZnS/LiF scintillation neutron detector
with WLSF readout. A model of the physical front end of this detector system was
developed and compared to experimental results and earlier models regarding such a
detector. The model was implemented in Geant4 and includes the description of the
scintillator’s microscopic grain structure and the propagation of photons in scintillator
plate and WLSF's.

Contrary to earlier models, the LiF grain size was included in this model in form of a
region around the starting point of alpha and triton particles, where placing ZnS grains
is not possible. It was shown that the variation of LiF grain sizes between 0 pm and 3 pm
leads to energy depositions in ZnS differing by 10 % to 15 %. This means that addressing
the LiF grain size in the model gives an advantage over models which treat the LiF /binder

surrounding as homogeneous.

Another enhancement of earlier models was allowing individual, random grain sizes.
Simulations with different variances of grain radii revealed that this parameter excerts
an influence on the average energy deposition of about 7%. This is mainly due to an
increased average grain volume and consequently a reduction of the number of spheres,
which results in larger spaces in between the grains and leads to slightly more events
without energy deposition in ZnS:Ag.

Different parts of the model were validated independently against real measurements.
Measurements of neutron attenuation in several scintillator samples with different com-
positions and thicknesses were in good agreement with simulated values and showed an
average deviation of about 5%. They also provided estimations for the binder densities

of scintillator samples of the manufacturers ELJ and AST.

The propagation of photons inside the scintillator plate was modelled by random
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virtual grain boundaries, at which optical processes occur, or interchangeably by an ex-
ponential attenuation law governed by an effective attenuation length. Simulations using
the random walk model indicate that the optical absorption of the scintillator plate de-
pends on the refractive index of the binder material and has a minimum when refractive
indices of binder and LiF are equal. In this case photons do not scatter at the very small
LiF grains and have straighter paths, which leads to a longer effective attenuation length
for photons, thus increasing the light yield of the scintillator.

Optical transmission measurements revealed that surface effects play an important role
for the photon propagation. Currently neither the random walk model nor the effective
model capture this effect. Further measurements of the scintillator’s reflectance might
reveal to what extent surface effects contribute to the attenuation of scintillator light.

The effective model reproduces the attenuation length for photons in the scintillator
up to a geometric effect. Simulations using the random walk model produce attenuation
lengths which roughly match the ELJ measurements with a deviation of 17 %, but are
too small to fit AST data. Results for varying the ZnS mass ratio indicate that the
attenuation length in fact depends on microscopic parameters and thus the results from
the measurements are not necessarily generalizable. An improvement of the random walk
process might be to override the default exponential step length distribution of Geant
with some finite distribution.

The validity of the grain box model could be shown by comparing neutron pulse
height statistics between measurements and simulations. Since the pulse height of an
event does not only depend on the amount of energy deposited in ZnS, but also on the
attenuation of light in the scintillator, the simulated distribution of deposited energy
had to be convoluted with the fraction of light exiting the scintillator after an event at
a certain depth. This analytically calculated function depends on the effective optical
attenuation length and the proportionality constant between ADC channel number and
energy as fit parameters. The latter value, which should be equal for all measurements,
shows a deviation of 20% in the fit of one sample. The attenuation length varies by a
factor of 2 between measurements, which is more than simulations of the random walk
model indicates, but its absolute value is of the same order of magnitude as the values
obtained in the light transmission measurements. However, although the fit values show
these discrepancies, the form of the pulse height spectra could be reproduced very well
and have better x? test values than an exponential fit.

For the comparison of the full detector system including the WLSF's a position re-
construction algorithm for offline data based on cluster analysis was developed. In order

to form a cluster, Photons must be from the same WLSF layer and cannot have their
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timestamps differ by more than the maximum allowed time difference 7 and their chan-
nels by more than the maximum channel difference n.. Two clusters from different layers
can form a neutron event, if they have enough photons and if the difference in starting
time does not exceed the coincidence time ¢.. The reconstruction algorithm was applied
to data from measurements with a prototype detector for SAPHiR, where neutron events
could clearly be distinguished from events probably caused by gamma radiation in fiber
bundles.

