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Kurzfassung

Die vorliegende Arbeit behandelt Untersuchungen magnetischer Eigenschaften Eisen-
basierter Hochtemperatur-Supraleiter mittels Neutronenstreutechniken.

In unter dotiertem Ba(Fe0.95Co0.05)2As2 wurde das Spektrum kollektiver magnetis-
cher Anregungen der Fe-Momente mit Propagationsvektor Q=(0.5, 0.5, 0) untersucht.
Die kollektiven Anregungen wurden quantitativ ausgewertet mit Hilfe eines Spin Wellen
Models und eines Models basierend auf dem Mechanismus der Spin Diffusion. Es wurden
magnetische Anregungen in drei Phasen des Phasendiagramms untersucht, die paramag-
netische Phase oberhalb der magnetischen Ordnungstemperatur, die magnetisch geord-
nete Phase oberhalb des supraleitenden Phasenübergangs und die Phase der Koexistenz
von Supraleitung und magnetischer Ordnung.

Das Spektrum kollektiver magnetischer Anregungen mit Propagationsvektor Q=(0.5,
0.5, 0) in optimal dotiertem CaFe0.88Co0.12AsF zeigt in der supraleitenden Phase eine An-
regungslücke für niedrige Energien und ein Resonanzsignal oberhalb der Lücke. Beide Ef-
fekte sind charakteristisch für magnetische Anregungen in Hochtemperatur-Supraleitern.
Die Beobachtung des Resonanzsignals wird als ein Indiz für die s± Symmetrie des
supraleitenden Ordnungsparameters interpretiert. Die magnetisch geordnete Phase von
undotiertem CaFeAsF zeigt Spin Wellen ähnliche Anregungen für Energien bis 20 meV
und Temperaturen unterhalb des magnetischen Phasenübergangs. Oberhalb der Ord-
nungstemperatur sind die Anregungen stark gedämpft und von eher zweidimensionalem
Charakter, bleiben jedoch sichtbar für Temperaturen bis zu 270 K.

In supraleitendem FeSe0.5Te0.5 zeigt eine Untersuchung mittels polarisierter Neu-
tronenstreuung, dass das Spektrum kollektiver Anregungen mit Propagationsvektor
Q=(0.5, 0.5, 0) und Energien bis zu 30 meV aus einer isotropen Verteilung von An-
regungen mit fluktuierendem magnetischem Moment in ab- sowie in c-Richtung besteht.
Gleiches gilt für das Resonanzsignal, welches in das Spektrum bei Q=(0.5, 0.5, 0) inte-
griert ist und ebenfalls zu gleichen Teilen aus Anregungen mit fluktuierendem Moment
in ab- wie in c-Richtung besteht.

In Eu(Fe1−xCox)2As2 and EuFe2(As1−xPx)2 wurde der Effekt von P- sowie Co-
Dotierung auf die statische Ordnung der Eu-Momente untersucht. Die Dotierung mit
Kobalt sorgt für einen Übergang der antiferromagnetischen Ordnung der Eu-Momente
der undotierten Materialien in eine Helix-Ordnung, wobei die Eu-Momente weiterhin
parallel zur ab-Ebene verbleiben. Im Gegensatz dazu sorgt eine Dotierung mit Phosphor
für eine Verkippung der Momente in c-Richtung. Die ferromagnetische Ordnung, resul-
tierend aus den gekippten Momenten parallel zur c-Achse, koexistiert mit Supraleitung
für Temperaturen unterhalb der Ordnungstemperatur der Eu-Momente.





Abstract

In this thesis, magnetic properties of a series of different Fe-based supercon-
ducting materials have been studied by means of neutron scattering tech-
niques.

Magnetic correlations in underdoped Ba(Fe0.95Co0.05)2As2 have been in-
vestigated for three phases of the phase diagram. It was possible to detect
the spin gap and spin resonance signal, two features of the particle hole ex-
citation spectrum at Q=(0.5, 0.5, 0), characteristic for the superconducting
phase. The spin wave excitations present in the ordered phase have been
analyzed quantitatively in terms of a linear spin wave model, whereas a spin
diffusion model was applied to the collective excitations of the paramagnetic
phase. However, it was found that both models can be applied to excitations
in all three phases.

In optimally doped CaFe0.88Co0.12AsF, a spin resonance signal was de-
tected as part of the spin excitation spectrum at Q=(0.5, 0.5, 0). The
observation of the spin resonance signal supports the s± symmetry of the
superconducting gap function. In the undoped CaFeAsF compound three
dimensional spin wave like excitations of the static Fe-SDW order have been
observed at QAFM=(0.5, 0.5, 0.5), for temperatures below TN . Above TN

and for energies below 20 meV, the spin wave like excitations are replaced
by short range two dimensional paramagnetic excitations, which persist up
to 270 K.

In superconducting FeSe0.5Te0.5 polarized neutron scattering investigations
revealed the magnetic nature of the spin resonance signal and the excitation
spectrum at Q=(0.5, 0.5, 0) up to 30 meV. The whole excitation spectrum
including the spin resonance signal consists of an isotropic distribution of
spin excitations with magnetic moments fluctuating in the ab-plane and per-
pendicular to the ab-plane, χ′′

ab(Q, ω) ≈ χ′′
c (Q, ω).

In Eu(Fe1−xCox)2As2 and EuFe2(As1−xPx)2 the effect of impurity doping
on the static order of the magnetic lattice of the Eu2+-moments has been
studied by means of polarized and non-polarized neutron diffraction experi-
ments. The introduction of cobalt leads to a helical type structure of the Eu-
sublattice with Eu2+-moments oriented parallel to the ab-plane. Whereas,
partial replacement of arsenic by phosphorous leads to a ferromagnetic type
structure and eventually results in a coexistence of long range ferromagnetic
order and superconductivity.
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1 Introduction

More than 25 years after its first discovery by Bednorz and Müller [1], the phenomenon
of high-temperature superconductivity has not lost any of its original fascination. How-
ever, despite the tremendous effort made by scientists over the years the phenomenon
of high Tc has not lost any of its mystery either. As conventional superconductivity and
its corresponding effects are very well understood and described by the BCS theory [2],
high Tc superconductivity still lacks a conclusive theoretical description which can be
confirmed by experimental results. In BCS theory the formation of pairs of electrons
with opposite momentum and spin [k, ↑], [−k, ↓] resulting in pairs with zero total net
momentum k = 0 and zero total net spin S=0, so-called Cooper pairs, and the result-
ing creation of a condensate state of these Cooper pairs, is capable of explaining the
characteristic effects, such as the zero electric resistivity and the Meissner effect. As the
operating coupling mechanism responsible for these Cooper pairs, the BCS theory con-
siders electron phonon coupling effects as the main driving mechanism, with an exchange
of virtual phonons providing the pairing of the particles. In high Tc materials, however,
the electron phonon coupling alone does not supply coupling strengths sufficient to ex-
plain the high critical temperatures observed in these materials. So in order to maintain
the concept of Cooper pairs for unconventional superconductivity, the main task is to
find a coupling mechanism capable of handling the high critical temperatures. The
proximity of magnetically ordered states and superconductivity in the phase diagram
of high Tc materials, is the main motivation for the consideration of possible relations
between the pairing mechanism of Cooper pairs and magnetic degrees of freedom, where
an exchange of spin fluctuations is discussed as possible contribution to the coupling of
electrons to Cooper pairs. Magnetic degrees of freedom, in this case magnons or param-
agnons, however, are much more difficult to investigate than phonons, as in the case of
BCS materials. As a consequence, the role of magnetism in high Tc superconductivity
remains unclear and the pairing mechanism of high Tc materials is still a mystery to this
day.

Since the discovery of unconventional superconductivity in Fe-based materials in 2008
great effort has been made in investigating properties of these materials, theoretically
as well as experimentally by applying a variety of different techniques. With its direct
access to magnetic properties in general and especially dynamical magnetic excitations,
neutron scattering plays a major role in the investigations of magnetism in these
materials.

This thesis contains results obtained via experimental work. The scope of this work
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1 Introduction

was to investigate magnetic properties of Fe-based superconducting materials by means
of neutron scattering techniques. By taking advantage of the versatility of neutron
scattering it was possible to address very diverse aspects of magnetism in the Fe-based
superconducting materials on a list of different compositions representative for the three
main classes of Fe-based materials.
This thesis is organized in eight chapters which will be introduced briefly in the following:

• Chapter 2 gives a brief introduction to the main characteristics of Fe-based super-
conducting materials. The intention of this chapter is not to provide a detailed
overview of this particular field but to introduce some of the main characteristics
of these materials and it is clearly limited to properties which in one way or the
other are related to effects investigated in the experimental work of this study.
The chapter might be most useful for the reader not familiar with the field of
superconductivity in Fe-based materials.

• Chapter 3 provides a brief introduction to the theoretical background of the ex-
perimental techniques, including the basic formulae of neutron scattering. The
following experimental chapters refer to this background information at several
occasions.

• Chapter 4 discusses the effect of impurity doping on the long range static mag-
netic order of the sublattice of Eu2+ magnetic moments in Eu(Fe1−xCox)2As2 and
EuFe2(As1−xPx)2 compositions, investigated via polarized and non polarized neu-
tron diffraction experiments. Previous to the presented studies it has been shown
via characterization techniques that doping with either phosphorous or cobalt leads
to the onset of superconductivity. It was further shown that a coexistence of su-
perconductivity and static magnetic order of the Eu-sublattice is present in these
materials. The motivation of the presented work on these materials is to investi-
gate this possible coexistence and to determine the exact effect of doping on the
magnetic structure of the Eu-sublattice.

• Chapter 5 focuses on the excitation spectrum of spin fluctuations and spin
wave excitations with propagation vector QAFM=(0.5, 0.5, 1) in underdoped
Ba(Fe0.95Co0.05)2As2. The unique feature of this composition is a coexistence of
static SDW-(Spin Density Wave)-order of the Fe2+ magnetic moments and bulk su-
perconductivity. This coexistence enables to directly study a possible interplay of
magnetic properties and superconductivity. In addition, the nature of magnetism
in undoped Fe-based materials is still an ongoing topic, and investigations of the
spin wave excitation spectrum of the static SDW-order can provide valuable insight
to whether the magnetism in these materials should be regarded as localized or
itinerant. The spin excitations have been studied for three different temperatures
corresponding to three phases of the phase diagram, the phase of coexistence of
static magnetic order and superconductivity, the phase of static magnetic order
for temperatures above Tc and the paramagnetic phase above TN .
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• Chapter 6 is dedicated to the studies of magnetic excitations at QAFM=(0.5, 0.5,
0) in undoped CaFeAsF and superconducting CaFe0.88Co0.12AsF. Previous to this
study the excitation spectrum of the spin fluctuations in these compositions was
mostly unknown, and so the current investigations provide valuable information
on the spin excitations in this class of oxygen free 1111-materials.

• Chapter 7 addresses the excitation spectrum of spin fluctuations with propagation
vector QAFM=(0.5, 0.5, 0) in superconducting FeTe0.5Se0.5. The spin resonance,
a characteristic feature of the particle hole excitation spectrum in the supercon-
ducting phase, present in a large number of high-temperature superconducting
materials is still strongly debated considering its microscopic nature and impact
on the superconducting phase. Several characteristics of the spin resonance mode
have been investigated by performing a Linear Polarization Analysis of the data
obtained via polarized neutron spectroscopy experiments.

• Chapter 8 provides a brief summary of the obtained results discussed in detail in
the previous chapters.

3





2 Introduction to Superconducting
Materials

2.1 Conventional Superconductivity : BCS-Materials

Superconducting materials are characterized by the presence of mainly two characteristic
effects, the effect of zero electric resistivity and the Meissner-Ochsenfeld effect, a com-
plete exclusion of any interior magnetic field from the sample, for temperatures below
a critical temperature Tc [3, 4]. The effect of superconductivity was first observed by
Kamerlingh Onnes in 1911 while investigating the electric resistivity of mercury at low
temperatures [3]. He found that when cooling below Tc=4.2 K the resistivity abruptly
dropped to a value close to zero and the material became superconducting. The dis-
covery of the phenomenon of zero electric resistivity in mercury was soon followed by
the observation of the effect in other materials, such as tin, lead and metallic alloys. A
microscopic understanding of the phenomenon, however, was not given until about 46
years after the first discovery when Bardeen, Cooper and Schrieffer provided a theoret-
ical approach suitable to describe the observed effects [2] by developing the so-called
BCS theory. The main point of the BCS theory is the formation of so-called Cooper
pairs. Below the critical temperature pairs of always two electrons with opposite mo-
menta and spins [k, ↑], [−k, ↓] form a paired state with zero total net momentum k=0,
zero total net spin S=0 and a consequential S-wave symmetry of he Cooper pair wave
function. The bosonic character of these Cooper pairs leads to the formation of a large
Bose Einstein condensate, which is capable to explain many of the observed phenomena.
In BCS theory the formation of the Cooper pairs is caused by an attractive potential
between the two electrons due to the interaction via exchange bosons, in this case vir-
tual phonons. In a descriptive picture: an electron that travels the positively charged
lattice of atomic nuclei interacts with the positive charges and leaves behind a small
deformation of the lattice. A second electron with opposite spin and momentum feels
the attractive potential of the enhancement of positive charges caused by the lattice de-
formation and thus indirectly interacts with the first electron, and both electrons form
the Cooper pair1. For low temperatures, when many of these electron pairs are formed,
the quantum mechanic wave functions of the Cooper pairs align and form a collective
state, the Bose-Einstein condensate of the superconducting state. Once the condensate

1Note that this over simplified picture in fact is misleading as the actual formation of the Cooper pairs
does not take place in real space but is clearly restricted to the momentum space.
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2 Introduction to Superconducting Materials

is formed the Cooper pairs don’t feel potentials not sufficient to break up the Cooper
pair state which prevents them from scattering processes with either the lattice or other
particles. This results in the onset of superconductivity with zero electric resistivity and
in a lowering of the superconducting groundstate energy and consequently in a gap in
the single particle excitation spectrum as excitations are only possible for energies that
break up the Cooper pairs. This energy gap has its greatest value for low temperature
and gradually decreases to zero when approaching the critical temperature Tc,

E = 3.52kBTc

√
1− T

Tc

(2.1)

Tc itself is proportional to the coupling strength of the Cooper pairs which is related to
the interaction potential V ,

kBTc = 1.14EDe
−1/N(EF )V (2.2)

where kB is Boltzmann’s constant, ED the Debye cut off energy, N(EF ) the density of
states at the Fermi level and V the interaction potential responsible for pair formation of
the Cooper pairs, which in BCS theory is provided by the electron phonon interactions.
The weakness of electron phonon coupling in combination with the low Debye energy
for BCS superconducting materials leads to typical critical temperatures not higher
than 30 K. Many very good and classical books and articles have been written on this
subject [2, 5–12] which should provide the interested reader with a deep and thorough
introduction to the topic of BCS superconductivity including a derivation of all formulas
introduced in this section.

2.2 High Tc Superconductivity in Cuprate Materials

2.2.1 Discovery of High Tc Superconductivity

The field of high Tc superconductivity began with the first discovery by Bednorz and
Müller in 1986 [1] when they found superconductivity in La2−xBaxCuO4 with a crit-
ical temperature of Tc=30 K. This was a rather shocking discovery for the majority
of the solid state physics community as it immediately became obvious that this new
superconducting material was not compatible with BCS theory. This impression was
even reinforced by the soon followed discoveries of further materials with even higher
critical temperatures easily surpassing the temperature of liquid nitrogen, as reports
of superconductivity in YBa2Cu3O7−δ with Tc=93 K [13], BiSrCa2CuOx with Tc=105
K [14], Tl2Ba2Ca2Cu3O10 with Tc=120 K [15] or even HgBa2Ca2Cu3O8 with Tc=163
K (under pressure) [16] were made. These findings really caused a lot of confusion in
the condensed matter community as they clearly were against any predictions made by
BCS theory which at that time was working very well in describing the then known
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2.2 High Tc Superconductivity in Cuprate Materials

superconducting materials and was believed to be a theory capable of describing su-
perconductivity in general. Another point that complicated things even more was the
fact that these cuprate materials in their so-called parent phase were highly correlated
Mott-type insulators with long range static antiferromagnetic order. This showed that
these new superconducting cuprate materials most likely were a different type of super-
conductors with a different type of coupling mechanism as BCS theory was not capable
of explaining neither the high coupling strengths of the Cooper pairs needed for those
high transition temperatures nor the presence of magnetism in the system.

2.2.2 Magnetism and Superconductivity

Figure 2.1: Typical phase diagram of electron or hole doped cuprate high Tc superconductors.
Light blue regions illustrate the presence of static long range antiferromagnetic order of Cu2+-
moments. Red regions symbolize the superconducting phase with dx2−y2 wave symmetry of the
superconducting gap function. Grey shaded region symbolizes the presence of the pseudo gap
feature. Figure taken from reference [17].

In contrast to the BCS materials, where magnetism is harmful to the formation of su-
perconducting states as it acts as pair breaking to the Cooper pairs, all superconducting
cuprate materials universally descend from undoped parent materials which are Mott
insulators and exhibit static long range magnetic order. Even though band structure
calculations show that the dx2−y2-orbitals of the Cu2+ ions are located close to the Fermi
surface which would suggest a metallic character for the materials, the strong on-site
Coulomb repulsion results in a splitting of the dx2−y2-band into two Hubbard bands with
only the lower Hubbard band filled and with an energy gap of several eV separating both

7



2 Introduction to Superconducting Materials

Figure 2.2: Crystal and mag-
netic structure of La2CuO4.
Only Cu (red) and O (green)
ions are shown. Black arrows
illustrate the collinear static
structure of magnetic Cu2+-
moments. Figure taken from
reference [18].

bands. This causes the strong localization of the unpaired electrons and consequently
leads to the insulating character. The highly correlated unpaired electrons lead to a lo-
calized magnetic moments of spin S=1/2. Below TN these localized Cu2+ moments form
a long range antiferromagnetic structure with moments confined in the basal-planes of
the crystal. For these insulating materials, magnetism can be very well described using
a local moment approach with spin correlations mediated via nearest and next nearest
neighbor exchange interactions of localized magnetic moments. Doping the system with
either holes or electrons2 continuously suppresses the static magnetic order and eventu-
ally induces superconductivity. With increasing doping concentration Tc increases until
a maximal Tc is reached, from where further increased doping concentration leads to
a suppression of superconductivity. With the static magnetic order suppressed, strong
magnetic fluctuations remain for the entire superconducting phase. This proximity of
two phenomena which are incompatible in BCS-materials due to the pair breaking effect
of the magnetism, and the presence of strong spin fluctuations throughout the entire
superconducting phase were the main motivation for the proposal of magnetic degrees
of freedom playing a leading role in the pairing mechanism of Cooper pairs in these
materials. Despite over twenty-five years of intensive research and a tremendous gain
of understanding of the materials, however, the role of magnetism in the mechanism
behind high Tc superconductivity is still a mystery.

2In this case, hole or electron doping considers character of the additional charge carries introduced
to the system due to the introduction of the foreign atoms.
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2.3 High Tc Superconductivity in Fe-based Materials

2.3 High Tc Superconductivity in Fe-based Materials

For years the effect of high Tc superconductivity has been studied mainly in cuprate
materials which almost lead to the conclusion that substantial copper content might
be an obligatory condition for materials to exhibit high-temperature superconductivity.
In 2008 this misconception was clearly disproved as Kamihara et al. discovered
high-temperature superconductivity in a copper free material, LaFeAsO1−xFx with
Tc=26 K [19]. This finding, which immediately was followed by the discovery of
superconductivity for a great number of other Fe-based superconducting materials,
caused a lot of excitement in the community and propelled the field of high Tc super-
conductivity, which at that time had slowed down a bit compared to the beginnings
in 1986, back to be one of the most exciting fields in condensed matter physics again.
With the discovery by Kamihara et al. a real rush for new compositions with even
higher critical temperatures was started and within a short span of time numerous
discoveries were made. It was found that by replacing lanthanum in LaFeAsO1−xFx

by magnetic rare earths such as Ce, Sm, Nd or Pr the critical temperature could
easily by increased up to 56 K [20–23]. Materials with this type of composition
crystallize in the tetragonal ZrCuSiAs-type structure and are labeled the 1111-class of
Fe-based materials. Simultaneously another class of Fe-based materials was discovered
as Rotter et al. observed superconductivity with Tc=38 K in Ba0.6K0.4Fe2As2 [24].
Later further materials with this type of composition were found, which all crystalize
in the body-centered tetragonal ThCr2Si2-type structure and are labeled the 122-class
of Fe-based superconducting materials. In addition to the 1111- and 122-type materials
two further classes were found, the 111-type represented by LiFeAs with Tc=18 K [25–
27] and the binary 11-type αFeSe materials first observed by Hsu et al. with Tc=8 K [28].

By now the field of Fe-based superconductors has been fully established and has be-
come a very active field in solid state research with an uncountable number of scientific
publications, a long list of international research groups working on a variety of different
topics. Many different materials have been discovered with a range of different proper-
ties investigated with almost every experimental technique imaginable. The following
sections will try to give a brief introduction to some of the basic properties of these
Fe-based superconducting materials. However, the following sections should not be mis-
taken as a complete review of the field or anything close to this as this would clearly be
beyond the scope of this thesis.
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2 Introduction to Superconducting Materials

2.3.1 Structural Properties

Figure 2.3: Crystal structure of the four main classes of Fe-based materials. Also listed are
the maximal observed critical temperatures for that particular class of Fe-based superconduc-
tors. The blue shaded area highlights the Fe2As2-layers consisting of Fe-atoms (blue spheres)
surrounded by As-tetrahedra (green spheres), present in all Fe-based materials. Blue dashed
boxes illustrate unit cells of the various structures. The red numbers at the bottom are the
respective Tc of the particular composition. Figure taken from reference [29].

Similar to the previously discussed cuprate materials, Fe-based superconductors crystal-
lize in layered crystal structures. As illustrated in figure 2.3 for the four main classes of
Fe-based materials, these layered crystal structures are organized in an alternate stacking
of Fe2As2-layers and layers containing the other elements of the composition. The only
exception are the 11-materials3 as here the Fe2As2-layers are substituted by Fe2(Se/Te)2-
layers, with the absence of additional buffer layers. From band structure calculations it
is known that the density of states at the Fermi energy N(EF ) is dominated by the Fe
3d states and thus it is believed that the Fe2As2-layers (Fe2(Se/Te)2-layers) are respon-
sible for the superconductivity in the system. These Fe2As2-layers are organized in a
way where each Fe-atom is surrounded by a tetrahedron of four As-atoms. The shape

3The number-labeling shown in the figure is not restricted to one particular composition but labels a
class of compounds which possess the same composition but which can vary in the included elements.
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2.3 High Tc Superconductivity in Fe-based Materials

of these tetrahedra surrounding the Fe-atoms in fact might impact the formation of the
superconducting phase as it has been suggested that less distorted tetrahedra lead to
higher critical temperatures [30, 31]. As a result it was even proposed that the structural
effects caused by doping might even be more important for the creation of superconduc-
tivity than the additional charge carries provided by the introduction of foreign atoms
to the system [32].

At room temperature all structures exhibit a tetragonal symmetry which with decreas-
ing temperature will transition into a phase with lower orthorhombic symmetry. With
the introduction of foreign atoms to the structure this tetragonal-orthorhombic phase
transition is gradually suppressed in temperature which is accompanied by a reduction
of the orthorhombic distortion. This suppression of orthorhombic distortion might in
fact be beneficial to the formation of superconductivity in the system [33].

2.3.2 The Phase Diagrams

The phase diagrams of the main classes of Fe-based superconducting materials show a
great amount of similarities not just between the different classes of Fe-based materi-
als but also to the phase diagrams of cuprate materials. Similar to the cuprates, all
undoped Fe-based materials exhibit long range antiferromagnetic order, as in this case
the Fe2+ moments form a magnetic sublattice. The magnetic order sets in after the
crystal structure has transitioned from tetragonal to orthorhombic symmetry. In the
11-materials both phase transitions, magnetic and structural, occur simultaneously at
the same temperature whereas for the 122-class the two transitions start to separate
for higher doping concentrations. For 1111-class even the undoped materials exhibit a
temperature difference of up to 20 K between the structural and magnetic transition.
Orbital ordering and nematic ordering have been proposed [35] to explain this large
temperature difference, but a conclusive explanation of this effect is not found to this
date.

Doping the system with foreign atoms is one method to suppress the magnetic order
and eventually induce superconductivity to the system. The doping can be conducted in
several different ways, as basically all elements of the material can be replaced by foreign
atoms. Depending if the introduction of these foreign atoms absorbs or emits electrons
from or to the system the doping is referred to as either hole- or electron-doping. In-
creased doping concentration leads to a continuous suppression of the magnetic and
nuclear transition temperatures which is accompanied by a continuous reduction of the
ordered magnetic moment and orthorhombic distortion of the crystal structure. As
soon as the long range order is suppressed the system becomes superconducting, and
aside for a small phase present in 122-materials the superconducting phase is related
to a tetragonal crystal structure. For some 122-materials [36–42] and 1111-materials
[43, 44, 44, 45] superconductivity even sets in before the magnetic order is completely
suppressed, which leads to a coexistence of static magnetic order and superconductivity,
and which clearly illustrates the compatibility of magnetism and superconductivity in
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2 Introduction to Superconducting Materials

Figure 2.4: Temperature doping concentration phase diagrams of electron doped
CeFeAsO1−xFx representative for 1111-type materials, of electron-doped Ba(Fe1−xCox)2As2
representative for 122-type materials and of isovalent doped Fe1.02Te1−xSex representing the
binary 11-type materials. Illustrated phases in all phase diagrams are, tetragonal-paramagnetic
for T > TS ; orthorhombic-paramagnetic for TS > T > TN (only present for 1111- and 122-
type materials); orthorhombic-antiferromagnetic for T < TN ; tetragonal-superconducting for
T < Tc. Green colored region in 122-phase diagram represents phase of coexistence of su-
perconductivity and magnetic order. Light blue region in 11-phase diagram represents spin
glass phase with filamentary superconductivity for x=0.1-0.3 and T < Tc. Figures taken from
references [31, 33, 34].

these materials. The superconducting phase forms a dome-like shape in the phase dia-
gram where the highest Tc is reached for a certain doping level (optimal doped), whereas
both lower doping (under doped) and higher doping concentrations (over doped) lead to
lower Tc and an eventual complete suppression of superconductivity. In contrast to the
1111- and 122-materials, in the 11-materials the suppression of the long range magnetic
order does not imply an immediate onset of superconductivity, and instead both phases
are separated by a phase with short range spin glass like magnetic order and filamentary
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2.3 High Tc Superconductivity in Fe-based Materials

superconductivity. Bulk superconductivity does not occur in these materials unless the
short range spin glass order is completely suppressed [34, 46].

2.3.3 Magnetic Properties

Figure 2.5: In-plane magnetic structure of the static long range order of Fe moments, ex-
pressed in tetragonal crystal symmetry and representative for 111-, 122- and 1111-type Fe-based
materials (right panel) and 11-type materials (left panel). J1a, J1b and J2 represent nearest
and next nearest neighbor exchange coupling parameters, as used to describe the structure in a
local moment approach. Jij are expressed in orthorhombic notation. Only Fe-atoms are shown
(red and purple dots). Red and purple arrows picture the magnetic moments, where different
colored arrows belong to different antiferromagnetic sublattices for the 1111- and 122-figure
and illustrate the double-stripes in the 11-figure. The magnetic correlations in crystallographic
c-direction (not shown here) are invariably antiferromagnetic. Black boxes illustrate the in
plane dimensions of the tetragonal unit cells. The orthorhombic unit cell is rotated by 45° with
aO- and bO-axes pointing along the in-plane diagonal directions of the tetragonal unit cells.

Figure 2.5 illustrates the two magnetic structures of the static long range order of Fe
moments in the four main classes of Fe-based materials. The static long range order
of the 1111- and 122-materials can be expressed in terms of two antiferromagnetically
ordered sublattices with a collinear Néel configuration and moments aligned along the or-
thorhombic a-direction (diagonal direction to the illustrated tetragonal cartesian). The
out-of-plane correlations along the crystallographic c-direction are invariably antifer-
romagnetic. A combination of both sublattices results in a spin-stripe structure with
antiferromagnetic correlations along the orthorhombic a-direction, ferromagnetic cor-
relations along the orthorhombic b-direction, antiferromagnetic next nearest neighbor
interactions along the orthorhombic diagonal direction plus an antiferromagnetic inter-
layer coupling. This results for the 122-materials in a propagation vector QAFM=(0.5,
0.5, 1) in tetragonal notation, where the odd L-value is a result of the antiferromagnetic
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2 Introduction to Superconducting Materials

stacking in c-direction and the two Fe2As2-layers per unit cell. For the 1111-compositions
with only one Fe2As2-layer per unit cell the tetragonal propagation vector is QAFM=(0.5,
0.5, 0.5). For some 1111-materials, however, this propagation vector can vary slightly
to QAFM=(0.5, 0.5, 0) due to a change of inter-layer correlations from antiferromag-
netic to ferromagnetic [31, 47]. A similar composition related change of the static order
is not observed for 122-materials. The static magnetic order is often referred to as
Spin-Density-Wave (SDW) order, which is a remnant from the beginning of the field of
Fe-based superconductors when the magnetism was believed to be of itinerant nature.
The expression is still used even if the nature of the magnetism is still not completely
understood but most likely is not entirely itinerant.

The two approaches discussed in this respect are, (1) a local moment picture where
magnetic moments are localized at the crystallographic sites of the magnetic ions and
nearest and next nearest neighbor exchange interactions provide the formation of the
static order, or (2) an itinerant approach where magnetic properties are related to the
itinerant electrons of the system and where nesting effects of the Fermi surface lead to
the formation of a Spin density Wave order4.

Some properties of the Fe-based materials support the itinerant approach, such as the
weak metallic nature, the matching of the antiferromagnetic propagation vector QAFM

and the nesting vector Qnesting=(0.5, 0.5, 0) or the small and strongly composition
depending ordered moments in the range of µ = 0.35 − 0.95 µB for 1111-materials and
µ = 0.8− 1.00 µB for 122-materials [48]. However some effects can also be explained by
a local moment picture, as for example the small and varying ordered moments might
also result from strong frustration effects of a local moment magnetic structure [49, 50].

The situation in the 11-materials is slightly different as obvious from figure 2.5. In
contrast to the two antiferromagnetic sublattices with moments aligned along the or-
thorhombic a-direction as in the 1111- and 122-materials, the 11-compounds exhibit
a double-stripe structure with moments aligned along the tetragonal b-direction. The
propagation vector QAFM=(0.5, 0, 0.5) [51] of this double-stripe structure does not
match the nesting vector, in contrast to the SDW-order of the 1111- and 122-compounds,
but has an in-plane angle of 45° to Qnesting=(0.5, 0.5, 0)5. Where for the 1111- and
122-materials the matching of QAFM and the nesting vector leads to the conclusion of
possible itinerant contributions to the formation of the static magnetic order, the mis-
match between QAFM=(0.5, 0, 0.5) and Qnesting=(0.5, 0.5, 0) in the 11-materials makes
contributions by nesting effects rather unlikely. Thus, it is believed that magnetism in
the 11-materials might be more on the localized side than on the itinerant, which indeed
is supported by theory [52]. However, recent scattering results on Fe1.1Te suggest that
the magnetic mechanism in the 11-materials might in fact be neither purely localized
nor purely itinerant but rather a complicated interaction of local moments and itinerant

4A closer description of this mechanism can be found in the appendix.
5Will be discussed below.
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2.3 High Tc Superconductivity in Fe-based Materials

electrons [53].
A variation of the amount of incorporated interstitial iron, the x in Fe1+xTe, away

from the stoichiometric value, can lead to a modification of the magnetic structure,
from the commensurate structure with wave vector QAFM=(0.5, 0, 0.5) to an incom-
mensurate structure with QAFM ;inc=(±δ, 0, 0.5) [51].

Spin Wave Excitations of the Fe-SDW Order

Figure 2.6: Q-energy-dispersion of spin wave excitations with propagation vector QAFM=(1,
0, 1)ortho in BaFe2As2, obtained via single crystal inelastic time-of-flight neutron scattering.
(e) Dispersion along transverse (1, K)-direction for temperatures 7 K and 150 K. Blue solid
line represents a Heisenberg model calculation using anisotropic exchange couplings SJ1a =
59.2±2.0, SJ1b = −9.2±1.2, SJ2 = 13.6±1.0, SJc = 1.8±0.8 meV. Dotted line represents the
same Heisenberg model calculation using isotropic exchange couplings SJ1a = SJ1b = 18.3±1.4,
SJ2 = 28.7 ± 0.5, SJc = 1.8 meV. (f) Dispersion along longitudinal (H, 0)-direction. Figure
and exchange parameters are taken from ref. [54].

Aside from the static order, a comprehension of spin dynamics present in the supercon-
ducting state but also in the ordered state of the undoped material is very important,
in order to gain an overall understanding of magnetism, also with respect to a possible
contribution to superconductivity. Consequently, in the last four years a large number
of experimental investigations on the spin dynamics have been performed, and several
characteristics of the spin excitations in parent and superconducting Fe-based materials
have been established, which will be outlined in the following.

For temperatures below TN , the spin excitations in the undoped Fe-based materials
exhibit a narrow mostly three dimensional spin wave like character. The excitations
are steeply dispersing with bandwidths of up to 200 meV [54–58]. Below 10 meV
the excitation spectra are gapped suggesting strong single ion anisotropy effects
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[59–64], with recent reports even proposing multiple gaps for in-plane and out-of-plane
excitations, respectively [65]. For temperatures above TN , and energies below 100 meV,
the narrow and three dimensional spin wave excitations are replaced by quasi two
dimensional short ranged paramagnetic excitations with correlations mostly restricted
to the ab-planes [61, 63].

Several quantitative studies of spin wave excitations have been performed, with the
majority of these studies using a local moment spin wave model to describe the magnetic
excitations. Even if the nature of magnetism in the Fe-based materials is not believed
to be solely localized it was shown that a spin wave model based on a local moment
Hamiltonian is indeed capable of describing the larger part of the spin wave excitation
spectrum in a reasonable way [54–58]. The most commonly used linear spin wave model
is based on a local moment Heisenberg Hamiltonian, similar to [62],

H = J1a
∑

<jk>a

Sj · Sk + J1b
∑

<jk>b

Sj · Sk + J2
∑

<jk>ab

Sj · Sk

+ Jc
∑

<jk>c

Sj · Sk +
∑
j

{
Kc(S

2
z ) + Kab(S

2
y − S2

x)j

}
(2.3)

where the Ji,j are the nearest and next nearest neighbor exchange parameters and Kab

and Kc the in-plane and out-of-plane single ion anisotropy constants.
These spin wave analyses on CaFe2As2 [55], BaFe2As2 [54] and SrFe2As2 [56] revealed
highly anisotropic in-plane exchange interactions between nearest neighbor (NN) and
next nearest neighbor (NNN) spins, with strong antiferromagnetic (NN) coupling along
the orthorhombic a-direction (J1a), much weaker ferromagnetic (NN) coupling along the
b-direction (J1b) and antiferromagnetic (NNN) coupling along the (1, 1, 0)-direction (J2),
similar to what is shown in the caption of figure 2.6 for BaFe2As26.

Numerous mechanisms have been proposed in order to explain this in-plane anisotropy,
such as electronic nematic ordering [66] or orbital ordering [35]. The anisotropy in the
exchange interactions is not just present in the orthorhombic, magnetically ordered phase
but also remains in the paramagnetic phase for temperatures above TN [54, 56], which is
puzzling especially considering the directional variation of the exchange interactions in
combination with the underlaying fourfold symmetry of the tetragonal crystal structure.

The paramagnetic excitations in BaFe2As2 exhibit another puzzling feature as the
short range quasi 2D paramagnetic excitations observed for energies below 100 meV
[61, 63], are replaced by narrow spin wave like excitations for high energies [54]. These
results combined with results from other experimental techniques [67–69] are interpreted
as indications of a nematic spin liquid present in these materials and which could
explain some of the above mentioned magnetic properties. A comprehensive model or
complete understanding of these magnetic properties, however, is still absent.

6The definition of the various exchange parameters is illustrated in figure 2.5.
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The most experimental results on the spin wave excitations have been obtained for
122-materials, mainly due to the relatively large crystals available for these materials.
However, a recent report on a neutron scattering spin wave study on Fe1.05Te showed
that a linear spin wave model based on a local moment Heisenberg Hamiltonian similar
to the ones used for the 122-materials, also provides a reasonable description of the spin
waves in 11-materials, and also with a highly anisotropic in-plane exchange coupling
[57].

Spin Excitations in doped Fe-based Materials

Doping the system successfully suppresses the static magnetic order and induces super-
conductivity to the systems. The break down of the long range static magnetic order is
also visible from the excitation spectrum of the spin wave excitations. In the underdoped
122-materials, where the static order is still present and coexists with superconductiv-
ity, the spin wave excitations still exhibit strong three dimensional character [40, 70],
and in general are very similar to the undoped materials. Once the static magnetic
order is completely suppressed, however, the narrow three dimensional spin wave ex-
citations of the static magnetic order with propagation vector QAFM=(0.5, 0.5, 1) are
replaced by short range quasi 2 dimensional spin fluctuations, with strongly weakened
interlayer correlations. These short range spin fluctuations have a propagation vector
matching the nesting vector Qnesting=(0.5, 0.5, 0) and are present for all Fe-based su-
perconducting materials, even for the 11-materials, where the static magnetic order has
a different wave vector QAFM=(0.5, 0, 0.5). They are mostly 2 dimensional with al-
most zero correlations along the (0, 0, L)-direction [71–73], and are reduced in in-plane
correlation lengths, comparable to the broadened low energy paramagnetic excitations
present in the parent 122-compound [61, 74]. When overdoping the system Tc starts to
drop again until superconductivity is completely suppressed, and also the spin excita-
tions are affected. For 24% Co-doped Ba(Fe1−xCox)2As2 seemingly all spin fluctuations
are completely suppressed [75]. A similar effect has been reported for LaFeAsO1−xFx

where increasing doping concentration eventually leads to the suppression of the spin
fluctuations [76].
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2.3.4 Band Structure and Fermiology

Figure 2.7: (upper row left panel) Sketch of energy-k band structure of a semi metal. (upper
row right panel) Sketch of the Fermi surface of Fe-based superconductors in the kx-ky plane.
The hole- (red solid circle) and electron pockets (red dashed circles) at the Γ-point and M-points
are of similar size. It was neglected the fact that two electron pockets and two hole pockets are
present at the Γ- and M-points, respectively. The nesting vector Qnesting = (π, π) = (0.5, 0.5)
in tetragonal notation illustrates the nesting of the Fermi surfaces. With electron doping
electron pockets are enlarged (solid blue circles) and perfect nesting condition is destroyed.
±∆ illustrate the opposite signs of the superconducting gap function ∆ with s±-symmetry.
(lower row left panel) Band structure of LaFeAsO. Dashed lines represent band structures of
the various elements of the composition. Obvious are the hole-like and electron-like bands
crossing the Fermi energy at the Γ- and M-point, respectively. Colors match the legend in the
right figure. (lower row right panel) Density of states of LaFeAsO obtained via band structure
calculations for the various element states. Two LaFeAsO figures are taken from ref. [77].

Aside from the magnetic properties, band structures, Fermi surface topologies and den-
sity of states at the Fermi energy N(EF ) provide important information on the properties
of superconducting materials, given the fact that only states close to the Fermi surface
contribute to the electronic properties, magnetic susceptibility or the formation of a
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superconducting ground state. Thus, many band structure calculations and ARPES
measurements have been performed, and several characteristics of the band structures
of Fe-based materials have been established [48, 52, 77–83]. In contrast to the cuprate
materials, which are Mott-like insulators the Fe-based materials are weakly metallic and
in fact are considered semi metals. Semi metals are materials with band structures
similar to the sketch in figure 2.7, where valence and conduction bands overlap in en-
ergy but are separated in k-space. Due to this overlap electrons from the valence band
are transferred to the conduction band until the highest occupied states in both bands
are of identical energy, EF . This leaves empty states in the valence band (hole band)
and occupied states in the conduction band (electron band) and both bands contribute
to the electronic properties of the system. Band structure calculations on a variety of
Fe-based materials reveal exactly this type of band structure, with hole and electron
bands crossing the Fermi surface at the Γ- and M-point of the Brillouin zone, as shown
in figure 2.7. This leads to a Fermi surface consisting of electron and hole pockets of
comparable size and distributed in the kx-ky plane of the Brillouin zone as illustrated
in figure 2.7. The similar sizes and shapes of the hole and electron pockets lead to
nesting effects of the different parts of the Fermi surface separated by the nesting vector
Qnesting = (π, π) = (0.5, 0.5) in tetragonal notation. A Fermi surface is nested when
it possesses parallel parts which can be placed on top of each other with a reasonable
matching of the two surfaces, when translated by the nesting vector, in this case the
hole and electron pockets in 2.7. Nested Fermi surfaces drastically enhance the magnetic
response of the system to perturbations with this particular wave vector Qnesting, and
the system can become unstable to the formation of ordered ground states, such as Spin
Density Waves, Charge Density Waves or superconductivity7.

As figure 2.7 shows, the density of states at the Fermi energy N(EF ) is dominated
by the Fe 3d states, whereas the As 4p bands are approximately 3 eV below EF . At
this energy region, 3 eV below EF , Fe and As bands show a strong hybridization, which
illustrates the strong Fe-As bonding in the system. Surprisingly all five Fe 3d orbitals
are at about the same energy even though one would expect an energy splitting of
the five 3d orbitals into three t2g and two eg orbitals caused by the tetrahedron of
four electronegative anions surrounding the iron. The fact that the density of states
near the Fermi surface is dominated by these five Fe 3d orbitals with just very little
contribution by the As 4p states [48, 77, 80–82, 84, 85] shows that direct Fe-Fe hopping
is the predominant mechanism for the metallic conduction in the Fe-based materials.
This is supported by the short Fe-Fe distance in the 122-materials which indeed is just
about 10% larger than for pure metallic iron.

Whereas, in cuprate materials each Cu-pair is separated by an O atom and conduction
is performed by Cu-O-Cu hopping processes. As a result, the O 2p orbitals have strong
contributions to the density of states near the Fermi surface and the localized copper
spins exhibit strong antiferromagnetic superexchange interactions.

7A slightly more detailed discussion on nesting effects can be found in the appendix.
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Unit Cells and Brillouin Zones

Figure 2.8: (left panel) On-top view of one Fe-As layer with three possible real space unit
cells. Illustrated are Fe atoms (red dots) and As atoms (light and dark purple dots). Light
purple As atoms are located above and dark purple As atoms are located below the Fe plane.
Red box illustrates the 1-Fe unit cell, blue box the 2-Fe tetragonal unit cell and green box marks
the orthorhombic unit cell. (right panel) Illustration of the first Brillouin zones corresponding to
unit cells in the left panel, where matching colors indicate correlated zones and cells. Blue and
red circles depict the hole and electron Fermi surfaces at the Γ-point and M-points, respectively.
The labeling is done in tetragonal notation which leads to the nesting vector Qnesting = (π, π) =
(0.5, 0.5) similar to figure 2.7.

When discussing the electronic properties of materials one should also mention the pre-
ferred Brillouin zones and the corresponding real space unit cells in order to avoid pos-
sible confusion due to unclear notations. In Fe-based materials basically three unit cells
are used frequently in literature. The simplest of the three is the 1-Fe unit cell which
is highlighted by the red square in the sketch in figure 2.8. As the name indicates, the
1-Fe unit cell is oriented in the ab plane in a way that it connects four Fe atoms and
as a consequence it contains one Fe atom per unit cell per Fe layer. The corresponding
Brillouin zone is referred to as the unfolded zone as it covers the largest possible area in
reciprocal space. The main advantage of the 1-Fe Brillouin zone is its simplicity as for
this unfolded zone the fewest number of electron bands needs to be considered. On the
other side, however the drawback of the 1-Fe description is that the corresponding 1-Fe
cell is not the correct real space unit cell, which becomes obvious from the figure. Due to
a varying height of As atoms, illustrated in the sketch by the light and dark colored As
atoms, the height or z-positions of the As create an alternating pattern in reference to
the Fe z-positions. The consequence of this is that the correct real space unit cell needs
to be rotated by 45° and enlarged by a factor of 2 in comparison to the 1-Fe cell. The
new cell, twice as large as the 1-Fe cell, contains two Fe atoms per cell per Fe layer and
thus is labeled the 2-Fe cell. This is the correct real space description for a tetragonal
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crystal structure with identical in plane lattice constants a = b, illustrated in blue in
figure 2.8. In order to consider the orthorhombic distortion present at low temperatures
of weakly doped materials, the unit cell again needs to be rotated by 45° and enlarged
by 2, highlighted by the green box. As the real space unit cells of the tetragonal and
orthorhombic description are enlarged in reference to the 1-Fe cell the corresponding
Brillouin zones are reduced in size and can be created by a folding of the unfolded
1-Fe Brillouin zone and thus are often referred to as folded zones. One consequence of
the folding of the zone is an increase in the number of bands that need to be considered
to discuss the physics of the first Brillouin zone. All three mentioned Brillouin zones
and unit cells, 1-Fe, 2-Fe tetragonal and orthorhombic create a legitimate description of
the physics of the materials and all have their own advantages and disadvantages. As
the intention of this paragraph is solely to introduce the possible notations, for a more
detailed discussion of the subject one might want to look elsewhere [48, 86]. Through-
out this text only the tetragonal and orthorhombic description will be used, and the
preferred notation will be labeled which should minimize the potential for confusion.

