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Abstract
Assembly of nanoparticles into highly ordered two- or three-dimensional ar-
rays is a prerequisite to achieve their application in novel functional devices.
The unique properties of such ensembles differ significantly from those of indi-
vidual nanoparticles. The assembly techniques have to be able to control the
arrangement of nanoparticles over large areas and should be suitable for indus-
trial applications. In the present work, novel, simple and inexpensive assembly
approaches used to achieve highly ordered two- and three-dimensional arrange-
ments of nanoparticles, are presented. Also, an extensive determination of the
structural and the magnetic correlations of the obtained systems has been per-
formed using advanced scattering methods.

Among a variety of common assembly techniques, drop-casting is one of the
prospective approaches because of its simplicity. Although drop casting has
shown its potential to form ordered nanoparticle arrangements, the formation of
uniform nanoparticle arrays over large areas remains a challenging subject. Here,
we introduce an improved variant of the drop-casting method and demonstrate
the formation of large-area highly ordered monolayers of silica nanospheres on a
silicon substrate. In our method, the addition of stearyl alcohol to the colloidal
nanoparticle dispersion assists the assembly of SiO2 nanospheres with a size of
50 nm into a highly ordered arrangement. We reveal that the NPs concentration,
the stearyl alcohol concentration, the volume of the droplet, and the annealing
time are key factors in the self-assembly in our method. The SiO2 nanosphere-
monolayers contain almost no cracks and voids. Structural characterization
of the obtained silica NP monolayer was done locally by Scanning Electron
Microscopy (SEM), and globally by X-Ray Reflectivity (XRR) and Grazing In-
cidence Small-Angle X-ray Scattering (GISAXS), where the data is reproduced
by simulation within the Distorted Wave Born Approximation (DWBA). This
allows one to make unbiased conclusions that the heat treatment in combination
with a compatible additive with a melting point significantly below that of the
particles, can be a general method to improve the ordering between particles in
monolayers as well as in multilayers.

Also, in this thesis, 2D arrays of cobalt ferrite (COF) nanodots on silicon sub-
strates were used to determine the effects of dipolar interparticle interactions
on the magnetic properties of self- assembled structures of magnetic nanopar-
ticles. GISAXS and SEM confirm a close-packed hexagonal order of the NP
monolayer. Atomic force microscopy (AFM) provides information about the
interparticle distance and XRR provides the depth profile of the 2D nanodots
monolayer. Simulation of the GISAXS pattern reveals that the particles have a
hemispherical shape with a height of 10 nm, a radius of 8.5 nm and a hexagonal



structure with a lattice constant of 34 nm. Temperature and field dependent
magnetization measurements were performed using a superconducting quantum
interference device (SQUID). The hysteresis loops in plane and out-of-plane di-
rections reveal an in-plane easy direction. Also, a superparamagnetic behavior
is obtained in-plane at room temperature and below while, out-of-plane super-
paramagnetism with an additional opening at low and large fields is observed
at room temperature and below. The blocking temperature has been deter-
mined from magnetization measurements after zero- and field-cooled protocols.
It was found to be higher than 300 K in both direction. Moreover, a decrease of
the in-plane FC magnetization is detected due to the interparticle interaction.
The magnetic depth profile of the 2D COF nanodots could be deduced from
polarized neutron reflectometry (PNR). Half polarized neutron reflectometry at
saturation field shows a small splitting between up and down channels is visible.
This is an indication to a small in-plane magnetization component parallel to
the applied magnetic field. While the sample magnetization approach a demag-
netized state with zero net magnetization at remanence filed.

In addition, trench patterned silicon substrates of 50-100 nm width were fab-
ricated using electron beam lithography and used as a template for assisted
self-assembly of nanoparticles in order to reach 3D single crystalline arrange-
ments of nanoparticles and to investigate the magnetostatic interaction between
nanoparticles. The trench patterned substrates where characterized locally by
SEM and globally by GISAXS and XRR. Three dimensional arrangements of
iron oxide nanocubes with an edge length of 14(1) nm were obtained using dip
coating method. GISAXS shows a large coherence length in both, in-plane and
out of plane arrangement of the nanoparticles. Additionally, no correlation be-
tween the structural arrangement of nanoparticles and the geometry of trench-
patterned substrates is concluded. The nanoparticles arranged in-plane into2D
hexagonal lattice and into FCC structure oriented in its (111) out-of-plane di-
rection. From the hysteresis loops, an anisotropy in the magnetic properties
is observed and an exchange Bias (EB) is visible at low temperature. More-
over, a decrease in the FC magnetization is observed which is an indication of
dipolar interaction between nanoparticles. This leads to demonstrate that spa-
tial confinement can be employed to induce nanoparticle assembly in trenches
and might provide a promising route toward nanoscale devices with tunable
anisotropic properties.