The algorithm is easily adaptable for online analysis of photon event data. In order
to increase the detection efficiency there is the potential for optimization of algorithm
parameters like 7, n. and t.. If very high counting rates are expected, the cluster finding
algorithm needs to be improved by introducing a maximum cluster length, or by splitting
up clusters when the amount of photons per time suddenly increases.

The application of the reconstruction algorithm to simulation results of the full detec-
tor system showed a distribution of cluster sizes and durations similar to those obtained
in the measurement.The previously unknown attenuation length of the outermost WLSF
cladding could be estimated by comparing the ratio of the number of photons in the first
WLSF layer in measurement and simulation. A value of 0.01 mm shows a good agreement
of the peak ratio of 80 % and explains a light loss factor of 78 %. With the photo cathodes’
quantum efficiency of 25 %, this results in a total efficiency of 5.5%. However, the best
agreement between simulation and measurement is reached for an efficiency factor of less
than 0.05. This means, that there are still some photon losses unaccounted for, which
might be explained by surface effects in the scintillator or by a wrong estimation of the
scintillation efficiency. Determining these factors requires additional measurements.

Furthermore, an algorithm able to optmize multiple parameters of the model simulta-
neously has been developed. As a proof of concept, the scintillator thickness d and ZnS
mass ratio ¢y,s were optimized using an estimation of detector efficiency as optimization
function. Since the chosen function depends on an arbitrary assumption of detection ef-
ficiency of the WLSF readout, the result d = 0.574(9) mm, ¢z,s = 3.83(9) is not yet a
recommendation for the detector design.

The challenge of very long simulation times was met by choosing the GSS algortithm
for optimization, which requires only few function evaluations. How much simulation data
is required is determined by a function evaluation algorithm, which stops the simulation
as soon as it detects that further data only marginally influences the function value.

The scintillation efficiency of ZnS:Ag used in the full simulation was obtained by com-
parison to a measurement of the average number of photons per event exiting different

sample scintillators. A value of C' = 249(55) keV~! was found, which is very high com-



100 MODELLING A WLSF NEUTRON DETECTOR

pared to the gamma response of 100 keV~! of ZnS:Ag given in the literature. The large
uncertainty might be caused by poor consistency of the neutron absorbtion rates pre-
sented in the measurement. The neutron attenuation lengths of samples with the same
ZnS/LiF /binder composition should be equal, but the measurements show a difference
of more than 30% in two samples differing only in thickness. In order to improve the
reliability on our value for C, additional measurements are needed, which resolve the
distribution of the number of photons of single events.

Based on this work it will be possible to support the analysis of measurement data
of ZnS/LiF detectors with WLSF readout. By simulating detector systems of this kind,
the response to neutrons of different wavelengths can be estimated and used to correct
counting rates in the analysis. Also the dependence on the neutron’s position can be
examined, which is of special interest for detectors with loosely spaced WLSFs. However,
neutrons at the edge of the scintillator plate of any detector system might cause a different
channel-distribution of photons than neutrons at the detector’s center.

The model will also help new developments of scintillation detectors by optimizing
parameters of the model and of the reconstruction algorithm with regard to the applica-
tion’s needs. And, due to the modular structure of the model, it can easily be extended

to incorporate future designs.
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Appendix A

Calculations

A.1 Minimum Path Ratio in Outermost Fiber Cladding

In order to calculate the path length traversed

inside the outermost cladding of a fiber, it

is sufficient to consider a half period of the

path. A period in this context means the time

between two internal reflections at the fiber

Y boundary. Figure A.1 shows a half period of

an undesired photon for a single cladded fiber.

We are interested in the travel distance z in-

Fig. A.1: Undesired photon being reflected side the outer cladding with respect to the to-
at the outermost fiber boundary tal fiber length y traversed. Simple geometric

consideration gives

&r &r

x = = ,

costy \/1 — (Z—; sin((%))z

y=(1—=¢&rtand; + &{rtanby = rsin b

(A.1.1)
1—¢ =

_|_
— 2 2
V1= sinfy \/1— (Z—; sin91>

Y

where we used Snell’s law and the trigonometric relation cos(arcsinz) = /1 — 22
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Then the quotient is simply