2.3.5 Superconducting Gap Symmetry

Similar to the cuprate materials, electronic pairing mechanisms have also been discussed
for the Fe-based materials as possible driving forces for Cooper pair formation. One
reason for these considerations of magnetic degrees of freedom is the proximity of
magnetically ordered and superconducting states in the phase diagram. Another reason
is the fact that electron phonon mechanisms are believed to be not capable of providing
the needed pairing strengths required for the high transition temperatures [87]. The
situation with possible phonon contributions, however, is not so clear in reality. Several
experimental results indeed suggest a possible contribution of electron phonon coupling
to the pairing mechanism [88–90]. On the other side, measurements of isotope effects,
which is a smoking gun experiment for possible electron phonon coupling, provide mixed
results, with reports of conventual isotope effects, supporting phonon contributions in
some materials [91, 92] and contrary results in other materials [93, 94].

Spin Fluctuation Theory

The spin fluctuation theory as it has been proposed by Berk-Schrieffer [95] is one of the
most popular candidates for electronic pairing mechanisms and has the ability to provide
some qualitative results in case of the cuprate materials, as it is capable of explaining
the present d-wave symmetry of the superconducting order parameter.

Ferromagnetic Spin Fluctuations Pairing of electrons to Copper pairs via the ex-
change of ferromagnetic spin fluctuations was first proposed by Berk an Schrieffer [95]
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for nearly ferromagnetic metals in 1966. In a descriptive picture, an electron that trav-
els the medium of the nearly ferromagnetic metal and polarizes the surrounding spins
ferromagnetically with its own spin. This lowers the energy of the system and results in
a pulsating pattern of the polarized spin medium. Another electron with a parallel spin
travels the system, feels the potential of the pulsating polarized spins and thus pairs
with the initial electron spin. The bosons exchanged between the electron pairs are
collective excitations, magnons and mostly paramagnons8. In the case of the exchange
of ferromagnetic fluctuations the pairing potential is attractive for the formation of spin
triplet pairs, Cooper pairs with total spin S=1 and repulsive for singlet pairing with
total spin S=0. If the repulsive potential of the spin fluctuations exceeds the attrac-
tive potential of electron-phonon interactions for example, the spin fluctuations act as
pair-breaking. This is the case in Pd which is not BCS superconducting due to strong
magnetic fluctuations.

Mathematically the spin fluctuation mediated pairing can be described in terms of
effective pairing vertices9 [86],
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−U2χ0(k

′ − k)

1− U2χ2
0(k

′ − k)
(2.4)
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1− U2χ2
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0(k
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where U is the local Hubbard U and χ0 is the noninteracting magnetic susceptibility of
the Fermi gas, in other words the Lindhard function10. The total pairing vertex in the
triplet and singlet channel reads as [86],

Γt =
1

2
Γ↑↑ (2.6)

Γs =
1

2
(2Γ↑↓ − Γ↑↑) (2.7)

The negative sign in (2.4) (note that for nearly ferromagnetic metals it is given, χ0 >
0 and Uχ0 < 1) illustrates that for ferromagnetic spin fluctuations triplet pairing is
attractive, whereas singlet pairing is repulsive and therefore suppressed.

Antiferromagnetic Spin Fluctuations For the case of antiferromagnetic fluctuations
the magnetic response is peaked at a given wave vector Q and with some additional

8As magnons are the collective excitations of the static magnetic order paramagnons are magnetic
collective excitations in the paramagnetic phase. In the paramagnetic phase the static magnetic
order is suppressed but exchange interactions of the magnetic moments can still be present.

9The vertex, in a way, describes the point of highest probability for the interaction of two particles.
Since in this case the particles are electrons the vertex is expressed in terms of k-space. The particles,
discussed here, interact via exchange of exchange bosons (paramagnons) and so the interaction can
be either attractive or repulsive, depending on the type of exchange bosons.

10The appendix contains a slightly more detailed discussion of the magnetic response of metallic systems.
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assumptions explained elsewhere [96–98] the singlet pairing vertex reads as [86]

Γs(k
′,k) =

3

2
U2 χ0(k

′ − k)

1− Uχ0(k′ − k)
(2.8)

This form of the vertex implies that Γs(k
′,k) is also peaked at Q, but due to the

positive sign remains always repulsive. As a result, equation (2.9) the so-called BCS gap
equation [12], which needs to be obeyed in order for a successful pairing, does not lead
to a solution.

∆k = −
∑
k′

Γs(k
′,k)

∆′
k′

2E ′
k

tanh
E ′

k

2T
, (2.9)

Obviously, from the BCS gap equation for the antiferromagnetic spin fluctuations, it
becomes clear that for a conventional gap function11 no pairing is achieved. But for
a superconducting gap function with a sign change of the gap function for different
positions on the Fermi surface

∆k = −∆k+Q (2.10)

a solution is possible and the repulsive pairing via antiferromagnetic spin fluctuations
indeed provides a pairing mechanism12. For the Fe-based materials for which the mag-
netic susceptibility is strongly peaked for the nesting vector Qnesting = (π, π) the most
probable symmetry of the superconducting gap function which provides pairing on the
nearest neighbor bonds is

∆s
k = ∆0(cos(kxa)cos(kya)) (2.11)

where ∆s
k represents an isotropic s-wave symmetry, which has opposite signs for the hole

and electron pockets of the Fermi surface, respectively, as illustrated in figure 2.9.

Superconducting Gap Function for Fe-based Superconductors

To this date the most probable pairing symmetry in the Fe-based superconductors seems
to be a singlet pairing with net spin S=0 with an isotropic s± symmetry of the gap
function which is isotropic on each Fermi surface but changes its sign between electron
and hole pockets of the Fermi surface respectively, as illustrated in figure 2.9. Several
experimental results support this symmetry of the gap function, which was first proposed
by Mazin et al. [78]. Experiments on the Knight shift on numerous different Fe-based
materials [99–103] have shown that the pairing most likely is of singlet symmetry with
total net spin S=0.
11A superconducting gap function is considered conventional if the gap value is identical for all k and

k′ of the Fermi surface ∆k = ∆k′ , and consequently unconventional if ∆k ̸= ∆k′ for at least on
point on the Fermi surface.

12As this obviously does not leave a really descriptive picture, one needs to keep in mind that the
pairing exclusively takes place in momentum space and not in real space.
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Figure 2.9: Gap function symmetries. a) s++ wave symmetry for a Fermi surface consisting
of five pockets, similar to the Fe-based materials. The s-wave symmetry considers an isotropic
gap value for k-values on the Fermi surface. For s++ symmetry the gap function has identical
sign on each Fermi surface. b) s± symmetry. Isotropic gap value on each Fermi surface pocket,
similar to the s++ symmetry, but with a sign change of the gap function between the center hole
pocket and the four electron pockets. c) Unconventional d-wave symmetry. The gap function
has the typical shape of the d-orbitals. The two ellipses on the centered hole Fermi surface
illustrate the four lobes of the d-wave symmetry. The d-wave symmetry with alternating sign of
the gap function on each lobe leads to an anisotropic gap value on the hole pocket, where the gap
value becomes zero for wave vectors between the lobes. The gap function further changes sign
between the electron pockets with opposite signs for neighboring pockets. Red color represents
+∆ positive sign of the gap function, whereas blue color represents −∆ negative sign of the
gap function.

Regarding the isotropic s-wave symmetry of the gap function the situation is not
as clear. Several ARPES experiments [104–109] have shown nodeless superconducting
gaps with uniform gap values over the hole and electron pockets, respectively, which
is exactly what would be expected for s-wave symmetry. Contrary to this isotropic
superconducting gap, however, other experimental techniques revealed anisotropic gap
values with nodes in the superconducting gap for some materials [110–112]. How this is
compatible with the proposed s± gap function, which has a uniform value on each Fermi
surface pocket, is still being debated [113–115].

The sign change of the gap function for the hole and electron pockets of the Fermi
surface ∆k = −∆k+Q which is a main property of the s± gap symmetry has a promi-
nent effect on the magnetic response of the system. As Mazin et al. [78] predicted,
when proposing a s± gap symmetry for the Fe-based materials, the s± gap function
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results in a resonance feature in the dynamical spin susceptibility χ′′(Q, ω), which is
accessible through inelastic neutron scattering experiments. This resonance signal in
the neutron scattering spectrum of spin flip particle hole excitations with wave vector
Qnesting = (0.5, 0.5, 0), the so-called spin resonance mode has been observed for numer-
ous Fe-based materials and will be discussed in the next section. From the current
understanding the resonance signal does occur as a result of the sign change of the or-
der parameter present for the s± symmetry and is not be compatible with for example
the s++ symmetry, with ∆k = ∆k+Q [116–118]. Thus, combined with the results from
the Knight shift experiments which showed that the Cooper pairs are singlets and the
ARPES results which showed the mostly nodeless superconducting gaps which excluded
d-wave symmetry as possible gap symmetry, the occurrence of the resonance mode in the
neutron scattering spin excitation spectra, is taken as a confirmation of the s±-symmetry
as the correct gap symmetry for the Fe-based materials.
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2.3.6 The Spin Resonance Mode

Figure 2.10: Inelastic neutron scattering investigations on the spin resonance signal in op-
timal doped Ba(Fe0.925Co0.075)2As2. (Upper Left Panel) Energy dependence of the imaginary
part of the magnetic susceptibility for temperatures 4 K (blue symbols), 60 K (yellow symbols)
and 200 K (red symbols). (Right Panel) Wave vector dependence of the scattering function
for temperatures 4 K (blue symbols), 60 K (yellow symbols), obtained in longitudinal direction
through QAFM=(0.5, 0.5, 1) at energy transfers 9.5 meV. (Lower Left Panel) Temperature de-
pendence of the imaginary part of the magnetic susceptibility for wave vector QAFM=(0.5, 0.5,
1) and excitation energies 3 meV (cyan symbols), 9.5 meV (red symbols) and 16 meV (purple
symbols). Figures are taken from ref. [72].

The spin resonance signal is one of the most prominent features of the spin excitation
spectrum in high Tc-superconductors and also one of the more studied and debated
features as well. It was first observed in neutron scattering experiments on the magnetic
excitation spectrum of the superconducting phase of bi-layer cuprates [119–123] and
later in many other cuprate materials or heavy fermion systems [124, 125].

For the Fe-based superconductors, the signal was first predicted theoretically by Mazin
et al. [78] almost immediately after the discovery of superconductivity in these ma-
terials, and was first observed experimentally in the neutron scattering spectrum of
Ba0.6K0.4Fe2As2 [126] , and since then in a number of different iron based superconduct-
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ing compositions, such as Ba(Fe1−xCox)2As2 [40, 70–72], Ba(Fe1−xNix)2As2 [73, 127],
BaFe2(As1−xPx)2 [128], FeTe1−xSex [129–132] and LaFeAs1−xFx [76, 133].

As illustrated in figure 2.10, the spin resonance signal is a feature of the spectrum of
spin excitations with wave vector Qnesting=(0.5, 0.5, 0) and shows as an enhancement of
scattering intensity at a specific excitation energy, once the sample temperature drops
below Tc. The occurrence of the resonance signal usually is accompanied by a gap in the
spectrum for energies right below the resonance energy, where magnetic intensities are
almost completely suppressed. As known from polarized neutron scattering [120, 122,
134–137], the resonance signal is of magnetic nature but most likely has a microscopic
origin very different from the antiferromagnetic collective excitations with propagation
vector QAFM=(0.5, 0.5, 0). In energy the mode forms a relatively broad peak with
5-10 meV full width half maximum (FWHM) and the approximately 0.15 Å−1 width in
Q-space corresponds to a correlation length of just several lattice spacings and thus fits
to the rest of the spin excitation spectrum.

With increasing temperature the enhancement of scattering intensity of the resonance
signal decreases and vanishes completely at Tc [72, 73, 126, 132, 133], which clearly
relates the signal to the superconducting state.

Despite the large number of different cuprate and Fe-based superconducting materials
that feature a spin resonance signal in the spin excitation spectrum in the superconduct-
ing phase, the resonance signal seems to follow a very simple linear relation between the
resonance energy ER and the transition temperature Tc. For the cuprate materials a uni-
versal ratio of ER ≈ 5.8 kBTc is reported [138]. The authors, however, further propose
that aside from the observed relation between ER and Tc the resonance energy more
likely scales to 2∆ the superconducting electronic gap energy, and thus report for the
cuprate materials a ratio of ER/2∆ = 0.64. The rather large deviation of the resonance
energy from the theoretical value ER = 2∆13 can partly be explained by experimental
inaccuracies. Especially the determination of the gap energy is experimentally rather
difficult. The fact that both quantities are determined via different experimental tech-
niques provides another source for error, as the gap value is determined via ARPES
(angle resolved photoelectron spectroscopy), NMR (nuclear magnetic resonance), µSR
(muon spin rotation) and a variety of other methods, whereas ER is determined via in-
elastic neutron scattering. However, in case of the interpretation of the resonance signal
as the spin 1 exciton, which will be discussed in the next section, the binding energy of
the particle hole pair also leads to reduction of the resonance energy in reference to 2∆.

For the Fe-based superconductors a very similar relation between ER and Tc of ER ∼
(4.6 ± 0.4) kBTc, has been reported [36, 72, 133, 139, 140], which is an appropriate
description for most Fe-based materials. In contrast to the cuprates, however, the Fe-
based materials seemingly do not follow a universal ratio between ER and 2∆ [140],
where especially materials with lower Tc deviate stronger from any universal ratio. As
the universality of the ratio ER/2∆ = 0.64 present in the cuprates has been interpreted

13Will be discussed below.
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as an indication for a possible spin fluctuation mediated pairing mechanism, the authors
in [140] suggest that the breakdown of this universality for the Fe-based materials might
indicate a smaller contribution of spin fluctuations to the pairing mechanism.

For the Fe-based materials the relation between ER and 2∆ might not hold a universal
relation but individually the correlation between the two values is still believed to exist.
Neutron scattering experiments on optimal doped Ba(Fe1−xCox)2As2 clearly support
the correlation between ER and 2∆, as the experiments reveal a resonance energy ER

which gradually decreases to zero for temperatures increasing towards Tc [72], and thus
exhibits a temperature dependence similar to the superconducting gap value which
also decreases for increasing temperatures and disappears at Tc. However, contrary
results are reported for FeTe0.6Se0.4 [141] as in this composition the resonance energy
ER seemingly remains constant up to Tc.

Theoretical Models for the Spin Resonance

Theoretically, the occurrence of the resonance signal for Fe-based materials is ascribed
to the specific s± symmetry of the superconducting gap function. This becomes obvious
when one takes a look the Lindhard function χ0(q, ω) =

f(ϵk+q)−f(ϵk)
ω−(Ek+q−Ek)+iδ

which is accessi-
ble through inelastic neutron scattering and which gives information on the momentum,
energy, and temperature dependence of spin flip particle-hole excitations. When dis-
cussing particle hole excitations in the superconducting state it has to be considered
that these excitations arise from a ground state consisting of a condensate of pairs of
electrons with a macroscopic phase coherence of the Cooper pair wave functions plus
an energy gap which separates the ground state from any possible excited states. These
natural excitations in the superconducting state can be expressed in terms of Bogoli-
ubov quasiparticles γ†

k↑ which are superpositions of electron c†k↑ and hole excitations

c−k↓, γ†
k↑ = ukc

†
k↑ − vkc−k↓. The coherence factors [2, 5] u2

k = 1
2

(
1 + ϵk√

ϵ2k+∆2
k

)
and

v2k = 1
2

(
1 − ϵk√

ϵ2k+∆2
k

)
with u2

k + v2k = 1 determine the probability the quasiparticle is

either hole-like or electron-like. This approach translates to the particle hole excitation
spectrum by the introduction of the BCS coherence factors 1 ± ϵkϵk+q+∆k∆k+q

EkEk+q
, which

affect the particle hole excitations in the superconducting state. The BCS Lindhard
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function [142–144] reads as,

χBCS
0 (q, ω) =

∑
k

{
1

2

(
1 +

ϵkϵk+q +∆k∆k+q

EkEk+q

)
× f(Ek+q)− f(Ek)

ω − (Ek+q − Ek) + iδ

+
1

4

(
1− ϵkϵk+q +∆k∆k+q

EkEk+q

)
× 1− f(Ek+q)− f(Ek)

ω + (Ek+q + Ek) + iδ
(2.12)

+
1

4

(
1− ϵkϵk+q +∆k∆k+q

EkEk+q

)
× f(Ek+q) + f(Ek)− 1

ω − (Ek+q + Ek) + iδ

}

where ϵk is the quasiparticle dispersion, ∆k the superconducting gap function,
Ek =

√
ϵ2k +∆2

k the quasiparticle energy and f(Ek) the Fermi distribution function.
The three terms in (2.12) describe the quasiparticle scattering, the quasiparticle pair
annihilation and the quasiparticle pair creation, respectively. For low temperatures
the third term, the creation of quasiparticle pairs is the dominant contribution to
the magnetic response and thus to the spin excitation spectrum observed in neutron
scattering experiments. The pair creation process, which in other words describes the
breaking up of a Cooper pair and the resulting creation of a pair of two quasiparticles,
requires energies higher than the threshold energy of Ec = |∆k + ∆k+Q|, which marks
the energy needed to break up a Cooper pair. Thus, for energies smaller than 2∆
Cooper pairs are not broken and no quasiparticle pairs are created, which results in
a gap in the neutron excitation spectrum. For energies equal 2∆ the Copper pairs
are broken resulting in a pair of quasiparticles with energy for each quasiparticle
Ek = ∆, with ϵk = 0. For a gap function which changes sign between the Fermi
surfaces connected by Q with ∆k = −∆k+Q, as is the case for the s± symmetry, the
coherence factor 1 − ϵkϵk+q+∆k∆k+q

EkEk+q
becomes maximal, whereas for energies higher than

2∆ the coherence factor decreases again. This leads to a resonance like enhancement of
particle hole excitations with energies equal 2∆. As a result the excitation spectrum
features a gap for energies below 2∆ and a resonance like signal at energies close to
Ec = |∆k +∆k+Q|. Note that for a different gap symmetry, which does not change sign
for different parts of the Fermi surface connected by Q, ∆k = ∆k+Q, the coherence
factor vanishes and no resonance signal occurs. The coherence factor is also zero if ∆k

exhibits a signs change but the propagation vector of the excitations does not match Q
for which the sign change ∆k = −∆k+Q occurs.

Several models have been proposed for the cuprate materials to give a microscopic
description of the resonance mode, like a van Hove singularity in the Stoner continuum
[145, 146], a soft mode related to excitations of the nearby antiferromagnetically ordered
state [147], the π-resonance an antibound state in the particle-particle channel [148–150]
or the spin 1 exciton, a bound state of a particle-hole pair [151].

For the Fe-based superconductors the most discussed models are the spin 1 exciton
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[116–118, 152] and the π-resonance [148–150], which also often are referred to as singlet-
triplet excitations. In an over-simplified picture, the spin 1 exciton is a bound state of
two excited Bogoliubov quasiparticles, a bound state of a quasi-electron and a quasi-hole,
so to speak. The idea of excitons as bound states of quasiparticles as possible collective
excitations in superconductors has first been predicted for BCS superconductors in the
mid 1950s [153].

In Fe-based superconductors the exciton model is able to describe some of the
properties of the spin resonance signal. The energy of the resonance signal in the
neutron scattering spectra is located in the energy region slightly below 2∆ and directly
above the spin gap region, where all magnetic intensity is suppressed. As in the
superconducting phase single particle excitations with energies not sufficient to break
up Cooper pairs are suppressed, the lowest energy for any created particle hole pair in
fact is 2∆. The fact that the resonance peak in the neutron experiments appears slightly
below 2∆ can be ascribed to the binding energy of the exciton, where the formation
of the electron hole pair lowers the energy of the two excited quasiparticles, which
leaves the exciton state slightly below 2∆ and so within the gap region. In this case,
the difference between the resonance energy ER and 2∆ is correlated to the binding
energy of the electron hole pair. In the normal state with T > Tc the mode is believed
to be strongly damped by the electron-hole excitations, which where suppressed below
Tc. This damping causes a strong broadening of the resonance peak in energy and
makes it unobservable in the neutron scattering experiments. This shows that the
exciton mode really is enhanced by the opening of the superconducting gap and the en-
ergy of the mode is related to 2∆ and disappears from the excitation spectrum above Tc.

The other model, the π-resonance or π-mode is quite similar to the spin 1 exciton, in
that regard, that it is a pair of quasiparticles with net total momentum Q = (π, π, 0)
and net total spin S=1. However, in contrast to the spin 1 exciton, which is a
particle-hole bound state, the π-resonance is an antibound state of two particles with
parallel spin. The resonance signal observed in the neutron scattering experiments
thus is related to the pair creation of these antibound particle-particle states, where
in a simplified picture the neutron scatters off one electron of the Cooper pair, flips
the spin of that electron and transfers a momentum of Q = (π, π, 0) to it. After the
scattering process the electron-electron pair has a total net momentum Q = (π, π, 0)
and total net spin S=1 and if the energy that has been transferred from the neutron
to the pair matches the energy of the antibound state, the resonance is created.
Usually, interactions in the particle-particle channel are not observable experimentally
and the authors [148–150, 154] argue that the mixing of the particle-particle and
particle-hole interaction channels in the superconducting state is responsible for the
resonance signal in the neutron scattering experiments. Above Tc as the mixing of the
interaction channels is abolished, the mode still exists but becomes undetectable again
and thus disappears from the spin excitation spectrum in the scattering experiments.
In contrast to the spin 1 exciton, for which the resonance energy ER is related to
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the superconducting gap energy and thus exhibits a temperature dependence, the
π-resonance has a particular energy ∼ −2µ, where µ is the chemical potential, and so
ER does not vary with temperature or is necessarily connected to 2∆.

Both models are considered as possible descriptions for the resonance signal in Fe-
based materials, however, a real consensus about the microscopic nature of the resonance
signal is not present to this date. Further, so far no clear experimental evidence could be
made that would unambiguously confirm or reject either of the two or any other model.
Both models have been outlined at this point in an extremely short and over simplified
way, solely in order to introduce two of the more transparent theoretical pictures that
are discussed as possible microscopic origins of the resonance peak observed in neutron
scattering experiments.

For a more detailed review on the spin resonance please turn to ref. [48, 155].
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3 Experimental and Theoretical
Basics

3.1 Scattering Basics

The history of neutron scattering has to begin with the first discovery of the neutron
by J. Chadwick in 1932. Almost immediately after this historically very important dis-
covery it was already discussed that the neutron could in fact be used as a probe for
investigations in condensed matter physics. First suggested theoretically by Bloch in
1936 that neutrons could be scattered by crystalline samples the first magnetic neutron
scattering experiments were performed by Shull, Wollan and Strausser [156, 157] in 1952.
Since then, neutron scattering has developed into one of the most versatile and powerful
techniques in experimental condensed matter physics. And with today’s advanced neu-
tron sources, the steady improvement of neutron scattering instruments and techniques
such as polarized neutron scattering, it is still an unmatched tool in hard matter physics,
especially in the field of magnetism. The success of the neutron as a microscopic probe
in solid state physics is closely related to the fundamental physical properties of the par-
ticle, which enables neutron scattering to provide insight to material properties, hardly
accessible by other techniques. Thermal neutrons possess wavelengths of the order of
typical atomic distances in solid state materials. They interact with matter only very
weakly and thus represent only a small perturbation to the system. Neutrons interact
with the nuclei of the system via short range nuclear forces as well as with the magnetic
densities via dipole-dipole interactions with the neutrons’ magnetic moments. Both in-
teractions are of similar strength and short range in nature and as a result elastic neutron
scattering is able to deliver insight on correlations of nuclear as well as magnetic lattices
on a microscopic scale. In addition to information on the static properties of the nuclear
and magnetic lattices provided by elastic neutron scattering, inelastic neutron scattering
gives insight to dynamic correlations and is by far the most important experimental tool
for this field of solid state research. Only neutrons allow sizeable momentum transfers at
energies typical for collective excitations of both nuclear and magnetic lattices. With a
mass of mn = 1.674928 × 10−24 g a thermal neutron with typical wavelength of λ=2.4Å
has an energy E ≈ 14 meV, which is of the order of typical collective excitations. In
contrast to this, the energy of a photon with similar wavelength is close to 8 orders of
magnitude larger and consequently the detection of a change of the photon energy in
the meV range is very difficult and provides serious experimental challenges.
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3.1.1 Basic Neutron Scattering Formulas

The following section provides a short introduction to some of the basic expressions
needed to describe elastic and inelastic scattering events in a mathematical way.
The typical quantity obtained in a neutron scattering experiment is the number of
neutrons with energy E scattered into a given solid angle dΩ. This quantity is expressed
in terms of the double differential cross section d2σ

dΩdE′ . In this chapter the cross sections
for the basic scattering processes will be introduced briefly. However, all formulas
presented in this section along with detailed derivations and discussion of the various
cross sections can be found in many classical textbooks and review articles on neutron
scattering [157–161].

In order to get access to the theory of neutron scattering it seems natural to start
with so-called Fermi’s Golden Rule, which represents the master formula of scattering
theory on a quantum mechanic level:(

d2σ

dΩdE ′

)
ki→kf

=
1

N

kf
ki

( m

2π~

)2 ∑
λi,σi

pλi
pσi

∑
λf ,σf

|⟨kfσfλf |V (r)|kiσiλi⟩|2δ(~ω+Eλi
−Eλf

)

(3.1)
This formula expresses the process of a neutron with wave vector ki, spin state σi and
energy Eλi

being scattered by a given interaction potential V (r) into a state with wave
vector kf , spin state σf and energy Eλf

where further the quantum numbers λi and
λf represent the initial and final states of the scattering system. Further, a possible
change in energy of the scattering system ~ω and the probability pj for the system or
the neutron of being in the quantum state j are considered in (3.1).

Fermi’s Golden Rule describes the scattering process of particles on a quantum me-
chanical level in its most general form possible. In order to apply this formula on neutron
scattering processes some modifications and specific assumptions regarding the interac-
tion potential V (r) need to be made. In the following sections this will be demonstrated
for nuclear and magnetic scattering processes, respectively.

Nuclear Neutron Scattering

The neutron interacts with the nuclei of the sample via short range nuclear forces. As
a result of this very short range of interaction, much smaller than the typical neutron
wavelength, the interaction potential of a crystalline sample can be interpreted as an
assembly of point-like potentials. For such an assembly of N atoms at positions Rj,
for simplicity only the case of one single element will be discussed here, the interaction
potential can be expressed as follows:

VN(r) =
2π~2

m

∑
j

bδ(r−Rj). (3.2)
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Here r−Rj gives the distance between the neutron and the j-th atom and the δ-function
considers the point-like character of the interaction potential. Parameter b the nuclear
scattering length which describes the scattering power of the given atom is element and
isotope specific and varies depending on the total spin of the nucleus-neutron system.
In neutron scattering it is a common procedure to use the momentum transfer of the
scattered neutron Q = kf−ki as the spatial variable instead of the neutron wave vectors.
With the introduction of Q, also known as the scattering vector, the differential cross
sections for coherent and incoherent nuclear scattering are(

d2σ

dΩdE ′

)
coh

=
1

N

σcoh

4π

1

2π~
kf
ki

∑
j,j′

∫ ∞

−∞
⟨e−iQRj(0)eiQRj′ (t)⟩eiωtdt (3.3)(

d2σ

dΩdE ′

)
inc

=
1

N

σinc

4π

1

2π~
kf
ki

∑
j

∫ ∞

−∞
⟨e−iQRj(0)eiQRj(t)⟩e−iωtdt (3.4)

where σcoh = 4πb
2 and σinc = 4πb2 − b

2 and b account for the expectation value of the
coherent and incoherent scattering length. The difference between coherent σcoh and
incoherent σinc scattering is the presence (σcoh) or absence (σinc) of correlations between
scattering potentials bj,j′ . These correlations lead to interference effects and result in
so-called Bragg scattering with a characteristic Q-dependence of the scattered intensity.
All information on the lattice characteristics can be found in the coherent part of the
scattering intensity, which will be the focus of the following discussion.

A way to express these correlations mathematically is by introducing the pair cor-
relation function or scattering function S(Q, ω). It considers correlations in space and
time between pairs of scattering potentials and it is a common procedure in neutron
scattering to express neutron cross sections in terms of this pair correlation function. If
the coherent scattering function S(Q, ω) is defined as

S(Q, ω) =
1

N

1

2π~
∑
j,j′

∫ ∞

−∞
⟨e−iQRj(0)eiQRj′ (t)⟩eiωtdt (3.5)

the coherent nuclear cross section turns into(
d2σ

dΩdE ′

)
coh

=
σcoh

4π

kf
ki
S(Q, ω) (3.6)

The scattering function S(Q, ω) considers all existing correlations in space and time
between pairs of scattering potentials. Consequently, S(Q, ω) contains all desired in-
formation about the static and dynamic behavior of the system under investigation,
expressed regarding the momentum and energy transfer.
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Elastic Nuclear Scattering from Crystalline Sample Elastic scattering considers
scattering processes where the neutron energy is conserved during the process and no
energy transfer between the neutron and the sample takes place. For a crystalline sample
with translation invariance j, a unit cell containing d atoms, and considering the thermal
motion of the atoms, which results in an oscillation of each atom around its equilibrium
position d, the position of atom d can be written as

Rj,d = j+ d+ ud(j, t) (3.7)

where ud(j, t) considers the displacement of atom d from its equilibrium position, caused
by thermal oscillations. Because of the translation invariance of the crystal, that was
taken as an assumption, equation (3.5) simplifies as the double sum over j and j′ can be
transformed into a single summation over the distances j−j′. As a result, the differential
cross section for elastic scattering processes with zero energy transfer (ω = 0) transforms
into (

dσ

dΩ

)el

coh

=
(2π)3

v0

∑
τ

|FN(Q)|2 × δ(Q− τ ) (3.8)

where τ is a reciprocal lattice vector, v0 the unit cell volume and FN(Q) the nuclear
structure factor, which is defined by

FN(Q) =
∑
d

bde
iQde−Wd(Q) (3.9)

where exp(−Wd(Q)) = exp(⟨(Qu(j, d))2⟩) represents the Debye-Waller factor, which ac-
counts for the mean square displacement of each atom and further reduces the scattered
intensity with increasing |Q|.The structure factor is the desired quantity in a neutron
diffraction experiment as it contains all structural information of the sample and is
related to the scattered intensity.

Inelastic Nuclear Scattering, One Phonon Approximation Inelastic scattering pro-
cesses describe the excitation or annihilation of collective or single particle excitations in
the sample. During the process a non-zero energy transfer ~ω = ~2

2mN
(k2

i − k2
f ) between

the neutron and the sample takes place, with ki and kf being the initial and final neutron
wave vectors. For coherent nuclear scattering of a crystalline sample these excitations
are collective excitations of the crystal lattice, so-called phonon excitations. With the
restriction to the creation or annihilation of only one phonon per scattering processes
the coherent cross section reads as:(

d2σ

dΩdE ′

)inel

coh

=
kf
ki

(2π)3

2v0

∑
τ

∑
ν,q

1

ων(q)

∣∣∣∣∣∑
d

bde
−Wd(Q)eiQd · Qed(q, ν)√

Md

∣∣∣∣∣
2

×
([

nν(q)δ(Ei − Ef + ~ων(q))δ(Q+ q− τ )
]

(3.10)

+
[
(nν(q) + 1)δ(Ei − Ef − ~ων(q))δ(Q− q− τ )

])
.
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Here Md accounts for the mass of atom d, nν(q) stands for the thermal population
factor for Bose particles, eν(q) is the polarization vector and ων(q) is the frequency of
the phonon ν [17]. Obviously the coherent one phonon cross section consists of two
parts: The second line in equation (3.10) describes the annihilation of a phonon with
frequency ων(q) which results in an energy transfer from the sample to the scattered
neutron and thus an increase of the neutron energy in the scattering process. Whereas,
the third line expresses the creation of a phonon via an energy transfer from the scattered
neutron to the sample, which consequently lowers the energy of the scattered neutron.
The δ-functions in both lines provide the conservation of both energy and momentum
throughout both processes. Following the principle of detailed balance, the contribution
of these two processes to the cross section is asymmetric, such that the annihilation of a
phonon with frequency ω is counted with the single population function nν(q), whereas
the phonon creation process contributes with nν(q) + 1 to the summation.

Magnetic Neutron Scattering

In magnetic scattering processes the incident neutron interacts with magnetization den-
sities created by unpaired electrons in the sample via magnetic dipole interactions with
the neutron spin. The interaction potential between a neutron in spin state σ and a
moving electron of momentum p and spin s is

VM(r) = −γµ2
NµBσ ·

[
curl

(
s× R̂

R2

)
+

1

~
p× R̂

R2

]
(3.11)

where γ= 1.9132 is the gyromagnetic ratio, µn and µB represent the nuclear and the Bohr
magneton and R illustrates the distance between the two particles. For an unpolarized
incident neutron beam, with arbitrary spin orientations of the incident neutrons, and if
further the interaction potential VM(r) in (3.11) is introduced into Fermi’s Golden Rule
the differential cross section for magnetic scattering reads as,(

d2σ

dΩdE ′

)
mag

=
(γr0)

2

~
kf
ki

∑
α,β

(
δα,β −

QαQβ

Q2

)
Sα,β(Q, ω) (3.12)

Here r0 embodies the classic electron radius and α and β are spatial coordinates with
α, β ∈ [x, y, z]. Sα,β(Q, ω) the magnetic scattering function will be defined by spin-spin
correlations as follows,

Sα,β(Q, ω) =
1

2π

∫ ∞

−∞

∑
j,d

1

2
gdfd(Q)e−Wd(Q)eiQ(j+d)⟨Sα

0 (0)S
β
j+d(t)⟩e

−iωtdt (3.13)

where fd(Q) is the atomic form factor of atom d in unit cell j, g is the Landé factor and
S describes the local magnetic moment. Missing from the above cross section are any
contributions from magneto-vibrational scattering processes [158].
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Elastic Magnetic Scattering In analogy to the case of nuclear scattering, in elastic
magnetic scattering the structure factor, in this case magnetic structure factor FM(Q),
again is the desired quantity:

FM(Q) = γr0
∑
d

1

2
gdfd(Q)⟨Sd⟩eiQde−Wd(Q). (3.14)

In magnetic neutron scattering neutrons only from the component of the local magneti-
zation density perpendicular to the scattering vector Q. In order to consider this fact, a
new parameter is introduced, FM⊥(Q) = Q̂×FM × Q̂, which defines the component of
FM(Q) perpendicular to Q, were Q̂ = Q/Q is a unit vector in direction of the scattering
vector Q. This leads to the cross section for elastic magnetic scattering,(

dσ

dΩ

)el

mag

=
(2π)3

v0

∑
τM

|FM⊥(τM)|2 × δ(Q− τM). (3.15)

Even though, the cross sections for elastic magnetic and elastic nuclear scattering look
very similar. Both interaction potentials exhibit some characteristic differences which
enable for a clear separation between nuclear and magnetic scattering processes.

One fundamental difference between the two processes considers the respective scat-
tering power of magnetic and nuclear processes. In FM(Q) each spin that contributes
to the scattering process is considered a certain scattering power p = 1/2γr0gfd(Q).
1 Here the magnetic form factor fd(Q) takes into account that the neutron interacts
with the magnetization density that exhibits a not negligible spacial extent. Due to this
spatial extent the magnetic scattering power p decreases rapidly with increasing |Q|,
with the result of a characteristic |Q|-dependence of magnetic scattering intensity. In
contrast to this, for nuclear scattering processes, where the nuclear scattering length b is
almost point-like, the correlating scattered intensity was found to be |Q| independent.
This strong |Q|-dependence of the magnetic intensity is accompanied by the fact that
only the perpendicular component of the magnetic moment contributes to the scattered
intensity. And as result, magnetic intensity always exposes a characteristic decrease
with increasing |Q|, with an additional sensitive dependence on the angle α between the
scattering vector Q and the magnetic moment S.

Inelastic Magnetic Scattering, Spin Waves: One Magnon Cross Section Co-
herent inelastic magnetic scattering corresponds to the excitation or annihilation of
collective excitations of the static magnetic order. These collective excitations, so-called
magnon or spin wave excitations, are transverse excitations of the static magnetic order.
Due to the vector character of the magnetic moment spin waves exhibit a quantization
axis and in a semi-classical picture can be thought of as a precession of the magnetic

1p has the dimension of a length and for Q = 0 this so-called magnetic scattering length is comparable
to the value of a typical nuclear scattering length b.
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moments around this axis. So for a quantization axis along the z-axis, the z-component
of the magnetization remains constant and only terms with α = β contribute to the
scattering function S(Q, ω). This leads to the following cross section:(

d2σ

dΩdE ′

)
mag
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(
1− Q2

z

Q2

)
1

2π~

∫ ∞

−∞
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α

Q2

)
1

2π~

∫ ∞

−∞

∑
j

eiQj⟨Sα
0 (0)S

α
j (t)⟩e−iωtdt. (3.16)

The first part of the equation (3.16) considers the z-component of the magnetization and
since it was assumed to be constant, reproduces the elastic magnetic scattering, discussed
in the previous section. Consequently, the inelastic part of the scattered intensity is
determined only by the transverse correlations ⟨Sx,y

0 (0)Sx,y
j (t)⟩. The evaluation of these

transverse spin correlation terms for a given complex magnetic structure, however, can
be a challenging task, and so only the simplest possible case, the Heisenberg ferromagnet
with nearest-neighbor exchange only, shall be discussed here. The related Hamiltonian
of the Heisenberg ferromagnet on a square lattice reads as

H = −
∑
i,j

Ji,jSiSj = −
∑
i,j

Ji,j

(
Sz
i S

z
j +

1

2

(
S+
i S

−
j + S−

i S
+
j

))
(3.17)

and can easily be diagonalized using the Holstein-Primakoff transformation, which leads
to the prominent q-energy dispersion for a Heisenberg ferromagnet,

~ω(q) = 4S(Jq=0 − J(q)) = 4JS · (2− cos(qxa)− cos(qya)). (3.18)

This finally leads to the transverse cross section for spin wave scattering from a ferro-
magnet, (
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)inel
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= (γr0)
21

2
S(
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2
gf(Q))2
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(
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Q2
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e−W (Q)

×
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τM ,q

(
n(q)δ(Ei − Ef + ~ωq)δ(Q− q− τm) (3.19)

+ (n(q) + 1)δ(Ei − Ef − ~ωq)δ(Q+ q− τm)
)
.

Analogous to the phonon case the spin wave cross section consists of two parts regarding
the creation and annihilation of a magnon with energy ~ωq. For large moments Si the
expectation values of the transverse correlations obey the equations

⟨Sx
0 (0)S

x
j (t)⟩ ∝ cos(qj− ωt) (3.20)

⟨Sy
0 (0)S

y
j (t)⟩ ∝ sin(qj− ωt) (3.21)

These equations describe the already mentioned semi classical picture of the spin wave,
as a precession of the spins circulating around the z-axis.
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3.1.2 The Fluctuation-Dissipation Theorem

S(Q, ω) =
χ′′(Q, ω)

1− e−~ω/kBT
(3.22)

Sometimes it is more convenient to express the information obtained via a neutron scat-
tering experiment in terms of the imaginary part of the magnetic susceptibility χ′′(Q, ω)
instead of the scattering function S(Q, ω). Both quantities are related to each other via
the fluctuation-dissipation theorem [159, 160], as defined in equation (3.22), which re-
lates the spectrum of the spontaneous fluctuations of an order parameter ⟨m⟩ of a sample
to the linear response of the system to a small external perturbation from its equilibrium
state via the Bose-factor or thermal-population-factor (1 − e−~ω/kBT )−1. The thermal-
population-factor accounts for the temperature driven population of excitation states of
the fluctuation spectrum. According to this fluctuation-dissipation theorem the spec-
trum of spontaneous fluctuations S(Q, ω) and the dissipative linear response χ′′(Q, ω)
to an external small perturbation show similar wave-vector and energy evolution.

When a neutron travels through a crystal and scatters on either nuclear or magnetic
potentials of the sample, it can cause the system to have a transition from one quantum
state to another. However the scattering of the neutron introduces just a small per-
turbation to the equilibrium state of the system and therefore may cause a transition
between two quantum states of the system but does not change the states themselves.
The energy that is then transferred from the neutron to the sample through an inelastic
scattering process, is irreversibly absorbed by the sample and its dissipative energy evo-
lution is similar to the energy evolution of the spontaneous fluctuations of the systems
unperturbed state. This dissipative response of the system to small wave-vector and
energy depending external perturbations is expressed by χ′′(Q, ω), according to linear
response theory.

Consequently, the theorem relates the excitation spectrum of the systems spontaneous
excitations to the spectrum of the induced excitations resulting from the interaction of
the neutron beam with the sample. Thus, during an inelastic neutron scattering measure-
ment one actually has access to the excitation spectrum of the spontaneous fluctuations
of a systems ordering parameter and not just the spectrum of the perturbed state. When
correcting the obtained intensities for the thermal population factor, one transforms the
intensity S(Q, ω) into the dynamical susceptibility of the system χ′′(Q, ω). Further by
correcting the obtained intensity for this thermal-population-factor, one corrects the
intensity of the obtained inelastic signal for the temperature dependent population of
excitation states. This thermal population of the excitation states of course effects the
intensity of the inelastic signal as highly populated states give rise to signal with high
intensity.
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3.1.3 Longitudinal Polarization Analysis

As it has been mentioned earlier, the neutron interacts with matter via two processes:
(1) The interaction with atomic nuclei via the strong nuclear force, provides access to
nuclear properties of the sample. (2) The interaction via electro-magnetic interactions
between the neutron spin and magnetic moments in the sample, with the magnetization
densities of the sample gives access to magnetic properties.

As this versatility of neutron scattering obviously has many advantages it also provides
a challenge in itself, as obtained intensities can originate from either nuclear or magnetic
processes. A solution to this problem is the neutron spin. Considered as an additional
degree of freedom, as it is done in polarized neutron scattering, it enables to separate
both nuclear and magnetic processes but also to gain a much more detailed insight on
magnetic properties.

With the spin as an additional degree of freedom it is possible to distinguish between
two scattering processes, which are indistinguishable for non-polarized neutron scatter-
ing. (1) The non-spin-flip (NSF) scattering process, for which the spin of the scattered
neutron remains parallel to the spin of the incoming neutron. (2) The spin-flip (SF)
process, for which the spin of the scattered neutron is flipped in course of the scattering
process and is oriented anti-parallel to the spin of the incoming neutron. Which of the
two processes occurs depends on whether the scattering process is nuclear or magnetic
as well as on the orientation neutron spin in reference to the direction of the magne-
tization density in the sample. A rule of thumb says that nuclear scattering is always
(NSF) whereas magnetic scattering is (NSF) if the neutron spin is parallel to the mo-
ment direction, but is (SF) if the neutron spin is perpendicular to the sample moments.
Here three different spin directions, or neutron polarizations P, are distinguished. A
neutron polarization P parallel to the scattering vector Q = kf −ki, here ki and kf are
the incident and final neutron wave vectors, is referred to as x-polarization. A neutron
polarization perpendicular to the scattering vector but still within the scattering plane
is referred to as y-polarization. Whereas a neutron spin perpendicular to the scattering
plane is referred to as z-polarization. This leads to a right-handed cartesian coordinate
system, which is bound to the experimental set up.