Zusammenfassung
Die Anordnung von Nanopartikeln zu hochgeordneten zwei- oder dreidimension-
alen Strukturen ist für deren Anwendung in neuartigen funktionalen Bauteilen
von wesentlicher Bedeutung. Die physikalischen Eigenschaften solcher wech-
selwirkender Ensembles unterscheiden sich stark von denen einzelner Nanopar-
tikeln. Darüber hinaus sollten die Herstellungsverfahren in der Lage sein, die
Anordnung von Nanopartikeln über große Flächen zu ermöglichen und sie soll-
ten möglichst für industrielle Anwendungen geeignet sein. In der vorliegenden
Arbeit werden neuartige, einfache und kostengünstige Assemblierungsansätze
vorgestellt, die das Erzielen von hochgeordneten zwei- und dreidimensionalen
Anordnungen von Nanopartikeln ermöglichen. Außerdem wurde eine Bestim-
mung der strukturellen und magnetischen Korrelationen der erhaltenen Systeme
unter Verwendung unterschiedlicher Streumethoden durchgeführt.

Unter einer Vielzahl gängiger Herstellungsmethoden ist das „drop-casting“ auf-
grund seiner Einfachheit einer der vielversprechendsten Ansätze. Obwohl dieses
Verfahren gezeigt hat, dass es geordnete Nanopartikel-Arrays bilden kann, bleibt
die Herstellung einheitlicher Nanopartikel-Anordnungen über große Flächen ein
herausforderndes Thema. Hier stellen wir eine verbesserte Variante des Drop-
Casting-Verfahrens vor und demonstrieren die Bildung großflächiger hochge-
ordneter Monoschichten von Silica-Nanokugeln auf einem Siliziumsubstrat. Bei
unserer Methode unterstützt das Hinzufügen von Stearylalkohol zu der kol-
loidalen Nanopartikeldispersion die Anordnung von SiO2-Nanokugeln mit einer
Größe von 50 nm zu einer hochgeordneten Struktur. Wir zeigen, dass die
NP-Konzentration, die Stearylalkoholkonzentration, das Tröpfchenvolumen und
die Temperzeit Schlüsselfaktoren für die Selbstorganisation in unserer Meth-
ode sind. Die Silika-Nanokugeln-Monoschichten weisen fast keine Risse und
Leerstellen mehr auf. Die strukturelle Charakterisierung der erhaltenen SiO2-
NP-Monoschicht erfolgte lokal durch Rasterelektronenmikroskopie (SEM) und
global durch Röntgenreflexion (XRR) und Kleinwinkel-Röntgenstreuung unter
streifendem Einfall (GISAXS). Dabei gelingt es, die Daten durch Simulation
innerhalb der Distorted Wave Born Approximation (DWBA) zu reproduzieren.
Dies ermöglicht die unvoreingenommene Schlussfolgerung, dass die Wärmebe-
handlung in Kombination mit einem kompatiblen Additiv mit einem Schmelzpunkt,
der deutlich unter dem der Partikel liegt, eine allgemeine Methode zur Verbesserung
der Ordnung zwischen Partikeln in Monoschichten und Mehrfachschichten sein
kann.