T _ (sin 1) " . (A.1.2)

n = ; = — -
ny i ﬁ 1—(@ Slno91)
ng 13 \/ 1—sin? 6,

The minimum of 7 is easier calculated nu-

merically than analytically. A plot of this func- 0.15
tion can be seen in Figure A.2. The minimal

path ratio clearly depends on the refractive in- 0.1

dices. In our case, the core has a refractive

n
index of n; = 1.59 and the outermost cladding 0.05
has a refractive index of ny = 1.49 or ny = 1.42. ’ —
The minimum value for ny = 1.49 is —--ng = 1.42
0 T T | |
0 02 04 06 08 1
Nmin ~ 0.0429. (A.1.3) sin 6,

Thus, if we assume the length of fiber lead-  Fig. A.2: Distance travelled in outer

ing back to the PMTs being 30 cm, there will cladding per fiber length as calculated in

. ’ (A.1.2) for n; = 1.59 and £ = 0.03. For nq

be photons which travel through the outermost  the two possible refractive indices of outer
cladding for a total length of only 1.29 cm. cladding, PMMA and FP have been chosen.

Helical paths do not need to be considered here, because a helical path would have an

increased x, while y stays the same. Thus, 7y, is the lower bound for the path ratio.

A.2 Volume and Mass Fractions in Heterogeneous

Materials

In a heterogeneous mixture of several materials, let Vx, Mx, ¢x and px denote the total
volume, total mass, mass ratio and density of material X. In the case of a ZnS/LiF
scintillator, the different materials would be ZnS, LiF and the binder material. With the

definition of the mass ratios (M x = % - M ) we can express the volume as

ox
MX ox
Ve = —2 = X\ A21
X TSy (A.2.1)
The total density is then
M M Yox
= — = = 5 A.2.2
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so that the volume fraction of each material is

ﬁ P'VX_ ox

— _PX.
VoM oy

(A.2.3)

The mass ratios ¢x are usually provided by the manufacturer of a scintillator plate.
At room tempertature the density of ZnS:Ag is pzns = 4.09gcem ™3, that of unaltered
LiF 2.635gcm 3. If the LiF is enriched in °Li, the density is lowered due to the missing
neutron. The molecular mass of natural LiF is 25.94 [44], so the molecular mass of enriched
LiF is 24.94. This leads to a density of enriched LiF of ppir = 24.94/25.94-2.635gcm > =
2.533gcm 3. Different manufacturers use different binder materials, which may result
in different binder densities. This quantity is usually not mentioned in the scintillator

specifications, so it has to be determined experimentally.

A.3 Rotation of Basis Vector to Arbitrary Vector

Let 7 be an arbitrary vector in R? with Cartesian coordinates (ni,ns,n3)7 and length
Vv _on? = 1. We seek a matrix A°(n), ¢ € {x,y, 2}, which maps the basis vector é. to
n. Without loss of generality we choose ¢ = 2z and drop this index, since it is trivial to

obtain solutions for the other axes by rotation of matrix columns.

To keep lengths and angles unchanged, the columns of A need to form an orthogonal

system of basis vectors:

1, ifl=k
ZAil A = { ! (A.3.1)

0  otherwise

Three of the coefficients are easily determined by A - é, = n:

AiS = Ny, for i € {1, 2, 3} (A32)

For the remaining 6 entries there are 5 independent equations of the form (A.3.1).
This means we are free to choose one of the entries and arbitrarily choose A3 = 0. Now

we name the coefficents of A:

&
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From a? + b =1and a-ny +b-ny = 0 follows

_p_" "

a_@\/n%—i—n% @\/1—71?,)7
ni

b=F) 55— —,

where the circles around the plus/minus sign indicate that those two unary operators

(A.3.4)

depend on each other. This notation is necessary, because there will be further choices for
quadratic equations later on and it is necessary to keep track which + signs are connected

to each other.

ac + bd = 0 simplifies to cny — dn; = 0 which can be plugged into cny + dns + fng =0
and 2 +d*+ f2=1:

c
(n? + ng)—n + fn3 =20
1

2
C
(n%+n§)m+f2:1
1

= f=E/1-n? (A.3.5)
N ¢ = ning

1 —n?
= d = g —20

1 —n?