The technique of Longitudinal Polarization Analysis includes the acquisition of six
different neutron cross sections, which correspond to three different incoming neutron
polarization directions x, y or z times the two processes (SF) and (NSF), σNSF

α and σSF
α ,

with α=x, y, z. For a detailed derivation of the inelastic neutron scattering cross section
as a function of neutron polarization please turn to refs [159, 162–164]. As an example,
the spin flip cross section for a neutron polarization direction P parallel to Q reads as

σSF
xx =

(
d2σ

dΩdE

)SF

P||x

=
kf
ki

(γre)
2

g2µ2
B

1

π
F 2(Q)×

χ′′
yy(Q, ~ω) + χ′′

zz(Q, ~ω)
1− exp(−~ω/kBT )

(3.23)

with the magnetic form factor F2(Q) and the generalized susceptibility for magnetic
fluctuations along the α=x, y, z direction χ′′

αα(Q, ~ω).
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As previously mentioned, magnetic neutron scattering is only sensitive to the com-
ponents of the magnetic moments perpendicular to the scattering vector. This makes
it impossible to determine χ′′

xx(Q, ~ω) using the longitudinal polarization analysis tech-
nique. However it is possible to determine the in-plane χ′′

yy(Q, ~ω) and out-of-plane
χ′′
zz(Q, ~ω) components, which usually is sufficient when considering symmetries of the

underlying crystal structure. The Longitudinal Polarization Analysis provides the pos-
sibility to completely separate the two components, the in-plane χ′′

yy(Q, ~ω) and out-
of-plane χ′′

zz(Q, ~ω) magnetic susceptibility. This is possible because of the following
two properties of magnetic neutron scattering: (1) Neutrons only scatter from magnetic
fluctuations perpendicular to the scattering vector Q, (2) fluctuations perpendicular to
the neutron polarization P scatter in the spin-flip (SF) channel, whereas fluctuations
parallel to the incident neutron polarization scatter in the non-spin-flip (NSF) channel.
The six different spin dependent neutron cross sections [159], which are available read
as,

σNSF
xx ∝ N(Q, ω) +BGNSF

σNSF
yy ∝ χ′′

yy(Q, ω) +N(Q, ω) +BGNSF

σNSF
zz ∝ χ′′

zz(Q, ω) +N(Q, ω) +BGNSF

σSF
xx ∝ χ′′

yy(Q, ω) + χ′′
zz(Q, ω) +BGSF (3.24)

σSF
yy ∝ χ′′

zz(Q, ω) +BGSF

σSF
zz ∝ χ′′

yy(Q, ω) + BGSF

where any contributions by nuclear spin incoherent scattering processes have been ne-
glected. BGNSF and BGSF stand for the background contributions for the various con-
figurations, whereas N(Q, ω) is the coherent nuclear cross section, which, in this case,
considers phonon scattering. In the above listed cross sections only inelastic scattering
processes are considered.

Obvious from (3.24) is the possibility to completely separate nuclear from magnetic
intensities by using a neutron polarization parallel to the scattering vector, as magnetic
scattering only occurs in the (SF) channel whereas nuclear scattering only occurs in the
(NSF) channel.

In addition to the separation of magnetic and nuclear signals, the in-plane and out-
of-plane components χ′′

yy(Q, ~ω) and χ′′
zz(Q, ~ω) can now be separately extracted by

performing simple subtractions of the various cross sections listed above.

σSF
xx − σSF

yy = σNSF
yy − σNSF

xx ∝ χ′′
yy(Q, ω)

σSF
xx − σSF

zz = σNSF
zz − σNSF

xx ∝ χ′′
zz(Q, ω) (3.25)

Equations (3.25) show that both the subtraction of the (NSF) cross sections as well
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as the (SF) cross sections lead to the same result. Whether (SF) or (NSF) intensities
should be chosen depends on characteristics of the particular experiment.

3.2 Neutron Scattering Instruments

For an investigation of Q-energy dispersions of excitations in condensed matter samples
via inelastic neutron scattering, it is mandatory to be able to determine the neutron
energies, both of the incoming neutrons as well as the scattered ones. To determine the
neutron energy in a neutron scattering experiment, two very different approaches can
be made, which demand two conceptional very different designs of neutron scattering
instruments. For the three axis spectrometer, the wave character of the neutron is used
and changes in wavelength of incoming and scattered neutrons are used to determine
the energy transfers between the neutrons and the sample. Whereas the time-of-flight
spectrometer is a concept which is based on the particle character of the neutron, and
velocities and times-of-flight are measured in order to determine the energy transfers.

3.2.1 The Three Axis Spectrometer

The three axis spectrometer is a very versatile instrument designed to investigate exci-
tations in single crystalline samples. It considers the wave properties of the neutron and
takes advantage of Bragg scattering to select the incident neutron energy as well as to
determine the energy transfer which occurred during the scattering process. The basic
principle of the instrument is based on Bragg’s law [159, 160]

nλ = 2d sin(θ). (3.26)

where, for orthorhombic crystals

d =
1√(

h
a

)2
+
(
k
b

)2
+
(
l
c

)2 (3.27)

is the so-called d-spacing considering the spacing between adjacent Bragg planes, indexed
by the Miller indices (h, k, l).

Operated on continuous neutron sources, the instrument is confronted with a white
incident neutron beam. The device used to select the neutrons with desired incident
energy from the white beam, is a monochromator crystal, which is placed in the incident
neutron beam with an angle so that a certain reflection of the crystal obeys the scattering
condition (3.26) and neutrons are reflected towards the sample. According to (3.26) a
variation of the scattering angle results in a variation of the wavelength λ of the neutrons
that are scattered towards the sample, whereas neutrons with a different wavelength do
not obey the scattering condition and are not Bragg scattered. The main principle of
the analyzer is identical to the one of the monochromator. The incoming neutrons with
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Figure 3.1: Classical W-configuration of a three-axis spectrometer with three rotation axes,
the monochromator crystal, the sample and the analyzer crystal. Further illustrated is a sketch
of the reciprocal space for an inelastic scattering process.

wavelength λ are scattered by the sample and by obeying Bragg’s law for a certain
reflection of interest are scattered with an angle of 2θsample towards the analyzer crystal.
The neutrons arriving at the analyzer in principle can have any wavelength, depending
on the energy transfer they performed with the sample. In order to determine this
energy transfer one needs to select one of these wavelengths of the scattered neutrons.
The energy transfer is then ~ω = ~2

2mN
(k2

i − k2
f ), where ki and kf are the initial and

final wave vectors of the neutron beam related with the wavelength via k = |k| = 2π/λ.
The selection of the wavelength of the scattered neutrons is again conducted by elastic
Bragg scattering, where only neutrons with certain wavelengths are reflected towards
the detector, whereas neutrons with different wavelengths do not hit the detector. In
order to investigate different values of energy transfer, one value ki or kf is fixed whereas
the other is varied in a way that ~ω = ~2

2mN
(k2

i −k2
f ) provides the desired energy transfer.

The investigation of an excitation dispersion is conducted by performing one dimen-
sional scans through the dispersion in the 4 dimensional energy-Q space. Scans can be
performed in two distinct ways, either a certain value of energy transfer is fixed and
the scan is performed in Q-space by varying the momentum transfer Q = kf − ki, a
so-called constant energy or Q-scan. Or the momentum transfer is held at a fixed value
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and the energy transfer is varied, so-called energy scan. Given that the performed scan
crosses the dispersion of the excitation spectrum, either scan will provide one point of
the excitations energy-Q dispersion. This means that a typical three-axis experiment
determines the dispersion of a given excitation point by point. Even with the use of area
detectors, which provides a 2D map of the Q-space with each scan, each scan provides
information only for one particular energy transfer.

3.2.2 The Time of Flight Neutron Spectrometer

The other approach to inelastic neutron scattering considers the particle properties
of the neutron as a particle with a certain mass mn, energy En = 1/2mnv

2
n and thus

velocity vnmn = ~k in order to determine the energy transferred ~ω = ~2
2mn

(k2
i − k2

f )
between the neutron and the sample during the scattering process.

Practically this can be conducted by determining the time a neutron with certain
velocity needs to travel a certain distance until it is detected at the detector. If all
quantities, the incident velocity and the distances of travel, are known, the velocity of
the scattered neutron and thus the velocity change, which corresponds to the energy
transfer can be identified. This different approach from the three axis spectrometer
obviously demands a different approach in instrument design.
Figure 3.2 shows a sketch of a classical neutron time-of-flight instrument in top-view.
For a classical ToF instrument the main difference to the three axis instrument

is the absence of monochromator as well as analyzer crystals. Where the three axis
spectrometer takes advantage of the wave properties of the neutron and uses Bragg’s
law to select the desired incoming neutron wavelength, the Time-of-Flight approach
considers solely the particle properties of the neutron. Instead of a monochromator
crystal, incident neutron energies are selected by using a set of choppers, which are
rotating devices placed in the neutron path between the source and the sample and
open and close the flight path periodically. For each period the neutron path is opened
for a certain opening time t0 for which the neutrons are able pass the distance between
the choppers l0 and due to the finite time t0 and finite distance l0 neutrons need to
travel to exit the chopper pair, only neutrons with certain velocity v0 = l/t0 are able to
pass the choppers and travel the instrument towards the sample. Right in front of the
sample another chopper is placed. The opening of this chopper starts the counting of
the time-of-flight a neutron needs to travel the distance from the sample chopper to the
detector. The counting time will be reset for every new opening of the chopper and thus
for every new emitted neutron pulse the time will be counted separately. After passing
the sample chopper the neutrons reach and interact with the sample and finally reach
the detector bank, with a sample-detector-distance L3. The detector bank consists of
multiple position sensitive detector tubes, which provide a wide solid angle in order to
cover a wide range of possible momentum transfers and collect as much intensity as
possible. Each detected neutron event is recorded with three quantities characterizing
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Figure 3.2: Sketch of the generic set up of a classical ToF instrument (top-view). Incident
neutrons with velocity distribution v+∆v travel the neutron guide from the source/moderator
pass the sample chopper, interact with the sample and get detected at the detector bank, in
distance L3 to the sample. The chopper rotates with frequency Ω and thus presents an opening
for the incident neutrons for a time window t0. The time between transmitted neutron pulses
is defined by τ = 1/NΩ.

the event, the detector d, the neutron was detected at, the position h the neutron hit
detector d and the time-of-flight t that passed between chopper opening and the arrival
of the detected neutron. To enhance the collected intensity, neutrons detected in the
same detector pixel with times-of-flight within a certain interval ∆τ , time bin, are
collected and form the overall intensity for that particular detector pixel, time-of-flight
channel K and width of the time bin ∆τ .

Figure 3.3 shows a time-flight-path diagram of normal scattering incidents occurring
during a time of flight experiment. The diagram reads as follows.

A monochromatic neutron pulse with neutron velocity v0 travels the instrument
towards the sample, illustrated as the dashed diagonal line. The neutrons that interact
with the sample without energy transfer and thus don’t change their velocity and reach
the detector at a certain time t2 + t3 = (L2 + L3)/v0, correspond to the dashed line.
In the red spectrum, which illustrates a typical time-of-flight intensity spectrum, these
neutrons result in the strong middle peak, which represents the elastic line, resulting
from elastic scattering processes with zero energy transfer. Neutrons that are involved
in inelastic interactions with the sample, where energy is transferred from either the
neutron to the sample (energy loss) or the sample to the neutron (energy gain), change
their velocity and thus reach the detector in a shorter time (energy gain) or longer
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Figure 3.3: Time-flight-path diagram for a typical ToF experiment. Dashed line represents a
neutron pulse with certain velocity traveling the instrument and interacting elastically with the
sample. The gray shaded triangles, starting from the sample position, symbolize all possible
inelastic scattering processes, both for neutron energy gain and neutron energy loss processes.
The red spectrum on top of the figure illustrates a possible time-of-flight intensity spectrum
with the strong peak in the center of the spectrum representing intensity from elastic scattering
processes and the smaller humps left and right from the elastic peak representing intensities
from energy gain and energy loss inelastic scattering processes, respectively.

time (energy loss) than the neutrons scattered elastically. This is illustrated by the
gray shaded triangle. The energy gain side (left side of the triangle) of course has a
clear defined cut off, which is represented by the vertical axis of the triangle, which
corresponds to the theoretical limit of neutrons that would travel the sample detector
distance in zero time resulting from an infinite energy transfer from the sample and
an infinite neutron velocity. For the energy loss side of the spectrum in principle no
such clear defined cut off is present, as neutrons can transfer any amount of energy
up to their complete kinetic energy to the sample, which in principle would result in a
horizontal line for neutrons traveling the sample-detector distance with zero velocity,
which would take an infinite time-of-flight. This intensity, resulting from very slow
neutrons is illustrated in the red time-of-flight intensity spectrum as the fading tail
towards high ToF values. These very slow neutrons reach the detector at the same time
as faster neutrons from the following pulse and thus result in a background contribution
occurring for every detected pulse. This frame overlap can cause severe background
problems, especially if large parts of the spectrum are overlapping with parts of the
spectrum of the following pulse, as it cannot be distinguished which pulse the detected
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neutrons have to be allocated to.

After recording the times-of-flight of all detected neutrons and the formation of time
bins, the energy transfer, which is aside from the momentum transfer the defining quan-
tity of an inelastic scattering experiment, can be determined by determining the differ-
ence in time-of-flight of neutrons involved in inelastic scattering processes and neutrons
scattered without energy transfer. In course of a time-of-flight experiment the detected
neutrons, however, are recorded with the characterizing experimental parameters, de-
tector pixel and time-of-flight, and several transformations are needed to be performed
in order to express the obtained intensity in the common parameters, energy and mo-
mentum transfer:

ω(t) =
mn

2~
L2 t

2 − t23
t2t23

(3.28)

and

Q =
mn

~
L

√
t2 + t23 − 2 cos(2θ)t3t

t23t
2

, (3.29)

where 2θ is the scattering angle. Here every detector pixel has been associated with
one specific scattering angle. These definitions for the momentum and energy transfer
((3.28)and (3.29)) lead to an expression for the obtained intensity expressed in terms of
momentum and energy transfer,

I(2θ,K) ∝ k′

k
4πb2S(Q, ω(K∆τ))

dω

dt
∆τ. (3.30)

Here K represents a time-of-flight channel, regarding all events with this particular
time-of-flight, whereas ∆τ stands for the time bin width. ω(K∆τ) thus considers the
dependence of the energy transfer ω on the time-of-flight of the detected neutron, where
short times-of-flight correspond to small energy transfers whereas long ToF are caused
by large energy transfers from the neutron to the sample - this is valid for the energy
loss side of the spectrum and must be reversed for the energy gain side.

A time-of-flight experiment provides information regarding a three or even four dimen-
sional area of the energy-Q space, with the size of this area depending on the energy-
and Q-range that is accessible for t hat particular instrument and instrumental set up.
The obtained data then is treated by performing 2 dimensional slices or 1 dimensional
cuts through the three or four dimensional energy-Q space. These slices and cuts are
comparable to the data obtained via a three axis experiment.
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3.2 Neutron Scattering Instruments

Repetition Rate Multiplication

Figure 3.4: Time-flight-path diagram illustrating the Repetition Rate Multiplication princi-
ple. Note that only the source-sample distance is shown. Horizontal dashed lines represent the
choppers used to create the monochromatic pulses. Colored dashed-dotted lines symbolize the
monochromatic pulses where the steepness of the slopes is correlated to the neutron velocities.
The red line represents the pulse with velocity identical to the pulses in figure 3.3. The spread
of the arrows at the sample position illustrate that pulses of different energy reach the sample
at different times.

As explained in the previous section, a conventional ToF instrument uses a set of chop-
pers to create out of every pulse emitted by the source one monochromatic neutron pulse
with neutrons of only one incident energy. As the source emits pulses in a certain fre-
quency, pulses reach the sample with a certain time τ = 1/NΩ between two consecutive
pulses. As illustrated in figure 3.3 this leads to a period between two pulses for which
almost no neutrons are detected by the detector, except the few very slow ones that
transferred a great portion of their incident energy to the sample. The repetition rate
multiplication technique is a way to make use of this time between two pulses, for which
in principle the instrument does not operate but waits for next neutrons to be emitted
by the source. Figure 3.4 is a time-flight-path-diagram which illustrates the principle
of the Repetition Rate Multiplication technique. The main difference to a conventional
ToF instrument is the fact that each source pulse is not monochromatized into one pulse
with one incident energy, but it is chopped into several monochromatic pulses, each with
different incident energies. This is done by a set of special choppers that are placed in the
neutron path and are synchronized in a specific way. As the newly created monochro-
matic pulses with different incident neutron energies travel the instrument they become
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separated from each other, due to their different velocities, and thus reach the sample at
different times. The incident energies of the new pulses need to be chosen in a way that
a substantial frame overlap is prevented, which means that slow and fast neutrons of
consecutive pulses do not reach the detector simultaneously. If this is done properly the
advantage of the Repetition Rate Multiplication technique is obvious, as not only the
waiting time between two pulses can be used for the experiment but for every run, data
for several different incident energies can be obtained, in contrast to the single energy
in case of a conventional instrument. These advantages obviously come to the cost of
neutron flux per pulse, which is substantially reduced due to the chopping of the source
pulse into several sub-pulses. As this section is only meant as basic introduction of the
technique, please turn to reference [165] for a more detailed explanation of the principles
of Repetition rate Multiplication.
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4 Effect of P- and Co-Doping on
the Eu2+ Magnetic Sublattice in
EuFe2As2

4.1 Introduction

4.1.1 Motivation

The motivation of this study is to investigate the effect Co- and P-doping on the static
magnetic structure of the Eu-sublattice and a possible interplay between magnetism
and superconductivity. Several effects of doping on the Eu-sublattice have been pro-
posed, solely based on results obtained from characterization measurements. In order to
unambiguously determine the magnetic structure, however, scattering experiments are
indispensable. This leads to the motivation to investigate the doping effect on the Eu-
sublattice using the techniques of single crystal neutron diffraction and polarized single
crystal neutron diffraction. The results from this study will be discussed in the current
chapter.

4.1.2 Nuclear and Magnetic Structure of Undoped EuFe2As2
The members of the EuFe2As2 series hold a unique position in the family of 122-
materials as the only member of this class of materials with magnetic rare earth ions
incorporated into the crystal structure. Europium, which is integrated into the crystal
structure in its Eu2+ state is an S-state rare-earth ion with 4f7 electronic configuration,
an overall spin S=7/2 and a large resulting theoretical effective magnetic moment
of g

√
S(S + 1) = 7.94 µB with g = 2, which eventually forms an antiferromagnetic

sublattice below 18 K [167].

The parent compound EuFe2As2 was first synthesized by Marchand et al. [168] in
1978 and was rediscovered in 2008 as a possible parent compound for another series of
high Tc iron arsenide materials [169, 170]. Similar to other 122-pnictides, EuFe2As2 crys-
talizes in the ThCr2Si2-type structure, which can be described as Fe2As2-layers stacked
in c-direction and separated by Eu2+-layers. For high temperatures the ThCr2Si2-type
structure has a tetragonal symmetry with lattice parameters of a=b=3.911 Å, c=12.110

51
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Figure 4.1: Nuclear and
magnetic structure of undoped
EuFe2As2 obtained via single
crystal neutron diffraction.
Illustrated is one unit-cell in
orthorhombic notation. (a)
Temperature dependence of
the Eu2+-sublattice (black and
red solid symbols), Fe-SDW
(open yellow symbols) and
crystal structure (open purple
symbols). Obvious is the
missing interplay between the
long range Eu-order and either
crystal structure or Fe-SDW
order. (b) Temperature evolu-
tion of the Fe-SDW (yellow and
pink symbols) and the crystal
structure (purple symbols)
between 120 and 200 K. All
shown results are taken from
[166].

Å . Around T=190 K the structure transitions into a phase with lowered orthorhom-
bic symmetry with lattice parameters a=5.537 Å, b=5.505, Å, c=12.057 Å and space
group Fmmm [166]. As typical for the 122-materials, the structural phase transition is
accompanied by a magnetic phase transition, where the Fe2+-moments form the SDW
order with propagation vector QAFM=(1, 0, 1)ortho. The magnetic transition takes place
almost simultaneously to the structural transition. In addition to the Fe-SDW magnetic
sublattice, around 18 K the system experiences the formation of a second magnetic sub-
lattice as the Eu-moments become organized in the long range antiferromagnetic A-type
structure, first reported by Raffius et al. [167] in 1993 and later confirmed via char-
acterization measurements [169, 170], as well as scattering techniques [166, 171]. Xiao
et al.[166] confirmed via single crystal neutron diffraction the A-type structure of the
Eu-sublattice, which forms as an antiferromagnetic stacking of ferromagnetic layers with
moments oriented along the orthorhombic a-direction, as illustrated in figure 4.1. Their
results further show a very weak, almost absent, interference of the Eu magnetic order
with either structural effects or the present Fe-SDW order, figure 4.1 (a), which leads to
a mostly autonomous sublattice of long range ordered Eu2+-moments.

The formation of this Eu-sublattice most likely can be ascribed to the Ruderman-
Kittel- Kasuya-Yosida (RKKY) mechanism [172–174], for which Eu-Eu interactions of
the localized Eu-moments are of indirect nature, and are mediated via itinerant elec-
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Figure 4.2: (a) Magnetic phase diagram for EuFe2As2 with applied magnetic field parallel
to crystallographic c-direction. Inset illustrates the symmetry of the Eu-sublattice, where open
arrows correspond to the A-type structure without field, whereas filled arrows illustrate the
field induced structure. (b) Magnetic phase diagram for EuFe2As2 with applied magnetic field
parallel to crystallographic a-direction. Figure taken from ref. [176]

trons. The unpaired electrons of the Eu2+-ions occupy the Eu-4f orbitals, which possess
very little spatial extension and are tightly bound to the atomic nucleus and this leads
to a strong localization of the valence electrons and the resulting magnetic moments.
Because of the small overlap of the Eu-4f orbitals of neighboring Eu-ions, caused by the
little spatial expansion of the orbitals in combination with the average Eu-Eu distances
in these materials, contributions by direct Eu-Eu interactions to the coupling mecha-
nism can be neglected and the (RKKY) mechanism is most probable the predominant
interaction.

The antiferromagnetic A-type structure of the Eu-sublattice is fragile and easily af-
fected by perturbations such as externally applied pressure or magnetic field and doping.
The results of these perturbations are a change of the sublattice symmetry from antiferro-
magnetic to ferromagnetic. Figure 4.2 illustrates how the A-type ferromagnetic structure
can be transformed into a ferromagnetic structure by applying relatively moderate mag-
netic fields of just 1.75 T or 0.75 T, depending on the field direction [175, 176]. These
results clearly show that the inter-layer coupling of neighboring Eu-layers is by far the
weakest coupling and the first to be modified whereas the in-plane correlations remain
unaffected, and so the transformation of antiferromagnetic structure into ferromagnetic
symmetry takes place via a rotation of moment directions of complete ferromagnetic
Eu-layers.
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4.1.3 Pressure Induced Superconductivity in EuFe2As2
Aside from doping, which is one way to induce superconductivity to the system, applied
external pressure provides another perturbation which can lead to a superconducting
ground state. Increasing pressure gradually suppresses both the nuclear and magnetic
phase transitions to the point were the Fe-SDW order is completely suppressed and su-
perconductivity sets in. For a small window of external pressures between 2-2.7 GPa the
system becomes superconducting with a maximal transition temperature of Tc=25 K.
For this pressure range the magnetic order of the Eu-sublattice remains unaffected and
the antiferromagnetic A-type structure coexists with superconductivity for temperatures
below 18 K [177–180]. For pressures as high as 6-7 GPa, for which the superconducting
state is already suppressed, the structure of the Eu-sublattice transitions from antifer-
romagnetic A-type to a ferromagnetic structure. Surprisingly the induced ferromagnetic
order shows a much higher transition temperature as it persists up to 50 K for external
pressures around 8 GPa. Accidently or not this is almost the exact pressure where a
valence change of Eu-moments from Eu2+ to Eu3+ sets in [180]. For pressures around
20 GPa all magnetic order is completely suppressed.

4.1.4 Doping Induced Superconductivity in EuFe2As2
Impurity doping is another method to suppress the static magnetic Fe-SDW order and
to induce superconductivity in EuFe2As2-materials. Partial replacement of each of the
three elements in the EuFe2As2 structure will eventually lead to superconductivity and
further will affect the structure of the Eu-sublattice in a specific way.

Eu1−x(Na/K)xFe2As2 Doping the system with either sodium or potassium suppresses
both the Fe-SDW and nuclear phase-transition and induces superconductivity, which
is achieved for 30% Na or 10% K, with optimal Tc’s of 35 K [181] and 33 K [182],
respectively. Increasing K-content gradually suppresses the Eu-sublattice magnetization
until Eu-order is completely absent for x>0.65. A change of the magnetic structure
of the Eu-sublattice is not reported [182–184], but instead the substitution of Eu with
either Na or K weakens the Eu-Eu interaction and leads to a more short ranged magnetic
order and eventually destroys it completely [183].

Eu(Fe1−x(Co/Ni)x)2As2 Substituting Fe by either Ni or Co is another way to sup-
press both the Fe-SDW and nuclear phase-transition and in case of Co-doping induce
superconductivity. Ni-doping does not induce superconductivity. Further, both doping
methods have large effects on the Eu-sublattice, which, in contrast to Na/K doping re-
mains long range ordered, but is gradually changed from the antiferromagnetic A-type
structure to ferromagnetic symmetry [185].

In the Co-doped system, which becomes superconducting around 0.05<x<0.15, a co-
existence of long range magnetic order of the Eu-sublattice and superconductivity is

54



4.2 Experimental Details

observed. Below Tc=21 K the system becomes superconducting but experiences a reen-
trant type conductivity around 18 K due to the onset of long range Eu-order [186, 187],
which seems to be harmful to superconductivity. For increasing Co-concentration the
structure of the sublattice gradually changes from A-type to a ferromagnetic structure,
where Eu-moments remain parallel to the ab-plane and complete ferromagnetic Eu-layers
are rotated around the c-axis [186].

EuFe2(As1−xPx)2 Replacing arsenic by the isovalent phosphorous is probably the
most interesting method to induce a superconducting phase in EuFe2As2. In contrast
to the previously mentioned doped compositions, doping with phosphorous does
not introduce additional charge carriers, due to the identical valence of arsenic and
phosphorous. But because of the smaller ionic radius of phosphorous it induces strain
to the crystal structure, which is why P-doping is also referred to as applying chemical
pressure. Aside from the obvious effect of P-doping, the suppression of the Fe-SDW and
the orthorhombic distortion and the subsequent onset of superconductivity, it further
strongly affects the Eu-sublattice. In contrast to the effect of Ni/Co-doping, with in-
creasing P-content all Eu-moments start tilting out of the ab-plane and eventually form
a ferromagnetic structure with moments aligned along the c-axis [188–193]. The feature
that makes the P-doped Eu-compounds unique among the pnictide and chalgonide
materials, is the coexistence of superconductivity and a ferromagnetic type structure,
as for x=0.2 the system is optimal doped with transition temperature Tc=28 K [189]
and the Eu-sublattice is transformed from the antiferromagnetic A-type structure into
a structure with moments tilted in c-direction and a sizeable ferromagnetic component.

4.2 Experimental Details

To investigate the effect of P- and Co-doping on the static magnetic long range order of
the Eu2+-sublattice in EuFe2As2 single crystal neutron diffraction as well as polarized
single crystal neutron diffraction experiments have been performed. For this purpose,
single crystals of Eu(Fe0.986Co0.014)2As2, Eu(Fe0.975Co0.025)2As21 were synthesized by the
tin flux method and were characterized by means of resistivity and magnetization by col-
laborating scientist Dr. A. Thamizhavel of the Department of Condensed Matter Physics
and Material Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Co-
laba, Mumbai 400 005, India. Further, EuFe2(As0.95P0.05)2 and EuFe2(As0.85P0.15)22 were
synthesized by Bridgeman methods and were characterized by resistivity and magnetiza-
tion measurements by collaborating scientist Dr. H. S. Jeevan from the 1. Physikalisches
Institut, Georg-August-Universität Göttingen [189]. The four crystals, used for the neu-
tron experiments, had masses in the range of 5-20 mg and were of irregular plate-like

1The doping levels were determined by the sample grower by means of characterization techniques
2The doping levels were determined by the sample grower by means of characterization techniques
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shape with dimensions in the range of 2.5×2.5×0.3mm3 to 5×5×0.5mm3, respectively.
The majority of the used crystals was of reasonable quality, however, the neutron scatter-
ing experiments as well as the conductivity measurements revealed a possible impurity
phase in the EuFe2(As0.85P0.15)2 sample, most likely consisting of undoped EuFe2As2.
However, this did not affect the scattering results. The physical properties of the samples
were determined via characterization methods, where resistivity measurements revealed
superconducting phases for the 2.5% Co-doped as well as the 15% P-doped samples.
EuFe2(As0.85P0.15)2, which is supposed to be close to optimal doped, showed a super-
conducting transition temperature around 30 K and even Eu(Fe0.975Co0.025)2As2, which
must be regarded as heavily underdoped, still exhibited weak superconducting behavior
below 5 K.

The neutron diffraction experiments on EuFe2(As0.85P0.15)2 were performed on the
single crystal diffractometer D23 located at the ILL [194], using a neutron wavelength of
1.28 Å . This short wavelength was chosen in order to reduce the neutron absorption of
the Eu containing material. The short wavelength of 1.28 Å was a compromise between
the shortest wavelength available and the optimal neutron flux at D23, which usually
shows its best performance for incident neutrons in the thermal range.

The polarized neutron diffraction experiments, on all four samples, were carried out on
the cold neutron diffractometer DNS located at the FRM2 [195]. Here the experiments
were carried out using a wavelength of the incident neutrons of 4.74 Å. One problem with
this long wavelength is obviously the increased neutron absorption effects. However,
due to the small sample mass of just about 10-20 mg and the thin plate-like shapes
of the samples the observed intensities were still reasonable. The experiment further
benefited from the orientation of the thin crystals of approximately 3 × 3 × 0.25 mm3

which were oriented with the c-axes parallel to the scattering plane, which resulted
in a limited path of transmitted neutrons through the crystal and consequently in a
reduction of absorption effects. The large magnetic moment of ≈ 7µB also helped to
obtain reasonable results on the magnetic order of the Eu-sublattice.

Throughout the entire chapter, the orthorhombic notation will be used to describe
the crystal structure, with space group Fmmm and lattice constants for the 15%
P-doped compound of a=b=5.5 Å, c=11.95 Å and a=b=5.5 Å , c=12.1 Å for the
5% P-doped and both Co-doped samples. For consistency the orthorhombic notation
is used for all samples, even though no signs for an orthorhombic splitting in any of
the investigated crystals has been observed. Nonetheless, except for maybe the 15%
P-doped sample, the crystal structure of the other three compounds is most likely
orthorhombic, since both Co-doped samples as well as the 5% P-doped sample have to
be located deep in the underdoped region of the corresponding phase diagrams. For
both experiments, at D23 and DNS, the crystals were oriented with the orthorhombic
(H, 0, 0)- and (0, 0, L)-axes within the scattering plane. In principle this would
provide access to reflections arising from the Fe-SDW ordering with propagation
vector QAFM=(1, 0, 1) as well as the A-type Eu2+- ordering with propagation
vector QEu=(0, 0, 1). The sample orientation should further provide access to any
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type of ferromagnetic components to the Eu-sublattice, predicted for P-doped materials.

4.3 Results and Discussion

4.3.1 Magnetic Structure of EuFe2(As1−xPx)2 x=0.05, x=0.15

As mentioned in the introduction, the feature that makes the P-doped EuFe2(As1−xPx)2
series unique within the pnictide superconductors, is a proposed coexistence of super-
conductivity and long range ferromagnetic order of the Eu-sublattice. The first step in
the investigation of this coexistence of superconductivity and ferromagnetic order was
to determine a superconducting phase present in the samples, which were supposed
to be used for the scattering experiments. For this, resistivity measurements were
performed for all samples later used in the diffraction experiments. Figure 4.3 shows
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Figure 4.3: Temperature dependence
of the in-plane resistivity normalized
to room-temperature resistivity of
EuFe2(As0.95P0.05)2 (cyan symbols) and
EuFe2(As0.85P0.15)2 (violet symbols).
The measurements were performed
on two single crystal samples using a
standard four-terminal method. The
measurements were performed by collab-
orating scientist Dr. Y. Xiao of JCNS-2
on a Quantum Design Physical Property
Measuring Device (PPMS).

the temperature dependence of normalized in-plane resistivity of the two samples that
were used for the neutron scattering experiments. The prominent kink in the slope at
150 K of the 5%-doped sample (cyan symbols) marks the onset of the Fe-SDW order.
The ordering temperature of TN=150 K is about 30 K reduced compared to the parent
undoped compound. For low temperatures, no signs of a superconducting phase can
be observed. Whereas, the 15% sample (violet symbols) shows a prominent resistivity
drop to zero at Tc=32 K, which clearly locates the sample in the optimal doped range
of the phase diagram. However, the in-plane resistivity of this sample shows another
prominent feature around 180 K, which most likely must be ascribed to the onset of
Fe-SDW order. According to published phase diagrams for EuFe2(As1−xPx)2 the long
range SDW-order transition for a P-concentration of 15% occurs well below 100 K. The
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reason why no sign for this transition has been observed is not clear, but the signal
around 180 K, which is very close to the transition temperature in undoped EuFe2As2,
is most likely caused by the already mentioned impurity phase, probably of undoped
EuFe2As2. This impurity phase, however, did not affect the investigations on the
magnetic structure of the Eu-sublattice, as both magnetic structures do not interfere
but can easily be distinguished.

In order to get a first overview of the possibly modified magnetic structure of
the Eu-sublattice, 2D maps of the reciprocal space were obtained using the polarized
neutron diffraction technique. Figure 4.4 is a collection of 2D reciprocal space maps for
the 5% (a), (b) and 15% (c)-(f) P-doped samples. The data were taken at 5 K using
incident neutron polarizations parallel to the scattering vector Q (x-polarization) and
perpendicular to the scattering plane (z-polarization), respectively.

As discussed in chapter 3, when considering the neutron spin as an additional degree
of freedom two scattering processes can be distinguished, which are undistinguishable
with non-polarized neutrons scattering. The non-spin-flip (NSF) scattering process as
a process which conserves the spin direction of the neutron, resulting in parallel spin
directions the incident and scattered neutrons. And in contrast, the spin-flip (SF)
process as a scattering process that flips the neutron spin and leaves the spin directions
of incident and scattered neutrons to be anti-parallel. Whether a process flips or does
not flip the neutron spin depends on the nature of the process, nuclear or magnetic, and
for magnetic processes it further depends on the orientation of the neutron spin relative
to the magnetization direction in the sample. For nuclear scattering all processes are
(NSF) and maintain the neutron spin direction. Magnetic scattering processes can
either be (SF) or (NSF). For processes with the neutron spin parallel to the magnetic
moments of the sample, the neutron spin remains unchanged and the scattering process
is (NSF). But for processes with neutron spin direction perpendicular to the direction
of magnetic moments of the sample, the neutron spin is flipped and thus the process
is (SF). The fact that magnetic neutron scattering is only sensitive to the component
of the magnetic moment perpendicular to the scattering vector, leads to the situation
that for a neutron polarization parallel to the scattering vector Q (x-polarization), all
magnetic scattering processes are exclusively (SF). Whereas, all nuclear processes are
always (NSF). Consequently, x-polarization leads to a complete separation of magnetic
and nuclear scattering intensities, as (SF) intensities are purely magnetic and (NSF)
intensities are purely nuclear. Note that in case of the DNS experiments, which are
discussed here, a neutron polarization parallel to the scattering vector Q is not possible.
With the multi-detector of the instrument which covers a wide range of scattering
angles 0 < 2δ < 150, for every measurement several reflections can obey Bragg’s law
simultaneously. For x-polarization a polarization was chosen parallel to a Q vector
with moderate scattering angle, between minimum and maximum angles covered by
the detector rack.
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(a) (b)

(c) (d)

(e) (f)

x-polarization

z-polarization

Figure 4.4: 2D maps of the (H, 0, L)-reciprocal plane for (a), (b) EuFe2(As0.95P0.05)2 and (c)-
(f) EuFe2(As0.85P0.15)2, obtained via polarized neutron diffraction with neutron polarizations
parallel to the horizontal scattering plane (x-polarization) (a)-(d) and perpendicular to the
scattering plane (z-polarization) (e), (f) and at 5 K temperature. Intensities in the (SF) channel
(a), (c) exclusively correspond to magnetic scattering processes, intensities in the (NSF) channel
(b), (d) solely originate from nuclear scattering.
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From figures 4.4 (a) and (b) it is obvious that the magnetic structure of the 5%
sample does not show any modification to the A-type structure of Eu sublattice in
the undoped EuFe2As2 compound. The intensity distribution of the 5% sample shows
the identical pattern as the parent compound, as is shown in figure 2 of ref. [171].
The four spots in figure 4.4 (a) correspond to the (0, 0, 1), (0, 0, -1), (0, 0, -3) and
(0, 0, -5) reflections, only appear in the (SF)-channel and thus can be related to the
A-type structure of the Eu sublattice. Aside from these A-type reflections, no other
magnetic reflections incompatible to the A-type propagation vector QEu=(0, 0, 1) were
observed. Thus the magnetic structure of the Eu2+-moments obviously remains of
A-type symmetry, identical to the parent compound.

During the experiments, no magnetic intensity which could have been related to the
Fe-SDW with propagation vector QAFM=(1, 0, 1) has been observed. Admittedly, the
Fe-SDW was not the focus of the experiments. Mainly because the experimental set up
with the long wavelength, the small Eu-containing samples (10-20 mg) and the small
ordered Fe-moment, ≈ 0.8 µB compared to the ≈ 7 µB of the Eu-moments, would not
suit any reasonable investigation on the SDW, anyway.

Summarizing, the introduction of 5% phosphorous seems not sufficient to affect the
magnetic structure of the Eu-moments in any way, as the symmetry of the Eu-sublattice
clearly remains A-type with moments parallel to the ab-plane. According to Zapf et
al. [192] a tilt of 13° of the Eu-moments in c-direction should be present even for the
undoped compound. For the 5% doped sample, for which the tilt angle should be even
larger than for the parent compound, this tilting of the Eu2+-moments in out of the
plane direction cannot be confirmed from the present results. With an effective ordered
moment in the range of 6-8 µB even a tilting of just a few degrees would induce a
sizeable ferromagnetic component, which should result in a reasonable (SF) intensity
at the (2, 0, 0) reflection. Since figure 4.4 (a) obviously does not show any intensities
at nuclear reflections the proposed tilting of the moments in c-direction, seems rather
unlikely, at least for doping levels below 5%.

In contrast to the 5% P-doping, which seemingly is not sufficient to affect the Eu-
order, 15% of introduced phosphorous induces quite a drastic change in the magnetic
order of the Eu sublattice, as it is illustrated in figure 4.4 (c). One very obvious effect
is the suppression of the magnetic intensity at (0, 0, -1) and (0, 0, -3), which previously
has been identified as corresponding to the A-type structure. This suppression of the A-
type reflections is accompanied by strong magnetic intensity at (-2, 0, 0) and observable
magnetic intensity at (-2, 0, -2). Both reflections correspond to the orthorhombic nuclear
structure with space group Fmmm but are forbidden reflections for the A-type magnetic
structure with propagation vector QEu=(0, 0, 1). Thus, the magnetic intensity at these
nuclear (-2, 0, 0) and (-2, 0, -2) reflections is a strong indication for a modified magnetic
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structure of the Eu-sublattice with a sizeable ferromagnetic component3. The fact that
the strongest magnetic intensity of this ferromagnetic type structure is observed for the
(-2, 0, 0) reflection, whereas no magnetic intensity is observed at the (0, 0, -2) and (0, 0,
-4) reflections indicates that the moment direction of the ferromagnetic component must
be along the crystallographic c-axis. This can be explained by the fact that any observed
magnetic intensity requires a magnetic moment direction perpendicular to the direction
of the scattering vector. Consequently, magnetic intensities at the nuclear reflections (0,
0, -2) and (0, 0, -4) require a ferromagnetic structure with moments perpendicular to the
c-axis , whereas, magnetic intensities at the nuclear reflection (-2, 0, 0) require moments
oriented along the c-axis. As a result, the most likely magnetic structure which produces
a scattering pattern similar to the observed intensity distribution is a ferromagnetic type
structure with the moment direction of the ferromagnetic component parallel the c-axis.
Figure 4.5 illustrates three possible magnetic structures for the Eu-sublattice, with a
ferromagnetic component with moments along the c-axis. The structures are results
from a tilting of the Eu-moments of the A-type structure in c-direction.

The weak magnetic intensities present at (0, 0, -1) and (0, 0, -3) indicate the presence
of an A-type structure with moments parallel to the ab-plane. This could be the in-
plane component produced by the incomplete tilting of the moments in c-direction of
a structure similar to the structure in figure 4.5 (a). The antiferromagnetic A-type
symmetry of the in-plane component of this structure would in fact result in magnetic
intensities at (0, 0, -1) and (0, 0, -3). The intensities of these reflections are correlated
to the tilting angle and the resulting magnetic moment size of the in-plane component,
where a stronger tilting along the c-axis results in a smaller in plane component and
consequently in weaker magnetic intensities of the A-type reflections. However, from the
resistivity measurements it is known that the sample has a second phase, most likely of
undoped EuFe2As2. The A-type structure of this impurity phase of course also leads to
the observed antiferromagnetic intensity distribution.

The third structure in figure 4.5 (c), the canted ferromagnetic structure, which is
observed in EuFe2P2 [193], seems rather unlikely. The resulting ferromagnetic in-plane
component leads to sizeable (SF) intensities at both (0, 0, -2) and (0, 0, -4), or to (NSF)
intensities at the (-2, 0, 0) for z-polarization. Since those intensities are not observed in
the experiment, a canted ferromagnetic structure seems questionable.

As an additional investigation of this obviously modified magnetic structure of the
Eu-sublattice in the 15%-doped superconducting compound, additional non-polarized
neutron diffraction experiments have been performed using the thermal neutron diffrac-
tometer D23 at the ILL. Figure 4.6 shows a collection of rocking scans4 that were

3An interference of magnetic and nuclear intensities is only possible when the magnetic and nuclear
structures have identical unit cells, which is only possible for a ferromagnetic type structure.