In dieser Arbeit wurden auch 2D-Arrays von Kobaltferrit (COF) -Nanopunkten
auf Siliziumsubstraten verwendet, um die Auswirkungen der dipolaren Inter-
partikelwechselwirkung auf die magnetischen Eigenschaften selbstorganisierter



Strukturen magnetischer Nanopartikel zu bestimmen. GISAXS und SEM bele-
gen eine dicht gepackte hexagonale Ordnung der NP-Monoschicht. Die Rasterkraft-
mikroskopie (AFM) liefert Informationen über den Abstand zwischen den Par-
tikeln und XRR liefert das Tiefenprofil der 2D-Nanopunkt-Monoschicht. Die
Simulation der GISAXS Daten zeigt, dass die Partikel eine halbkugelförmige
Gestalt mit einer Höhe von 10 nm, einem Radius von 8.5 nm und einer hexag-
onalen Struktur mit einer Gitterkonstante von 34 nm aufweisen. Temperatur-
und feldabhängige Magnetisierungsmessungen wurden unter Verwendung einer
supraleitenden Quanteninterferenzvorrichtung (SQUID) durchgeführt. Die Hys-
tereseschleifen in der Ebene und senkrecht dazu zeigen, dass die leichte mag-
netische Richtung in der Ebene liegt. In der Substratebene wurde sowohl bei
Raumtemperatur als auch darunter ein superparamagnetisches Verhalten gefun-
den, während senkrecht dazu Superparamagnetisches mit einer zusätzlichen Öff-
nung bei niedrigen und hohen Feldern auftritt. Die Blockiertemperatur wurde
aus Magnetisierungsmessungen nach null- und feldgekühlten Protokollen bes-
timmt. Es wurde festgestellt, dass es in beiden Richtungen höher als 300 K
ist. Darüber hinaus wird aufgrund der Wechselwirkung zwischen den Par-
tikeln eine Abnahme der FC-Magnetisierung in der Ebene festgestellt. Das
magnetische Tiefenprofil der 2D-COF-Nanopunkte konnte aus der polarisierten
Neutronenreflektometrie (PNR) abgeleitet werden. Die halbpolarisierte Neutro-
nenreflektometrie im Sättigungsfeld zeigt, dass eine kleine Aufteilung zwischen
Aufwärts- und Abwärtskanälen sichtbar ist. Dies ist ein Hinweis auf eine kleine
Magnetisierungskomponente in der Ebene parallel zum angelegten Magnetfeld.
Während sich die Probenmagnetisierung einem entmagnetisierten Zustand mit
einer Nettomagnetisierung von Null bei Remanenz nähert.

Zusätzlich wurden grabenstrukturierte Siliziumsubstrate mit einer Grabenbreite
von 50 bis 100 nm unter Verwendung von Elektronenstrahllithographie hergestellt
und als Vorlage für die unterstützte Selbstorganisation von Nanopartikeln ver-
wendet. Ziel war die Herstellung einkristalliner 3D-Anordnungen von Nanopar-
tikeln um die magnetostatische Wechselwirkung zwischen diesen Teilchen zu
bestimmen. Die mit Gräben strukturierten Substrate wurden lokal durch SEM
und global durch GISAXS und XRR charakterisiert. Dreidimensionale Anord-
nungen von Eisenoxid-Nanowürfeln mit einer Kantenlänge von 14 (1) nm wur-
den unter Verwendung eines Tauchbeschichtungsverfahrens erhalten. GISAXS
zeigt eine große Kohärenzlänge sowohl in der Ebene als auch außerhalb der
Ebene der Nanopartikel. Darüber hinaus wird auf keine Korrelation zwischen
der strukturellen Anordnung von Nanopartikeln und der Geometrie von Sub-
straten mit Grabenmuster geschlossen. Die Nanopartikel sind in einem hexag-
onalen 2D-Gitter in der Ebene und in einer FCC-Struktur angeordnet, die in
ihrer (111-Richtung) senkrecht zur Ebene ausgerichtet ist. Aus den Hystere-
seschleifen wird eine Anisotropie der magnetischen Eigenschaften geschlossen



und bei niedriger Temperatur ist ein „Exchange Bias“ (EB) sichtbar. Darüber
hinaus wird eine Abnahme der Magnetisierung nach Feldkühlung beobachtet,
was ein Hinweis auf eine dipolare Wechselwirkung zwischen den Nanopartikeln
ist. Dies führt zu dem Nachweis, dass räumliche Begrenzung verwendet wer-
den kann, um die Anordnung von Nanopartikeln in Gräben zu induzieren, und
einen vielversprechenden Weg zu nanoskaligen Bauelementen mit einstellbaren
anisotropen Eigenschaften beschreiten zu könnte.
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1. Introduction