It remains to make the two choices regarding the + signs. We want a pure rotation,
which means we want the determinant of A to be positive. A simple calculation shows
that det A = (@ 1) - (F1) = 1, which means that if we choose plus (the upper choice)

from @, we also need to choose plus (the lower choice) from [F]. The matrix then is

No ning  niy/1—n3

1

3 0 —(1-n3) nzy/1—n?

A.4 Expectation of Light Intensity After a Neutron
Event

If a certain amount of energy is deposited in ZnS grains after a neutron event, it will cause

a flash of scintillation light with brightness proportional to the energy. So, the number of
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created photons due to scintillation can be estimated by an equation like

Nscint =C- Edepa (A41)

PMT

scintillator

Fig. A.3: Schema of the calculation:
A leftbound neutron is captured at dis-
tance x to the PMT-boundary. The
light ray emitted at angle 9 is exponen-
tially attenuated along the distance of

1(9) = 25

where C' is the absolute scintillation efficiency
of ZnS:Ag. How many of these photons reach the
surface and are then detectable depends on the
depth of the event because of self absorption in-
side the scintillator plate. So the cause for a flash
of certain brightness could be either an event close
to the surface, where little energy is deposited in
ZnS grains (i.e. few photons are created in the first
place), or an event further inside, where more en-
ergy is deposited. So the distribution of energy
deposited in ZnS grains is not necessarily of the
same shape as the pulse height spectrum observed

outside the scintillator.

Photons will take random paths through the

material in general, but we can model their prop-

agation as straight paths with exponential attenuation (see Section 4.2.1). Assuming a

schema as depicted in Figure A.3 one can calculate the fraction o;(x) of light, which

reaches the surface on the PMT-side after a neutron event at depth z. For a given angle

0 the light reaching the surface after exponential attenuation along [(0) is exp (—=1(0)/)\,),

where ), is the effective attenuation length for light. a;(x) is obtained by integration over

the half solid angle:

a(z) = i 7;@ /gdﬁ sin(d) - exp <_l&—f)) (A42)

Using [(0) = x/ cos(f) and the substitution y = x/\;cos(#), the integral can be sim-
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plified:
1 o
a(x) = §/dy )%y 2eV
N
. (A.4.3)
I I A P
2 " )\l Y Yy ’
N

where in the last step we employed integration by parts. ¢ ™ is the usual exponential
attenuation and the remaining part is a geometric correction term. There is no analytical
expression for the integral, but it can be approximated via numerical methods. The

number of photons exiting the scintillator plate on the PMT-side is then

Nexit = Oél(.%) -C- Edep- (A44)

There are two statistical processes. The first determines the probability h(x)dz of an
event happening at depth z and the second determines the probability pg(FE) that the
energy F is deposited in ZnS grains. To find the distribution of the number of exiting
photons, one needs to integrate probability contributions over the whole depth of the
scintillator. (A.4.4) must be fulfilled for pg(E) and h(z) to contribute to the distribution
of exiting light px(IV), so the weight function must be a Dirac-delta function:

pa(N)AN = /dx h(z) 7dE pp(E) -5 (N —au(z)-C - E) | dN

/ddfvof(—x?- L) . (A.4.5)

We performed the integral over the energy because E occurs linearly in the delta
function, whereas x is included as a parameter to the not easily invertible function «.
Therefore it would require some numerical effort to find the root with respect to x. Since
pn (V) describes the probability distribution for N photons exiting the scintillator and
scintillation photons have a similar wavelength, it is also a measure for the light intensity
spectrum.

It remains to determine the probability distributions h(z) and pg(E). The latter can
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be obtained by simulations of the grain box module described in Section 4.1 and the
former is calculated as follows. In Figure A.3 the neutron beam enters the scintillator
plate from the right at + = d. From there on the beam undergoes exponential attenuation
and its intensity reduces to exp(—d/\,) on the left, where A, is the neutron attenuation
length. Since the amount of events happening in a certain depth is proportional to the
beam intensity at that point, h(x) must be proportional to exp(—(d — z)/\,). The

proportionality factor follows from normalization:

_d—x
e An

1
Anl—e_ﬁ

h(z) = (A.4.6)
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