4A rocking scan is performed by rotating the sample, while the detector position remains fixed at
twice the scattering angle for that particular reflection. Intensity is only detected, when the sample
rotation also obeys the scattering condition, nλ = 2d · sin(θ). The scan does not change the length
of the scattering vector but rotates the vector around the origin in reciprocal space.
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Figure 4.5: Sketch of three possible magnetic structures of the Eu-sublattice, with a ferro-
magnetic component with moment directions along the c-axis. (a) Incomplete tilting of the
A-type ordered moments with an angle between the moments and the c-axis, and a resulting
antiferromagnetic in-plane component. (b) Complete tilting with moments parallel to c-axis,
resulting in a ferromagnetic structure. (c) Incomplete tilting, similar to (a) but with ferromag-
netic in-plane component. Red symbols represent Eu-moments. View of each unit cell is along
orthorhombic b-direction.

conducted on several different nuclear reflections, for temperatures above (22 K) and
below (4 K) the Eu-ordering temperature TN=18 K. The striking feature in these plots
is the additional intensity which occurs for a collection of reflections once the tempera-
ture drops below the Eu-ordering temperature. This additional intensity shows an order
parameter like temperature dependence and disappears at approximately 18 K, very
close to the ordering temperature of the Eu-magnetic sublattice of the undoped Eu-
compound. Combined with the previous results from the polarization analysis, which
proved that the signal is of magnetic nature, the intensity is identified to be related to
the magnetic order of the Eu2+ sublattice. The results from the non-polarized experi-
ments in figure 4.6 clearly confirm the results from the polarized experiments in figure
4.4, that the structure of the Eu-sublattice has a dominant ferromagnetic contribution
with moments parallel to the c-axis. The degree of the tilting and thus the ratio of
out-of-plane and in-plane components of the magnetic moment, however, is difficult to
determine from the current data. Figure 4.7 shows rocking scans obtained for the (0,
0, 1) and (0, 0, 3) reflections, which also were observed in the polarized experiments
in figures 4.4 (c) and (e), and which are correlated to the A-type structure of the Eu-
sublattice. The main result in figure 4.7 is the strong reduction of intensity, which are
just around 1-2 % of the magnetic intensity at (2, 0, 0), and the strong broadening of
the two peaks. The ferromagnetic reflections in figure 4.6 are narrow with peak widths
comparable to the widths of nuclear peaks. This clearly shows the long range nature of
the ferromagnetic order of the Eu-moments. In contrast to this, the (0, 0, 1) and (0,

62



4.3 Results and Discussion

-106.2 -105.6 -105.0 -104.4 -103.8 -103.2 -102.6
0

50

100

150

200

250

 
sample rotation angle  [°]

In
te

ns
ity

 [a
rb

. u
ni

ts
]

 (6, 0, 0) T=4 K
 (6, 0, 0) T=22 K

-80.4 -79.8 -79.2 -78.6 -78.0 -77.4

0

100

200

300

400

500

600

700

800

In
te

ns
ity

 [a
rb

. u
ni

ts
]

sample rotation angle  [°]

 (4, 0, 6) T=4K
 (4, 0, 6) T=22K

-136.8 -136.2 -135.6 -135.0 -134.4 -133.8 -133.2
0

2000

4000

6000

8000

10000

12000

In
te

ns
ity

 [a
rb

. u
ni

ts
]

sample rotation angle  [°]

 (2, 0, 0) T=4 K
 (2, 0, 0) T=22 K

-47.4 -46.8 -46.2 -45.6 -45.0 -44.4
0

100

200

300

400

500

600

700

800

 (0, 0, 4) T=4 K
 (0, 0, 4) T=22 K

In
te

ns
ity

 [a
rb

. u
ni

ts
]

sample rotation angle  [°]
-54.0 -53.4 -52.8 -52.2 -51.6 -51.0
0

100

200

300

400

500

In
te

ns
ity

 [a
rb

. u
ni

ts
]

sample rotation angle  [°]

 (0, 0, 2) T=4 K
 (0, 0, 2) T=22 K

2 4 6 8 10 12 14 16 18 20 22 24

0

50

100

150

200

In
te

ns
ity

 [a
rb

. u
ni

ts
]

Temperature [K]

  Integrated intensity (2, 0, 0)
  Integrated intensity (0, 0, 6)

Figure 4.6: Collection of rocking scans performed on a series of reflections within the (H,
0, L)-reciprocal plane for superconducting EuFe2(As0.85P0.15)2 at temperatures of 4 K (black
symbols) and 22 K (red symbols). (bottom right panel) Temperature dependence of integrated
intensities, obtained via rocking scans, of reflections (2, 0, 0) (black symbols) and (0, 0, 6) (red
symbols). Black and red solid lines are least square fits of Lorentzian peak functions and serve
as guides to the eye.
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Figure 4.7: Rocking scans performed on antiferromagnetic reflections (0, 0, 1) and (0, 0, 3)
for superconducting EuFe2(As0.85P0.15)2 at temperatures of 4 K. The reflections are correlated
to the A-type ferromagnetic structure of undoped EuFe2As2.

0, 3) reflections are very broad which suggests that the corresponding antiferromagnetic
structure is rather short ranged. This short range of the antiferromagnetic correlations
is a good indication that this intensity indeed corresponds to the A-type structure of the
assumed impurity phase of undoped EuFe2As2 rather than to the in-plane component
of the ferromagnetic type structure of the main phase. The antiferromagnetic in-plane
component of structure (a) in figure 4.5 would show the same long range character as
the ferromagnetic component along the c-direction. As consequence the intensity at (0,
0, 1) and (0, 0, 3) is identified as caused by the A-type structure of the Eu-sublattice of
an impurity phase, most likely of undoped EuFe2As2. Since no other magnetic intensity
has been observed that indicates a long range in-plane component, the results imply
a magnetic structure of the Eu-sublattice with moments parallel to the c-axis. Conse-
quently, for the Eu-sublattice of the 15 % P doped composition the magnetic structure
of the Eu-sublattice is identified as a long range ferromagnetic order with moments
along the c-axis and a large ordered moment, most likely as large as the ∼ 6.8 µB of
the undoped composition. From the current data it is not possible to unambiguously
determine a clear value for the ordered moment, but from literature it is not known that
doping substantially modifies the size of the Eu-moment. Combined with the resistivity
measurements the present results further prove the proposed coexistence between static
ferromagnetic order with large ordered moments and bulk superconductivity.
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4.3.2 Magnetic Structure of Eu(Fe1−xCox)2As2 x=0.014,
x=0.025

(a)
(b)

(c) (d)

Figure 4.8: 2D maps of the (H, 0, L)-reciprocal plane for (a) Eu(Fe0.986Co0.014)2As2 and
(c), (d) Eu(Fe0.975Co0.025)2As2, obtained via polarized neutron diffraction for temperatures 4
K (a), (c) and 20 K (d). Data has been obtained for neutron polarization perpendicular to the
scattering plane (z-polarization). Only intensities detected in the (SF) channel are illustrated.
(b) Temperature dependence of scattering intensities of the (0, 0, 3) magnetic reflection from the
x=0.014 sample (black dots) and of the satellite reflection (0, 0, 2.73) obtained from the 2.5%
doped sample. The temperature dependence was performed by collecting only the intensity
from one detector, which covered the desired reflection, and sweeping the temperature with a
ramp of 1 K per minute.

As mentioned in the introduction, substituting iron with cobalt is another method to
induce superconductivity in Eu(Fe1−xCox)2As2 materials. To investigate the effect of
Co-doping on the Eu-sublattice polarized neutron diffraction experiments have been
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Figure 4.9: Temperature dependence of
the in-plane resistivity normalized to room-
temperature of Eu(Fe0.986Co0.014)2As2
(cyan symbols) and Eu(Fe0.975Co0.025)2As2
(violet symbols). The measurements were
performed by collaborating scientist Dr.
Y. Xiao of JCNS-2 on two single crystal
samples using a standard four-terminal
method on a Quantum Design Physical
Property Measuring Device (PPMS).
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conducted using two single crystals with Co-concentrations of 1.4% and 2.5%, respec-
tively.

Figure 4.8 shows a collection of 2D intensity maps of the (H 0 L)-reciprocal plane of
spin-flip (SF) intensities obtained via polarized neutron scattering with z-polarization
of the incident neutron beam (neutron spin perpendicular to the scattering plane). In
contrast to the perviously discussed x-polarization, z-polarization does not provide an
immediate separation of magnetic and nuclear intensities but has the advantage that
the polarization direction can be controlled much easier as it can be held fixed during
the measurement and does not have to follow the direction of the scattering vector as is
the case for x-polarization.

Figure 4.8 (a) illustrates the (SF)-intensity obtained from single crystal scattering
experiments on the 1.4% Co-doped sample at 4 K. The three spots apparent in figure
4.8 (a) correspond to the nuclear crystal structure, represented by (0, 0, 2) and (0, 0, 4),
and the A-type magnetic structure with propagation vector QEu=(0, 0, 1), represented
by (0, 0, 3). Throughout the investigations of the 1.4 % Co-doped sample, no magnetic
intensity was observed, which could not be explained by the A-type structure or which
would suggest a different propagation vector. In addition to this, the observed magnetic
intensity follows the same temperature dependence as the A-type structure of the
Eu-sublattice in the parent compound with an almost identical transition temperature
TN=18 K, figure 4.8 (b). This shows that the 1.4% of introduced Co is not sufficient
to affect the magnetic structure of the Eu2+-moments, similar to what has been
observed for the 5% P-doped sample. Regarding the impact of the Co-doping on the
Fe-SDW, the conductivity measurements (figure 4.9) clearly show a reduction of the
Fe-SDW transition temperature to 130 K, which is about 50 K below the ordering
temperature for the undoped material. Similar to the P-doped samples, which were of
comparable mass, the diffraction experiments on the Co-doped samples were not suited
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to detect any intensity from the Fe-SDW order. From the extensive knowledge about
the doping dependence of the Fe-SDW in other 122-pnictides, however, there is no rea-
son to expect any change in the structure of the Fe-magnetic moments in this compound.

The previous results show, that 1.4 % incorporated cobalt is not sufficient to affect
the Eu-sublattice, as it maintains the A-type structure of the undoped compound. Fig-
ures 4.8 (c) and (d), however, reveal that just about one percent more of introduced
cobalt and the magnetic structure obviously experiences a drastic change. The striking
differences to the 1.4 % doped sample is that both magnetic peaks at (0, 0, 1) and (0,
0, 3) disappear and are replaced by incommensurate peaks located at (0, 0, 0.73±0.05)
and (0, 0, 1.27±0.05) and (0, 0, 2.73±0.05) and (0, 0, 3.27±0.05), respectively. This
incommensurate splitting leads to a new propagation vector of the Eu-order of Qheli=(0,
0, 0.73±0.05). Here it was assumed that the ferromagnetic order within the Eu-layers re-
mains unaffected. However, this is indeed a reasonable assumption as first no additional
reflections suggesting a change of the in-plane correlations were observed and second
Xiao et al. [176] showed that the intra-layer ferromagnetic coupling is solid and by far
the strongest of the Eu-Eu interactions. This leads to the new helical type structure of
the Eu-sublattice, where Eu-moments remain parallel to the ab-planes but ferromagnetic
Eu-layers are rotated around the c-axis resulting in an angle of ϕ=(131±1)° between two
neighboring layers, as illustrated in figure 4.10.

Aside from the splitting of the magnetic peaks the obtained (H 0 L) intensity distri-
bution exhibits a further prominent feature as the split magnetic peaks are smeared out
in L-direction. This diffuse scattering intensity, which only occurs in direction towards
the nuclear peaks indicates fluctuations corresponding to helices with angles between
adjacent layers smaller than 131◦. Whereas, the absence of diffuse intensity in direction
towards the commensurate magnetic reflections tells that helices with a larger angle
than 131◦ do not exist. As the diffuse intensities almost reaches the positions of nuclear
peaks angles between 131◦ and almost 0◦ ca occur, where 0◦ corresponds to ferromag-
netic symmetry. However, since the satellite peaks are much stronger in intensity than
the diffuse tails helices with 131◦ between adjacent Eu-layers are the dominating struc-
ture. In contrast to the smeared out intensity along the (0, 0, L) direction the peaks
are narrow along (H, 0, 0), which shows that the ferromagnetic correlations within the
Eu-layers remain unaffected by the doping and are still solid and of long range, com-
parable to the undoped compound. Despite the reduced range of inter-layer magnetic
order, which could be an indication for a loss of coupling strength, this new helical type
structure is less fragile than the A-type or ferromagnetic structure and exhibits a much
more robust temperature dependence as it persists up to 30 K. This is in contrast to
all other doped samples that have been investigated in this study, whether these were
doped by phosphorous or cobalt. One common feature all these samples stated was an
ordering temperature of the Eu-moments in the range between 16-18 K, close to the 19
K observed for the parent compound.

Surprisingly, it was not possible to observe any signs of the Fe-SDW order, not even
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from the in-plane resistivity measurements. This does not fit very well to results from
resistivity measurements of Co-doped Eu(Fe1−xCox)2As2 [196], where the Fe-SDW order
reportedly persists for Co-concentrations as high as 10%. This indicates a possible
underestimation of the actual doping concentration, where the sample in fact is more
likely overdoped than underdoped. The exact determination of the doping concentration
was not possible, due a strong contamination of the crystal surface by tin, which was used
as flux material during the growth process. The given value of 2.5% Co-concentration
was determined by the sample growers by means of characterization methods.

b

c

a

c

b

Figure 4.10: (Color online) Nuclear and magnetic structure of the Eu-sublattice of
Eu(Fe0.975Co0.025)2As2. Both figures show the same structure, viewed from different directions,
both with crystallographic c-axis vertical and a- and b-axes horizontal. Three orthorhombic
unit cells are shown. Blue arrows symbolize the Eu2+-moments organized in the helical-type
structure of the sublattice.
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4.4 Conclusion

The effect of impurity doping on the long range order of the Eu-magnetic-sublattice in
Eu(Fe1−xCox)2As2 and EuFe2(As1−xPx)2 single crystal samples was studied by means
of neutron diffraction and polarized neutron diffraction.

The obtained neutron scattering results on superconducting 15% P-doped
EuFe2(As1−xPx)2 clearly identify a ferromagnetic structure for the Eu-sublattice with
moments aligned along the c-axis. From the current results it is most likely that the Eu-
moments are completely parallel to the c-axis, as no indications of a remaining in-plane
component was observed. The resulting structure of a ferromagnet with moments along
the c-axis fits very well in the evolution of the Eu-sublattice, from the A-type structure
of undoped EuFe2As2 to the ferromagnetic structure with moments oriented along the
c-direction present in EuFe2P2.

The tilting of the moments in c-direction results in a long-range ferromagnetic com-
ponent with large ordered moments of approximately Sc=6.8 µB. The ordered moment
is only estimated as the performed experiments did not allow a clear determination of
the moment size. Since from literature no effect of doping on the size of the ordered mo-
ment is known, the 6.8 µB of the undoped material is assumed. The astonishing about
this result is the fact that this sizeable ferromagnetically ordered moment coexists with
bulk superconductivity. Combined with the results of local probes, such as Mössbauer
spectroscopy [191] and characterization techniques, such as magnetization, specific heat
and resistivity measurements [188–190, 192] which all suggest bulk superconductivity
with the coexistence of long range ferromagnetism, the present neutron scattering study
clearly proves the bulk coexistence of long range ferromagnetic order and superconduc-
tivity, in contrast to a possible phase separation of both phases. However, an explanation
on how superconductivity can coexist with this large moment ferromagnetic structure
cannot be given by the presented results and is still not understood to this date.

In contrast to the 15% P-doped compound, 5% of introduced phosphorous is not
sufficient to affect the Eu-sublattice in any way, as it maintains its A-type structure of
the undoped compound. Further, the results for this compound show no signs of an
out-of-plane tilt of the Eu-moments, which is contradictory to an A-type structure with
Eu-moments slightly tilted in c-direction proposed for undoped EuFe2As2 [192]. Thus,
according to the present scattering results, tilted moments in the A-type structure of
the undoped compound are unlikely.

For the small amount of just 2.5% Co-concentration the Eu-order changes from
A-type to a helical-type magnetic order, where Eu-moments remain oriented in the
ab-plane and ferromagnetic Eu-layers are rotated around the c-axis resulting in an angle
of ∼130° between neighboring layers. Aside from the in-plane rotation of the moments
and the loss of antiferromagnetic inter-layer Eu-Eu correlations the ferromagnetic
in-plane Eu-Eu correlations, in contrast, are obviously unaffected by the doping and

69



4 Effect of P- and Co-Doping on the Eu2+ Magnetic Sublattice in EuFe2As2

remain of long range. Surprisingly, this new magnetic order with its reduced inter-layer
correlations appears to be more robust to temperature, as the Eu-ordering temperature
for the helical structure increases up to 30 K.
Similar to the 5% P-doped sample, the 1.4% Co-content of the underdoped compound
does not affect the Eu-sublattice, which maintains its A-type structure of the undoped
compound.

The inter-layer correlations of the Eu-sublattice are seemingly weak and can easily be
modified by perturbations, such as doping, applying external pressure [180] or magnetic
fields [176]. Further, antiferromagnetic and ferromagnetic symmetry of the Eu-sublattice
are energetically very close [189], and just small perturbations can cause the sublattice
to order in one way or the other. This also shows in this study, as the common effect
of doping on the Eu-sublattice obviously is a change of inter-layer correlations. This
leads to the loss of the antiferromagnetic structure along the c-direction and results
in either a rotation of the Eu-layers around the c-axis or a tilt of the layers along
the c-axis. As already mentioned, the antiferromagnetic coupling of the Eu-sublattice
is believed to be driven by a carrier mediated RKKY-type mechanism. The RKKY
exchange coupling is JRKKY ∝ −αcosα−sinα

α4 , where α = 2kFR with kF being the Fermi
vector and R the distance between two magnetic moments. Obviously JRKKY oscillates
between antiferromagnetic (positive sign) and ferromagnetic (negative), depending on
the value of α. A reduction of R, present for P-doped materials in form of the shrunk
c lattice parameter, which shortens about 2% for 30% P-doping [188] and about 1 Å
for EuFe2P2 [193], or a change of kF , in case of Co-doping a reduction of kF due to
the introduction of additional charge carriers, can easily modify JRKKY and eventually
result in a crossover of the magnetic structure from antiferromagnetic to ferromagnetic
symmetry [185, 197]. In this context, the helical-type structure observed for the Co-
doped materials can be understood as an intermediate state between the AFM and FM
structures. However, this modification of JRKKY does not necessarily explain the tilting
of the Eu-moments in c-direction observed in the P-doped materials. One interpretation
of this effect is that it is caused by a reduction of As concentration in the structure.
The As 4p states are spatially more extended than the P 3p states and thus have a
greater influence on the interlayer Eu-Eu interactions than the P 3p states. A reduced
concentration of As-ions in favor of P-ions then leads to less influence on the Eu-Eu
interactions and as a result the tilting and the formation of a FM structure sets in, as
it is observed in EuFe2P2.
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5 ToF Neutron Scattering on
Magnetic Excitations in
Ba(Fe0.95Co0.05)2As2

5.1 Introduction

5.1.1 Motivation

With its coexistence of superconductivity and static magnetic SDW order underdoped
Ba(Fe0.95Co0.05)2As2 provides a unique possibility to directly investigate the mutual effect
of both phenomena have on each other. One effect that has been observed by Pratt et
al. [70] in a similar composition is a dispersion of the spin resonance. This effect
most likely is attributed to the coexistence of long range static magnetic order and
superconductivity. Thus, one focus of this study is to examine if a similar effect would
also be observable in the 5% Co-doped composition. The main focus, however, is to
investigate the spectrum of spin wave excitations of the long range SDW order. For
this a linear spin wave model based on a local moment Heisenberg Hamiltonian was
applied to the excitation spectrum, obtained for three different temperatures, T < Tc,
Tc < T < TN and T > TN . This provides the possibility to investigate a possible effect of
superconductivity on the spin wave excitations, a possible doping effect on the exchange
interactions in general as well as to investigate the excitations in the paramagnetic phase.
These paramagnetic excitations were further analyzed by applying an additional model,
based on spin diffusion theory. The results from this study will be discussed in the
current chapter.

5.1.2 Coexistence of Superconductivity and Static Magnetic
Order

One characteristic feature of the underdoped region of the phase diagram of several
Fe-based materials is a phase of seeming coexistence of static magnetic order and su-
perconductivity. This effect has been observed experimentally for a variety of Fe-based
materials, such as SmFeAsO1−xFx [43], LaFeAsO1−xFx [44], CaFe1−xCoxAsF [44, 45],
Ba1−xKxFe2As2 [41, 42], Ba(Fe1−xNix)2As2 [36] and Ba(Fe1−xCox)2As2 [37–40]. One
way to explain this apparent coexistence of both effects is via a phase separation of
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the two phases, where magnetically ordered regions and superconducting regions occur
simultaneously but are spatially separated within the crystal. Another possible situa-
tion of course is a real microscopic coexistence of both phenomena. A real conclusive
explanation for this effect, however, is not available for most compositions, as contradic-
tory experimental results are reported, with some suggesting a phase separation as in
Ba1−xKxFe2As2 [42], CaFe1−xCoxAsF [44], whereas others suggest a phase coexistence
as in SmFeAsO1−xFx [43], Ba1−xKxFe2As2 [41], CaFe1−xCoxAsF [45], Ba(Fe1−xNix)2As2
[36] and Ba(Fe1−xCox)2As2[39, 40].

Coexistence of long range antiferromagnetic order and superconductivity is not a new
phenomena but has been observed for other high Tc materials before, such as the boro-
carbides (RNi2B2C, with R= rare earth) [198] or the ruthenates (RuSr2GdCu2O8) [199].
For these materials, however, it is believed that magnetic order and superconductiv-
ity occur independently from each other and do not originate from the same electrons,
whereas, for materials, such as the heavy fermion systems UPt3 [200, 201] and UNi2Al3
[202] superconductivity and long range antiferromagnetic order, not just coexist but most
likely arise from the same electron bands. The overall consensus on this point is that this
likely is the case also for the underdoped region in the 122-compounds Ba(Fe1−xNix)2As2
[36] and Ba(Fe1−xCox)2As2 [29, 37–40, 203].

One effect that might support this idea that magnetic order and superconductivity
could arise from the same electrons has been observed in neutron scattering experiments,
and has been reported for underdoped Ba(Fe1−xCox)2As2 [39, 40] and Ba(Fe1−xNix)2As2
[36]. The effect observed in these experiments, is an anomalous temperature dependence
of the elastic magnetic Bragg intensity of reflections correlated to the static Fe-SDW
order. As is illustrated in figure 5.1 (b), the magnetic intensity suddenly decreases once
the temperature drops below Tc, which results in a kink in the temperature dependence
of the order parameter. This reduction of magnetic intensity for T < Tc is absent for
the non superconducting materials and has so far only been observed in the underdoped
Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2 materials, for which superconductivity and
magnetic order are detected simultaneously. The effect is interpreted as an indication
for a possible coexistence of the two phases on a microscopic scale, where the reduction of
the magnetic intensity results from a reduction of the ordered magnetic moment, caused
by a competition of the two phases over the same electrons. This scenario is supported
by theory [204, 205], as here the authors propose that a microscopic coexistence of the
two states in fact supports the s± symmetry for the superconducting gap function (figure
5.1 (c)). However a complete explanation of this effect is not available to this date.

5.1.3 A Dispersive Spin Resonance Signal

Two features that might also be characteristic for the underdoped 122-pnictides but
so far have only been observed for the underdoped Ba-122 compounds, are a three
dimensionality and a dispersion of the spin resonance signal. Both features most likely
are consequences of the just discussed coexistence of long range magnetic order and
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Figure 5.1: (a) Temperature-doping-concentration phase diagram of the Ba(Fe1−xCox)2As2
series determined via neutron diffraction experiments (filled symbols) and bulk characterization
measurements (open symbols, [37]). Tet represents the paramagnetic tetragonal phase, Ort the
paramagnetic orthorhombic phase, AFM/Ort the antiferromagnetic orthorhombic phase and
SC the superconducting phase. (b) Squared normalized ordered magnetic moment against
temperature as determined via neutron diffraction experiments. Data for five different Co-
doping concentrations are shown. (c) and (e) Simulated phase diagrams for two different
symmetries of the superconducting gap function s± and s++. Insets in (c) and (e) show the
evolution of the superconducting gap function on the electron and whole pockets in the Brillouin
zone with the momentum directions px and py being parallel to the tetragonal a and b axes. (d)
and (f) Simulation of squared ordered moments for gap symmetries s± and s++, respectively.
Figure taken from [204].
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superconductivity. For most optimal doped pnictide materials, the spin resonance has
a clear defined energy ER, and is peaked at a Q-position close to the nesting vector
QAFM=(0.5, 0.5, 0). This integrates the mode into the spectrum of the short range spin
excitations with propagation vector QAFM=(0.5, 0.5, 0), even though the microscopic
nature of the mode most likely strongly differs from these collective excitations. Similar
to the short range spin fluctuations peaked at QAFM , which are regarded to be mostly
two dimensional with correlations restricted to the (H, K, 0)-plane, the resonance signal
also appears to be mostly two dimensional with almost no modulation along the (0, 0,
L)-direction.

In contrast to the optimal doped materials, the spin excitations in the underdoped
122-compounds exhibit a prominent intensity modulation along the (0, 0, L)-direction
with strong magnetic intensities at magnetic zone center reflections (0.5, 0.5, L=odd)
and reduced intensities for zone boundary reflections (L=even) [70], as illustrated in
fig. 5.2 (d). This intensity modulation indicates antiferromagnetic correlations along
the (0, 0, L)-direction and can be ascribed to the three dimensionality of the spin
wave excitations, which because of a similar propagation vector also contribute to the
excitation spectrum at QAFM=(0.5, 0.5, 0). The spin resonance signal, present in
the superconducting state, seemingly follows this three dimensionality as it exhibits a
similar modulation along the (0, 0, L)-direction with stronger intensity of the signal for
L=odd and weaker intensity at L=even.

Figure 5.2: (a) Energy scans performed
at (0.5, 0.5, 1) at 5 K (blue filled symbols)
and 25 K (red open symbols). The spin reso-
nance is identified as the region of enhanced
magnetic intensity in the 5 K data, high-
lighted as grey shaded area. (b) Energy de-
pendence of the dynamical magnetic suscep-
tibility χ′′(Q, ω) for both temperatures 5 K
and 25 K. (c) Longitudinal constant energy
cuts through QAFM=(0.5, 0.5, 1) for differ-
ent excitation energies. (d) Constant energy
scans along (0.5, 0.5, L)-direction for differ-
ent energies. The inset illustrates an identi-
cal scan for an optimal doped 8% compound
at the resonance energy ER=9.5 meV. Fig-
ure taken from ref. [70].
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Figure 5.3: (a) Energy scans performed
at (0.5, 0.5, L) for temperatures above (red
open symbols) and below (blue filled sym-
bols) Tc. The scans are performed for L-
values from L=1 (zone center) to L=2 (zone
boundary). The spin resonance is identified
as the grey colored region. (b) Difference
in scattering intensity for the 5 K and 25 K
energy scans, for the 4% underdoped sam-
ple (open blue symbols) and the 8% optimal
doped sample (green filled symbols). (c) (0,
0, L)-dispersion of the spin resonance in un-
derdoped 4% ( blue open symbols) and opti-
mal doped 8% (green filled symbols). Figure
taken from ref. [70].

This three dimensional character of the resonance signal in the underdoped compound
is accompanied by a prominent dispersion, where the signal moves to higher energies
when varying the propagation vector from the magnetic Brillouin zone center (0.5, 0.5,
L=odd) to the zone boundary (0.5, 0.5, L=even) [70]. A similar effect is not observed in
optimal doped compounds, where the signal remains at a constant energy, as illustrated
in figure 5.3.

Both features can be related to the presence of the three dimensional SDW-order in
the superconducting phase.
The RPA (Random Phase Approximation) form of the dynamical magnetic susceptibility
in the superconducting state reads as [151],

χ(Q, ω) =
χ0(Q, ω)

1− V (Q)χ0(Q, ω)
(5.1)

Here χ0(Q, ω) is the irreducible susceptibility from (A.3), and V (Q) is an effective spin-
spin interaction between itinerant electrons. For a given wave vector Q and the following
conditions,

1− V (Q)Reχ0(Q, ω) = 0 ; Imχ0(Q, ω) = 0 (5.2)

the magnetic response becomes divergent, and the formation of collective excitations sets
in. With the right energy ER, and the right wave vector Q = QAFM one of the collective
excitations will be the spin resonance mode. Along the (0, 0, L)-direction the resonance
occurs as long as the condition V (QAFM + Lẑ)χ0(QAFM + Lẑ, ω) = 1 is retained, and
thus for the optimal doped compound, where both V (Q) and χ0(Q, ω) are almost two
dimensional, the resonance mode shows no modulation along the (0, 0, L)-direction and
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is of quasi 2D nature. For the underdoped compound the three dimensional SDW-order
has to be taken into account, as it introduces an enhanced (0, 0, L)-dependence to V (Q).
This (0, 0, L)-modulation of V (Q) and maybe even χ0(Q, ω) obviously contributes to
(5.2) and so eventually leads to the three dimensionality and the Q-energy-dispersion of
the spin resonance mode.

5.2 Experimental Details

Inelastic time-of-flight (ToF) neutron scattering experiments on a mosaic single crystal
Ba(Fe0.95Co0.05)2As2 sample have been performed, in order to investigate the spin excita-
tions of underdoped Ba(Fe1−xCox)2As2 materials. For the experiments a mosaic sample
was prepared by co-aligning four high quality single crystals of Ba(Fe0.95Co0.05)2As2,
resulting in a combined mass of approximately 6.2 g. The alignment of the four sin-
gle crystals produced a mosaic width of the assembly of less than 1°. The crystals of
the mosaic sample were synthesized by the self flux method and their main properties,
Tc = 16 K, TN = 58 K, TS = 65 K, were precisely determined by characterization
methods. The crystal growth and characterization measurements were performed by
collaborating scientist Dr. T. Wolf of the Karlsruhe Institute of Technology, Institut
für Festkörperphysik, Karlsruhe, Germany. The time-of-flight neutron scattering exper-
iments were performed on the cold time-of-flight disc chopper spectrometer AMATERAS
at the J-PARC spallation neutron source, JAPAN [206]. By taking advantage of the rep-
etition rate multiplication technique, data sets were obtained for eight different incident
neutron energies, covering a range from Ei = 5 meV to Ei = 94 meV. By sealing the
sample in a cylindrical aluminum can filled with He exchange gas and mounting it to
a top-loading closed-cycle cryostat, it was possible to collect data for three different
temperatures T= 6 K, T= 20 K and T= 80 K. These three temperatures correspond to
three different phases, the phase of coexistence of superconductivity and magnetic order,
the orthorhombic magnetically ordered phase above Tc and the tetragonal paramagnetic
phase. The sample was oriented with the sample’s crystallographic c-axis aligned parallel
to ki, the incoming neutron beam. This way it was possible to investigate the in-plane
dependence of the magnetic excitations at QAFM= (1, 0, L), for various energies and
L-values. Because of the very small orthorhombic distortion of the crystal structure,
which was too small to be resolved during the experiments, the lattice was described
in tetragonal symmetry, with equal in-plane lattice constants a = b, for all temper-
atures. The indexing of the reflections, however, was done in orthorhombic notation
with space group Fmmm and lattice parameters a = b = 5.5 Å, c = 12.88 Å. Conse-
quently the propagation-vector for the long range Fe-SDW order reads QAFM= (1, 0,
1). Throughout this chapter, the orthorhombic notation will be used and wave-vectors
will be expressed in reciprocal lattice units [r.l.u.].

In order to be able to compare intensities, which were obtained for different tem-
peratures, the obtained intensities were corrected for the thermal population factor
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(
1−exp

(
− ~ω

kBT

))
. According to the fluctuation-dissipation theorem the thermal popula-

tion factor relates the scattering function S(Q, ω) to the dissipative part of the magnetic
susceptibility χ′′(Q, ω) via [159, 160],

χ′′(Q, ω) = S(Q, ω) ·
(
1− exp

(
− ~ω

kBT

))
. (5.3)

For the remainder of this chapter all 1D cuts and 2D slices will show intensities corrected
for this thermal population factor and thus will illustrate the imaginary part of the
magnetic susceptibility. Exceptions, where S(Q, ω) is illustrated instead of χ′′(Q, ω) are
specifically marked.
For the visualization of the 2D S(Q, ω) maps and the creation of the 1D constant energy
cuts the MSLICE program [207] was used.

5.3 Results and Discussion

5.3.1 Spin Gap and Spin Resonance in the Superconducting
State

At the time of this study no conclusive neutron scattering results were available
to clearly determine the existence or absence of the spin gap in the underdoped
compounds. To date the occurrence of the spin resonance in the Fe-based materials
always is accompanied by the opening of a gap in the particle hole excitation spectrum
for energies below the resonance energy. The opening of this gap in the superconducting
phase is ascribed to the suppression of particle hole excitations with energies not
sufficient to break up Cooper pairs. Consequently, a particle hole excitation spectrum
without a spin gap would not fit the current understanding of spin excitations in the
superconducting state.

Figure 5.4 shows two constant energy slices through the excitation spectrum for
energies of 2 meV and temperatures of 6 K and 20 K. The elliptic red signal in figure (b)
located at Q= (1, 0, 3) in Q-space corresponds to magnetic scattering arising from short
range spin fluctuations, present in the normal state of the superconducting sample. The
spin-wave excitations present in the magnetically ordered phase also possess the same
propagation vector and in principle contribute to the magnetic intensity at this position
as well. However, it is very likely that the spin wave spectrum is gapped for this low
energy range, at least if the situation is similar to the spin wave spectrum of the parent
compound, which has a gap below 10 meV [65]. In the low temperature color plot 5.4
(a) the magnetic intensity is absent, which proves the occurrence of the spin gap of
the short range spin fluctuations, and also indicates a gap in the spin wave excitation
spectrum, at least for energies below 4 meV.
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Figure 5.4: 2D χ′′(Q, ω) maps of Ba(Fe0.95Co0.05)2As2 at (a) 6 K and (b) T=20 K. The data
were obtained via ToF neutron scattering experiments with an incident neutron energy of 5
meV. The two figures show 2D Qh−Qk slices at the position of the magnetic propagation vector
QAFM= (1, 0, L) at 2 meV energy transfer. Additional 1D constant energy cuts in Qk-direction
are displayed. The cuts were performed at energy transfers corresponding to integer L-values of
magnetic zone center (L=3) and zone boundary (L=2) reflections and temperatures 6 K (black
dots) and 20 K (red dots) and were corrected for non-magnetic background contributions. They
illustrate the continuous suppression of magnetic intensity in the superconducting phase, which
corresponds to the opening of the spin gap. Black and red solid lines are fits with Gaussian
peak functions and are used as guides to the eye.
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Both features, the short ranged spin fluctuations, which are present in the supercon-
ducting phase of optimal doped materials, and the spin wave excitations of the long
range static SDW-order, posses the same in-plane components of their propagation
vectors, QAFM=(1, 0, 1) for the SDW order and Qnesting=(1, 0, 0) for the 2D spin
fluctuations. With identical in-plane components of the propagation vector, both
signals interfere and occur at identical positions in (H, K, 0)-reciprocal plane. Thus
the inelastic magnetic signal observed at QAFM in the underdoped material always
contains contributions of both types of excitations, at least for temperatures below the
Néel temperature TN .

Figure 5.4 illustrates a collection of one dimensional constant energy cuts that were
conducted in the (H, K)-reciprocal plane in a way that they cross the position of the
magnetic propagation vector QAFM = (1, 0, L) in transverse (K-cut) direction for tem-
peratures 6 K (black) and 20 K (red). The illustrated cuts correspond to positions in
reciprocal space related to magnetic zone center (L=odd) and zone boundary (L=even)
reflections1. The illustrated data has been corrected for non magnetic background con-
tributions as well as the thermal population factor.

Obviously, a clean spin gap opens at energies below approximately 4 meV for both
zone center as well as zone boundary reflections. The mentioned spin gap shows in these
transverse constant energy cuts as the suppression of χ′′(Q, ω) for the superconducting
phase (6 K) in relation to the normal state (20 K).

One effect of the experimental set up with a fixed sample orientation with the
incident neutron beam always parallel to the crystallographic c-axis, was a coupling
of the (0, 0, L)-value of the excitation spectrum to the energy transfer. This means
that (1, 0, L) reflections with different L-values would only be accessible at different
energy transfers2. Consequently, the only way to investigate a given (1, 0, L)-reflection
at various energy transfers was to vary the incident neutron energy. As a result, it
was not possible to continuously vary the energy transfer for a given reflection or
to vary the L-value of the reflection for a fixed energy transfer. However, the eight
different incident neutron energies used in the experiment, provided a total of eight
different energy transfers for a given (1, 0, L) reflection. This lead to a collection of sev-
eral (1, 0, L) reflections with integer L values in the relevant energy range below 10 meV.

1With a propagation vector of QAFM= (1, 0, 1) for the magnetic long range order, reflections with odd
L-values correspond to the center of that particular magnetic Brillouin zone. Whereas, reflections
with an even value for L are located right on the boundary of two neighboring Brillouin zones, and
consequently are referred to as zone boundary reflections.

2This effect becomes obvious from figures 5.6 and 5.7 which contain a series of Qh − Qk reciprocal
maps at different energy transfers and corresponding (0, 0, L)-values. The figures illustrate the
increasing reciprocal space which becomes accessible due to an increased incident neutron energy.
They further show the correlation between Ei, energy transfer and (0, 0, L), as different Ei or energy
transfer lead to different (0, 0, L)-values.

79



5 ToF Neutron Scattering on Magnetic Excitations in Ba(Fe0.95Co0.05)2As2

Due to this effect, it was not possible to continuously follow the energy dependence of
a given (1, 0, L) reflection and thus the gap energy can only be estimated for energies
below 4 meV. For this energy range, however, a fully opened spin gap in the excitation
spectrum can be reported, as for T<Tc χ′′(Q,ω) is heavily suppressed, and is almost
featureless below 2 meV . This confirms that the emergence of the spin resonance, which
will be discussed later, is indeed accompanied by the opening of a gap in the excitation
spectrum, which fits nicely to the current understanding of magnetic excitations int the
superconducting state.

The strong suppression of χ′′(Q,ω) below 4 meV, of course is only possible when the
spin wave excitation spectrum is gapped for this energy range as well. So, aside from
the spin gap, which as a feature is related to the quasi 2D short range spin fluctuations,
further a gap in the spin wave spectrum can be reported, at least for energies below 4
meV.

In order to investigate the spin resonance also in regard of a possible dispersion
of the mode, as it is reported for a 4% underdoped Ba(Fe1−xCox)2As2 sample [70],
multiple transverse cuts through (1, 0, L)-reflections, at different energies between 5
an 10 meV have been performed. The problem of the coupled (0, 0, L)-values and the
energy transfer prevented a continuous analysis, and in this case resulted in even fewer
reflections accessible with the right L-value at the right energy range. Figure 5.5 is a
collection of transverse cuts through zone center (1, 0, L=3) and zone boundary (1, 0,
L=2,4) reflections for temperatures of 6 K and 20 K. The resonance mode, which shows
as an enhancement of χ′′(Q,ω) in the 6 K cuts, emerges for zone center reflections
between energies of 5-9 meV. Seemingly the resonance signal observed for the zone
boundary (1, 0, 4) reflections is slightly reduced in intensity compared to the zone
center (1, 0, 3) reflection, most obvious when comparing the integrated intensities I0
of the resonance signal for both reflections I0(1, 0, 3) = 5.56 ± 0.35 [arb. units] and
I0(1, 0, 4) = 3.13 ± 0.30 [arb. units], obtained by subtracting the 30 K data from the 6
K data χ′′(6K)− χ′′(30K). This reduction indicates a possible three dimensionality of
the resonance signal, similar to what has been reported by Pratt et al. [70]. However,
this intensity reduction could also be a result of the different energy transfers at which
both cuts were performed. In order to make a conclusive statement, spin resonance
intensities for zone center and zone boundary reflections need to be obtained at identical
excitation energies. As already explained, with the specific experimental set up this was
not possible. Consequently the small number of accessible reflections and the coupling
of the (0, 0, L)-value of the spectrum to the energy transfers do not allow a conclusive
statement on a possible three dimensionality of the resonance signal in this compound.
Regarding the proposed dispersion of the mode, again no unambiguous conclusions can
be drawn. From the cuts at 9 meV for L=2 and at 9.2 meV for L=3 it is obvious that the
zone center reflection shows no signs of the spin resonance anymore as peak intensities
for both temperatures are identical, whereas the (1, 0, 2) reflection at 9 meV χ′′(Q,ω)
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Figure 5.5: Q-dependence of χ′′(Q, ω) for temperatures 6 K (black dots) and 20 K (red dots)
obtained by constant energy cuts at energies between 4 and 9 meV. The cuts were performed
at energy transfers corresponding to integer L-values of magnetic zone center (L=3) and zone
boundary (L=2, 4) reflections and were corrected for non-magnetic background contributions.
The left column of figures illustrates the energy evolution of the spin resonance at magnetic
zone boundary reflections (L=even). Whereas the right column illustrates the evolution for
zone center reflections (L=odd). Black and red solid lines are fits with Gaussian peak functions
and are used as guides to the eye.
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still shows a sizeable enhancement. This result with consideration of the results by
Pratt et al. [70] indicate that a similar dispersion of the mode is also present in this
sample. However, the presented results alone do not allow an unambiguous conclusion,
and in order to completely clarify this topic further experiments will be necessary, best
using a three-axis spectrometer as this type of instrument is much better suited for this
type of experiment.

5.3.2 Linear Spin Wave Model Analysis of Magnetic Excitations

As the previous section was solely focused on the very low energy part of the excitation
spectrum, this following part of the data discussion will focus on the complete magnetic
excitation spectrum, which was accessible during the experiments. Figure 5.6 shows a
collection of constant energy slices through the excitation spectrum at QAFM=(1, 0, L).
The magnetic excitations appear in these 2D slices as the elliptical spot located at the
(1, 0, L) positions. The strong intensity present in some slices located around Qh=1.5
[r.l.u.] is caused by non magnetic background, most likely from the sample holder, as
the illustrated scans have not been corrected for background contributions3.

For low energies, the magnetic excitations exhibit an elliptic Qh − Qk-distribution
with the extended direction along Qk. This in-plane anisotropy of the spin excitations
has also been observed in parent compounds of various 122 materials. Reportedly,
CaFe2As2 [60, 208] and SrFe2As2 [56] both exhibit a similar elliptical in-plane distribu-
tion of the magnetic excitations. For these compounds, however, the elliptical shaped
signal develops into a elliptical ring like feature with increasing energy, exactly what one
would expect for constant energy slices through a local moment spin wave excitation
cone. In contrast to this elliptical ring like shape, the spin excitations in underdoped
Ba(Fe1−xCox)2As2 develop into two distinct peaks split along the Qk-direction with
increasing energies, obvious from fig. 5.7. This effect of a splitting into two peaks seems
a special feature of the Ba(Fe1−xCox)2As2 materials, as it has also been reported for
undoped [54], underdoped [209] as well as for optimal doped [74] Ba(Fe1−xCox)2As2
compositions, but not for any other 122-materials. One way to interpret this splitting
into two distinct peaks is in terms of two counter propagating modes with distinct
propagation vectors. This interpretation supports a mostly itinerant description
of the magnetic excitations in the Ba(Fe1−xCox)2As2 materials. Another approach
has been made by Harriger et al. [54] who proposed strong damping effects along
the crystallographic a-axis, to be responsible for the suppression of intensities along

3Due to the sudden ending to the experiments, caused by the devastating earthquake striking Japan on
the 11th March 2011, it was not possible to perform an empty-can-measurement and consequently
the shown data are not corrected for background contributions. The background correction was
done by correcting the 1D constant energy cuts shown in figures 5.9 to 5.12 separately, similar to
how it was performed in the previous discussion of the spin gap and spin resonance.
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Figure 5.6: 2D Qh−Qk maps of χ′′(Q, ω). The constant energy slices through the spectrum
of spin excitations with propagation vector QAFM= (1, 0, L) were performed at energy trans-
fers corresponding to magnetic zone center (L=odd) and zone boundary (L=even) reflections.
The left column of figures illustrates the energy evolution of the magnetic excitations for tem-
perature T=6 K, the middle column for T=20 K and the right column corresponds to T=80
K. Descending figures correspond to neutron energy Ei : 11 meV, 11 meV, 24 meV, 24 meV
and energy transfers : 4.5 meV, 6.5 meV, 9 meV, 13.6 meV.
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Figure 5.7: 2D Qh − Qk maps of χ′′(Q, ω). The constant energy slices through the spec-
trum of spin excitations with propagation vector QAFM= (1, 0, L) were performed at energy
transfers corresponding to magnetic zone center (L=odd) and zone boundary (L=even) reflec-
tions. The left column of figures illustrates the energy evolution of the magnetic excitations
for temperature T=6 K, the middle column for T=20 K and the right column corresponds to
T=80 K. Descending figures correspond to neutron energy Ei : 94 meV and energy transfers :
43 meV, 52 meV, 60 meV, 67 meV.
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the H-direction and which transform the ring like feature into the two peaks. This
approach obviously promotes a more localized nature of the spin wave excitations in
the Ba(Fe1−xCox)2As2 materials.

In addition to this qualitative discussion of the spin excitation spectrum, the spin
wave excitations of the Fe-SDW order have been analyzed in terms of a linear spin
wave model. For this quantitative part of the analysis, data from five different incident
energies have been used, 11 meV, 15 meV, 24 meV, 42 meV and 94 meV. This provided
a coverage of excitation energies from 4 meV to 70 meV. Within this energy range, 1D
constant energy cuts through the spectrum have been performed, along both in-plane
directions, longitudinal and transverse, and for several different excitation energies. The
energy integration for each cut was carefully chosen, so that each cut would represent
a (1, 0, L) reflection with an integer L-value, for both zone center (L=odd) and zone
boundary (L=even) reflections. This way, a total number of close to thirty cuts were
collected and used for the fitting of the spin wave model simultaneously.

For the fitting process the tobyfit [210] program was used, a software tool developed
at the ISIS neutron facility for simulations and least square fitting of single crystal data
obtained via time-of-flight neutron scattering experiments. In tobyfit Monte Carlo meth-
ods are used to convolute user defined scattering functions with instrumental resolution
effects and perform the least square fitting to the obtained data. Multiple one dimen-
sional (1D) constant energy and constant Q cuts can be included into the fitting process
and will be treated simultaneously.