"There’s Plenty of Room at the Bottom”, one of P. Feynman’s famous
lectures in 1959. What he was referring to at this time is the tremendous po-
tential for technological applications in the nanometer regime and even below.
During the decades that followed up to the present day, the emerging field of
nanotechnology has claimed more and more of this room. Nowadays, various
nanotechnological applications can be found within reach or already in indus-
trial production such as microprocessors using nm-sized functional elements [1]
organic photovoltaic devices [2] bioactive nanoparticles [3], carbon nanotubes
for energy storage [4, 5], medicine [6, 7], energy production and storage [8, 9] or
electronics and information technology [10, 11]. However, the field of applica-
tions is exciting, but it is only one side of the coin. The flip side is the ability
to prepare or fabricate such systems which are suitable for such applications
and to perform useful and accurate measurements of relevant novel properties
in the nanometer regime. Typically, recent nanotechnological applications de-
mand, firstly fabrication suitable nanostructure systems with novel properties,
secondly, appropriate tools or techniques to understand, characterize, control,
and make use of the underlying principles of these systems.

Monodispersed magnetic nanoparticles are of interest for both technological
and fundamental reasons. One of the reasons for that trend is that, besides be-
ing promising candidates for further increasing the density of magnetic storage
devices towards the Terabyte per inch squared [12], the magnetic interaction
between neighbouring particles is becoming a more and more important param-
eter that has to be understood and controlled . The magnetic configurations
are best investigated if the nanoparticles are disposed on a regular 2D or 3D
lattice. Magnetic nanoparticles are hereby interesting for the study of dipolar
interparticle interaction. As dipolar interaction depends on the relative distance
and orientation of two magnetic moments, the degree of structural order is di-
rectly correlated to the nature of the interparticle interaction. As a matter of
fact, the magnetic interaction between atoms in bulk materials is well known
(direct and indirect exchange coupling) [13], the magnetostatic interaction be-
tween nanoparticles and the magnetic configurations it leads to are not well
known. To the best of my knowledge, this interaction and the collective be-
haviour it leads to have been mainly deduced from macroscopic magnetization
measurements [14, 15] on assemblies of nanoparticles showing only short range
order.

The development of magnetism is a story of the development of modern civ-
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1. Introduction

ilization itself. Over the past decades, a significant development of magnetism
occurred and the research in magnetism evolved towards the study of nanometre-
sized objects, leading to new properties and applications. One of the most appli-
cation that added a new dimension to the magnetism application and initiated
a boom in the computer industry is using magnetic hard disk drives for data
storage in the 20th century. Another breakthrough discovery is the giant mag-
neto resistance (GMR) effect discovered in 1988 simultaneously by A. Fert and
P. Grünberg and honored with the Nobel Prize in Physics in 2007 [16, 17], which
led to faster and smaller writing area on a hard disk.

Regular arrangements of magnetic nanoparticles over large areas are funda-
mentally interesting regarding the understanding of magnetic interactions and
for a rational design towards potential applications in information technology
and spintronics devices that make additional use of the spin degree of freedom
in electron currents instead of only the charge [18]. Usually, devices studied
in spintronics are layers of different materials with varying physical properties
where new emergent physics might appear from the combination of these mate-
rials [19].

For the preparation of such nanostructure systems, there are two general ap-
proaches, i.e. top-down and bottom-up processes [14]. Top-down methods such
as lithography [20], molecular beam epitaxy, or vapor deposition require so-
phisticated machines, which are costly [21, 22], and additionally, it considered
inflexible in the material selection [21]. Using these methods, one starts with
larger structures, and then the size of the structure is reduced using different
processes. One of the most known top-down processes is known as photolithog-
raphy. Here, a photoresist layer is used, and the desired patterns can be trans-
ferred from the masks to the substrate after exposure to UV light. This process
is complicated, expensive and the structure resolution is limited to ≈ 10 nm
which can be improved by replacing UV light by an electron beam or x-rays.
But, electron beam lithography (EBL) is very expensive and very slow and x-
rays might destroy the masks. In order to reach higher resolution below ≈ 10
nm, bottom-up processes can be used. The bottom-up processes are an alterna-
tive way that mimics nature’s way in building materials and have the promise to
fabricate structures with precision and cheaper production cost than those con-
ventionally associated with top-down approaches [23]. Here, nanometer sized
building blocks with controllable shape and size are synthesized from the atomic
or molecular level by chemical processes, for example, thermal decomposition,
and higher order nanostructures are prepared by self-assembly methods [23, 24].