Figure 5.8: Spin configuration of the
static long range magnetic order present in
undoped 122-materials. Illustrated is the in-
plane configuration depicted in tetragonal
symmetry. Red dots embody the Fe-ions
with spins oriented along the in-plane di-
agonal of the tetragonal unit cell. Further
defined are the exchange coupling constants
Jik, the way they were used in the spin wave
analysis using a local moment Heisenberg
Hamiltonian.

Prior to this study it has been shown for several undoped 122 materials [40, 54–56,
62, 208] that a linear spin wave model based on a local moment Heisenberg Hamiltonian
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indeed provides a reasonable description of the spin wave excitation spectrum, regardless
of the fact that a strictly local moment approach most likely is not the correct description
of magnetism in the Fe-based materials. This previous success was the reason why for
the current study a similar linear spin wave model based on the following local moment
Heisenberg Hamiltonian [62] was used.

H = J1a
∑

<jk>a

Sj · Sk + J1b
∑

<jk>b

Sj · Sk + J2
∑

<jk>ab

Sj · Sk (5.4)

+ Jc
∑

<jk>c

Sj · Sk +
∑
j

{
Kc(S

2
z ) + Kab(S

2
y − S2

x)j

}
(5.5)

Here, the first four summations consider contributions by nearest and next nearest neigh-
bor pairs, where each pair is counted just once. The Jik are the in plane and out of plane
exchange parameters and define the local moment interactions as illustrated in figure
5.8. The fifth summation accounts for contributions by Kab and Kc, the in plane and
out of plane anisotropy constants, which consider possible gaps in the excitation spec-
trum due to single ion anisotropy effects. Diagonalization of equation (5.4) leads to two
non-degenerate spin wave branches with the following dispersion:

~ω1,2(Q) =
√
A2

Q − (C±DQ)2 (5.6)

with

AQ = 2S

{
J1b

[
cos

(
Q · b
2

)
− 1

]
+ J1a + 2J2 + Jc

}
+ S(3Kab +Kc)

C = S(Kab −Kc) (5.7)

DQ = 2S

{
J1acos

(
Q · a
2

)
+ 2J2cos

(
Q · a
2

)
cos

(
Q · b
2

)
+ Jccos(Q · c)

}

With the neutron scattering cross section

d2σ

dΩdEf

=
kf
ki

(
γr0
2

)2

g2f 2(Q)exp(−2W )×
∑
αβ

(δαβ − Q̂αQ̂β)S
αβ(Q, ω), (5.8)

and

• (γr0
2
)2 = 72.8 mb [62]

• g is the g-factor for iron. Here g=2 was assumed for a spin-only magnetic moment
with a quenched orbital component. This usually is a reasonable assumption for
transition metal elements.
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• f(Q) represents the form factor of iron [211].

• exp(-2W) is the Debye-Waller factor. The Debye Waller factor was assumed to
be equal 1. This was done since the mean displacement of the atoms was not
known and because the correction of the Debye Waller factor would not affect the
outcome of the fitting process.

• Q̂α is the α component of a unit vector parallel to the scattering vector Q

• Sαβ(Q, ω) depicts the scattering function describing the αβ spin correlations,

the scattering function for magnon creation, or the neutron energy loss side of the
spectrum, reads as,

Syy(Q, ω) = Seff
AQ − C −DQ

~ω1(Q)
{n(ω) + 1}δ[ω − ω1(Q)]

Szz(Q, ω) = Seff
AQ + C −DQ

~ω2(Q)
{n(ω) + 1}δ[ω − ω2(Q)]

(5.9)

where Seff is the effective spin and n(ω) the boson occupation number. With a quanti-
zation axis of the spin wave along the x-axis and the fact that only the transverse spin
correlations (in this case yy and zz) contribute to the linear spin wave cross section, only
Syy(Q, ω) and Szz(Q, ω) are obtained. To account for the finite lifetime of the excita-
tion, the delta function in equation (5.9) was replaced by a damped simple harmonic
oscillator (DSHO)

Syy(Q, ω) = Seff
AQ − C −DQ

~ω1(Q)

ω

1− e−ω/kBT
× 4Γω(Q)/π[

ω2 − ω2
1(Q)

]2
+ 4
[
Γω
]2

Szz(Q, ω) = Seff
AQ + C −DQ

~ω2(Q)

ω

1− e−ω/kBT
× 4Γω(Q)/π[

ω2 − ω2
2(Q)

]2
+ 4
[
Γω
]2 (5.10)

Figures 5.9 to 5.12 show a collection of 1D constant energy cuts, which were used for
the fitting of the spin wave model, with the solid lines representing the best fits of the
linear spin wave model.

During the fitting process the following parameters were free for variation: the in-plane
exchange parameters J1a, J1b and J2, the out of plane parameter Jc, the scale factor Seff

and the damping factor Γ, which accounts for the finite lifetime of the excitations.
Due to the incomplete data set, which was limited to excitations below 70 meV, it

was not possible to reach the region of the excitation spectrum where models with high
in plane anisotropy and models with just very little in plane anisotropy, like the models
used in earlier work [62, 208], become distinguishable. As illustrated in figure 2.6 in
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the introduction part, the difference between models with high anisotropy and models
with little anisotropy only starts to show for high energies around 100 meV [55], whereas
for lower energies both models describe almost identical dispersions. As a consequence,
during the fitting process it was not possible to free all exchange parameters simultane-
ously. Instead the in plane exchange parameters J1a, J1b and J2 had to be linked to each
other in certain ratios with just one parameter free for the fitting. The best fit to the
data was achieved by linking the exchange parameters in a highly anisotropic way, very
similar to the published values for BaFe2As2 [54], J2 = 0.4 · J1a and J1b = −0.2 · J1a.
This of course means that the data analysis does not allow an unambiguous statement
on the degree of anisotropy of the in plane exchange coupling for the underdoped com-
pound. The achieved results indeed suggest an anisotropy very similar to the parent
compound, but in order to be able to address the anisotropy in the underdoped com-
pound independently, a complete spectrum, including energies as high as 200 meV is
required.

Since the obtained data is lacking any direct information of the spin wave dispersion
along the (1, 0, L)-direction, a result of the fixed sample position with the c-axis par-
allel to the incident neutron beam, the out of plane exchange parameter Jc had to be
determined by considering the difference in peak intensities between zone center and
zone boundary reflections. For strong antiferromagnetic correlations in c-direction, and
a consequently large Jc, one expects a prominent intensity modulation along (1, 0, L)-
direction, with strong intensity located at zone center reflections (1, 0, L=odd) and
weaker intensity at zone boundary reflections with L=even. On the other side, for very
little out of plane correlations the excitations are more or less two dimensional, Jc is
small, and only very small intensity variation between zone center and zone boundary
reflection occurs.

For data that has been normalized to a vanadium standard and hence is expressed
in absolute units, Seff represents the effective spin that contributes to the spin wave
intensity. However, because of the sudden ending to the experiment4 it was not possible
to perform such a normalization of the obtained data sets, Seff was used as a simple
scale factor, which accounted for peak intensities but had no further physical meaning.
The damping factor Γ, which accounts for the finite lifetime of the excitations, was
handled in a way, where it was free for variation through out the fitting process, but it
was considered energy independent and the same value was used to model excitations of
different energies. This makes sense, as according to Diallo et al. [208] Γ remains more
or less constant for energies up to 80 meV.

Caused by single ion anisotropy effects5, spin wave spectra of the parent 122-pnictides

4Due to the sudden ending to the experiments, caused by the devastating earthquake striking Japan
on the 11th March 2011, it was not possible to complete the experiment as planned.

5For the long wavelength and low energy limit Q → 0 and ω → 0, the spin wave excitation corresponds
to a complete rotation of the spin direction of the long range order. However, existing anisotropies,
for example hard and easy axes of magnetization, prevent the system from this rotation and thus
can cause a gap in the excitation spectrum. In the spin wave model the possible gap caused by this
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all exhibit clear fully opened gaps with gap energies as high as 7-10 meV [54, 55, 60, 62–
64, 208]. Just recently Qureshi et al. [65] even proposed that the spin wave excitation
spectrum of undoped BaFe2As2 in fact possesses two gaps, for in-plane and out-of-plane
excitations and that the observed gap energies of 7-10 meV correspond only to the lower
gap. In the current study, however, it was not possible to detect this anisotropy gap
in the spin wave spectrum, aside from the gap opening below 4 meV, which has been
discussed in the previous section. This absence of a gap in the spin wave spectrum is
most likely due to the presence of the mentioned 2D short ranged spin fluctuations, which
due to their similar propagation vector contribute to the low energy part of the spin wave
excitation spectrum. This most likely leads to the situation where the low energy part
of the spectrum is dominated by short range fluctuations which eventually fill up the
region of the spin wave gap and make it undetectable. As a result, an unambiguous
determination of the in-plane and out-of-plane anisotropy constants Kab and Kc during
the fitting process was not possible, but instead the parameters were kept fixed at zero,
since they had no impact on the fitting results, in either way. Consequently, the situation
of the anisotropy gap of the spin wave spectrum could not be solved, aside from the gap
observed below 4 meV.

Table 5.1 illustrates the results obtained from the spin wave fitting. It further contains
results reported for several parent 122-compounds, obtained via spin wave model anal-
yses of ToF neutron scattering data. Comparing the values for the in-plane exchange
parameters J1a, J1b and J2 to the values reported for the parent compounds CaFe2As2
[55], SrFe2As2 [56] and BaFe2As2 [54], it is obvious that the in-plane coupling in the
underdoped compound is slightly weakened, reduced to about 75% of the interaction
strength present in the parent compounds. This clearly indicates a weakened exchange
coupling of the spin wave excitations in the underdoped compound. However, in a re-
cent publication by Liu et al. [58] it was proposed that the spin wave excitations of
the 122-pnictides in fact exhibit only very little doping dependence. The authors report
that it is possible to describe spin excitations for Ba(Fe0.95Ni0.05)2As2 by a linear spin
wave model using exchange parameters, previously obtained for spin waves in undoped
BaFe2As2. According to these results, the only region, where the excitation spectra of
doped and parent 122-compounds deviate, is for low energies below 100 meV. For higher
excitation energies the spectra show almost no doping dependence as well as almost no
temperature dependence. If this is indeed the case, so far no other group has reported
comparable results, then the reduction of the in-plane exchange coupling, observed in
the present study, very likely is caused by the data set, which is restricted to the low
energy part of the excitation spectrum. A complete excitation spectrum, with excitation
energies as high as 200 meV is required in order to address this issue.
The values for the exchange parameters obtained via the spin wave analysis, listed in

single ion anisotropy was taken into account by the two anisotropy parameters Kab and Kc for gaps
in the in-plane spectrum as well as the c-axis dispersion.
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Ba(Fe0.95Co0.05)2As2 T = 6 [K] T = 20 [K] T = 80 [K]
Seff 1.22 ± 0.06 meV 1.24 ± 0.06 meV 0.96 ± 0.06 meV
Γ 66.50 ± 1.68 meV 69.08 ± 2.37 meV 79.60 ± 3.28 meV
SJ1a 46.61 ± 4.58 meV 46.45 ± 4.76 meV 46.45 ± 0.00 meV
SJ1b -7.24 ± 0.92 meV -7.22 ± 1.00 meV -7.22 ± 0.00 meV
SJ2 10.71 ± 1.83 meV 10.67 ± 1.94 meV 10.67 ± 0.00 meV
SJc 1.43 ± 0.12 meV 2.62 ± 0.11 meV 2.37 ± 0.11 meV

BaFe2As2 [54] LowTemperature
Seff

Γ
SJ1a 59.20 ± 2.00 meV
SJ1b -9.20 ± 1.20 meV
SJ2 13.60 ± 1.00 meV
SJc 1.80 ± 0.30 meV

CaFe2As2 [55] T = 10 [K]
Seff 0.22 ± 0.06 meV
Γ
SJ1a 49.90 ± 9.90 meV
SJ1b -5.70 ± 4.50 meV
SJ2 18.90 ± 3.40 meV
SJc 5.30 ± 1.30 meV

SrFe2As2 [56] T = 6 [K]
Seff 0.30 ± 0.01 meV
Γ
SJ1a 30.80 ± 1.00 meV
SJ1b -5.00 ± 5.00 meV
SJ2 21.70 ± 0.40 meV
SJc 2.30 ± 0.10 meV

Table 5.1: Exchange parameters obtained via spin wave fitting of ToF neutron data. Values
for BaFe2As2 are taken from [54], for CaFe2As2 are taken from [55] and for SrFe2As2 are taken
from [56]

table 5.1, and the following equations (5.11)-(5.13) [48],

~va = aS
√

(2J2 + J1a)(2J2 + J1a + Jc) (5.11)
~vb = bS

√
(2J2 − J1b)(2J2 + J1a + Jc) (5.12)

~vc = cS
√

Jc(2J2 + J1a + Jc) (5.13)
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Ba(Fe0.95Co0.05)2As2 T = 6 [K] T = 20 [K] T = 80 [K]

~va 378 ± 33 meVÅ 380 ± 34 meVÅ 379 ± 34 meVÅ
~vb 245 ± 25 meVÅ 247 ± 25 meVÅ 246 ± 25 meVÅ
~vc 128 ± 8 meVÅ 175 ± 9 meVÅ 166 ± 8 meVÅ

BaFe2As2 [54] Low Temperature
~va 480 ± 16 meVÅ
~vb 312 ± 14 meVÅ
~vc 162 ± 14 meVÅ

CaFe2As2 [55] T = 10 [K]

~va 496 ± 55 meVÅ
~vb 312 ± 48 meVÅ
~vc 258 ± 41 meVÅ

SrFe2As2 [56] T = 6 [K]

~va 414 ± 6 meVÅ
~vb 335 ± 18 meVÅ
~vc 171 ± 4 meVÅ

Table 5.2: Spin wave velocities obtained via equations (5.11)-(5.13) and using the above
listed exchange parameters.

result in spin wave velocities, listed in table 5.1. Not surprisingly, the resulting values
for the underdoped compound are substantially reduced, compared to velocities present
in the parent compounds.

The spin wave analysis was performed for data obtained at all three tempera-
tures 6 K, 20 K and 80 K, corresponding to the three phases, superconducting,
magnetically ordered and paramagnetic. Comparing the exchange parameters for the
superconducting and the magnetic ordered phase (6 K and 20 K) one first result is that
the in plane exchange parameters, as well as the damping factor, for the two phases are
identical within the error bars. It is obvious that the coexistence of superconductivity
and long range order has, if at all, only small effects on the spin interactions. At least as
far as the present data allows, for the low energy range of the spectrum, no prominent
differences between both phases, above and below Tc, can be observed. The difference
in the excitation spectra for these two temperatures occurs in form of the spin gap and
spin resonance in the superconducting phase. But these two features are attributed
to the 2D short range spin fluctuations, which are not considered by the spin wave
model. The spin wave excitations of the long range SDW order, however, seem to be

91



5 ToF Neutron Scattering on Magnetic Excitations in Ba(Fe0.95Co0.05)2As2

mostly unaffected by the onset of superconductivity, and neither the in-plane exchange
interaction parameters Jij, Seff nor the lifetime of the spin wave excitations, expressed
by the damping factor Γ, show any effects. The only obviously effect seems to be a
strong reduction of interlayer correlations, as Jc is reduced to about 55% of the higher
temperature value. The reason for this drastic loss of inter-layer coupling is not entirely
clear, but it most likely results from the interference of signals originating from the
short ranged quasi 2D spin fluctuations and the three dimensional spin wave excitations.
As previously mentioned, the only access to the out-of-plane exchange coupling was
via peak intensity modulations of zone center and zone boundary reflections. In the
superconducting phase the 2D spin fluctuations are strongly modified and enhanced
compared to the normal state excitations, especially for the low energy region of the
spectrum. Due to this enhanced contribution of the two dimensional fluctuations to spin
wave excitation spectrum, the peak intensity modulation becomes less prominent, and
in the fitting process this results in a reduction of Jc. This effect of the 2D fluctuations
is even enhanced by the fact, that the excitation spectrum becomes independent of out
of plane interactions for energies above 16(2SJ2 + SJ1a)SJc

1/2 ≃ 51 meV [48], which
was determined using the exchange parameters for the 20 K ordered phase.

In the paramagnetic phase, the obtained results show strong similarities to previous
works on the paramagnetic phase of parent 122-compounds [54, 61]. The signal broadens
and decreases in intensity to about 75% compared to the ordered state. The decrease of
intensity was considered by fitting Seff and the in-plane broadening of the excitations
by fitting the damping parameter Γ, whereas the in-plane exchange parameters were
held fixed using the values obtained for the 20 K data. Only the out of plane parameter
Jc was free for fitting. Harriger et al. [54] report that for high energies the spin waves
in BaFe2As2 almost show no temperature dependence and that the strong in plane
anisotropy, observed in the ordered phase, also persists up to high temperatures, far
into the paramagnetic phase. They further report, that the broadened paramagnetic
excitations, observed in this study as well as for other compounds [61, 63]6, only occur
for the low energy range of the spectrum and are replaced by narrow spin wave excitations
for high energies and wave vectors close to magnetic Brillouin zone boundary. In order
to consider this, the in-plane exchange parameters were held fixed with only Jc, Seff

and Γ free for fitting. This lead to the above listed results. Aside from the already
mentioned intensity reduction and in-plane broadening of the paramagnetic excitations,
the c-axis exchange interactions are reduced about 10% compared to the ordered state.
The results for Jc, in this case, are believed to be more reliable than the one obtained
for the superconducting state, due to the reduced contribution by the short range 2D
spin excitations. The result for Jc shows that the difference in interlayer exchange
interactions between the ordered spin wave state and the paramagnetic state in this

6The drawback from these earlier works is that they only consider low energy excitations, covering a
similar energy range as in this study.
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compound is not very prominent and the inter-layer exchange coupling still seems to be
rather strong, even for a temperature of 80 K, which corresponds to 1.33 TN . These
out-of-plane correlations observed for the paramagnetic phase are very similar to what
is reported for undoped CaFe2As2 [61] but are contrary to reports for the paramagnetic
phase of BaFe2As2 [63] where no (0, 0, L)-modulation are observed.

The analysis with the spin wave model produced a Jc, which fits very well to published
results by other groups that performed a similar data analysis [54–56]. Nonetheless, it
should be mentioned here that different methods to determine Jc lead to much smaller
values. Deriving Jc from accurately determined anisotropy gap values [64, 212], or by
explicitly fitting the (0, 0, L)-dispersion obtained via three axis spectroscopy [40], leads
to interlayer coupling, about 10 times smaller compared to the results obtained via
the spin wave fitting to 3D ToF data7. This could mean that the method used here,
where Jc was determined considering intensity variations between constant energy cuts,
drastically overestimates the actual inter-layer exchange coupling. A solution for this
problem is to perform a time of flight experiment with an additional sample rotation, as
this rotation adds another spatial dimension to the obtained Q-energy dispersion data.

73D in this case regards the dimensionality of the obtained data set. A ToF experiment without sample
rotation leads to a 3D data set with information on two spatial dimensions and the energy transfer.
A sample rotation, adds information for another third spatial dimension, which leads to a 4D data
set, with information on the Q-energy dispersion along all three spatial directions.
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Figure 5.9: Collection of 1D constant energy cuts in Qk-direction through the spectrum
of magnetic excitations with propagation vector QAFM . The cuts were performed at energy
transfers corresponding to magnetic zone center (L=odd) and zone boundary (L=even) re-
flections. The illustrated data were obtained at three different temperatures 6 K (black) and
20 K (red) and 80 K (magenta), representing three different phases in the phase diagram of
Ba(Fe0.95Co0.05)2As2. The solid lines illustrate the best fits of the local moment spin wave
model to the data. Dashed lines illustrate non magnetic background contributions.
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Figure 5.10: Collection of 1D constant energy cuts in Qk-direction through the spectrum
of magnetic excitations with propagation vector QAFM . The cuts were performed at energy
transfers corresponding to magnetic zone center (L=odd) and zone boundary (L=even) re-
flections. The illustrated data were obtained at three different temperatures 6 K (black) and
20 K (red) and 80 K (magenta), representing three different phases in the phase diagram of
Ba(Fe0.95Co0.05)2As2. The solid lines illustrate the best fits of the local moment spin wave
model to the data. Dashed lines illustrate non magnetic background contributions.
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Figure 5.11: Collection of 1D constant energy cuts in Qh-direction through the spectrum
of magnetic excitations with propagation vector QAFM . The cuts were performed at energy
transfers corresponding to magnetic zone center (L=odd) and zone boundary (L=even) re-
flections. The illustrated data were obtained at three different temperatures 6 K (black) and
20 K (red) and 80 K (magenta), representing three different phases in the phase diagram of
Ba(Fe0.95Co0.05)2As2. The solid lines illustrate the best fits of the local moment spin wave
model to the data. Dashed lines illustrate non magnetic background contributions.
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Figure 5.12: Collection of 1D constant energy cuts in Qh-direction through the spectrum
of magnetic excitations with propagation vector QAFM . The cuts were performed at energy
transfers corresponding to magnetic zone center (L=odd) and zone boundary (L=even) re-
flections. The illustrated data were obtained at three different temperatures 6 K (black) and
20 K (red) and 80 K (magenta), representing three different phases in the phase diagram of
Ba(Fe0.95Co0.05)2As2. The solid lines illustrate the best fits of the local moment spin wave
model to the data. Dashed lines illustrate non magnetic background contributions.
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5.3.3 Spin Diffusion Model Analysis of Magnetic Excitations in
the Paramagnetic State

In addition to the spin wave model, which is based on a local moment approach to
magnetism, the paramagnetic spin excitations additionally have been analyzed in terms
of a model based on spin diffusion effects. The idea of spin diffusion originates from
the approach of the quasielastic response for nearly antiferromagnetic Fermi liquids
[213, 214]. Here the term quasielastic means that the magnetic response of the system
is diffuse and incoherent, where χ′′(Q, ω)/ω is peaked for ω = 0 and thus no restoring
force for spin waves exists and consequently no spin wave excitations occur. Based on the
Fermi liquid theory the propagation of spin excitations in such materials works via spin
diffusion. The mechanism of spin diffusion can be understood as the following, at high
temperatures and with the absence of any long range magnetic order, the propagation
of spin excitations is accomplished via an exchange process, where a given unit of spin
is transferred from one atom to another. By a succession of these transfers from nearest
neighbor atoms to nearest neighbor atoms the unit of spin, that started at the origin,
arrives at distance r at a probability, given by the theory of atomic diffusion. This
spin diffusion model is valid for high temperatures, small propagation vectors and small
energies, and in principle considers the propagation of spin excitations in the extreme
opposite conditions to the spin wave model. As the spin wave model describes the
propagation of spin excitations for the case of strong spin interactions, the diffusion
model on the other hand regards a situation with almost no existing interactions, as it
would be expected for a perfect paramagnet.

Most likely the model best suitable to explain the propagation of the paramagnetic
spin excitations of the underdoped compound is located somewhere between these two
extreme situations.

The quantitative number, the spin diffusion model, in the form it has been used in
this study, can provide, is the in-plane coherence length ξ of the spin interactions. Prior
to this study, the spin diffusion model has been applied on spin excitations in the para-
magnetic phase of various Fe-based materials, such as undoped CaFe2As2 [61] as well as
optimal doped Ba(Fe1−xCox)2As2 [72, 74]. The success of those studies indicates that the
model should also be applicable to the paramagnetic spin excitations in the underdoped
compound. Equation (5.14) shows a version of the Q-dependence of χ′′(Q, ω) expressed
in terms of the spin diffusion model, as it was reported by Diallo et al. in their work on
the paramagnetic phase of CaFe2As2 [61],

χ′′(Q, ω) =
~ωγχ0

(~ω)2 + γ2
{
(q2 + ηqxqy)a2 +

(
ξT
a

)−2

+ ηc[1 + cos(πL)]
}2 (5.14)

where

• a is the in plane lattice constant with a = b = 5.5 Å
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• ξT defines the magnetic correlation length in Å for temperature T

• χ0 is the bulk magnetic susceptibility

• γ labels the damping factor which originates from the decay of the spin fluctuations
into single particle excitations

• η is dimensionless and represents the in plane anisotropy of the spin correlations

• ηc = Jcχ0 represents the strength of the out of plane exchange coupling

• q is the propagation of the excitation mode, defined as Q = QAFM + q

With the introduction of two new temperature dependent parameters XT = χ0(
ξT
a
)2 and

ΓT = γ( a
ξT
)2 and the premise to neglect inter plane exchange coupling Jc = 08 equation

(5.14) turns into

χ′′(Q2D
AFM + q, ω) =

~ωΓTXT

(~ω)2 + Γ2
T

{
1 + q2ξ2T±

}2 (5.15)

where ξT+ = ξT (1 +
η
2
)1/2 is the temperature dependent correlation length for the lon-

gitudinal direction (parallel to (H, 0, 0)) and ξT− = ξT (1 − η
2
)1/2 in transverse direction

(parallel to (0, K, 0)). The temperature dependence of ξ is not so important for this
study, since only data for one temperature will be considered.

Figures 5.15 and 5.16 show a collection of constant energy cuts, the same cuts
previously used for the analysis using the spin wave model9 (fig. 5.11), both in
longitudinal and transverse direction. The solid red lines represent best fits of the
diffusion model, as defined in equation (5.15).

During the fitting process the damping factor ΓT was held fixed to the value ΓT =
11.3 ± 1.5 meV. This value was determined previously by fitting equation (5.14) to an
energy cut, as illustrated in figure 5.13. For the fitting to the energy cut ΓT provides
the slope and ηc considers the antiferromagnetic out-of-plane correlations resulting in
the peaks at 10 meV, 30 meV and 50 meV.

In order to fit χ′′(Q2D
AFM + q, ω) as expressed in (5.15) to the constant energy cuts,

illustrated in figures 5.15 and 5.16 , two parameters were free for variation, XT and ξT± .
XT was used as a scale factor to handle peak intensities and since the data was not
expressed in terms of absolute units the parameter had no further physical meaning.

8This may or may not be a reasonable assumption, depending on whether the values for Jc obtained
via the spin wave model overestimate, as it is suggested by the results in ref. [40, 64, 212], or describe
the interlayer exchange interactions in a reasonable way.

9The only difference is that for the present analysis the cuts were corrected for background contri-
butions. For the spin wave analysis this was not necessary, because background contributions were
considered during the fitting process.
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Figure 5.13: Constant Q-cut
at the following Qh − Qk inte-
gration window Qh = 0.9 − 1.1
[r.l.u.] ; Qk = −0.5 − 0.5
[r.l.u.]. The displayed data was
obtained for a temperature of 80
K and an incident neutron en-
ergy of 94 meV. The black solid
line is the best fit of the diffusion
model in the version of equation
(5.14).
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The second parameter ξT± , was used to modify the peak widths of χ′′(Q2D
AFM + q, ω)

and thus represents the longitudinal and transverse correlation lengths of the spin
interactions. All 20 longitudinal and transverse constant energy cuts, that were used for
the data analysis, were treated separately and the resulting values for ξT± subsequently
were used to determine an average value for the in-plane correlation lengths. During
the process a correction for possible resolution effects was performed. A detailed
description of this resolution correction can be found in the corresponding section in
the appendix. The corrected and uncorrected results for both the in plane correlation

length as well as the anisotropy parameter η = 2
ξ2T+

−ξ2T−
ξ2T+

+ξ2T−
[61], which accounts for the

anisotropy in correlation length between the two directions, longitudinal and transverse,
are illustrated in table 5.3.

Even though, the mechanism of spin diffusion in principle should only be appli-
cable for low excitation energies, the diffusion model provides a reasonable description
of the paramagnetic excitations up to almost 70 meV. Especially for the longitudinal
direction, where χ′′(Q, ω) is not split into two peaks but remains peaked at the anti-
ferromagnetic wave-vector QAFM , good fits are achieved over the whole energy range.
In transverse direction the diffusion model works very well for energies below 40 meV.
For energies higher than 40 meV the splitting into two peaks starts to become more
evident, which creates some difficulties for the diffusion model. The spectral features
described by the diffusion model are a single peak located at the antiferromagnetic
wave vector QAFM, with its half width half maximum (HWHM) depending on energy
in the following way q2HWHM = ξ−2(

√
2 + (~ω)2Γ−2 − 1) [74]. So, in order to consider

the splitting into two peaks located in transverse direction, the model needed a slight
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diffusion model ξT+ [Å] ξT− [Å] η
uncorrected 11.5 ± 0.4 6.2 ± 0.3 1.10 ± 0.06
corrected 12.5 ± 0.4 6.6 ± 0.3 1.13 ± 0.07
CaFe2As2 8.0 ± 1.0 6.0 ± 1.5 0.55 ± 0.36

Ba(Fe0.926Co0.074)2As2 10.4 ± 0.6 5.9 ± 0.4 1.03 ± 0.10

double mode model ξT+ [Å] ξT− [Å] η c [meVÅ]
uncorrected 11.5 ± 0.4 6.9 ± 0.5 0.94 ± 0.05
corrected 12.5 ± 0.4 7.6 ± 0.5 0.92 ± 0.06 260 ± 10

Ba(Fe0.926Co0.074)2As2 10.4 ± 0.6 7.4 ± 0.4 0.66 ± 0.10 245 ± 10

Table 5.3: In-plane correlation lengths and anisotropy parameter obtained via fitting the
diffusion and double mode model to 1D constant energy cuts, in longitudinal and transverse
direction. All values are listed before and after correction for instrumental resolution effects.
Data for CaFe2As2 is taken from [61]. Correlation length values for Ba(Fe0.926Co0.074)2As2 are
taken from [74].

modification, which was done by incorporating an additional term that would provide
the splitting of χ′′(Q2D

AFM + q, ω). The new slightly modified double mode model reads
as (5.16) [74].

χ′′(Q2D
AFM + q, ω) =

~ωΓTXT

(~ω)2 + Γ2
T

{
1 + q2ξ2T−

−
(~ω)2ξ2T−

c2

}2 (5.16)

Since the difference between the diffusion model and the new double mode model is
just the incorporation of an additional term, all parameters remain unchanged in their
contribution including a constant damping factor ΓT = 11.3 meV and the two fitting
parameters ξT− and XT . However, ξT− now only considers the transverse correlation
length, since the double mode model was only applied to the transverse cuts, where the
splitting occurs. Consequently, the only new parameter in (5.16) is c, the excitation
mode velocity, which represents the slope of the dispersion of the two modes in Q-energy
space and thus in (5.16) takes into account the increasing separation of the two peaks
with increasing energy. In this model the splitting of the single peak into two peaks
located in transverse direction is considered to be arising from two counter-propagating
modes and not caused by a spin wave cone combined with anisotropic damping effects
as discussed in the previous section. Prior to the fitting with (5.16), the value for c was
determined by performing a linear fit to the Q-energy-dispersion in the left panel of
figure 5.14. This dispersion illustrates the evolution of the peak positions in Q-space
for increasing excitation energies (black data points). The corresponding peak positions
were determined by fitting a set of two Voigt profile peaks to the transverse constant
energy cuts. The resulting peak positions of the two Voigt profiles were then averaged
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in order to eliminate anisotropic positions of the peaks in reference to QAFM , and the
averaged peak position then represented the final q-value shown in the figure.

Voigt profiles were used for the fitting in order to be able to consider any possible
resolution related broadening effects, which could affect the exact determination of
the real peak positions. A Voigt profile is created via a convolution of a Gaussian
peak function and a Lorentzian peak function. By considering the Gaussian part as
representing the Q-dependence of the resolution function and the Lorentzian part to
be representing the intrinsic signal from the sample, the Voigt profile can be thought
of as an intrinsic signal convoluted by the instrumental resolution function. During
the fitting process the width of the Gaussian was held fixed at a value, previously
determined as the instrumental resolution for that particular energy transfer, and only
the peak intensity and position, as well as the intensity, width and position of the
Lorentzian part was free for variation.

The linear fit of ~ω = cq to the dispersion of the two modes produced a mode
velocity of c = 260 ± 10 meVÅ, which fits very well to the value for the transverse
spin wave velocity ~vb = 246.20 ± 25.34 meVÅ (listed in table 5.2), obtained in
course of the spin wave model analysis. Knowing the correct value for c from the
dispersion fit, had the advantage that it could be treated as a constant in the double
mode model. This made it possible to treat each constant energy cut separately,
because the energy dependent splitting of the peaks was already taken into account
by c. Figure 5.15 shows a collection of transverse cuts including the best fits of the
double mode model, which are visualized by the black solid lines. The fits show, that
the double mode model indeed represents the data a little better than the diffusion
model, due to the consideration of the peak splitting. However, admittedly the poor
statistics of the 80 K data in principle allow both model descriptions, at least for the
energy range that is covered by the present data. For higher energies the splitting
is expected to become more prominent, which would clearly rule out the diffusion model.

The analysis with the double mode model produced a transverse correlation length of
ξT− = 6.9 ± 0.5 [Å] and after resolution correction ξT− = 7.6 ± 0.5 [Å]. The resulting
value for ξT− is slightly larger than the value obtained via the diffusion model, which is
easy to understand when recalling that the correlation length is inversely proportional
to the peak width and the double mode model uses two peaks to describe the data, in
contrast to the single peak from the diffusion model.
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Figure 5.14: a) Energy dispersion of the peak positions in Qk-direction of the two propagat-
ing modes. Just one branch is shown, which was obtained through averaging and symmetrizing
both branches. The peak positions were determined through Voigt profile fits to Qk constant
energy cuts. The solid green line is a linear fit to the data, of ~ω = c · q. The solid purple line
represents the peak positions determined via the double mode model q = ±c−1

√
ω2 − c2ξ2T−

.
b) Energy evolution of the longitudinal (Qh-direction) HWHM of the spin excitations located
at (1, 0, L). The HWHM were determined through Voigt profile fits and correspond to the
Lorentzian HWHM of the Voigt profiles. The red solid line displays the HWHM predicted by
the diffusion model q2HWHM = ξ−2(

√
2 + (~ω)2Γ−2 − 1).

The left part of figure 5.14 illustrates the ω-dependence of the peak positions,
determined via the Voigt profile fits to the transverse cuts. The solid green line
is the linear fit which was performed to receive the mode velocity c, whereas the
solid purple line represents the peak positions, obtained via the double mode model
q = ±c−1(ω2 − c2ξ2T−

)1/2 [74]. Here ωd = cξ−1
T−

= 33 meV represents the lowest energy
from which the splitting of the modes should become visible. In reality, however,
a splitting is not visible below 50 meV. This effect must be ascribed to the poor
experimental statistics of the data. The right part of figure 5.14 shows the energy
evolution of the half width half maxima (HWHM) of the peaks in longitudinal direction,
which were obtained via the diffusion model q2HWHM = ξ−2((2 + (~ω)2Γ−2)1/2 − 1) (red
solid line) and the HWHM of the Lorentzian parts of the Voigt profiles (black data
points), which were fit to the longitudinal cuts in a way, where again the Gaussian part
represented the resolution contribution and only the Lorentzian part was varied. Thus,
the resulting Lorentzian HWHM are corrected for resolution effects and consequently
can be compared to the resolution corrected HWHM from the diffusion model. Obvious
from the figures, both models work really well in describing the excitation spectrum
over the whole accessible energy range, regardless of the fact that in principle they

103



5 ToF Neutron Scattering on Magnetic Excitations in Ba(Fe0.95Co0.05)2As2

should only be applicable for low energies.

From table 5.3 it is obvious that the results obtained in this study fit very well to re-
sults reported in literature, from previous work on other 122 compounds. Especially the
transverse correlation lengths ξT− are almost identical within the error bars for all three
compositions. Whereas, the longitudinal correlation length ξT+ is slightly larger than
the reported values and fits much better to ξT+ of optimal doped Ba(Fe0.926Co0.074)2As2
than of undoped CaFe2As2. This is not surprising as for CaFe2As2 the spin excitations
have a more elliptical shape in the (H, K, 0) reciprocal-plane, in contrast to the two split
peaks that are present in the two Ba(Fe1−xCox)2As2 compounds. This elliptical shape
results in a much shorter longitudinal correlation length in CaFe2As2, just about 2/3 of
the value obtained in this analysis, and consequently a much smaller in plane anisotropy,
just about half the value for this compound. As discussed in the previous section, it is
not entirely clear if this splitting into two peaks observed for the Ba-compounds is due
to two counter-propagating modes or due to anisotropic damping as proposed for the
parent compound BaFe2As2 [54, 74]. This anisotropic damping was not considered in the
data treatment, but it would lead to a probably much shorter correlation length in H-
direction, and most likely result in similar correlation lengths as observed in CaFe2As2.
Nonetheless, aside from these small differences in longitudinal correlation length be-
tween the three compounds, the paramagnetic excitations in these three 122-materials,
undoped, underdoped and optimal doped, still show tremendous similarities regarding
the in-plane correlation lengths. Especially the transverse correlation length which is
almost identical for all three materials, indicates that the paramagnetic excitations most
likely are very similar for 122-materials regardless of their doping levels, just as proposed
by Diallo et al. [61].
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Figure 5.15: Collection of constant energy cuts in transverse Qk-direction. The cuts were per-
formed at energy transfers corresponding to integer L-values of magnetic zone center (L=odd)
and zone boundary (L=even) reflections and temperature 80 K. All data shown here are cor-
rected for the thermal population factor and thus represent the wave-vector dependence of the
dynamical magnetic susceptibility χ′′(Q, ω) of the system. The solid black line illustrates the
best fit to the data of the double mode model, whereas the solid red line illustrates best fits of
the diffusion model.

105



5 ToF Neutron Scattering on Magnetic Excitations in Ba(Fe0.95Co0.05)2As2

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
-1

0

1

2

3

4
 T=80 K energy transfer 67 meV
 diffusion model

''(
Q

, 
) [

ar
b.

 u
ni

ts
]

H (H, 0, 7) [r.l.u.]

 

 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
-1

0

1

2

3

4
 T=80 K energy transfer 60 meV
 diffusion model

''(
Q

, 
) [

ar
b.

 u
ni

ts
]

H (H, 0, 6) [r.l.u.]

 

 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
-1

0

1

2

3

4

H (H, 0, 5) [r.l.u.]

 T=80 K energy transfer 52 meV
 diffusion model

''(
Q

, 
) [

ar
b.

 u
ni

ts
]

 

 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
-1

0

1

2

3

4

''(
Q

, 
) [

ar
b.

 u
ni

ts
]

H (H, 0, 3) [r.l.u.]

 T=80 K energy transfer 33 meV
 diffusion model

 

 

0.4 0.6 0.8 1.0 1.2 1.4

-2

0

2

4

6

8

10

12

''(
Q

, 
) [

ar
b.

 u
ni

ts
]

 

 H (H, 0, 3) [r.l.u.]

 T=80 K energy transfer 13.5 meV
 diffusion model

0.4 0.6 0.8 1.0 1.2 1.4
-2

-1

0

1

2

3

4

5

6

7
 

 

''(
Q

, 
) [

ar
b.

 u
ni

ts
]

H (H, 0, 2) [r.l.u.]

 T=80 K energy transfer 4.5 meV
 diffusion model

Figure 5.16: Collection of constant energy cuts in longitudinal Qh-direction. The cuts
were performed at energy transfers corresponding to integer L-values of magnetic zone center
(L=odd) and zone boundary (L=even) reflections and temperature 80 K. All data shown here
were corrected for the thermal population factor and thus represent the wave-vector dependence
of the dynamical magnetic susceptibility χ′′(Q, ω) of the system. The solid red line illustrates
the best fit to the data of the diffusion model.
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diffusion model ξT+ [Å] ξT− [Å]
6 K 14.4 ± 0.5 7.8 ± 0.3
20 K 14.6 ± 0.4 7.6 ± 0.4
80 K 12.5 ± 0.4 6.6 ± 0.5

double mode model ξT− [Å]
6 K 8.9 ± 0.5
20 K 8.4 ± 0.4
80 K 7.6 ± 0.4

Table 5.4: In-plane correlation lengths obtained via analysis of the spin diffusion and double
mode model of 1D constant energy cuts, in longitudinal and transverse direction, as described
in the previous section. All values are corrected for instrumental resolution effects.

5.3.4 Spin Diffusion Model Analysis of Magnetic Excitations in
the Magnetically Ordered State

In addition to the paramagnetic phase the spin diffusion model was further applied to the
magnetically ordered phase at 6 K and 20 K. As figures 5.17-5.20 clearly illustrate, both
spin diffusion models give a reasonable description of the data even for the magnetically
ordered phases. The correlation lengths obtained through the analysis with the diffusion
and double mode model are just marginally different from the correlation lengths of
the paramagnetic phase and also fit very well to the values reported in literature for
other 122-materials, as listed in table 5.3. The slightly larger correlation lengths in the
ordered phase is exactly what one would expect for an ordered phase, which in fact is
characterized by the longer correlation length in comparison to the paramagnetic phase.
Thus the interesting result is not the difference in correlation length between the ordered
and paramagnetic phase, as this was expected, but rather the smallness of the difference
of correlation lengths in the ordered and paramagnetic phase. However, this again fits
very well to the results of the spin wave analysis, which already showed that the difference
between excitations of the ordered and paramagnetic phase seemingly is rather small in
this 5% underdoped material. This circumstance also fits very well to the fact that
the spin diffusion model provides this good description of spin excitations in the ordered
phase. As discussed in the previous section, the model of spin diffusion in principle is only
suitable to describe magnetic excitations for high temperatures and consequently weak
magnetic correlations and not for magnetically ordered phases with strong long range
spin correlations. Thus, the fact that the model indeed is applicable to the excitations
of the ordered state in this material indicates that the spin excitations in underdoped
Ba(Fe0.95Co0.05)2As2 are not entirely spin wave like with strong spin interactions, as is the
case for the undoped materials. Instead, the excitations show greater similarity to the
short range spin fluctuations of the optimally doped materials, where spin excitations can
be described by the spin diffusion model, even for low temperatures. However, since the
spin wave model also provides a reasonable description of the data the spin excitations in
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this underdoped composition need to be interpreted as to be of intermediate character,
located between the spin wave like excitations of the undoped materials and the short
range spin fluctuations of the optimally doped materials.
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Figure 5.17: Collection of constant energy cuts in transverse Qk-direction. The cuts were per-
formed at energy transfers corresponding to integer L-values of magnetic zone center (L=odd)
and zone boundary (L=even) reflections and temperature 6 K. All data shown here are cor-
rected for the thermal population factor and thus represent the wave-vector dependence of the
dynamical magnetic susceptibility χ′′(Q, ω) of the system. The solid black line illustrates the
best fit to the data of the double mode model, whereas the solid red line illustrates best fits of
the diffusion model.
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Figure 5.18: Collection of constant energy cuts in longitudinal Qh-direction. The cuts
were performed at energy transfers corresponding to integer L-values of magnetic zone center
(L=odd) and zone boundary (L=even) reflections and temperature 6 K. All data shown here
were corrected for the thermal population factor and thus represent the wave-vector dependence
of the dynamical magnetic susceptibility χ′′(Q, ω) of the system. The solid red line illustrates
the best fit to the data of the diffusion model.
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Figure 5.19: Collection of constant energy cuts in transverse Qk-direction. The cuts were per-
formed at energy transfers corresponding to integer L-values of magnetic zone center (L=odd)
and zone boundary (L=even) reflections and temperature 20 K. All data shown here are cor-
rected for the thermal population factor and thus represent the wave-vector dependence of the
dynamical magnetic susceptibility χ′′(Q, ω) of the system. The solid black line illustrates the
best fit to the data of the double mode model, whereas the solid red line illustrates best fits of
the diffusion model.
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Figure 5.20: Collection of constant energy cuts in longitudinal Qh-direction. The cuts
were performed at energy transfers corresponding to integer L-values of magnetic zone center
(L=odd) and zone boundary (L=even) reflections and temperature 20 K. All data shown here
were corrected for the thermal population factor and thus represent the wave-vector dependence
of the dynamical magnetic susceptibility χ′′(Q, ω) of the system. The solid red line illustrates
the best fit to the data of the diffusion model.
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5.4 Conclusion

The spin excitation spectrum of under doped Ba(Fe0.95Co0.05)2As2 has been investigated
by means of time-of-flight inelastic neutron scattering. Data has been obtained for the
three phases of the phase diagram, the phase of coexistence of long range magnetic
order and superconductivity, the phase of static magnetic order and the tetragonal
paramagnetic phase.

It was possible to detect and thus confirm the existence of the spin gap in the excitation
spectrum at Q=(1, 0, L), for energies below 4 meV. The observation of the spin gap
can be ascribed to the suppression of particle hole excitations with energies less than
2∆ in the superconducting state, due to the opening of the superconducting gap. Thus,
the occurrence of the spin gap in the underdoped compound fits very well the current
understanding of spin excitations in the superconducting state.

In addition to the spin gap, a spin resonance signal has been observed. Unfortunately,
the obtained results do not allow an unambiguous conclusion regarding the dimensional-
ity of the spin resonance signal. The obtained results indicate a three dimensional spin
resonance signal, as it is proposed for a 4% Co-doped Ba-122 composition [70]. In order
to give a conclusive statement regarding this issue, however, further measurements
are necessary. Similar needs to be said concerning a possible dispersion of the spin
resonance signal. The results indicate a possible dispersion, similar to what has been
reported for Ba(Fe0.96Co0.04)2As2 [70]. However, due to the set up of the experiment,
which was not suited for this kind of investigation, a dispersing resonance cannot
unambiguously be confirmed from the current results.

The linear spin wave model based on a local moment Heisenberg Hamiltonian, applied
to the excitation spectrum, proved to provide a reasonable description of the spin excita-
tions for energies up to 70 meV, and for all three temperatures. The best fit to the data
was achieved for a strong anisotropy of the in-plane exchange parameters, similar to what
has been reported for parent BaFe2As2 [54]. The resulting in-plane coupling strengths
are about 30% reduced to the ones reported for the undoped material. From the present
data, however, it is not completely clear, if this reduced exchange coupling is a property
of the underdoped compound or if it is resulting from the analysis of a data set, which
was limited to low energy excitations. Recent neutron scattering results [58] suggest
that a doping effect on the spin excitations in 122-compounds is restricted to excitation
energies below 100 meV, whereas high energy excitations do not show a strong doping ef-
fect. If this is indeed the case, the present study most likely underestimates the strength
of the in-plane exchange coupling of under doped Ba(Fe0.95Co0.05)2As2 materials. An
extended investigation including the high energy part of the excitation spectrum of the
underdoped compound would bring clarity to this point. Note that, due to devastating
earthquake taking place in Japan on 11th March 2013 and which put a sudden end to
our experiments it was not possible to complete the experiments as originally planned.
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This plan included an investigation of the high energy part of the excitation spectrum
with energies up to 200 meV. As a result, the obtained data miss the high energy part
of the spectrum, and this resulted in a lot of uncertainties about the validity of the ob-
tained results. As it became obvious through the course of this study and as it has been
shown previously by other spin wave investigations on the Fe-based materials [54–56], in
order to receive conclusive results on the spin wave excitation spectrum the high energy
excitations need to be taken into account, as they provide valuable information which
need to be included into the discussion.

The spin wave analysis performed for both magnetically ordered phases, above and
below Tc, did not reveal any effect of superconductivity on the spin wave excitations of
the SDW-order. Regardless of the effect superconductivity has on the static magnetic
order, which shows in a reduction of elastic magnetic intensity for temperatures below Tc,
the exchange coupling seemingly remains unaffected by the onset of superconductivity.

In addition to the magnetically ordered phase, the linear spin wave model further
gave a reasonable description of magnetic excitations in the paramagnetic phase.

Additional to the spin wave model, two models, based on spin diffusion theory, were
applied to the magnetic excitations in the paramagnetic phase. Both models are very
well-suited to describe the paramagnetic excitations over the whole energy range that was
accessible. By analyzing the data with the two spin diffusion models, it was possible to
determine the in-plane correlation lengths of the paramagnetic spin excitations, in longi-
tudinal and transverse direction. In reference to correlation lengths previously reported
on parent and optimal doped 122-materials, the results for the transverse correlation
length match the reported values very well. The results indicate that the in-plane prop-
erties of the low energy paramagnetic excitations of the 122-materials seem to be rather
universal, and independent of the doping level. This of course does not include the in-
plane splitting of the excitations observed in Ba-122 compounds, which still needs some
clarification, whether it occurs due to anisotropic damping of the elliptical excitations
or if it is caused by additional effects exclusively occurring in the Ba-122 compounds.

Interestingly the spin diffusion models were not only in good agreement with the mag-
netic excitations in the paramagnetic phase, but also lead to a reasonable description of
the magnetic excitations in the magnetically ordered phase. This is very similar to the
spin wave model, which was applicable to the ordered as well as the paramagnetic phase.
The fact that both phases, ordered and paramagnetic phase, can be described by the
same model shows that low energy excitations in both phases behave very similar, even
if the long range static order is obviously broken down in the paramagnetic phase. The
fact that both models, spin wave and spin diffusion, which in principle describe funda-
mentally different mechanisms, describe the magnetic excitations equally well, indicates
that magnetic excitations in the 5% underdoped system are removed from the completely
spin wave like character, of the undoped material. Instead, the magnetic excitations in
Ba(Fe0.95Co0.05)2As2 are similar to the optimally doped materials, without magnetic or-
der, where magnetic excitations can be described by the spin diffusion model, even at
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low temperatures. However, the fact that the spin wave model still provides a reason-
able description, shows that the spin wave character of the excitations is not completely
suppressed yet. Instead, the spin excitations in underdoped Ba(Fe0.95Co0.05)2As2 need
to be viewed as located between the spin wave like excitations of the Fe-SDW of the
undoped materials and the short range fluctuations of the optimally doped materials,
with contributions by both types of excitations.
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6 ToF Neutron Scattering on
Magnetic Excitations in
CaFe1−xCoxAsF with x=0 ;
x=0.12

Parts of this chapter have been used to create a publication.
Price et al., Journal of the Physical Society of Japan 82, 104716 (2013)
Note that all work considering this chapter, including execution of the experiment and
data treatment as well as the writing and the creation of all figures was done by myself.

6.1 Introduction

6.1.1 Motivation

As it has been discussed in chapter 2, the occurrence of the spin resonance is believed
to be intimately correlated to the symmetry of the superconducting gap function. Due
to this circumstance an investigation of the resonance signal can provide some deeper
insight to the pairing mechanism of the Cooper pairs. So aside from the microscopic
nature of the spin resonance signal, which is still unknown and an interesting subject
of study in itself but might not contribute much to a better understanding of supercon-
ductivity, a search for the resonance signal in new materials is important, because of its
direct information on the present pairing symmetry. And this indeed is an important
aspect regarding the pairing mechanism. To this date, the s± gap symmetry with a sign
change of the gap function between hole and electron Fermi surfaces is believed to be
the gap symmetry present in the Fe-based materials. It is further discussed that this
gap symmetry might be a universal feature and therefore might occur in all Fe-based
superconductors. As a consequence, a spin resonance signal should also be observable
in all Fe-based materials. Superconducting CaFe1−xCoxAsF was one material for which
a spin resonance signal had not been observed yet, and so one focus of this study is to
search for a possible resonance signal in this material.

Aside from the superconducting materials, gaining a complete understanding of the
magnetic properties of the undoped Fe-based materials is another very important task
in order to eventually understand a possible interplay between magnetism and super-
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Figure 6.1: (left panel) Phase diagrams of Ba(Fe1−xCox)2As2 and LaFeAsO1−xFx compared
to CaFe1−xCoxAsF. (right panel) Crystal structure plus structure of long range SDW-order of
Fe-moments for CaFeAsF, obtained via neutron powder diffraction Left panel is taken from
[45], whereas right panel is taken from [215].

conductivity. In this context ToF neutron scattering investigations on the spin wave
excitations of the SDW order and the collective excitations of the paramagnetic phase
in undoped CaFeAsF have been performed. The results from this study will be discussed
in the current chapter.

6.1.2 Basic Properties of CaFe1−xCoxAsF Materials

CaFeAsF drew attention as the parent compound of superconducting materials with
the highest Tc of all Fe-based superconducting materials, with Ca0.4Pr0.6FeAsF Tc=52.8
K and Ca0.4Nd0.6FeAsF with Tc=57.4 K [216]. Aside from replacing Ca by rare earth
elements Nd and Pr, doping the Fe-site by either cobalt, nickel or rhodium is another
method to suppress the long range Fe-SDW wave order and induce superconductivity to
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the system [45, 217–219]. Compared to the Nd- and Pr-doped compounds, the super-
conducting transition temperatures for the latter compounds are not very impressive,
with Tc=16 K (Rh-doped), Tc=12 K (Ni-doped) and Tc=22 K (Co-doped). However,
sample availability is a factor which makes these compounds attractive again.

CaFeAsF, the parent compound of the CaFe1−xCoxAsF series, crystallizes in the
ZrCuSiAs-type structure with tetragonal space group P4/nmm and room-temperature
lattice constants of a=3.879 Å and c=8.593 Å [218]. According to Xiao et al. [215] the
crystal structure undergoes a structural phase transition at TS=134 K, where it lowers
its symmetry from tetragonal to orthorhombic with space group Cmme. At 114 K the
structural phase transition is followed by a magnetic phase transition due to the onset
of the antiferromagnetic Fe-SDW order with propagation vector QAFM=(0.5, 0.5, 0.5),
in tetragonal notation [215]. The in-plane components of the propagation vector QAFM

match the nesting vector Qnesting=(0.5, 0.5, 0) which connects parts of the Fermi surface,
the electron and hole cylinders located at the M and Γ points, respectively [220]. Just as
in other Fe-based superconductors, the predominant conduction bands in the proximity
of the Fermi-energy are the Fe 3d bands. This suggests that also in CaFe1−xCoxAsF
superconductivity is predominantly carried by the Fe-charge-carriers and thus very likely
is restricted to the Fe-As layers.

In the antiferromagnetic phase below 114 K CaFeAsF exhibits an ordered Fe-moment
of ∼ 0.49 µB, which is substantially larger than ordered moments observed for other
1111-materials like the ∼ 0.35 µB observed for LaFeAsO and ∼ 0.25 µB for NdFeAsO,
but smaller than for the Sr-equivalent SrFeAsF (∼ 0.58 µB) [221].

With introduction of additional electrons to the system, in this case by doping cobalt
into the Fe-layers, the antiferromagnetic Fe-SDW gets suppressed and the system be-
comes superconducting for a cobalt concentration of ∼ 5%. For this Co-doping con-
centration, the materials exhibit a coexistence of superconductivity and static antifer-
romagnetic order, similar to what has been observed in other 1111- and 122-materials
[36–44]. The nature of this seeming coexistence in CaFe1−xCoxAsF is not entirely clear,
as contrary results are reported, with proposed phase coexistence [45] as well as phase
separation [44] as possible explanations. In addition to the weakened magnetic order,
the structural tetragonal-orthorhombic phase-transition is pushed down to 75 K [45]
with an orthorhombic distortion of P=(a-b)/(a+b)=0.17 %, which is about half the
orthorhombic distortion present in the undoped compound. This might suggest a rela-
tion between ordered moment size and orthorhombic distortion, with stronger distortion
leading to a larger ordered moment [215]. Aside from the reduced orthorhombicity due
to doping, the crystal seems very robust against introduction of cobalt, as the lattice
constants of the room temperature tetragonal phase only vary very little with increasing
Co-concentration, with a=3.88 Å and c=8.578 Å for 5% Co-content and a=3.88 Å
and c=8.552 Å for 10% Co-doping [218]. For ∼ 10% of introduced Co the system is
optimally doped and reaches its maximum Tc = 22K [218], and the Fe-SDW as well as
the orthorhombic distortion are completely suppressed.
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6.2 Experimental Details

Two powder samples of CaFe1−xCoxAsF with doping levels of x = 0 and x = 0.12
have been investigated by means of the time-of-flight (ToF) inelastic neutron scattering
technique. The powder samples of approximately 9 g each were synthesized by a solid
state reaction method as described in [217] by collaborating scientist Dr. S. Matsuishi
of the Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta-cho,
Midori-ku, Yokohama 226-8503, Japan. The samples were very clean with impurity
phases (CaFe2 and Fe2O3) for both samples of less than 1%. The time-of-flight neutron
scattering experiments were performed on the Fermi chopper spectrometer MERLIN at
the ISIS facility [222], where data sets were obtained for two different incident neutron
energies of Ei = 20 meV and Ei = 50 meV and sample temperatures between 6 K and 270
K. The intensity spectra were azimuthally averaged (powder average) and transformed
into a Q-energy grid, as illustrated in figures 6.2. The intensity shown in these plots
can be expressed in terms of the double differential cross section d2σ/dΩfdEf multiplied
by the factor (ki/kf ) which relates the cross section to the dynamical structure factor
S(Q, ω) = (ki/kf )d

2σ/dΩfdEf , with ki and kf representing the initial and final neutron
wave vector k, E the neutron energy Ω the solid angle of the scattering process. To
place the obtained data sets on an absolute intensity scale with units mb sr−1 meV−1

f.u.−1 (sr=steradian, f.u.=formula unit) the spectra were normalized to intensities ob-
tained from a vanadium standard sample. To transform the obtained data sets into the
imaginary part of the magnetic susceptibility χ′′(Q,ω) the data were corrected for non
magnetic background contributions as well as the thermal population factor. For the
visualization of the 2D S(Q, ω) maps and the creation of the 1D constant energy and
constant Q cuts the MSLICE program [207] was used. Throughout this chapter, the
tetragonal notation will be used which leads to the antiferromagnetic wave vector of the
magnetic excitations of the Fe-moments to read as QAFM=(0.5, 0.5, 0).
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6.3 Results and Discussion

6.3.1 Magnetic Excitations in Superconducting CaFe0.88Co0.12AsF

Figure 6.2: Q-energy spectra of the dynamical structure factor S(Q,ω) of superconducting
CaFe0.88Co0.12AsF, obtained via time-of-flight neutron scattering measurements with 20 meV
incident neutron energy and sample temperatures of 6 K (left) and 30 K (right) on a 9 g
powder sample. The rod like signal located at Q ∼ 1.2−1 is identified as arising from short
range antiferromagnetic spin fluctuations with propagation vector QAFM=(0.5, 0.5, 0).

Left and right panels in figure 6.2 are two dimensional (2D) color plots of the dynamical
structure factor S(Q, ω) as a function of the absolute value of the momentum trans-
fer Q = |Q|1 and energy transfer ω at 6 K (left panel) and 30 K (right panel), below
and above Tc=22 K of optimally doped CaFe0.88Co0.12AsF. The feature of interest is
the vertical, rod like signal rising from a momentum transfer Q ∼ 1.2 Å−1. The recip-
rocal lattice position of this Q value roughly corresponds to (0.5, 0.5, 0)T in tetragonal
notation, which can be associated with the nesting vector, connecting the hole and elec-
tron Fermi surfaces [220], and with the propagation vector QAFM=(0.5, 0.5, 0) of the
quasi two dimensional spin fluctuations present in all Fe-based superconducting mate-
rials. The fact that the signal appears at a slightly higher Q value compared to the
theoretical value for the antiferromagnetic AFM wave vector Q(0.5,0.5,0) = 1.10 Å−1, can

1Because of the arbitrary distribution of grains in the polycrystalline sample, the obtained intensity is
distributed on rings, the so called Debye Scherrer rings, where the radius of these rings is correlated
to the absolute value of the scattering vector. This eliminates all directional information and leaves
the absolute value of Q the only spatial information of the measurement.
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be attributed to powder averaging and resolution effects of the raw data, as both effects
can cause the signal to appear at slightly higher Q values. For a more detailed expla-
nation of this effect please turn to reference [223]. In regard of this deviation from the
theoretical value due to averaging effects Q ∼ 1.2 Å−1 is identified as the AFM wave
vector QAFM=(0.5, 0.5, 0).

The observed signal noticeably decreases in intensity and broadens significantly with
increasing temperature, but still persists up to 150 K (Fig. 6.3 (f)), which was the
highest temperature at which data has been collected for this compound. In addition
to the temperature dependence, the signal exhibits a strong momentum-dependence, as
intensities for higher indexed reflections are strongly suppressed. The obtained data
shows no indications of the second Brillouin zone excitation mode, which would be ex-
pected to occur at a Q position close to 2.5 Å−12, corresponding to the reciprocal lattice
position (0.5, 1.5, 0). The observed temperature- and Q-dependencies are strong indi-
cations that the observed signal indeed is of magnetic nature. Since phonon scattering
intensities show an exact opposite temperature and wave vector dependence, where in-
creasing temperature and increasing momentum transfers lead to increasing scattering
intensities, the signal at Q ∼ 1.2 Å−1 is identified as arising from short range quasi two
dimensional AFM spin fluctuations with a propagation vector QAFM=(0.5, 0.5, 0), a
prominent feature of the superconducting state of all iron based superconductors.

In the superconducting state, the excitation spectrum (Fig. 6.2 left) consists of two
prominent peaks, with enhanced spectral weight between 5-10 meV plus for the region
around 12 meV. For energies below 5 meV the spectrum is gapped, as magnetic intensity
is strongly suppressed, almost to the non-magnetic background level. As will be shown
later, the gap below 5 meV and the peak between 5-9 meV correspond to the spin gap and
spin resonance, two prominent features of spin excitation spectra in the superconducting
state of Fe-based materials. In contrast, the region of enhanced excitations around 12
meV very likely is not due to an enhancement of magnetic excitations but rather origi-
nates from an overlap of the very steep almost vertically dispersing magnetic excitations
and a very flat almost horizontally dispersing phonon branch, which is still visible in the
color maps in figure 6.2 and even stronger visible in the maps of the undoped CaFeAsF
composition in figure 6.8. A similar effect has also been reported for undoped LaFeAsF
where a horizontal dispersing phonon branch close to 12 meV interferes with the verti-
cal dispersion of magnetic excitations [224]. This phonon theory is further supported
by phonon density of states (DOS) measurements by Mittal et al. on CaFeAs1−xCoxF,
using the very same sample which was used for the experiments presented in this study.
There the authors report a very weakly dispersing phonon branch located around 12
meV [225], which is capable to explain the observed enhancement in intensity in figure
6.2.

In the normal state the spin excitation spectrum (Fig. 6.2 right) is not that obviously

2Unfortunately, this Q-range of the spectrum is highly dominated by strong phonon intensities, which
make it impossible to detect the weak magnetic signal.
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separated from the non-magnetic background, as strong non magnetic intensity occurs
for momentum transfers between 1.5 and 2 Å−1. Nonetheless, the rod-like excitation
spectrum can still be identified. In contrast to the superconducting phase, however, the
spectrum is not gapped for energies below 5 meV and the enhanced excitations around
7 meV and 12 meV are still present but not as prominent as for the superconducting state.

To investigate the low energy spin excitations located at Q ∼ 1.2 Å−1 in more detail
several constant energy and constant Q cuts of the 2D S(Q,ω) intensity maps were
performed, for both temperatures 6 and 30 K. The constant energy cuts were performed
with two different energy integration windows, 4-5 meV and 5-9 meV, respectively. The
4-5 meV window covers the spin gap region, whereas the 5-9 meV window covers the
spin resonance region of the spectrum. To extract the purely magnetic signal from non-
magnetic background contributions, a quadratic background function was subtracted
from the constant energy cuts, taking into account the Q2-dependence of phonon scat-
tering intensities (Fig. 6.3 (a)). After background subtraction, the data were corrected
for the thermal population factor and according to the fluctuation-dissipation-theorem
[159, 160] S(Q,ω) was transformed into χ′′(Q,ω), the imaginary part of the magnetic
susceptibility,

χ′′(Q,ω) = S(Q,ω) · (1− exp(− ~ω
kBT

)).

This provides the possibility to compare peak intensities obtained for different temper-
atures, as the correction for the thermal population factor corrects the intensities for all
trivial temperature effects.

Figure 6.3 (c) illustrates the wave vector dependence of the dynamical susceptibility
for temperatures of 6 (black dots) and 30 K (red dots) and the energy range 5-9 meV.
For both temperatures χ′′(Q,ω) exhibits a clean but slightly asymmetric peak centered
around momentum transfer QAFM = 1.2 Å−1. The slight tail both peaks feature on the
higher Q side, is an indication of the two dimensionality of the present spin fluctuations
and is caused by powder averaging effects of the quasi two dimensional magnetic excita-
tions3 [223]. The peak in the superconducting state is marginally narrower compared to

3Two dimensionality means in this case, that the present magnetic Fe-Fe correlations are restricted
to within the Fe-As layers and are lacking correlations between neighboring Fe-As layers along the
crystallographic c-direction. As a consequence, the scattering intensities of (H, K, L)-reflections
exhibit no L-dependence, aside from the gradually decrease of intensity for higher Q-values due
to the magnetic form-factor decay. A Debye-Scherrer ring originating from scattering from such
two-dimensional excitation exhibits one clear inner edge towards small Q and one diffuse outer edge
towards larger Q. This means, the ring has a hard limit for the smallest Q that contributes to
that ring, corresponding to the e.g. Q=(H, K, 0)-reflection. Smaller Q values do not correspond
to the same reflection anymore and thus do not contribute to that particular ring. However, since
the signal is two dimensional, lets say without correlation along L, larger Qs with Q=(H, K, L̸=0)
all still contribute to the same (H, K, 0) reflection. The intensity for these (H, K, L̸=0) decays
gradually with increasing L, because of the form-factor decay, and so the intensity collected in the
outer edge of (H, K, 0) ring fades away with increasing Q but does not show a clear edge. Thus, for
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Figure 6.3: (a) Q dependence of S(Q,ω) for temperatures 6 K (black dots) and 30 K (red open
symbols) obtained via constant energy cuts at the energy window 5-9 meV. Black and red solid
lines in (a) are quadratic background-functions, to estimate the nonmagnetic background. (b)
and (c) Q dependence of the imaginary part of the magnetic susceptibility χ′′(Q,ω), obtained
by correcting background subtracted constant energy cuts for the thermal population factor, for
the energy integration windows 4-5 meV and 5-9 meV, respectively. (d) Temperature difference
plot of the dynamic susceptibility χ′′(6K) − χ′′(30K) for energies 5-9 meV. (e) Temperature
dependence of the peak intensity for temperatures between 6 and 30 K. Solid red line is a
power law fit. (f) Q dependence of normal state spin fluctuations at 150 K and excitation
energies 8-15 meV. Black and red solid lines in (b), (c), (d) and (f) are fits with asymmetric
peak functions and serve as guides to the eye.
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the 30 K data which could indicate a possible gain in correlation length of the interact-
ing spins when the system becomes superconducting. However, this could also be a side
effect from the enhancement of magnetic spectral weight. The most striking difference
between the superconducting and normal state data, however, is the clear enhancement
of the peak intensity in the superconducting state as the spectral weight for this energy
region (5-9 meV) is enhanced by a factor of 1.5 relative to the normal state value. This
relative enhancement is comparable to the factor observed in other pnictide systems
for the intensity enhancement of the resonance signal [71, 128, 226]. Since the data
is corrected for the thermal population factor this enhancement cannot be explained
by temperature effects but must be ascribed to the onset of superconductivity, which
clearly relates the additional spectral weight to the resonance signal. This is further
supported by the typical temperature dependence of the signal, as illustrated in figure
6.3 (e). As expected for the resonance signal, the enhanced spectral weight gradually
decreases with temperature and follows an order parameter like temperature dependence
as it disappears close to Tc. As a result, this enhancement in spectral weight for 6 K is
identified as the spin resonance appearing at the AFM wave-vector QAFM=(0.5, 0.5, 0)
and excitation energies between 5 and 9 meV.

Below 5 meV the excitation spectrum in the superconducting state exhibits a
prominent reduction of spectral weight as χ′′(Q,ω) is reduced in intensity below the
level of the normal state excitations at 30 K, (Fig. 6.3 (b)). Even though magnetic
intensities are not completely suppressed for this energy region, a sizeable shift of
spectral weight from the gap region to the resonance region of the spectrum is obvious.
In contrast to this, the spectrum of the normal state excitations at 30 K does not show
such a transfer of spectral weight and peak intensities for the energy windows 4-5 meV
and 5-9 meV are almost identical. Consequently, the strong suppression of χ′′(Q,ω) at
6 K and 4-5 meV is interpreted as indications of the opening of the spin gap, even if
magnetic intensities are not suppressed completely. Due to strong contributions by the
elastic line, it was not possible to investigate the excitation spectrum below 4 meV in
order to clarify whether magnetic intensities are suppressed even further and whether
the gap opens completely for energies below 4 meV. Nevertheless, the suppression of
χ′′(Q,ω) for T=6 K and energy transfer between 4-5 meV is a clear indication for the
existence of the spin gap.

To illustrate the energy dependence of the spin excitation spectrum in a more de-
tailed way, constant Q cuts of the 2D S(Q,ω) maps (Fig. 6.4 (a), (b)) were performed
with an energy step size of 1 meV and two integration ranges of Q=1.1-1.3 Å−1 and
Q=1.5-1.6Å−1, respectively. These Q values were chosen as Q=1.1-1.3Å−1 covers QAFM ,
whereas Q=1.5-1.6Å−1 is used to consider the non magnetic background since, especially

a Q cut through one ring, the cut exhibits an asymmetrical peak shape, with the high Q-side of the
peak showing this tail like shape which decays slower than the small-Q side of the peak. For further
reading on this topic [223].
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Figure 6.4: Constant Q cuts at temperatures 6 K (a) and 30 K (b) for Q ranges 1.1-1.3 Å−1

(black dots), covering the magnetic signal, and 1.5-1.6 Å−1 (red open symbols) representing
the non magnetic background. The intensities of the background cuts were corrected to the
level for a Q position of Q=1.2 Å−1 by using the Q quadratic background function applied
for the constant energy cuts. (c) Energy dependence of the imaginary part of the magnetic
susceptibility χ′′(Q,ω) for 6 K (black dots) and 30 K (red open symbols). χ′′(Q,ω) was obtained
by subtracting background cuts from the signal cuts and correcting the data for the thermal
population factor. (d) The χ′′(6 K) − χ′′(30 K) temperature difference spectrum. Black and
red solid lines in (c) and (d) are fits with asymmetric peak functions and serve as guides to the
eye.

in the 30 K plots, strong phonon intensities appear for momentum transfers between 1.4
and 2 Å−1, and which need to be considered as eventual inadvertent contributions to
the magnetic signal. The intensities of the background cuts were then corrected to a
level corresponding to a Q value of Q=1.2 Å−1 by taking advantage of the quadratic
background-function, which was previously used to determine the non magnetic back-
ground for the constant energy cuts.

Figures 6.4 (a) and (b) show the constant Q cuts for the Q range of the spin fluctu-
ations Q=1.1-1.3 Å−1 (black dots) and the Q range Q=1.5-1.6 Å−1 (red dots), which is
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considered as the non magnetic background. Both signal cuts show a peak for energies
close to 8 meV, however, both background cuts also show similar but slightly weaker
peaks around this energy. This again indicates possible contributions by a phonon
branch at ∼ 8 meV, similar to what has been observed for the 12 meV peak. Unfortu-
nately, if this is indeed the case the background contribution coincides with the magnetic
resonance that has been identified for energies between 5-9 meV. However, the phonon
density of states measurements [225] did not show any flat dispersing phonon branches
at this particular energy that could explain the peak at 8 meV. As a consequence, back-
ground scattering effects caused by the instrument or sample holder are more likely the
reason for this intensity. Since it was not possible to perform empty can correction
measurements, instrumental background contributions cannot be excluded. However,
a subtraction of the background cuts from the signal cuts, eliminates all background
contributions and leaves the corrected intensities to contain solely contributions from
spin excitations. Figure 6.4 (c) shows the energy dependence of χ′′(Q,ω) which was
obtained by subtracting the background cuts from the signal cuts and correcting the
background corrected data for the thermal population factor. The temperature differ-
ence spectrum between 6 and 30 K in figure 6.4 (d), attained by subtracting the 30 K
χ′′(Q,ω) from the 6 K χ′′(Q,ω), clearly shows the presence of the spin resonance mode
as an enhancement of spectral weight for energies between 5-10 meV. Fitting the dif-
ference plot with an asymmetric peak function produced a characteristic energy of the
mode of ER ∼ (7±0.3) meV. For these measurements the instrument was operated with
an incident neutron energy of 20 meV and a Fermi chopper frequency of 150 Hz. This
resulted in an energy resolution of approximately 0.4 meV at 7 meV energy transfer. As
a consequence, the energy extend of the resonance signal of almost 4 meV FWHM is
not resolution limited and thus must be interpreted as an intrinsic characteristic of the
resonance signal. Further, this fairly broad extend in energy of the resonance signal is
not related to the characteristics of one particular sample but is more likely a universal
characteristic of the resonance signal in Fe-based materials as it has been observed for
a variety of different Fe-based compositions [40, 70–73, 76, 126, 128, 130, 132, 133]. Be-
low 5 meV the spin gap opens and spectral weight is transferred from this part of the
excitation spectrum into the resonance. However from the Q dependence of χ′′(Q,ω)
it cannot be said unambiguously whether the gap opens completely at lower energies
or lower temperatures. The resonance energy of ER ∼ (7 ± 0.3) meV scales to Tc with
ER ∼ (3.7±0.2) kBTc which is slightly below the average scaling relation for the Fe-based
superconductors ER ∼ (4.6 ± 0.4) kBTc, [36, 72, 133, 139, 140], and the ER ∼ 5.1 kBTc

[76, 133], determined for LaFeAsO1−xFx, the only other 1111-composition for which a
resonance signal has been reported.

As discussed in the beginning of this chapter and in chapter 2 the occurrence of the
resonance signal can be related to the symmetry of the superconducting gap function
∆k, an important characteristic of every superconducting system. To understand the
occurrence of particle hole excitations in the superconducting state, the so called BCS
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coherence factor needs to be considered [142–144]

χ′′(Q, ω) ∝ 1

2

(
1− ϵkϵk+Q +∆k∆k+Q

EkEk+Q

)
(6.1)

with the quasiparticle dispersion ϵk and the quasiparticle energy Ek =
√
ϵ2k +∆2

k. In
the superconducting state the majority of the electrons are paired in Cooper pairs.
As a result, for energies below 2∆, as these are not sufficient to break up the Cooper
pairs, particle hole excitations are suppressed and the excitation spectrum is gapped
for this energy region. In contrast, for energies above 2∆ Cooper pairs are broken
and particle hole excitations occur, regardless of the symmetry of the gap function.
However, for energies close to 2∆ this symmetry of the superconducting gap function
has a great influence on the response of the system. As obvious from equation 6.1, for
this particular energy region and a gap function ∆k which changes sign ∆k = −∆k+Q

for different parts of the Fermi surface connected by Q, the BCS coherence factor
becomes maximal. This maximal BCS coherence factor corresponds to a resonance like
enhancement of particle hole excitations χ′′(Q, ω) which then results in a resonance
signal in the neutron scattering spectra. In contrast to this, for a different symmetry
of the gap function, without any change of the sign, the BCS coherence factor is zero
around 2∆ and no resonance signal is created. With this obvious relation between the
resonance signal and the symmetry of the superconducting gap function, the observation
of the resonance signal provides valuable information on this crucial parameter of the
superconducting state. As a result, in case of the Fe-based materials the observation of
the spin resonance signal at QAFM is interpreted as an indication for a superconducting
gap function with sign change between the electron and hole Fermi surfaces, just as is
the case for the proposed s± symmetry. In consideration of this, the resonance signal
in CaFe0.88Co0.12AsF, which is only present at the AFM wave vector QAFM , allows for
a similar interpretation and therefore also suggests a gap function with sign change
between the hole and electron Fermi surfaces, which supports the s± gap symmetry.

6.3.2 Spin Wave Excitations in Parent CaFeAsF

In addition to the just discussed superconducting sample, the spin excitation spectrum
of undoped CaFeAsF has been investigated via ToF neutron scattering. Similar to
the previous sample, the prominent feature again is a rod-like signal occurring at this
particular Q value Q ∼ 1.2 Å−1 earlier identified as the antiferromagnetic propagation
vector QAFM=(0.5, 0.5, 0). Because of the significant propagation vector as well as the
temperature and wave vector dependence, where high temperatures and high Q-values
strongly reduce the signal, the signal obviously is of magnetic origin and thus must be
arising from the spin wave excitations of the antiferromagnetic Fe-SDW order present
below the Néel temperature TN=114 K [215].
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Figure 6.5: (a) 2D S(Q, ω) map of CaFeAsF at 6 K, obtained with incident neutron energy
of 20 meV. (b) and (c) Q dependence of χ′′(Q,ω) of undoped CaFeAsF for the temperatures 6
K (black dots) and 96 K (red dots) obtained by performing constant energy cuts through the
spectrum with an energy integration of (b) 3-5 meV and (c) 5-9 meV. Black and red solid lines
are fits with asymmetric peak functions and are used as guides to the eye.

Identical to the superconducting compound, the observed signal rising from the AFM
wave vector has a rod like shape with narrow Q extent and an almost vertical dispersion
for the observed energy range. For temperatures below the Néel temperature and en-
ergies below 5 meV all magnetic scattering intensity is suppressed leaving a gap in the
spin wave excitation spectrum (Fig. 6.5 (a)). The opening of a gap in the low energy
region of spin wave excitation spectra can be related to single ion anisotropy effects. As
illustrated in Fig. 6.5 (b) and (c) this gap is fully opened for low temperatures but grad-
ually closes with increasing temperature until the long range order breaks down above
the Néel temperature. The 5 meV gap energy is slightly smaller than what is reported,
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between 7-10 meV for the 122-pnictides depending on the reference [59–63] as well as
the 11 meV reported for LaFeAsO [224], the only other spin wave study on a 1111-type
material, also performed on a powder sample. This much smaller gap energy indicates
a smaller single ion anisotropy in CaFeAsF even compared to other 1111-materials.

In contrast to the superconducting compound the signal in CaFeAsF exhibits no
indications of the peak at 7 meV, which further strengthens the point that this
peak is indeed the searched for resonance mode and is unlikely to be caused by
phonon contributions. However, the data show an even stronger contribution of the
phonon branch at 12 meV, most prominent in figure 6.8. Figure 6.6 (a) shows the
Q dependence of the magnetic susceptibility for the parent (red dots) and supercon-
ducting (black dots) compound at 6 K sample temperature. Both peaks are roughly
located at the same Q position. The difference in peak position of both peaks is
likely to be caused by the stronger asymmetric peak-shape of the superconducting
sample. This strong peak asymmetry is caused by the two dimensionality of the spin
fluctuations and on the other side the higher symmetry of the signal in the parent
compound shows the more three dimensional character of the spin wave excitations,
which is what is expected for spin wave excitations of the three dimensional static
Fe-SDW order. In addition to the more symmetric shape the parent compound
peak is also strikingly narrower than for the superconducting sample. This smaller
peak width results from the steeper dispersion and the longer correlation length of
the interacting spins of the magnon excitations of undoped compound, which again
is expected for excitations of the long range SDW order present in the parent compound.

As figure 6.7 illustrates, below the Néel Temperature TN=114 K χ′′(Q,ω) exhibits
a clean narrow peak located at the AFM wave-vector QAFM arising from magnon like
spin excitations of the long range Fe-SDW order. Between 6 K and 100 K the peak
shape, peak width or integrated intensity do not exhibit any drastic variations. At
120 K which is slightly above the Néel temperature, however, the peak width increases
and the integrated intensities decrease significantly, due to strong reduction in peak
intensity. Further, the shape of the peak becomes more asymmetric as the tail at the
higher Q-side becomes more prominent. Despite its strongly reduced intensity and the
additional broadening of the signal, it can still be observed for temperatures as high as
270 K, the maximum temperature of the experiment. This broadened and weakened
signal clearly illustrates the loss of correlation length of the excitations, as the long
range magnetic order is broken down above TN . The increasing asymmetry of the peak
further indicates a loss of the three dimensional character of the spin wave excitations
in the magnetically ordered phase. Thus, compared to the signal generated by the
spin fluctuations in the normal state of the superconducting compound one recognizes
tremendous similarities concerning shape, intensity and width of the observed peak
(Fig. 6.6 (b)), even if the signal of the parent compound is still slightly narrower and
a bit more symmetric. But still, these similarities illustrate, that the low energy spin
fluctuations in the paramagnetic state of the investigated CaFe1−xCoxAsF series are

128



6.3 Results and Discussion

just very little affected by the Co-doping, regarding the length and dimensionality of
their spin correlations. This suggests that the short range quasi 2D spin fluctuations
in the low energy part of the spectrum are in fact a characteristic of the paramagnetic
phase in general and are not necessarily restricted to materials with a certain doping
concentration. This is very similar to what has been observed for CaFe2As2 by Diallo
et al. [61].

However, note that, as was discussed in the previous chapter, this most likely does only
apply for the low energy region of the paramagnetic excitations, as it is proposed that at
higher energies these broad paramagnetic excitations are replaced by narrow spin wave
like excitation for higher energies [54]. Further experiments of the high energy range of
the excitation spectrum are necessary to address this topic.
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Figure 6.6: Q dependence of χ′′(Q,ω) for CaFeAsF (red dots) and superconducting
CaFe0.88Co0.12AsF (black dots) at 6 K (a) and 150 K (a) and energies between 8-15 meV.
Black and red solid lines are fits with asymmetric peak functions and are used as guides to the
eye.
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Figure 6.7: (a) Q dependence of χ′′(Q,ω) for CaFeAsF at temperatures between 6 and 270 K
obtained by performing constant energy cuts through the spectrum with an energy integration
of 8-15 meV. The corresponding time of flight spectra were measured with an incident neutron
energy of 50 meV. Black solid lines are fits with an asymmetric peak function. (b) Temperature
dependence of peak width (black dots) and integrated intensity (red dots) of the signal at Q ∼
1.2 Å−1 obtained by fits of asymmetric peak functions (black lines) to χ′′(Q,ω) from (a).
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Figure 6.8: Q-energy spectra of χ′′(Q,ω) for CaFeAsF at temperatures between 6 and 270
K obtained for incident neutron energies of 50 meV. The spectra correspond to the constant
energy cuts at 8-15 meV energy transfer shown in figure 6.7. The intensities shown in the Q-
energy spectra were corrected for the thermal population factor and therefore show χ′′(Q,ω).
The correction was performed in order to be able to compare spectra obtained at different
temperatures.
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6.4 Conclusion

The current inelastic neutron scattering study presents the first direct observation of a
spin resonance signal in the spin excitation spectrum of an oxygen-free electron-doped
1111-material, in form of optimally doped CaFe0.88Co0.12AsF. This adds one further
class of materials to the list of pnictide and chalgonide materials for which a resonance
signal has been observed [40, 70–73, 76, 127–133]. The signal occurs at the AFM wave
vector QAFM for temperatures below Tc and follows an order parameter like temperature
dependence as it disappears close to Tc and is absent from normal state excitations. All
characteristic properties of the signal, the particular propagation vector, the relative
enhancement of spectral weight caused by the signal and the energy width all are in
reasonable agreement with reports of the resonance signal in other Fe-based materials.
This indicates that the microscopic nature of the signal most likely is identical for all
Fe-based materials. In addition, the scaling relation of the resonance energy and Tc in
CaFe0.88Co0.12AsF ER ∼ (3.7± 0.2) kBTc is in good agreement with the average relation
for the iron pnictide superconductors ER ∼ (4.6 ± 0.4) kBTc [36, 72, 133, 139, 140].
This further supports a universal character of the signal and strengthens the current
understanding of the resonance signal, for which the occurrence of the signal is related
to the symmetry of the superconducting gap function. In this regard, the observation
of the resonance signal at QAFM in CaFe0.88Co0.12AsF supports a superconducting gap
function with opposite signs on the hole and electron Fermi surfaces, most likely of
s±-symmetry. The results, therefore, promote a possible universality of this particular
gap symmetry for all Fe-based materials.

In addition, it was possible to detect the low energy part of the magnon excitation
spectrum in CaFeAsF up to temperatures as high as 270 K and excitation energies as high
as 20 meV. Below 114 K the spectrum exhibits narrow spin wave like excitations, which
are gapped for energies below 5 meV. This gap can be related to single ion anisotropy
effects similar to what has been observed in several undoped Fe-based materials. The
5 meV gap energy, however, is slightly smaller than the 7-10 meV reported for the 122-
materials [59–63] or the 11 meV reported for LaFeAsO [224]. This clearly indicates
significantly smaller single ion anisotropy effects present in CaFeAsF, compared to other
Fe-based materials.

Above the Néel temperature TN=114 K the narrow spin wave excitations are replaced
by broad more 2D paramagnetic excitations. These paramagnetic excitations show a
Q-dependence very similar to the quasi 2 dimensional normal state spin excitations
present in superconducting CaFe0.88Co0.12AsF. This suggests that spin fluctuations in
the paramagnetic state in CaFe1−xCoxAsF only feel very little doping dependence in
regard of the length and dimensionality of the present spin correlations, at least for the
low energy part of the spectrum.
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7 Inelastic Neutron Scattering on
Magnetic Excitations in
Superconducting FeTe0.5Se0.5

7.1 Introduction

7.1.1 Motivation

As discussed in chapter 2, the spin resonance mode is a characteristic feature of high
Tc superconductors and has been observed in the spin excitation spectrum of the
superconducting pase of a large and still growing number of Fe-based and cuprate
superconducting materials. Despite the effort that has been made in investigating the
signal, its microscopic nature and role to the mechanism of high Tc superconductivity is
still a mystery. According to the current understanding, the occurrence of the resonance
signal can be related to a specific symmetry of the superconducting order parameter, as
a sign change of the superconducting gap function for different parts of the Fermi surface
leads to the resonance signal in the particle hole excitation spectra. In this context
Maier et al. predicted for a superconducting order parameter with singlet s± symmetry,
a resonance signal in the spin excitation spectrum with an equal contribution of in-plane
χ′′
ab(Q, ω) and out-plane χ′′

c (Q, ω) excitations, with χ′′
ab(Q, ω) ≈ χ′′

c (Q, ω). Whereas, a
triplet symmetry of the order parameter for example leads to an anisotropic distribution
to the resonance signal, which occurs exclusively for in-plane spin excitations χ′′

ab(Q, ω),
with χ′′

c (Q, ω) remaining featureless [118]. However, from Knight shift measurements
it is known that the Cooper pairing in Fe-based materials most likely is of singlet
symmetry, and so an equally strong resonance signal should be observable for both
in-plane and out-of-plane spin excitations. If one thinks of the spin resonance signal in
terms of the spin 1 exciton or the π-resonance, as explained in chapter 2, an isotropic
magnetic response would correspond to an equal population of the three degenerated
triplet states Sz = ±1 and Sz = 0 of the S=1 resonance excitation, and thus might
be what one would intuitively expect. For BaFe1.9Ni0.1As2 [135], however, a different
observation has been made. Results from polarized neutron scattering experiments
show a clearly anisotropic contribution of in-plane and out-of-plane excitations to the
excitation spectrum, where the spectrum for energies below the resonance energy are
dominated by χ′′

c (Q, ω) > χ′′
ab(Q, ω), whereas, for the resonance region the spectrum
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is dominated by χ′′
ab(Q, ω) > χ′′

c (Q, ω) [135]. To explain this anisotropy of the spin
excitation spectrum, the authors propose a possible spin-orbital/lattice coupling,
similar to what has been proposed for parent compounds [227–229]. The authors
further propose that this spin anisotropy leads to a resonance signal which is rather a
spin 1 doublet than spin 1 triplet. For this spin 1 doublet excitation, only the Sz = ±1
states of the triplet are occupied whereas the Sz = 0 state remains unoccupied. Such
a scenario requires that the occupation of the Sz = ±1 states is accomplished by the
in-plane spin flip excitations χ′′

ab(Q, ω), whereas the out-of-plane excitations χ′′
c (Q, ω)

are responsible for the occupation of the Sz = 0 state. The absence of χ′′
c (Q, ω) then

leads to the conclusion of the unoccupied Sz = 0 state and the resulting doublet
excitation as explanation for the resonance mode.

As the results on the spin anisotropy in BaFe1.9Ni0.1As2 are not directly compatible
with the current theoretical picture of the spin resonance signal, the main focus of this
study is to investigate the spin anisotropy of the resonance signal in another Fe-based
superconducting material. For this, polarized inelastic neutron scattering experiments
on the low energy spin excitations with propagation vector QAFM=(0.5, 0.5, 0) in super-
conducting FeTe0.5Se0.5 have been performed. The results from this study are discussed
in the current chapter.

7.1.2 Magnetic Excitations in Doped Fe1−yTe1−xSex Materials

In 11-materials partial substitution of Telluride by Selenium is a way to suppress the
static magnetic order and induce superconductivity in the system. In the superconduct-
ing phase where the static magnetic order with Q=(0.5, 0, 0.5) is completely suppressed,
strong two dimensional spin fluctuations with a propagation vector close to QAFM=(0.5,
0.5, 0) are present. The propagation vector of the 2D spin fluctuations is comparable to
the nesting vector Qnesting=(0.5, 0.5, 0), which connects the hole and electron pockets
of the Fermi surface. The Fermi surfaces of 11- 122- and 1111-materials are very similar
with electron and hole pockets located at the M- and Γ-points, respectively. This results
in similar nesting conditions described by Qnesting=(0.5, 0.5, 0). In all superconducting
Fe-based materials, regardless if of 11-, 1111- or 122-type, the superconducting phases
exhibit enhanced spin fluctuations with a propagation vector matching this nesting vec-
tor. Aside from these similarities, the spin fluctuations close to QAFM=(0.5, 0.5, 0) in
the 11-materials, however, possess properties slightly deviating from the spin fluctua-
tions in the 122- and 1111-materials. As excitations in the 1111- and 122-materials are
completely commensurate, in superconducting 11-materials they consist of two counter-
propagating modes located at transverse incommensurate positions to QAFM=(0.5, 0.5,
0) [34, 129, 141, 230–232]. This incommensurate position varies with the amount of
incorporated Selenium, as for Se-content close to 50% the two incommensurate modes
tend to move towards the commensurate (0.5, 0.5, 0) position, whereas for higher or
lower Se-content the modes turn away from the commensurate position again. With
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increasing energy the two counter-propagating modes located traverse to QAFM=(0.5,
0.5, 0) move further away from the commensurate position as they disperse towards the
(1, 0, 0) and (0, 1, 0) positions in reciprocal space, respectively [129, 230]. The fact that
the two counterpropagating modes are not part of a spin wave cone but consist of two
separate wave vectors, indicates that itinerant mechanisms are most likely responsible
for the formation of the fluctuations in 11-materials [129].

Just as in most Fe-based superconductors, for temperatures below Tc the spectrum of
spin excitations around (0.5, 0.5, 0) exhibits the occurrence of the spin resonance signal
at the resonance energy ER accompanied by the opening of the spin gap for energies
below ER [34, 129–132, 233]. In contrast to the 1111- and 122-materials, however,
the resonance in Fe1−yTe1−xSex arises from two excitation modes slightly separated
from each other located in transverse direction to the nesting vector QAFM=(0.5,
0.5, 0). Another deviation from the 122-materials, and especially from optimal doped
Ba(Fe1−xCox)2As2 is the temperature dependence of the resonance energy. As in
optimal doped Ba(Fe1−xCox)2As2 the resonance energy ER seemingly exhibits a relation
to the superconducting gap, and disperses to zero for increasing temperature [72], the
energy of the resonance signal in Fe1−yTe1−xSex remains constant with temperature [141].

7.2 Experimental Details

Polarized neutron scattering experiments on a large high quality single crystal of the
nominal composition FeTe0.5Se0.5 have been performed. The single crystal sample, with
an approximate mass of 15 g, was grown via the Bridgeman method by collaborating
scientist Dr. B. C. Sales of the Oak Ridge National Laboratory, Oak Ridge, Tennessee,
USA. Characterization measurements (conductivity, specific heat, magnetization, etc.)
revealed bulk superconductivity with a transition temperature of just slightly below 15 K,
which places the sample in the optimal doped region of the phase diagram. Single crystal
x-ray diffraction measurements determined the common tetragonal crystal structure with
lattice constants a=3.815 Å and c=6.069 Å . Further details on the characterization of
the sample can be found in ref. [234], where this sample is referred to as crystal B.

The inelastic neutron scattering experiments were performed on the thermal three-
axis spectrometer IN22 at the Institute Laue-Langevin, Grenoble [235]. The crystal
was aligned with its crystallographic c-axis perpendicular to the scattering plane. This
provides access to the QAFM=(0.5, 0.5, 0) reflection corresponding to the propagation
vector of the short range spin fluctuations which also coincides with the nesting vector.
The sample was placed in a standard ILL-orange cryostat and data were taken for
selected sample temperatures between 6 K and 200 K. The spectrometer was operated in
the fixed kf -mode with a final wave vector of kf=2.662 Å−1 for the low energy scans and
kf=3.84 Å−1 for the scans with 30 meV energy transfer. No collimation has been used,
but a graphite filter was placed in the scattered beam in order to suppress contaminations
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by higher order neutron wavelengths. The experiment was performed with the Heusler-
monochromator and Heusler-analyzer in vertically focusing mode, in order to increase
intensity. The energy resolution with this experimental set up is approximately 0.8
meV at the elastic position. The Heusler-monochromator works as a monochromator by
selecting the wavelength of the incident neutron beam, and additionally polarizes the
neutron beam. To perform the Longitudinal Polarization Analysis the CRYOPAD device
has been installed. This device provides a magnetic field free environment for the sample
and further enables the user to control the polarization of the incoming and scattered
neutron beam, without any interference of the guide fields at the sample position [236].
Throughout this chapter tetragonal notation will be used to index reflections. This
results in QAFM=(0.5, 0.5, 0) as the antiferromagnetic wave vector of the magnetic
excitations of the Fe-moments.

7.2.1 Longitudinal Polarization Analysis

In order to perform a Longitudinal Polarization Analysis, scattering data were taken for
six different neutron cross sections, three non-spin-flip σNSF

α and three spin-flip σSF
α , with

α=x, y, z. As discussed in chapter 3, x, y, z defines a cartesian linked to the experimental
set up, where x is parallel to the scattering vector Q, y is perpendicular to Q but within
the scattering plane and z points vertical perpendicular to the scattering plane. Also
previously discussed, a spin-flip (SF) process flips the spin of the scattered neutron (↑ ↓
or ↓↑) whereas a non-spin-flip (NSF) process conserves the neutron spin direction (↑↑ or
↓ ↓). The six different cross sections were measured for selected momentum and energy
transfers. An exemplary spin flip cross section for a neutron polarization direction P
parallel to Q reads as [159, 162, 164]

σSF
xx =

(
d2σ

dωdE

)SF

P||x

=
kf
ki

(γre)
2

g2µ2
B

1

π
F 2(Q)×

χ′′
yy(Q, ω) + χ′′

zz(Q, ω)

1− exp(−~ω/kBT )
(7.1)

where F2(Q) is the magnetic form factor and χ′′
αα(Q, ω) is the generalized susceptibility

corresponding to magnetic fluctuations along the α=x, y, z direction.
The crystal structure of the investigated sample FeTe0.5Se0.5 is tetragonal and conse-

quently the generalized susceptibility can vary between excitations with moment direc-
tions within the ab-plane χ′′

ab(Q, ω) and excitations with moment directions along the
crystallographic c-direction χ′′

c (Q, ω). Because of the orientation of the sample, with its
crystallographic c-direction perpendicular to the scattering plane, for this experiment
χ′′
yy(Q, ω) corresponds to χ′′

ab(Q, ω) and χ′′
zz(Q, ω) describes χ′′

c (Q, ω). Because of, (1) the
fact that neutrons only scatter from magnetic fluctuations perpendicular to the scatter-
ing vector Q and (2) the fact that fluctuations perpendicular to the neutron polarization
P scatter in the spin-flip (SF) channel, whereas fluctuations parallel to the incident neu-
tron polarization scatter in the non-spin-flip (NSF) channel, in-plane and out-of-plane
components χ′′

ab(Q, ω) and χ′′
c (Q, ω) can be separated completely. The six different spin
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dependent neutron cross sections [159, 162, 164], obtained during the experiments read
as,

σNSF
xx ∝ N(Q, ω) +BGNSF

σNSF
yy ∝ χ′′

ab(Q, ω) +N(Q, ω) + BGNSF

σNSF
zz ∝ χ′′

c (Q, ω) +N(Q, ω) +BGNSF

σSF
xx ∝ χ′′

ab(Q, ω) + χ′′
c (Q, ω) +BGSF (7.2)

σSF
yy ∝ χ′′

c (Q, ω) +BGSF

σSF
zz ∝ χ′′

ab(Q, ω) + BGSF

Here the nuclear spin incoherent cross section has been neglected. BGNSF and BGSF

stand for non magnetic background contributions, whereas N(Q, ω) is the coherent nu-
clear cross section, which in this case considers phonon scattering.

Obviously, x-polarization provides the possibility to separate magnetic and nuclear
intensities, as for this polarization nuclear scattering processes are always non-spin-flip,
whereas magnetic processes are always spin-flip. Consequently the corresponding (SF)
and (NSF) cross sections are only affected by either scattering process, magnetic or
nuclear.

The relations in (7.2) show that the conducted experiments were suited to probe
χ′′
ab(Q, ω) and χ′′

c (Q, ω), and so determine the amount of spin fluctuations with fluctuat-
ing moment within the ab-plane and along the crystallographic c-direction. Obviously,
χ′′
ab(Q, ω) and χ′′

c (Q, ω) can be extracted from the obtained cross sections by,

σSF
xx − σSF

yy = σNSF
yy − σNSF

xx ∝ χ′′
ab(Q, ω)

σSF
xx − σSF

zz = σNSF
zz − σNSF

xx ∝ χ′′
c (Q, ω) (7.3)

7.3 Results and Discussion

The first part of the investigation on the spin resonance was to determine the nature
of the mode by performing constant energy and constant Q-scans through the particle
hole excitation spectrum located at QAFM=(0.5, 0.5, 0), using a neutron polarization
parallel to the scattering vector, x-polarization. Note that this polarization direction
leads to a complete separation of magnetic and nuclear scattering intensities.
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Figure 7.1: (a) Constant Q-scans performed at 2 K sample temperature. The depicted
intensities were obtained via polarized neutron scattering experiments using an incident neutron
polarization parallel to the scattering vector Q=(0.5, 0.5, 0). Shown are intensities obtained
in the non-spin-flip (blue triangles) and spin-flip (red dots) channel. (b) Diagram of the (H,
H, 0)-reciprocal plane. Illustrated are the positions of the incommensurate excitations (stars)
located in transverse direction to Q=(0.5, 0.5, 0). The dotted lines mark the directions of
constant energy scans in longitudinal and transverse direction through Q=(0.5, 0.5, 0). The
two insets illustrate intensities resulting from performing longitudinal and transverse scans
through Q=(0.5, 0.5, 0). The scans are shown in detail in figure 7.2. (c) Constant Q-scans
with wave vector Q=(0.5, 0.5, 0), performed at sample temperatures 1.6 K (red dots) and 20
K (violet triangles). (d) Temperature dependence of the scattering intensity obtained for the
resonance energy 7 meV. The red solid line is a power law fit to the data. Figures (c) and (d)
resulted from non-polarized neutron experiments performed on the same sample and are taken
from ref. [132].

Prior to this polarized neutron scattering study, Mook et al. [132] performed non-
polarized inelastic neutron scattering experiments on this particular sample used for the
present investigations. Figure 7.1 (c) illustrates constant Q-scans at Q=(0.5, 0.5, 0)
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for two sample temperatures 1.6 K and 20 K, on this sample, which is referred to as
sample B in reference [132]. The energy scans clearly show the spin resonance mode
for energies between 5 and 8 meV, as the enhancement in scattering intensity of the 1.6
K scan compared to the 20 K data. For energies below 5 meV a gap in the excitation
spectrum of the superconducting phase opens as the intensity drops below the level of
the 20 K scan for this region of the spectrum. The enhanced intensity between 5-9
meV follows an order parameter like temperature dependence which leads to a complete
disappearance around 16 K, close to the superconducting transition temperature (fig.
7.1 (d)). These results by Mook et al. clearly prove the existence of the resonance signal
in this particular sample, used for the present study.

Figure 7.1 (a) shows the energy dependence of (SF) (red dots) and (NSF) (blue tri-
angles) scattering intensities obtained with an incident neutron polarization Px parallel
to the scattering vector Q=(0.5, 0.5, 0), at 2 K sample temperature. The intensity
obtained in the (SF) channel, which according to equations (7.2) is exclusively due to
magnetic scattering processes, shows a clear peak between 5-9 meV, which matches very
well the peak in figure 7.1 (c). Due to the good agreement between the (SF) intensity in
7.1 (a) and the low temperature data in 7.1 (c) the observed peak in 7.1 (a) is identified
as the spin resonance signal. In contrast to the (SF) intensity, the (NSF) intensity is
featureless for the energy region of the resonance 5-9 meV, which shows that nuclear
contributions to the resonance signal are negligible. The fact that the resonance signal
exclusively appears in the (SF) channel clearly proves the magnetic nature of the spin
resonance excitation. With this, the presented results are consistent with earlier reports
on the magnetic nature of the signal for optimal doped BaFe1.9Ni0.1As2 [135] as well as
for FeTe0.5Se0.5 [137] and other cuprate materials [120, 122, 134, 136] and so confirm
that spin flip particle hole excitations lead to the signal.

In addition to the energy dependence, the wave vector dependence of the resonance
signal was investigated by performing constant energy-scans with 6 meV energy transfer,
through the resonance wave vector Q=(0.5, 0.5, 0) in both longitudinal and transverse
direction, as illustrated in fig. 7.1 (b). The intensities of the longitudinal and trans-
verse constant energy scans, shown in figure 7.2, have been corrected for the thermal
population factor n(T, ω)=(1-exp(-~ω/kBT)), which accounts for the temperature de-
pendent Boson population of excited states according to Bose statistics. This correction
eliminates all trivial temperature effects and consequently makes a comparison possible
of scattering intensities taken at different sample temperatures. In addition, according
to the fluctuation-dissipation theorem, the correction transforms the obtained intensity
into the dynamical part of the magnetic susceptibility χ′′(Q, ω) ∝ χ′′

ab(Q, ω)+χ′′
c (Q, ω).
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Figure 7.2: (a) and (c) Longitudinal and transverse constant energy-scans through Q=(0.5,
0.5, 0) at the resonance energy 6 meV and temperatures of 2 K (black dots) and 20 K (red dots).
(b) and (d) Q-dependence of the spin resonance signal in longitudinal and transverse direction,
obtained by performing χ′′(2K)−χ′′(20K) from (a) and (c), respectively. Illustrated intensities
in (a) and (c) were obtained in the spin-flip channel with x-polarization and thus show purely
magnetic excitations. They were further corrected for the thermal population factor. Red and
black solid lines are least square fits of Gaussian peak functions to the data and serve as guides
to the eye.

Figure 7.2 shows the longitudinal ((a) and (b)) and transverse ((c) and (d))
Q-dependence of the magnetic susceptibility χ′′(Q, ω). The illustrated intensities
were obtained in the (SF)-channel with x-polarization of the incident neutron beam
and, therefore, represent purely magnetic intensity. The prominent result from figure
7.2, is a splitting of the resonance signal in (H, -H, 0)-direction, obvious from the
difference plots in (fig. 7.2 (b) (d)), which clearly show a splitting of the signal in
transverse direction whereas in longitudinal direction it features a single peak. The
result is an incommensurate resonance signal consisting of two separated modes located
at slightly asymmetric positions Ql=(0.46, 0.54, 0) and Qr=(0.57, 0.43, 0). This
incommensurability of the resonance signal seems to be an exclusive characteristic of
the 11-materials as it has been observed for several 11-compositions but for neither
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the 122-, 1111- nor the KFe2Se2 materials. One explanation for the splitting might
be a special nesting condition [231]. This nesting condition is supported by the fact
that the resonance signal obviously is a feature of the spectrum of spin fluctuations
with propagation vector QAFM=(0.5, 0.5, 0), and which for 11-materials consists of
two counterpropagating modes located in transverse direction to QAFM=(0.5, 0.5, 0)
and dispersing towards Q=(1, 0, 0) and Q=(0, 1, 0), respectively [230]. A consequence
of this dispersion is that in most reports the resonance signal is seen as arising from
two modes. This either shows in a broadened flat top peak or in two overlapping
peaks [34, 129, 231, 233, 237], similar to what is shown in figure 7.2 (d). Since the two
spin fluctuation modes are not part of spin wave cones but emerge from two separate
propagation vectors, an itinerant approach seems much better suited to describe the
nature of the magnetic interactions with this particular wave vector [129, 230]. As
shown here, the splitting of the resonance signal is entirely due to a split signal of
spin flip particle hole excitations without any inadvertent non-magnetic contributions.
Assuming that two incommensurate nesting conditions are driving the spin fluctuations
[231], the splitting of the resonance signal seems natural and consistent with the spin
1 exciton model, as the formation of the exciton obviously would follow the nesting
condition and result in a split resonance signal integrated into the spin excitation
spectrum.

After clarifying the purely magnetic nature of the spin resonance signal, one question
remains regarding the contributions of in-plane and out-of-plane spin excitations to the
signal. According to equations (7.3) it is possible to separate the in-plane χ′′

ab(Q, ω) and
out-of-plane χ′′

c (Q, ω) components of the imaginary part of the spin susceptibility, by
subtracting intensities obtained for different incident neutron polarizations. This can
be done for intensities obtained either in the (SF)- or (NSF)-channel. Note that in the
following both possibilities are practised as for the energy dependence χ′′

ab(Q, ω) and
χ′′
c (Q, ω) were obtained through (NSF)intensities, whereas for the Q dependencies (SF)

intensities were used.
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Figure 7.3: (a) Energy dependence of the in-plane χ′′
ab(Q, ω) (black dots) and out-of-plane

χ′′
c (Q, ω) (red dots) spin excitations with wave-vector Q=(0.5, 0.5, 0) and 2 K sample tem-

perature. The two components were obtained by subtracting (NSF)-intensities obtained with
x-polarization from (NSF)-intensities obtained with y- and z-polarizations, respectively, as il-
lustrated in (d). (b) Transverse Q-dependence along the (H, -H, 0)-direction through Q=(0.5,
0.5, 0) of χ′′

ab(Q, ω) (black dots) and χ′′
c (Q, ω) (red dots) at 2 K and resonance energy 6.5

meV. (c) Transverse Q-dependence along the (H, -H, 0)-direction through Q=(1.5, 1.5, 0) of
χ′′
ab(Q, ω) (black dots) and χ′′

c (Q, ω) (red dots) at 2 K and 30 meV. The two components of
χ′′(Q, ω) from (b) and (c) were obtained by subtracting (SF)-intensities obtained with y- and
z-polarization from (SF)-intensities obtained with x-polarization, respectively, as illustrated in
(e) and (f). The intensities in (a)-(c) were corrected for the thermal population factor. Red
and black solid lines are least square fits of Gaussian peak functions to the data and serve as
guides to the eye.
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Figure 7.3 illustrates the energy- and Q-dependence of the in-plane χ′′
ab(Q, ω) and

out-of-plane χ′′
c (Q, ω) magnetic susceptibility in the superconducting state. The main

result from the current polarization analysis is that spin fluctuations with propagation
vectors close to QAFM=(0.5, 0.5, 0) consist of an almost completely isotropic distribution
of in-plane and out-of-plane polarization of the spin fluctuations for energies up to 30
meV. Only for fluctuations directly at the resonance energy a slight deviation from this
isotropic polarization is present, as for this energy region in-plane fluctuations χ′′

ab(Q, ω)
are slightly enhanced in respect to χ′′

c (Q, ω), only visible from the energy dependence in
figure 7.3 (a). This small enhancement of χ′′

ab(Q, ω) of approximately 10 % relative to
χ′′
c (Q, ω) is only observable right at the peak maximum at 7 meV but is absent in the

Q-scans. Both, the in-plane and out-of-plane components of χ′′(Q, ω) do not show any
substantial difference in the Q scan at 6.5 meV. As a consequence, aside from the small
region at 7 meV, the majority of the spectrum up to 30 meV is clearly isotropic. This
isotropy obviously illustrates the paramagnetic nature of these collective excitations,
where spins are free to turn in each direction.

Similar results have been reported for FeTe0.5Se0.5 by Babkevich et al. [137]. However,
there the authors report a larger anisotropy, with an enhancement of χ′′

ab(Q, ω) of about
20%. Further, this anisotropy is present for a slightly larger energy region above and
below the resonance energy ER. This different anisotropy for these nominal identical
compositions suggests that the degree of anisotropy might in fact be related to sample
properties of the FeTe1−xSex compositions. Note that the sample used in this study has
a slightly higher Tc of 15 K compared to the 14 K of their sample even though both
samples were supposed to have identical doping concentrations. If sample properties
indeed play a role, the spin fluctuations in the superconducting state of optimal doped
FeTe0.5Se0.5 have to be considered isotropic, even for the resonance energy. As discussed
in the beginning of the chapter, an isotropic spin resonance supports the singlet-triplet
excitation, as a possible microscopic explanation for the resonance signal. Therefore,
the presented results are interpreted as supportive to the singlet triplet excitation as
possible microscopic description of the signal in 11-materials.

For overdoped Ba(Fe0.925Ni0.075)2As2 comparable results have been reported by Liu et
al. [238]. There the authors report completely isotropic spin excitations χ′′

ab(Q, ω) ≈
χ′′
c (Q, ω) for energies up to 15 meV, including an isotropic spin resonance signal around

7 meV. The authors also interpret this isotropic spin resonance signal as due to the
proposed singlet triplet excitation.

In contrast to these reports, in optimal doped Ba(Fe0.95Ni0.05)2As2 the magnetic ex-
citations are clearly anisotropic, with χ′′

c (Q, ω) > χ′′
ab(Q, ω) for energies below the reso-

nance energy and χ′′
ab(Q, ω) > χ′′

c (Q, ω) for energies close to the resonance energy [135].
A similar situation has also been reported by Steffens et al. [226] for optimal doped
Ba(Fe0.94Co0.06)2As2. Here again excitations below the resonance energy of 8 meV are
dominated by χ′′

c (Q, ω), but this time the resonance at 8 meV is completely isotropic.
For the anisotropic low energy part the authors further propose a second resonance
signal around 4 meV exclusively polarized in out-of-plane direction. The anisotropy
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of the excitation spectrum in these two doped compositions shows great similarities to
the low energy excitations of undoped BaFe2As2 [65], where again the low energy re-
gion of the excitation spectrum is predominantly polarized in out of plane direction.
The authors suggest spin-orbit coupling effects and orbital degrees of freedom, as pro-
posed for undoped Fe-based materials [35, 239], as possibly responsible for the spin
anisotropy. In consideration of these similarities of the magnetic response between the
undoped and lower doped 122-materials, one interpretation can be that these spin-orbit
coupling effects are still present in the lower doped materials and cause the anisotropic
magnetic excitations in the superconducting phase of these materials. As in overdoped
Ba(Fe0.925Ni0.075)2As2 the spin anisotropy is absent, these orbital effects seemingly be-
come less prominent for higher doping, with the result that spins are free to turn in all
directions again. With the assumption that these orbital effects indeed are the reason
for the anisotropic excitations, the situation is still compatible with the singlet-triplet
excitation as explanation for the resonance signal in these materials. However, whether
these orbital effects play a comparable role in doped FeTe1−xSex materials is not con-
clusive from the current results. Similar to Ba(Fe0.925Ni0.075)2As2, the mostly isotropic
fluctuations in FeTe0.5Se0.5 can be interpreted in terms of a reduced impact of orbital
effects, possibly caused by the large separation in the phase diagram between the su-
perconducting phase and the magnetically ordered phase. However, note that the small
anisotropy present at ER shows the opposite polarization direction to the anisotropy
in the 122-materials, which might indicate a different origin than in the 122-materials.
So, in order to clarify if these orbital effects are effective in the 11-materials, polarized
data of lower doped FeTe1−xSex materials are mandatory. It should be mentioned, how-
ever, that after all the magnetic characteristics of the 11-materials show some distinct
differences to the 122-materials, such as a propagation vector of the static magnetic
order which does not match the nesting vector, the additional spin ice phase separating
the magnetic ordered and superconducting phases and the spectrum of the spin fluc-
tuations at QAFM=(0.5, 0.5, 0) consisting of two separate excitation modes. And so
comparing the mechanisms active in the 11-materials to the mechanisms in the 1111-
and 122-materials might just have a limited applicability.

Regarding the second resonance signal observed in optimal doped Ba(Fe0.94Co0.06)2As2
[226] slightly below the original resonance and consisting exclusively of out-of-plane
excitations, conclusive statements cannot be made from the current data. The results
of this study do not show any indications for a second resonance signal located at
lower energies in FeTe0.5Se0.5. However, this could also be because of the strong
antiferromagnetic L-dependence of the mode, which in Ba(Fe0.94Co0.06)2As2 occurs
most intense for the (0.5, 0.5, 1) reflection and much weaker at (0.5, 0.5, 0). With
the set up the experiments of this study were conducted with the (H, H, 0) scattering
plane, any zone center reflections in (0, 0, L) direction, such as (0.5, 0.5, 1) were
not accessible. The absence of any resonance signal at (0.5, 0.5, 0) in FeTe0.5Se0.5
can be interpreted as either the complete nonexistence of a second resonance or an
even stronger antiferromagnetic L-dependence of a possible second resonance with all
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intensity concentrated for (0.5, 0.5, L=odd) reflections. However, this strong (0, 0, L)
dependence of a second resonance seems rather unlikely.
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Figure 7.4: Q-energy dispersion of the spin excitations obtained via polarized neutron scat-
tering. Illustrated are intensities obtained for the (SF)-channel with x-polarized incident neu-
trons. According to equations (7.2) the here illustrated cross section σSF

xx is proportional to
χ′′
ab(Q, ω) + χ′′

c (Q, ω) and thus describes purely magnetic intensity. The intensities were ob-
tained through transverse constant energy-scans in (H, -H, 0)-direction through Q=(0.5, 0.5,
0), for sample temperatures 2 K (red dots), 110 K (blue squares) and 200 K (pink diamonds).
Red and blue solid lines serve as guides to the eye. The constant energy scans and Gaussian
fits that lead to this dispersion can be found in figure A.10 in the appendix.

In addition to the superconducting state, an investigation of the spin excitations in the
normal state for temperatures above Tc has been performed. Here the focus was on the
transverse dispersion of the two counter-propagating modes for energies up to 30 meV.
Figure 7.4 illustrates the Q-energy dispersion of the spin fluctuations in transverse (H,
-H, 0)-direction. The dispersion was obtained by performing constant energy transverse
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scans through the commensurate positions Q=(0.5, 0.5, 0) and Q=(1.5, 1.5, 0) at various
temperatures and energies, as illustrated in figure A.10 in the appendix. Collecting
(SF)-intensity with x-polarization of the incident neutrons, provided purely magnetic
intensities proportional to χ′′

ab(Q, ω) + χ′′
c (Q, ω). The peak positions of the two split

peaks corresponding to the two modes were determined by least square fits of Gaussian
peak functions to the transverse scans.

As figure 7.4 shows, the spin fluctuation spectrum of the superconducting state (2
K), represented by the red dots, exhibits an obvious hourglass type dispersion, with a
narrow part close to the resonance energy at 7 meV, as the two counter-propagating
modes move towards the commensurate Q=(0.5, 0.5, 0) position, and two wider parts
for energies above and below 7 meV, where the modes tend to move further away from
the commensurate position. A very similar hourglass dispersion has been reported for
two superconducting and non-superconducting FeTe1−xSex compositions [231]. This
observation of a similar hourglass dispersion also in a non-superconducting compound
suggests that the feature is independent from the superconducting state. This is sup-
ported by results for cuprate materials where the hourglass dispersion is observed for
superconducting as well as non superconducting materials [240–245]. A widely accepted
explanation for this prominent shape of the dispersion is not available so far. A pattern
of alternating spin and charge stripes has been proposed as one possible explanation for
cuprate materials [246], but this of course cannot explain the hourglass shape present
for all those materials without any stripe order.

Motivated by the metallic nature of the Fe-based superconductors Li et al. [231]
proposed a special nesting condition in a multi-band itinerant picture as a possible
origin for the hourglass shape of the dispersion in the FeTe1−xSex system, a scenario
closer to what is observed in metallic chromium [247, 248].

For increasing temperatures the hourglass shape disappears, as low energy excitations
move further away from the commensurate position and appear at incommensurate po-
sitions similar to positions of the mode at higher energies. This leaves the transverse
Q-energy dispersion almost straight vertical. A similar effect of a less prominent hour-
glass shape with increasing temperature has also been observed for the superconducting
and non superconducting FeTe1−xSex compositions [231]. This shows that the feature
obviously is a low temperature effect, its relation to the superconducting phase, however,
cannot be unambiguously established.

7.4 Conclusion

Polarized inelastic neutron scattering experiments on a large superconducting single
crystal sample of optimal doped FeTe0.5Se0.5 have been performed and a Longitudinal
Polarization Analysis of data, obtained for energies between 2 meV and 30 meV and
sample temperatures between 2 K and 200 K has been conducted.
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A spin resonance signal with resonance energy ER = (7 ± 1) meV and propagation
vector close to Q=(0.5, 0.5, 0) has been detected. And by taking advantage of the
technique of polarized inelastic neutron scattering it was possible to identify the signal
to be exclusively magnetic in nature. It was found that in transverse direction the
signal splits into two modes. This splitting is interpreted as a result of a specific
nesting condition, which is further supported by the fact that the spin excitations at
Q=(0.5, 0.5, 0) for energies above and below the resonance energy also consist of two
counterpropagating modes located in transverse direction to Q=(0.5, 0.5, 0).

Regarding the spin anisotropy of the spin excitations it was found that low energy
spin excitations with propagation vector close to Q=(0.5, 0.5, 0) and energies up
to 30 meV are mostly isotropic with equal contributions by in-plane χ′′

ab(Q, ω) and
out-of-plane excitations χ′′

c (q, ω). The resonance mode at 7 meV exhibits a marginal
anisotropy as in-plane fluctuations are slightly enhanced for the energy region 6-8 meV.
A spin resonance signal with similar spin isotropy has also been observed for another
FeTe0.5Se0.5 sample [137] and in overdoped BaFe1.85Ni0.15As2 [238]. This suggests
that a spin isotropic resonance signal might be a universal feature for higher doped
Fe-based materials, which in the phase diagram are separated from the magnetically
ordered phase. An isotropic resonance signal is consistent with the proposed s±
symmetry for the superconducting gap function [116] for which a resonance mode with
χ′′
ab(Q, ω) ≈ χ′′

c (Q, ω) has been predicted. In this context, the isotropic spin resonance
is interpreted as to be supportive for the proposed singlet-triplet excitation.

The Q-energy dispersion of the spin excitations located around Q=(0.5, 0.5, 0) in
the superconducting state (2 K sample temperature) exhibits a prominent hourglass
shape. The excitations consist of two counter-propagating modes located in transverse
direction to Q=(0.5, 0.5, 0). For energies close to the resonance energy ER=7 meV
the two modes move closer to the commensurate position and move away from this
position again for energies below and above ER, creating this prominent hourglass type
shape of the excitation spectrum. A similar shaped dispersions has been reported for
a superconducting and a non-superconducting FeTe1−xSex sample [231], and according
to the authors a special nesting condition in a multi-band itinerant picture might be
a possible origin for the hourglass shape of the dispersion in the FeTe1−xSex system.
With increasing temperature across Tc the hourglass shape disappears, as low energy
excitations move to more incommensurate positions. This leaves the hourglass dispersion
to be a low temperature effect, however, not necessarily related to the presence of the
superconducting phase.
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8 Summary and Outlook

In this study several different aspects of magnetic properties on a series of different Fe-
based superconducting materials have been studied using the techniques of polarized
and non polarized neutron diffraction and neutron spectroscopy. The eight samples,
that were investigated in the course of this thesis, represent the three main classes of Fe-
based materials, the so called 11-, 1111- and 122-materials. The main part of the studies
focused on investigations of the excitation spectra of spin wave excitations of the static
Fe SDW order as well as of the spin fluctuations present in the superconducting phase.
Whereas, a small part focused on a unique phenomenon of coexistence of static magnetic
order and superconductivity. The main results obtained via the neutron scattering
experiments will be outlined in the following.

EuFe2(As1−xPx)2 and Eu(Fe1−xCox)2As2 On the two doped EuFe2As2 systems valu-
able information on the effect of impurity doping on the static order of the magnetic sub-
lattice of the Eu2+-moments was obtained by performing single crystal neutron diffrac-
tion and polarized neutron diffraction experiments.

The diffraction experiments on the EuFe2(As1−xPx)2 showed that partial substitution
of As by P leads to a modification of the A-type magnetic structure of the Eu-sublattice
present in undoped EuFe2As2. For 15% P-doping the magnetic structure is transformed
into a ferromagnetic type structure with magnetic moments tilted out of the Eu-layers
along the c-axis. This leads to a sizeable ferromagnetic component of the Eu-sublattice
with a ferromagnetically ordered moment along the c-axis approximately close to the
6.8 µB saturation magnetic moment of the undoped composition. The astonishing of
this result is the coexistence of this large ferromagnetically ordered moment and bulk
superconductivity. After several predictions of the coexistence of superconductivity and
ferromagnetic order in these materials, based on characterization measurements as well
as Mössbauer spectroscopy, which all report a microscopic coexistence rather than a
phase separation of both phenomena, the presented neutron scattering results display
the first clear and direct observation of the long range ferromagnetic order of the Eu-
sublattice coexisting with superconductivity.

The partial substitution of Fe by Co in Eu(Fe1−xCox)2As2 has a different effect on
the static magnetic order of the Eu2+-moments. Here it was found that Co-doping leads
to a helical type structure, with magnetic moments rotated around the crystallographic
c-axis but oriented within the basal planes.
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8 Summary and Outlook

Ba(Fe1−xCox)2As2 In underdoped Ba(Fe0.95Co0.05)2As2 a thorough study of the low
energy spin excitation spectrum has been conducted using the technique of time-of-
flight neutron spectroscopy. It was possible to perform a quantitative analysis of the
spin wave excitations of the static SDW-order using a linear spin wave model based on a
local moment Heisenberg Hamiltonian. The model provides a reasonable description of
the obtained data. The resulting exchange parameters are reduced to about 75% of the
values reported for undoped BaFe2As2. The best fit results were achieved for a strong
anisotropy of the in-plane exchange parameters, similar to what is reported for undoped
122-materials. Spin wave excitations obtained for the phase of coexistence of supercon-
ductivity and SDW-order do not show a dramatic difference to the spin wave excitations
above Tc. Above the Néel temperature the excitations appear broadened and reduced
in intensity but can still be described by the spin wave model, with similar anisotropic
exchange parameters. In addition to the linear spin wave model, the low energy para-
magnetic excitations can further be described using a model based on spin diffusion
theory. The in-plane correlation lengths of the paramagnetic excitations, resulting from
the spin diffusion model analysis, match really well correlation lengths of paramagnetic
excitations reported for 122-materials with different doping levels. This supports the
idea of paramagnetic excitations with properties universal for all Fe-based materials,
independent of the doping concentrations. Since both models describe excitations in all
three phases equally well, magnetic excitations in underdoped Ba(Fe0.95Co0.05)2As2 need
to be considered intermediate to the spin wave like excitations of the undoped materials
and the short range spin fluctuations of the optimally doped materials.

CaFe1−xCoxAsF Time-of-flight neutron spectroscopy investigations on the low energy
excitation spectrum of spin fluctuations with propagation vector Q=(0.5, 0.5, 0) in
superconducting CaFe0.88Co0.12AsF were performed. Below Tc the excitation spectrum
exhibits a neutron spin resonance signal with characteristic energy of ER=7 meV and an
excitation gap for energies below 5 meV. The presented results are the first observation of
the spin resonance signal in the class of oxygen free electron doped 1111-materials. The
resonance energy of (7±0.3) meV provides a scaling relation to the critical temperature
of ER ∼ (3.7 ± 0.2) kBTc, which is in good agreement to the average scaling relation
for the iron pnictide superconductors ER ∼ (4.6 ± 0.4) kBTc. According to the current
understanding, the observation of the resonance signal promotes a superconducting gap
function with s±-symmetry for the CaFe1−xCoxAsF materials. It further supports the
idea of a universal s±-symmetry of the gap function in all Fe-based materials.

The low energy spin excitation spectrum at QAFM=(0.5, 0.5, 0.5) of undoped CaFeAsF
shows narrow spin wave excitations below TN and broad rather 2D paramagnetic exci-
tations above TN . In the ordered phase the spin wave spectrum is gapped for energies
below 5 meV. The gap energy of 5 meV is slightly below the 10 meV reported for 122-
materials, which indicates smaller single ion anisotropy effects in this material. The
paramagnetic excitations persist up to 270 K and exhibit strong similarities concerning
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correlation lengths and dimensionality with paramagnetic excitations in the supercon-
ducting sample CaFe0.88Co0.12AsF.

FeTe0.5Se0.5 Inelastic polarized neutron scattering study on the low energy excitation
spectrum of spin fluctuations with propagation vector QAFM=(0.5, 0.5, 0) in optimal
doped FeTe0.5Se0.5 have been performed. Below Tc a spin resonance signal occurs at
energies between 5-9 meV, accompanied by the spin gap below 5 meV. The resonance
signal is of purely magnetic origin. Along the transverse (H, -H, 0) direction the
resonance signal splits into two overlapping peaks, whereas in (H, H, 0) direction the
signal is peaked at QAFM=(0.5, 0.5, 0). The resonance signal as well as the rest of
the excitation spectrum up to 30 meV is isotropic with equal contributions of in plane
and out of plane spin excitations χ′′

ab(Q, ω) ≈ χ′′
c (Q, ω). This spin isotropy of the

resonance signal is compatible with the theoretic understanding and promotes the s±
gap symmetry. It is further compatible with the singlet-triplet excitations as a possible
microscopic origin of the signal. At low temperatures the low energy spin excitation
spectrum exhibits a hourglass shaped energy dispersion.

Outlook Since its discovery in 2008 the field of Fe-based superconductors has been
very active and fast evolving due to the constant strong effort by numerous research
groups. As a result of this strong push by the community a level of understanding has
been achieved which is far beyond the field’s relatively short time of existence.

However, the initial high hopes set into the Fe-based materials that these materials
would contribute to a better understanding of the mechanism of superconductivity in
the cuprate materials so far have not been fulfilled. Instead it quickly showed that aside
from some obvious and characteristic similarities between cuprates and Fe-based super-
conductors both systems exhibit many fundamental differences and must be considered
as two distinct systems. However, the fact that these systems are so fundamentally dif-
ferent in many areas makes the similarities that both have even more important. It seems
unlikely that just by coincidence the two classes of superconducting materials with the
highest Tc observed so far share such a characteristic phase diagram with a close proxim-
ity of magnetism and superconductivity and with strong magnetic fluctuations present
in the entire superconducting phase. More likely this is an indication that magnetic
properties indeed play an important role in the formations of high Tc superconductivity.
Another characteristic both systems share and which is believed to be important for the
formation of high Tc superconductivity is a moderate strength of correlations present in
the electronic system. For both material classes the conduction electrons show moder-
ately strong correlations, with correlation strengths located between the weak coupling
limit of itinerant metals and the strong coupling present in the localized Mott regime.
Again it seems rather unlikely that just by chance these two distinct systems show such
comparable correlation strengths. And instead it is argued that the right strength of
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electronic correlations, not too strong and not too weak, might in fact be an important
condition to produce high coupling strengths. In addition to the moderate electronic
correlations it is further argued that the system’s ability to avoid Coulomb repulsion
of the Cooper pair electrons is also of importance in order to produce these high cou-
pling strengths responsible for high transition temperatures. In the cuprates and the
Fe-based superconductors this minimization of Coulomb repulsion between the two elec-
trons of one Cooper pair is accomplished by the particular symmetry of the respective
superconducting gap functions.

As a result, it is argued that each of these three properties or more likely the right
combination of all three might in fact be essential conditions for high Tc superconduc-
tivity. If this indeed is the case or if high Tc superconductivity is related to some other
characteristics can only be answered by a much better understanding and a much more
complete picture of the Fe-based and cuprate materials. For the future, this will demand
a continuation of the current efforts on both cuprates and Fe-based materials. However,
aside from these two classes of materials an intensified search for other superconducting
materials with maybe even higher transition temperatures, seems also quite reasonable.
The discovery of the Fe-based materials showed that high Tc obviously is not restricted to
cuprate materials and so it would be rather surprising if the effect could not be observed
in other materials as well.

If all this is considered, the impact and importance of the Fe-based superconductors
to the field of high Tc superconductivity cannot be overestimated. As the cuprate ma-
terials introduced the phenomenon of high Tc superconductivity the Fe-based materials
show that this phenomenon is not restricted to copper oxides and further indicate that
other high Tc systems might exist. And maybe in a few years from now, scientists will
look back at the Fe-based materials as the class of materials which lead them to the
discovery of high Tc materials for which it finally was possible to completely understand
the phenomenon of high Tc superconductivity or which lead to a variety of commercial
applications.
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A Appendix

A.1 Spin Fluctuations in Metallic Materials

A.1.1 The Magnetic Susceptibility in the Itinerant Approach

Magnetism and magnetic properties of condensed matter materials, can be described by
applying two contrary models that approach the magnetic nature of the system from
two contrary points of view. One model approaches the problem from the highly corre-
lated point of view and considers the magnetic moments to be strongly localized in real
space typically at the crystallographic positions of the magnetic ions and interacting via
exchange interactions. This model usually works very well for materials whose unpaired
electrons are strongly bound to the atomic nuclei, and which usually show only little
to no metallic behavior. Magnetic correlations for those types of materials can be very
well modeled via the use of a local moment Heisenberg Hamiltonian, just as it has been
introduced in a very basic way in chapter 3.

The second model approaches the problem from the very weakly correlated side and
thus usually works very well for metallic materials with very loose valence electrons
and for which the local moment picture usually does not provide satisfying results.
This second model considers the itinerant nature of the valence electrons and their
contributions to magnetism, and in contrast to the local moment picture, where magnetic
properties are discussed with respect to real space, the picture of itinerant magnetism
discusses the magnetic properties carried by the itinerant electrons in momentum-space.

These two approaches obviously are conceptually very different and describe two op-
posite ends of the spectrum, where on the one end the valence electrons are very tightly
bound to the positions of the magnetic ions with very little overlap of orbitals from
neighboring sites. Whereas, on the other end the electrons are very loosely bound, more
or less detached from the atomic cores with great overlap of orbitals from neighboring
sites. Which model is the correct one to describe the nature of magnetism of the Fe-based
superconductors is still a subject of debate. Many magnetic features strongly suggest a
not negligible contribution by the itinerant conduction electrons, whereas other features
can be described in a reasonable way by a local moment approach. This locates the
Fe-based materials into the intermediate region between strongly correlated and com-
pletely itinerant materials, however still more on the itinerant side than on the localized
side. Thus it seems essential to spend some time on introducing the fundamentals of the
model of itinerant magnetism.
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Here the most basic features of the itinerant model will be outlined without going into
much detail. Especially the derivation of any of the necessary equations will completely
be neglected. However all formulas can be found in many very good fundamental text
books and review articles [249–251].

In a metallic material, the itinerant conduction electrons are responsible for the mag-
netic properties, and as a result magnetic properties are directly related to the band
structure and the Fermiology of the material. As Pauli stated, only the electrons close
to the Fermi surface are able to contribute, whereas the majority of the valence elec-
trons remain in-active. As a result, the response of such a system is characterized by
the density of states at the Fermi level N(EF ), which strikingly shows in the so-called
Pauli susceptibility as it is directly proportional to N(EF ):

χP = µ0µ
2
BN(EF ) (A.1)

χP is usually a very small and almost temperature independent quantity. The fact
that only electrons close to the Fermi level contribute explains the small value for χP

and the usually high Fermi temperature for normal metallic materials causes the small
temperature dependence.

The Pauli susceptibility in (A.1) completely neglects any contribution by interactions
between the conduction electrons. However, interactions between electrons of the Fermi
gas lead to very important effects, which can change the magnetic response dramatically.
And one way to incorporate interactions into the discussion is by applying a so-called
mean-field approach. In this approach, interactions between a given electron and the
surrounding electron gas are interpreted as interactions of this particular electron with
an applied magnetic field. This field results of a superposition of a possible external
magnetic field and a field produced by the polarization of the electron gas consisting
of all other conduction electrons. This so-called molecular field or mean field causes a
polarization of the electron gas but at the same time the mean field itself is induced
by a polarization of the electron gas in the first place.As a result, this approach gives
rise to a positive feedback mechanism which enhances the susceptibility over the value
χP . The actual effective field felt by the conduction electrons consequently consists of
a superposition of the two magnetic fields, the external magnetic field and the mean
field Heff = Hext +

U
µ0µ2

B
M. Here U represents the power of the molecular field, which

is exactly the Coulomb energy, and χ is the real, normalized magnetic response and
M = χH is the magnetization causing and being influenced by the mean field at the
same time. Consequently M is also M = χPHeff . If this is taken into account, the
magnetic susceptibility of the system turns into,

χ =
∂M

∂H
= χP (1 +

U

µ0µ2
B

χ)

=
χP

1− U
µ0µ2

B
χP

. (A.2)
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This shows that the Pauli paramagnetism is enhanced by the factor (1 − U
µ0µ2

B
χP )

−1 =

(1 − UN(EF ))
−1 induced by the molecular field. For the case that UN(EF ) ≥ 1

spontaneous ferromagnetic order will occur and the inequality is the well-known Stoner
criterion for the occurrence of ferromagnetism. Note, the driving forces that induce
the mean field are exchange interactions of the electrons. As a result, the field is
driven by Coulomb interactions within the electron gas and not by magnetic dipo-
lar interactions even though the resulting field has the characteristics of a magnetic field.

The Generalized Susceptibility

The generalized susceptibility expresses the most general form of magnetic response of
the system to an applied magnetic field varying both in space and time. Such a magnetic
field is characterized by it’s wave-vector q and frequency ω and presents a perturbation
to the electron gas which results in quantum transitions of the electrons from quantum
states (k, Ek) into (k + q, Ek+q). Each excitation from quantum state k to quantum
state k + q requires a certain amount of energy ~ω = Ek+q − Ek, where the energies
Ek and Ek+q of the particularquantum states are given by the band dispersion of the
material. Taking into account a possible exchange splitting ∆ 1 of the electron bands
into two (↑ ↓) spin subbands will turn the spin of the band electrons into another degree
of freedom, and the energies Ek of the various quantum states now also depend on the
spin directions (↑ or ↓). This leads to the quantum state energies Eσ

k = Ek+
1
2
σ∆, where

σ = +,− labels the spin polarization. A perturbation by such a magnetic field, varying
in space and time, on the band electrons of the system leads to a magnetic response in
first order (linear response), which reads in its general form as,

χσ1σ2
0 (q, ω) = µ0(gµB)

2 1

N
lim
ϵ→0+

∑
k

f
(
Ek+q +

1
2
σ2∆

)
− f

(
Ek +

1
2
σ1∆

)
Ek+q − Ek − ~ω + 1

2
(σ2 − σ1)∆ + ϵi

. (A.3)

This is the so-called Lindhard function, which provides a model for the magnetic
response of metallic systems. The function f(E) is the Fermi distribution, and
accounts for the occupation of the initial (k, Ek, σ1) and final (k + q, Ek+q, σ2) states
and thus regards the probability of a transition from one quantum state to another.
Note that, due to the Pauli principle excitations are only possible from occupied
states into empty states. The denominator of the Lindhard function considers the
energies of the initial and final quantum states plus the excitation energy ~ω and
thus secures the energy conservation for any possible excitations. In this chapter only
the main properties of the function will be outlined very briefly. A detailed descrip-

1In the course of this thesis ∆ was reserved for the superconducting gap function. In this chapter,
however, it will represent the subband splitting. The context should prevent from any confusion
caused by this double use of the symbol.
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tion of the complete function and its derivation, however, can be found in refs. [158, 250].

The Lindhard function usually is a complex function consisting of a real and an imag-
inary part. For this thesis, however, the imaginary part is of special interest as it
considers the fluctuations of the system and thus considers the particle hole excitations
that are accessible via the inelastic neutron scattering cross section. With the following
expression,

Im lim
ϵ→0+

1

x+ ϵi
= −πδ(x) (A.4)

the imaginary part of the magnetic susceptibility can be expressed in terms of,

Imχσ1σ2
0 (q, ω) = πµ0(gµB)

2 1

N

∑
k

(
f(Eσ1

k )− f(Eσ2
k+q)

)
· δ
(
Eσ2

k+q − Eσ1
k − ~ω

)
(A.5)

The sum over the Brillouin zone considers all possible excitations of electrons from the
quantum state (k, σ1, E

σ1
k ) into the quantum state (k + q, σ2, E

σ2
k+q). The δ-functions

regard the energy conservation for all possible excitations. This means, such an
excitation creates an electron-hole pair, where an electron is excited from its initial
ground state (k, σ1, E

σ1
k ) into the excited state and leaves a hole (−k, σ1, E

σ1
k ). Such

particle-hole excitations can occur from any occupied state into any empty state, and
for a given q usually excitations with different energies ω are possible. In q − ω-space
all these possible excitations form a continuum whose boundaries are determined by the
band dispersion. This is the so-called Stoner-continuum of single-particle excitations
and which is directly represented by χ′′(q, ω), the imaginary part of the magnetic
susceptibility. χ′′(q, ω) as it is defined by eq. (A.5) possesses the following symmetry
with Imχσ1σ2

0 (q, ω) = −Imχσ2σ1
0 (−q,−ω) and is zero for ω = 0, as it only considers the

dynamic part of the magnetic response.

Regarding the spin of the initial and excited quantum states, there are four possible
excitation, two non-spin-flip excitations where the spin orientation remains the same
(+ → +) and (− → −), as well as two spin-flip excitations, where the spin orientation
of the excited state is opposite to the orientation of the initial state (+ → −) and
(− → +).

In a paramagnet with (∆ = 0), zero exchange splitting of bands, and without any
external field and consequently no anisotropy in spin space, all these four possible exci-
tations are of course equivalent and the situation simplifies a lot. Otherwise, the spin-flip
excitations correspond to the transverse, and the non-spin-flip excitations to the longi-
tudinal part of the susceptibility. In the case of an non-zero exchange splitting of the
bands with ∆ ̸= 0, the continuum of spin-flip excitations looks very different from the
one of non-spin-flip excitations.
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The Consideration of Exchange Interactions

As it was shown for the Pauli susceptibility, the actual magnetic response is enhanced by
the Stoner-factor, caused by exchange interactions. In a similar way this enhancement
can be applied to the generalized susceptibility χ0, which then leads to

χ(q, ω) =
χ0(q, ω)

1− U
µ0(gµB)2

χ0(q, ω)
(A.6)

Note that U used here in principle can have a q dependence, which however, often is
neglected. Equation (A.6) obviously shows that due to the enhancement caused by the
Stoner-factor, χ will diverge anytime the denominator becomes zero. Thus the system
has potential magnetic instabilities which can lead to long range magnetic ordered
ground states (Spin Density Wave order). The formation of these long range magnetic
order, so-called static Spin Density Waves, are heavily dependent on the exchange
interactions as well as band dispersions and the Fermiology of the system. A brief
introduction of the SDW state will be given in the following section.

A.1.2 The Response Function of the One Dimensional Electron
Gas

For highly anisotropic metallic materials, a group of materials the iron based supercon-
ductors arguably can be included to, some new effects can occur, which shall be outlined
in this section. In order to cover the high degree of anisotropy in these materials the
idealized situation of one-dimensional metals will be discussed here, as many expressions
will become much easier that way.

Derivations of all formulas and a more detailed discussion of the topic presented in
the following section can be found in [251].

In the following the response to a q-dependent but time independent external field
of the one dimensional free electron gas will be discussed. The Fermi surface for such
a 1D electronic system basically consists of two points in momentum-space −kF and
kF . As already discussed in previous sections only states close to the Fermi surface can
contribute to the response of the systems, and as result for the 1D electron gas only
states with wave-vectors near 2kF , twice the Fermi vector, are available. So for the case
of the one dimensional free electron gas and wave-vectors near 2kF , twice the Fermi
vector, the Lindhard response function as it was introduced in its generalized form in
equation (A.3)can be expressed in the form,

χ(q) = −e2N(EF ) ln
∣∣∣q + 2kF
q − 2kF

∣∣∣, (A.7)
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Figure A.1: Sketch of the normalized response function χ(q) for the case of a 1D, 2D and
3D free electron gas, in the small wave-vector limit. Illustrated is the divergence of χ(q) at
q = 2kF for the 1 dimensional free electron gas.

where N(EF ) represents the density of states at the Fermi energy per spin direction. As
already mentioned in the previous part, the Pauli-principle is the reason why only states
close to the Fermi-surface are available as possible initial states for any quantum state
transition. Thus the density of states has a major influence on the electronic response
to any external perturbation, and thus determines the properties of χ(q).

For small wave vectors q, the system’s response can be reproduced by the so-called
Thomas-Fermi approximation χ(q) = −e2N(EF ), which is independent of the system’s
dimensionality. However, for wave vectors equal 2kF , the response of the system χ(q)
becomes strongly dependent on the dimensionality of the electronic system. As illus-
trated in figure A.1 close to 2kF χ(q) exhibits a reversal point of the slope in the 3D
case which develops into a full singularity for the 1D case. This divergence of χ(q) for
q = 2kF has several important consequences, as an external periodic perturbation with
periodic modulation equal to 2kF can lead to a divergent charge redistribution. This
suggests, that for T = 0 the electron gas itself would be unstable with respect to the
formation of a periodically varying electron charge or spin density, with a period

λ0 =
π

kF
. (A.8)

The reason for this divergence of the response of the 1D electron gas is related to the
unique topology of the Fermi surface of the 1D electron gas. The relation becomes most
apparent if one considers the response function for d dimensions, as defined in equation
(A.3), in this slightly simplified form

χ(q) =

∫
dk

(2π)d
fk − fk+q

Ek − Ek+q

(A.9)
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The equation shows that the strongest contribution to the system’s response comes from
pairs of states, one occupied fk = 1, one empty fk+2kF = 0 and separated in reciprocal
space by twice the Fermi vector q = 2kF

2. These pairs of states give a divergent
contribution to the integral of the Lindhard function, regardless of the dimensionality
of the electronic system. However, for higher dimensional systems the number of states
available to create these pairs is very small, as pointed out earlier only states located
on the Fermi-surface can contribute here. But, if the system’s dimensionality is reduced
the number of available states drastically increases. The reason for this is the already
mentioned particular topology of the Fermi surface of such low dimensional electronic
systems. A common feature of low dimensional electronic systems is the effect of Fermi
surface nesting. This term describes the situation where parts of the Fermi surface are
parallel to other parts of that Fermi surface. The effect of these parallel parts is that
for wave vectors connecting these parallel parts, so-called nesting vectors, the number
of paired states contributing to (A.9) is dramatically enhanced. Figure A.2 illustrates
three possible idealized Fermi surfaces for a 1D, 2D and 3D free electron gas, where
the red regions illustrate the available states for creation of such pairs. The 1D Fermi
surface from figure A.2 is of course an idealized situation, and occurs, if at all, only for
extremely anisotropic systems. However situations where the Fermi surface is quasi 1D
with large areas of the Fermi surface which are nested (parallel) can indeed be observed
experimentally for real materials. For wave-vectors close to the nesting vector, which
connects the parallel parts, the system is 1D and consequently the Lindhard function
will diverge and the electronic system will be unstable.

2At T=0 K the Fermi distribution of occupied states is a step function which is equal one for energies
below and equal the Fermi energy f(E ≤ EF ) = 1 as all states are completely occupied up to the
Fermi energy. For energies above the Fermi energy f(E > EF ) = 0 the Fermi distribution is zero as
all states above EF are empty.
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Figure A.2: Sketch of simplified Fermi surfaces for the case of a 1D, 2D and 3D free electron
gas. The red shaded areas illustrate the regions on the Fermi surface that can be located on
top of each other by a translation of the Fermi surface by the translation vector Qnesting =
2kF . Thus these regions represent the states available for forming the pairs with fk = 1 and
fk+Qnesting

= 0 plus Ek = Ek+Qnesting
from equation (A.9).

Figure A.3: Sketch of a simplified Fermi surface for the case of a quasi 1D free electron
gas. The red shaded areas illustrate the regions on the Fermi surface which are parallel and for
which the electron gas is quasi 1D. As for the 1D electron gas states in these regions represent
the states available for forming the pairs with fk = 1 and fk+Qnesting

= 0 plus Ek = Ek+Qnesting

from equation (A.9).

A.1.3 Instabilities in a One Dimensional Electron Gas

As already mentioned in the previous sections interactions between electrons of the
electron gas are very important and lead to several important effects. These effects
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related to the various types of interactions in the 1D electron gas will be introduced
here. Without specifying the particular interactions present in the material it will be
assumed that an external potential ϕext(q) induces a density fluctuation ρind(q), which
will lead to a potential ϕind(q) induced by the density fluctuation,

ϕind(q) = −gρind(q), (A.10)

where g is a q-independent coupling constant, which accounts for the various interactions
available to affect the electron gas. The positive feedback mechanism leads to,

ρind(q) = χ(q)ϕ(q) = χ(q)
[
ϕext(q) + ϕind(q)

]
(A.11)

which combined with equation (A.10) gives the following expression for the induced
density fluctuation,

ρind(q, T ) =
χ(q, T )ϕext(q)

1 + gχ(q, T )
. (A.12)

According to equation (A.12) the density fluctuations become enhanced by the inter-
actions within the electron gas, represented by the g-factor, and for g < 0 the system
becomes unstable when the following is valid,

1 + gχ(q, T ) = 0 (A.13)

the system becomes unstable to the spontaneous formation of divergent density fluc-
tuations. For the case of electron-electron interactions and small wave vectors q = 0,
expression (A.13) is the well known Stoner-criterion for the onset of spontaneous ferro-
magnetic order of the conduction electrons, which was introduced in one of the previous
sections. However, since the general case is discussed here and the nature of the inter-
actions, considered by the g-factor, are not specified, this expression shows the system
is unstable in regard of the formation of several different ordered ground states. In the
following some of these possible ground states will be outlined briefly.

The density fluctuation ρind(q) reflects the formation of the electron-electron or
electron-hole pairs of quantum states located at different parts of the Fermi surface
and the ground state of the system at T = 0 would be a coherent superposition of these
various pair states, where the nature of the ground state, which is dependent on the
nature of the predominant pair states, depends on the nature of the electron-electron
or electron-phonon interactions present in the system. To briefly introduce these vari-
ous ground-states, it is helpful to assume a 1D Fermi surface which consists of just two
points at ±kF . Further it shall be defined that electrons and holes located at the right
or left side are denoted as e+ and e− as well as h+ and h−. When further the spin of
each particle σ is considered, these four possibilities for pair formations may occur,
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e+, σ; e−,−σ pairs with total momentum q = 0 singlet superconductor
pairs with total spin S = 0

e+, σ; e−, σ pairs with q = 0 triplet superconductor
S = 1

e+, σ;h−, σ pairs with q = 2kF charge density wave
S = 0

e+, σ;h−,−σ pairs with q = 2kF spin density wave
S = 1

The first two states listed here, develop as electron-electron pairs with zero total
momentum, and the interaction channel is called the particle-particle or Cooper channel.
The resulting ground states for these interactions are the well known singlet or triplet
superconducting states in metals. The second two states consist of particle-hole pairs
with a net total momentum of q = 2kF and they result from the divergence of the charge
and spin density fluctuations around q = 2kF . This interaction channel is referred to
as the particle-hole or Peierls channel. The ground-states resulting from these pair
formations are the Charge Density Wave (CDW), for zero total spin, and the Spin
Density Wave (SDW) with a total spin of S = 1 for each electron hole pair. These two
states exhibit a periodic variation of the charge or spin density with a period associated
with the spatial variation of the charge or spin density of λ0 = π/kF . Which of these
four states occurs depends on the properties of the predominant electron-electron and
electron-phonon interactions present in the system.

A.1.4 The Spin Density Wave Groundstate

As the static magnetic order of the Fe-magnetic moments in the Fe-based materials is
referred to as a possible SDW-instability the case of the SDW formation will be outlined
in the following.

The driving force behind the formation of the spin density wave groundstate are the
electron-electron interactions of the conduction electrons in metallic materials. Below the
transition temperature these interactions are sufficiently strong to overcome temperature
related fluctuation effects and as a result the static spatial varying spin density wave
forms. The spin density can be written as,

S(x) =
1

2

∑
k,k′

(
a†k,↑ak′,↑ − a†k,↓ak′,↓

)
e−i(k−k′)x, (A.14)

where a, a† are the creation annihilation operators for particles with wave vector k
and spin ↑, ↓. Since the magnetic response is diverging at q = 2kF the contributions

162



A.1 Spin Fluctuations in Metallic Materials

Figure A.4: The Spin Density Wave modulation illustrated as two charge density modulations
present in the two spin subbands with the black solid line representing the charge density for
the ↑-subband and the red line representing the ↓-subband.

with k′ = k ± 2kF will be dominant and others can be neglected. This then leaves the
expectation value of S(x) to be,⟨

S(x)
⟩
=

1

2

∑
k

(⟨
a†k,↑ak+2kF ,↑

⟩
−
⟨
a†k,↓ak+2kF ,↓

⟩)
ei2kF x + c.c. (A.15)

which can be transformed into,

S = |S|eiϕ =
⟨
n2kF ,↑

⟩
=
∑
k

⟨
a†k,↑ak+2kF ,↑

⟩
(A.16)

= −
∑
k

⟨
a†k,↓ak+2kF ,↓

⟩
= −

⟨
n2kF ,↓

⟩
.

Here the SDW is expressed in terms of density modulations present in each of the two
spin subbands. It was further assumed that these density modulations have the same
wavelengths but exhibit opposite signs in the two ↑ and ↓ subbands. All this considered,
the spin density then can be described by⟨

S(x)
⟩
= 2|S| cos(2kfx+ ϕ), (A.17)

which leads to a spatial dependent magnetic moment,⟨
µ(x)

⟩
= µ0 cos(2kfx+ ϕ), (A.18)

where µ0 = 4µB|S|. So in an over simplified picture the spin density wave can be
interpreted as two charge density waves present in the two spin subbands, respectively.
The two charge density modulations have identical wavelengths and amplitudes but are
phase shifted by π.

ρ↑(x) = ρ0

(
1 +

∆

vFkFλe

cos(2kfx+ ϕ)
)

(A.19)

ρ↓(x) = ρ0

(
1 +

∆

vFkFλe

cos(2kfx+ ϕ+ π)
)

(A.20)
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Here λe = UN(EF ) is the dimensionless electron-electron coupling strength constant.
Due to the π phase shift between the two charge density modulations of the two ↑ and
↓ subbands, the overall charge density remains constant ρ↑(x)− ρ↓(x) = ρ0. As a result
only a modulation of the spin distribution in k-space occurs but no charge density wave.
The situation for the idealized one dimensional electron gas can easily be transferred
to the situation of a quasi one dimensional case, where only parts of the Fermi surface
exhibit perfect nesting. In this case the expression for the spin density from (A.17) turns
into, ⟨

S(x)
⟩
= 2S cos(Qnesting · r+ ϕ) (A.21)

where 2kF has been substituted with the nesting vector Qnesting which spans the parallel
regions of the Fermi surface. The nesting vector can be a three dimensional vector,
depending on the topology of the Fermi surface. The resulting Spin Density Wave
can either be commensurate or incommensurate, which means that the period of its
modulation either is an integer multiple of the underlying crystal structure or where the
period of its modulation does not fit the modulation of crystal structure.

Collective Excitations of the Spin Density Wave Groundstate

Because of the magnetic nature of the Spin Density Wave and the fact that it can be
interpreted as a superposition of two Charge Density Waves in the ↑ and ↓ subbands,
respectively, the SDW ground-state possesses both charge and spin degrees of freedom,
which results in a variety of collective excitations.

Figure A.5: The phase and amplitude excitations of the Spin Density Wave ground-state in
the q = 0 limit for the ↑- (black solid line) and ↓-subbands (red solid line). Upper panel: phase
excited SDW (dashed lines). Lower panel: amplitude excited SDW (dashed lines). Modifica-
tions of phase and amplitude are illustrated by black and red arrows.

164



A.1 Spin Fluctuations in Metallic Materials

The upper panel of figure A.5 illustrates a so-called phase excitation of the SDW
ground-state. Here the two CDW modulations in the two spin subbands experience a
displacement synonymous to a phase shift. In this case both modulations experience the
phase shift in the same direction. And because both CDW modulations are displaced
in the same direction, no net CDW modulation results from this phase excitation as
ρ↑(x) − ρ↓(x) = const is still valid. As a result, the excitation is restricted to the
SDW groundstate. The bottom panel of A.5 illustrates an amplitude excitation of the
CDW modulations. Here again no net charge modulation results from the excitations,
as the amplitudes of the two CDW modulations become modified in identical fashion
assuring that ρ↑(x) − ρ↓(x) = const is still valid. Obviously it is important that no
net CDW modulation occurs because the picture used here to describe the SDW as a
superposition of two CDW in the two subbands is only a simplified model to illustrate
the spin density modulation. In reality no charge density modulation exists in the
system.

Aside from the charge degree of freedom, the spin degree of freedom and its exci-
tations are the more relevant ones for the iron based superconductors. The collective
excitations in the spin channel form narrow excitation branches in q-ω space for the low
energy and long wave-length region. For this low energy part of the excitation spec-
trum the collective excitations behave very similar to the magnon excitations of local
moment Heisenberg antiferromagnets and thus can be modeled very well using a local
moment approach. The one magnon cross section of a Heisenberg antiferromagnet can
be used to describe the magnon excitations of the Spin Density Wave ground state. The
Hamiltonian which describes the excitations of the SDW modulation is the well known
Heisenberg Hamiltonian,

H =

(
µ

µB

)
Jeff

∑
i,j

Si · Sj − gµH
∑
i

Si. (A.22)

Here µ/µB = 4|S| is the reduced effective magnetic moment of the SDW modulation.
It usually deviates from the magnetic moment of the local moment model which corre-
sponds to the number of unpaired electrons located at the magnetic ions in the system.
In itinerant systems the effective magnetic moment can have any value and usually is
not of integer value.

For a more detailed discussion on the topic of spin and charge density waves please
turn to [251].
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A.2 Details of Time-of-Flight Neutron Data
Treatment

A.2.1 The Resolution of a ToF Instrument

One very important property of any scattering instrument is its resolution, as the ob-
tained intensity of every scattering experiment always is a convolution of the scattering
function S(Q,ω) and the instrumental resolution R(Q,ω). The instrumental resolution
will impact the accuracy of determining the exact value for both the momentum and
energy transfer, as it will introduce additional uncertainties to the measurement. In this
part, where resolution effects only will be introduced in a brief manner, the focus will
be on the energy resolution only. In a later passage a more detailed investigation on
resolution effects will also touch the wave-vector part of the resolution function.

The energy resolution is a function of time-of-flight of the scattered neutrons and
consists of several contributions by components of the instrument, introducing uncer-
tainties to the actual time-of-flight of the detected neutrons. Some of these instrument
components which contribute to the resolution, affect the time-of-flight of the detected
neutron by either adding uncertainties concerning the neutron velocity, or by adding
uncertainties concerning the neutrons’ flight paths. The most important contributions
affecting the energy resolution in a ToF experiment are introduced here.

• Finite pulse widths of the incident neutron pulse. The width of the neutron pulse
here is considered in terms of time-of-flight, which leaves a large pulse width to
correspond to a large uncertainty in times-of-flight. Consequently each chopper
used in the spectrometer will produce an uncertainty caused by the finite opening
time, which will result in a finite width of the pulse and a finite time velocity
distribution of the incident neutrons. The most important to name here, are the
pulse shape chopper located right behind the moderator. It modifies the shape
of the pulse emitted by the moderator. Or if no pulse shape chopper is used, the
pulse shape resulting from the incomplete moderation of the incident neutrons.
The second to name is the sample chopper, which is located close to the sample
and extracts a certain velocity out of the incoming neutron pulse. The finite pulse
widths finally result in an uncertainty in time-of-flight of the detected neutrons.

• Inaccuracies in the determination of the exact flight path of the neutrons, which
results in an uncertainty in time-of-flight of neutrons traveling that flight path.
One component to name here, are the sample properties, such as dimensions or
mosaicity, which result in a flight path difference of neutrons scattered at different
parts of the sample. The second component is the finite volume of the detector
tube, which also leads to an uncertainty in flight path and finally to an inaccuracy
in time-of-flight of the detected neutrons.
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• The instrument dimensions will have an influence on the accuracy in determination
of the times-of-flight. First, long flight paths will reduce the impact of the relative
flight path inaccuracies caused by the finite volumes of the sample and detector,
as well as the relative time-of-flight uncertainties due to the finite pulse widths, as
it will increase the overall time-of-flight. Second, long flight paths, especially L1,
pulse shape chopper to sample chopper distance, will help to separate fast from
slow neutrons and thus helps to reduce the velocity distribution after the sample
chopper.

• Like the instrument dimensions, the neutron velocity also affects the impact of
the uncertainties caused by the pulse widths and flight path differences, as high
velocities and consequently short times-of-flight increase the relative ToF uncer-
tainties leading to a poor resolution, whereas low velocities and consequently long
ToF’s reduce the impact of the relative uncertainties and result in higher resolution.

If the time-of-flight uncertainties, which are caused by the finite opening times of the
pulse shape chopper and the sample chopper are taken into account and labeled as
∆tp and ∆tc, respectively, and if further the various contributions to the flight path
uncertainties are merged into ∆L, the energy resolution of a classical ToF instrument
reads as follows,

∆ω =

√(∂ω
∂tp

∆tp

)2
+
(∂ω
∂tc

∆tc

)2
+
(∂ω
∂L

∆L
)2
. (A.23)

A.2.2 Resolution Correction for the Spin Wave Analysis

All formulas regarding the energy- or Q-dependence of the instrumental resolution used
in this section are taken from reference [252].

As previously mentioned, the intensity obtained via a neutron scattering experiment
always results from a convolution of the scattering function S(Q,ω), which carries all
the information about the intrinsic properties of the sample, and a resolution function
R(Q,ω), which considers the inaccuracies in determination of the momentum- and
energy-transfers, caused by components of the instrument. For some experiments the
distortion of the obtained signal by resolution effects can become that serious that a
subsequent correction of the data for these resolution contributions is essential. The
instrumental resolution also is an important factor when choosing the right experi-
mental set up for a particular experiment. For triple-axis experiments for example
choosing between the focusing and de-focusing geometry will affect the detected signal
in a dramatic way, as a clean narrow peak on the focusing side turns a broad hump
undistinguishable from background for a de-focusing geometry. This is of course an
extreme case, but it shows that the instrumental resolution can be a critical factor
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and often needs to be taken into account during the data treatment. In this part
the issue of resolution correction and how it has been performed in the course of
the data treatment of the time-of-flight data which was obtained at the cold chopper
spectrometer AMATERAS shall be outlined.

As discussed in chapter 5, the spin wave analysis of the time-of-flight data was
performed using the tobyfit program [210]. This software was developed at the ISIS
neutron scattering facility, for modeling magnetic excitation spectra obtained via
ToF experiments. It uses Monte-Carlo methods to convolute user defined scattering
functions with resolution functions, considering the instrumental resolution, and
perform least square fits to several data sets simultaneously. tobyfit is a well accepted
tool for the treatment of magnetic excitation spectra obtained by time-of-flight neutron
experiments, plus it is well documented and available even for external users. This and
the fact, that no comparable software is available from J-PARC still to this time, lead
to the decision to apply this software for the data treatment. However, tobyfit was not
necessarily the perfect solution for the data treatment, mainly because the software
has been developed at ISIS exclusively for data treatment of data obtained using ISIS
instruments, and more importantly it was not possible to implement a customized
resolution function for the experimental set up that was used at AMATERAS. Instead
tobyfit considers the instrumental resolution in a way where the instrument and
set up can be chosen from a set of several ISIS instruments and various possible
experimental set ups and the resulting resolution is then automatically implemented
into the fitting process. Thus a more indirect path was needed in order to consider
the instrumental resolution in the data treatment of the AMATERAS data. So instead
of implementing the correct resolution function for the experiments right away, the
resolution for AMATERAS with the particular experimental set up was calculated,
and then compared to the resolution for a specific ISIS instrument and a specific
experimental set up. This instrument and the set of experimental parameters, which
produced a resolution matching the AMATERAS resolution was then used in tobyfit to
represent the instrumental resolution, during the spin wave fitting process. Details of
this resolution correction will be outlined here.

For the spin wave data analysis, only the energy part was considered, whereas the Q-
part of the resolution function was neglected. This was done because it was not possible
to determine the Q-part of the resolution for the ISIS instruments, and therefore, it did
not make sense to calculate the Q-resolution for AMATERAS. Thus the function used
to evaluate resolution effects in the experiment reads as,

∆ω =
mn

~
·

{( v3i
L1

+
v3fL2

L1L3

)2
δt2p +

( v3i
L1

+
v3f (L1 + L2)

L1L3

)2
δt2c +

( v3f
L3

)2
δt2d

}1/2

(A.24)

where,
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• ~ω = mn/2 · (v2i − v2f ) is the neutron energy transfer

• mn is the neutron mass

• vi and vf are the initial and final neutron velocities

• L1 is the distance from the pulse shaping chopper to the sample chopper

• L2 is the distance from sample chopper to the sample

• L3 is the sample-detector distance

• δtp is the pulse width at the pulse shaping chopper

• δtc is the pulse width at the sample chopper

• δtd is the uncertainty of the time-of-flight in the secondary spectrometer resulting
from physical extension of the sample and the neutron detection volume

Equation (A.24), expresses the energy part of the resolution function for a disc chopper
time-of-flight spectrometer [252] and thus should be suitable for AMATERAS, which in
fact is a disc chopper instrument. Similar to what has been introduced as the energy-
resolution for a ToF instrument in (A.23), the main contributions in (A.24) result
from the pulse widths at the two choppers, the pulse shape chopper and the sample
chopper, with the third contribution coming from the time-of-flight uncertainties caused
by the finite dimensions of the sample and the detection volume. In the calculation
for AMATERAS none of the other choppers operated at AMATERAS have been con-
sidered. Even though these in principle also contribute to the time-of-flight uncertainties.

After calculating the energy resolution for several different incident neutron energies
via equation (A.24) the CHOP program [253] was used to find an ISIS instrument with an
experimental set up, that matched the calculated energy resolution of the experiment.
CHOP is a software tool used at ISIS in order to simulate the energy resolution and
neutron flux for a given ISIS instrument and specific experimental set up. Using CHOP
produced a set of hypothetical experimental parameters, which later would be used in
the spin wave analysis. The parameters considered by CHOP to simulate the energy
resolution are: the dimensions of the instrument, the Fermi chopper properties and
the moderator properties. The sample properties are neglected in CHOP as it only
considers contributions by the instrument. Sample contributions were introduced into
the resolution function via tobyfit at a later stage. Consequently in the calculation for
AMATERAS using (A.24) sample contributions were also neglected, as they would have
the least impact of the three terms anyway.

ISIS instruments all use Fermi choppers instead of disc choppers to select the wave-
length or neutron velocity of the incident neutrons. Fermi choppers have a different
contribution to the instrumental resolution than disc choppers which cannot necessarily
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be compared to each other. Thus the Fermi chopper properties play the part of the
sample chopper, and replace the second term in (A.24). In addition to this, the moder-
ator contributions would replace the contributions of the pulse shape chopper expressed
in the first term of (A.24). The moderator contributions to the instrumental resolution
were determined via the Ikeda-Carpenter model. The moderator, which is placed behind
the source thermalizes the incoming neutrons, which means a reduction of the neutron
velocities via inelastic scattering processes between the incoming neutrons and the mod-
erator material. However not all neutrons are slowed down in the same way, and as
result neutrons with varying velocities are emitted by the moderator, which corresponds
to a neutron pulse with certain pulse width. Ikeda and Carpenter [254] have developed
a model to describe this influence on the pulse shape of the incoming neutron pulse by
the moderator and their model gives a description for the transmission probability for
incoming neutrons, regarding time and neutron velocity,

P (v, t) = (at)2e−at
⊗

[(1−R)δ(t) +Re−bt]

=
2

a

{
(1−R)(at)2e−at +R

a2b

(a− b)3

× [2e−bt − [2 + 2(a− b)t+ (a− b)2t2]e−at]
}
, (A.25)

where
⊗

denotes a convolution and δ(t) is the Dirac δ-distribution. The first term of the
moderator speed-time distribution is considered the slowing-down term and describes
the neutrons, which leak out of the moderator without complete thermalization.
Whereas the second term (the storage term) represents the time distribution of the
thermalized neutrons. According to equation (A.25), three parameters contribute to
the speed-time distribution, a = Σvt with Σ which is the macroscopic neutron cross
section of the moderator material, b the inverse time constant for the storage term and
R, which illustrates a switch function between these two terms and which is expressed
in terms of a Boltzmann-function R = exp(−~ω/~ω0), where ~ω is the neutron energy
and ~ω0 = fkBTmod is a characteristic energy for the moderator with Tmod being the
moderator temperature and f a scaling factor. The different parameters in (A.25)
can be determined by fitting the Ikeda-Carpenter model to the incoherent elastic
line of the excitation spectrum from a vanadium standard sample. Since vanadium
is an almost perfect incoherent scatterer, the scattered intensity has no wave-vector
dependence which means, that almost no Bragg peaks occur. Thus the shape of the
elastic line3 then corresponds to the speed-time distribution of the incoming neutrons,
in other words it depicts the pulse shape of the incoming neutrons transmitted by the
moderator. Unfortunately, due to the sudden ending to the experiments caused by
the severe earthquake in Japan on 11th March 2011, it was not possible to perform
a measurement on a vanadium sample during the experiments at AMATERAS. So in

3The term elastic line means the region of the spectrum with zero energy transfer. By performing an
energy cut through this region the shape (in energy) of the elastic line can be determined.
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order to determine moderator parameters the Ikeda-Carpenter model was fitted to the
incoherent elastic line of the sample scans. A Qh − Qk-integration range was chosen,
for which magnetic or nuclear Bragg peaks are absent and thus all scattered intensity
in the elastic line would be completely of incoherent nature, Qh = 1.3 − 2.7 [r.l.u.],
Qk = −0.5− 0.5 [r.l.u.]. Figure A.6 shows the energy cut, which was performed at this
particular Qh − Qk integration window and the solid line depicts the best fit of the
Ikeda-Carpenter model to the data. The resulting values for the moderator contribution

−10 0 10 20 30 40
0

20

40

60

80

100

120

140

160

E
i
=94meV T=80 K

Energy Transfer [meV]

In
te

n
s
it
y
 [

a
rb

. 
u

n
it
s
]

Figure A.6: Constant Q-cut at the
Qh − Qk integration range Qh =
1.3 − 2.7 [r.l.u.] ; Qk = −0.5 − 0.5
[r.l.u.]. The displayed data was ob-
tained for a sample temperature of
80 K and an incident neutron energy
of 94 meV. The shown data is not
corrected for the thermal-population
factor and thus features the scatter-
ing function S(Q, ω). The red solid
line is the best fit to the data of
the Ikeda-Carpenter model, which was
used to determine the moderator con-
tributions to the pulse shape. The red
dashed line represents the background
which was fitted simultaneously to the
model.

were then used in CHOP to determine the Fermi chopper parameters for MARI. All the
parameters, Fermi chopper, moderator, instrument dimensions and sample properties
were then combined in tobyfit to produce the resolution function for the fitting process.

Figure A.8 shows a collection of plots of the energy resolution for different energy
transfers a) calculated with CHOP for MARI calculated via equation (A.24) for AMAT-
ERAS and b) calculated via equation (A.24) for AMATERAS.

Summarizing, a set of experimental parameters for the instrument MARI was pro-
duced, which result in an energy resolution matching the one calculated for AMATERAS
using equation (A.24). Using the CHOP program produced a set of Fermi chopper prop-
erties whereas the moderator properties were received by fitting the Ikeda-Carpenter
model to an energy cut through the elastic line of the ToF data. These moderator
parameters were then introduced to CHOP and were used to determine the chopper pa-
rameters. As the next step, all the parameters were combined with the sample properties,
dimensions and mosaicity, and spectrometer dimensions, to represent the instrumental

171



A Appendix

Figure A.7: Column a) energy resolution, determined using the CHOP program with a set
of experimental set up parameters and for 11 meV incident neutron energy (upper panel) and
24 meV incident neutron energy (lower panel). Column b) displays the energy resolution of the
instrument AMATERAS, calculated using equation (A.24) for 11 meV incident neutron energy
(upper panel) and 24 meV incident neutron energy (lower panel). The x-axes of the diagrams
represent the energy transfer in meV and the y-axes the energy resolution in meV. The scope
of this figure is to illustrate the reasonable match between the energy resolution calculated for
AMATERAS and the energy resolution which was used for the spin wave fitting using tobyfit.
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Figure A.8: Column a) energy resolution, determined using the CHOP program with a set
of experimental set up parameters and for 42 meV incident neutron energy (upper panel) and
94 meV incident neutron energy (lower panel). Column b) displays the energy resolution of the
instrument AMATERAS, calculated using equation (A.24) for 42 meV incident neutron energy
(upper panel) and 94 meV incident neutron energy (lower panel).. The x-axes of the diagrams
represent the energy transfer in meV and the y-axes the energy resolution in meV. The scope
of this figure is to illustrate the reasonable match between the energy resolution calculated for
AMATERAS and the energy resolution which was used for the spin wave fitting using tobyfit.
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resolution in the fitting process using tobyfit. This indirect approach to the resolution
correction obviously has its flaws, as one has no real grip of the actual properties of
the used resolution function and in principle uses more of an approximation, than the
real instrumental resolution. Especially the Q-part of the used resolution function is not
known, since it was not possible to model the Q-resolution using the CHOP program.
Nevertheless the applied resolution function still seems a reasonable approximation of
the actual instrumental resolution and the impact, of using the not hundred percent
correct resolution function, should not be crucial on the spin wave analysis.

A.2.3 Resolution Correction for the Spin Diffusion Model
Analysis

All formulas regarding the energy- or Q-dependence of the instrumental resolution used
in this section are taken from reference [252].

For the part of the data analysis of the AMATERAS time-of-flight data, using the
spin diffusion models, a different approach for the resolution correction was chosen.
Instead of using tobyfit for this part the fitting of the model as well as the resolution
correction was performed for each 1D constant energy cut individually and afterwards
the corrected results were averaged over all performed fits. In this section some details
of the resolution correction performed during the analysis with the spin diffusion models
will be discussed. In the case of the spin diffusion models, and in contrast to the spin
wave analysis, the energy resolution was completely neglected and the lone focus was
on the wave-vector part of the resolution function. The energy resolution did not play
any role in this part of the data treatment, because each cut was treated separately and
the only interest was in the impact of resolution effects on the Q-broadening. Second,
all constant energy cuts, used for the data analysis, had to be performed over a certain
energy integration range. For low incident neutron energies, up to 24 meV, this energy
integration range was 1-2 meV. For the higher incident energies 42 and 94 meV, this
energy integration increased to 10 and 20 meV respectively. This was necessary, in order
to compensate for low scattering intensities, resulting in poor experimental statistics.
So in all cases the energy integration was much larger, than the energy resolution, which
leaves the energy resolution in principle irrelevant for this part of the data treatment.

The Q-resolution for a disc-chopper spectrometer can be expressed, very similar to
what has been done for the energy-contribution in equation (A.24). Since most of the
contributing terms are angle dependent it simplifies the expression, when splitting the
scattering vector Q into two parts, one parallel Q|| = ki · ê|| and one perpendicular
Q⊥ = ki · ê⊥ to the incident beam direction. These components then read as,

Q|| =
mn

~
· [vi − vf · cos(2θ)] (A.26)

Q⊥ =
mn

~
· [−vf · sin(2θ)] (A.27)

174



A.2 Details of Time-of-Flight Neutron Data Treatment

which leaves the Q-resolution to be,

δQ =
1

Q
· [Q2

||(δQ||)
2 +Q2

⊥(δQ⊥)
2]1/2 (A.28)

where Q is the absolute value of the scattering vector Q and δQ|| and δQ⊥ the following
two expressions,

δQ|| =
mn

~
·

{
1

L2
1

·
(
v2i + v2f ·

L2

L3

· cos(2θ)
)2

· δt2p

+
1

L2
1

·
(
v2i + v2f ·

L1 + L2

L3

· cos(2θ)
)2

· δt2c

+
( v2f
L3

· cos(2θ)
)
· δt2d + (vf · sin(2θ))2 · (δ2θ)2

}1/2

(A.29)

δQ⊥ =
mn

~
·

{( vfL2

L1L3

· sin(2θ)
)2

· δt2p

+
( v2f
L1

· L1 + L2

L3

· sin(2θ)
)2

· δt2c

+
( v2f
L3

· sin(2θ)
)
· δt2d + (vf · cos(2θ))2 · (δ2θ)2

}1/2

(A.30)

with δ2θ representing the Q-uncertainty resulting from sample mosaic, beam diver-
gence and other factors. All other parameters have the same meaning, as explained
before for the case of the energy resolution.

The spin diffusion model, which was used in the data analysis, is mathematically very
similar to a Lorentzian peak function and both functions have almost identical peak
shapes, which is illustrated in figures A.9 b) and e) for low and high energy transfers.
Further, can be seen in figures A.9 a) and d), that the peak shape of the diffusion model
is also very similar to the peak shape of a Voigt profile. The procedure of the resolution
correction was based on these similarities, and instead of convoluting the diffusion model
with the Q-resolution from (A.28) and fitting the resulting function to the data, which
is not a trivial task for two rather complex functions, an approximation of the resolution
effects was made by fitting the Lorentz and Voigt profiles to the data and comparing
the relative changes in peak widths of the Lorentzian and the Lorentzian part of the
Voigt profile. Just as a quick reminder, a Voigt profile is a convolution of a Gaussian
and a Lorentzian peak function. So in this case the Gaussian part of the Voigt profile
was interpreted as the Q-dependence of the resolution function and the complete Voigt
profile as a resolution convoluted Lorentzian peak function, where further the Lorentzian
part was interpreted as an approximation of the diffusion model. Further it was assumed
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that the Q-dependence of the resolution function would have a shape similar to the one
of a Gaussian peak function. So, the Q-resolution was calculated for several incident
neutron energies and energy transfers using equation (A.28), the resulting value was
interpreted as the peak width of the Gaussian part of the Voigt profile, the Gaussian
width was held fixed at this value and only the Lorentzian part of the Voigt was fitted to
the data. As the next step the Lorentzian peak function was fitted to the data and the
two Lorentzian widths, the one of the Lorentz part of the Voigt profile and the width of
the real Lorentz peak function, were compared afterwards. The broadening of the real
Lorentzian relative to the Lorentzian part of the Voigt profile was then identified as the
resolution effect, and was later used to correct the results from the spin diffusion model
fits for the resolution effects. As already mentioned in chapter 5, each correlation length,
obtained from each single cut, was corrected for its relative resolution effect individually
and the corrected values were then averaged, to give the final result for the resolution
corrected correlation lengths. The resolution broadening which was obtained for the
longitudinal cuts was also applied for the transverse direction.

This whole procedure to correct the resolution effect on the Q-broadening, of course
again has its weaknesses, especially that the diffusion models were not directly convo-
luted with the resolution function but rather an approximation of the possible resolution
effects was performed. However, both Lorentzian and Voigt peak profiles match the peak
profile of the diffusion model very well, for the low energy range below 35 meV energy
transfer, and still reasonably well for energy transfers above 35 meV. In addition, by
comparing the Lorentzian peak widths, obtained by the Lorentzian and the Voigt fits, a
broadening of the Lorentzian peaks of less than 5%, for energy transfers lower than 25
meV, and around 9% for energy transfers above 25 meV was observed. Consequently,
even the uncorrected values, obtained via the analysis with the diffusion models, still are
absolutely reasonable. This also provides some confidence that the results, obtained via
the spin wave fitting, are not heavily distorted by resolution effects. The incompleteness
of the obtained data, very likely, has a much greater impact on the outcome of the spin
wave analysis anyway.
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Figure A.9: Collection of constant energy cuts in Qh-direction. The upper row features cuts
performed at energy transfer 13.5 meV, whereas the lower row features cuts performed at 60
meV energy transfer. Solid red and black lines are best fits of Voigt profile and Lorentzian
peak functions as well as the diffusion model. The scope of this figure is to show the decent
agreement of the Q dependencies of the three peak functions, for the energy range between
13.5 meV and 60 meV. All depicted data have been corrected for the thermal-population factor
and therefore represent the dynamical magnetic susceptibility of the system χ′′(Q, ω).
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A.3 Additional Data

A.3.1 FeTe0.5Se0.5 Transverse Constant Energy Scans
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Figure A.10: (a)-(e) Transverse constant energy scans performed at 6 K (a) and (b), 110
K (c) and (d) and 200 K (e). The presented intensities were obtained for x-polarization and
for spin flip scattering and therefore illustrate purely magnetic scattering intensity. The scans
were performed at QAFM=(0.5, 0.5, 0) in the first Brillouin zone (a), (c) and QAFM=(1.5,
1.5, 0) in the second Brillouin zone (b), (d) and (e). Solid lines are fits with Gaussian peak
functions. The peak positions obtained through these fits were used to create the dispersion
relation illustrated in figure 7.4.
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