In self-assembly, individual components assemble together without any ex-
ternal forces into an ordered structure. This process promises to provide the
framework for the future device fabrication process in a cost-effective way. The
self-organized nanostructure inherits the properties of their small components
and can emerge new, unique, and collective properties from the long-range or-
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der and interacting forces. Moreover, it allows us to create multi-functional
materials by combinations of different physical properties. However, the self-
assembly process requires precise control and a deep understanding of the under-
lying forces and it is still an active field of study [25–27]. Once nanoparticular
building blocks are self-assembled on a substrate a new system produced and
it presents an ideal model to study the interparticle interaction on the length
scales defined by the nanostructure.

Various self-assembly methods used in this study will be introduced later in
Sec. 3.1.2. Using these methods, nanostructures as 2D to 3D arrangements
can be fabricated. There are also approaches combining both top-down and
bottom-up methods, such as templated assisted self-assembly, which is an effi-
cient method and will be introduced later in Sec. 3.1.1. The templates used
in this study are a pre-patterned silicon substrates with a rectangular grooves.
These substrates are used to reach high coherence of the lateral order of the
nanoparticles.

The main aims of this study: first, fabricate a highly ordered two dimensional
and three dimensional arrangements of magnetic and non magnetic nanoparti-
cles under suitable conditions. Second, a proper and a accurate characteriza-
tion of these nanostructures with different dimensions using several experimental
techniques, among these, scattering techniques played a major role. The present
thesis describes three different nanostructures systems obtained from different
nanoparticles and using different techniques. The main focuse of the first sys-
tem is how to achieve highly ordered monolayers of stearyl alcohol grafted silica
nanoparticles over a large area and how to properly characterize them. Here, the
infuence of the volume of the droplet, the concentration of silica particles and
the stearyl alcohol on the surface coverage and the uniformity of the monolayer
is investigated to optimize the proper parameters for the large area monolayers.
The second system focuse on two dimensional arrays of cobalt ferrite nanodots
with a hemospherical shape where the main aim is how to study the mesoscopic
magnetic properties of these nanodots using neutron. The third system focuse
on how to achieve highly ordered three dimensional arrangments of cubic mag-
netic nanoparticles using patterned substrates. Thus, the influence of pattern
dimensions and geometry, particle shape and size is systematically investigated
by SEM and GISAXS to optimize the sample preparation.
In all systems, the structural characterization is done locally via imaging tech-
niques (SEM and AFM) and globally using X-ray techniques (XRR and GISAXS).
Simulations of the GISAXS data based on Distorted-wave Born approximation
(DWBA) are carried out to gain a deeper understanding of the sample structure.
The macroscopic magnetic properties is investigated using SQUID magnetome-
ter.
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Concept

Three different nanostructures systems are studied in this thesis, where these
systems primarily fabricated differently by using different preparation methods
as well as different types of nanoparticles. One of these systems is dealing with
non-magnetic nanoparticles with a focus on prepare long-range ordered mono-
layers of nanoparticles in a two-dimensional lattice and the other two systems
are dealing with magnetic nanoparticles with focus on determining effects that
result from collective magnetism. First, the nanoparticles are studied separately
in dispersion to determine the non-interacting state. Subsequently, the obtained
nanostructures are characterized structurally to determine the degree of order
in the sample.

This thesis is formatted into eight chapters. In Ch.2, a brief introduction
about magnetism with a focus on a description of various types of interactions
relevant for self-assembly at the nanoscale as well as the four types of magnetic
orders which are the most frequently mentioned in the following chapters is
given. Furthermore, a literature study of the self-assembly process and a brief
discussion of the scattering theory is described in this chapter since various scat-
tering techniques are used extensively for the investigation of our systems. Ch.3
provides a brief review of different characterization techniques and tools used
for scattering, imaging, and magnetization measurements. In Ch.4, the mea-
surements, and analysis of GISAXS data obtained from surface gratings with
structure periodicity ranging from almost 300 nm down to 78 nm are described.
Different ‘direct’ data analysis methods were implemented to determine struc-
tural parameters such as grating pitch, groove width, and line-height directly
from the data, i.e. without numerical modeling. Then, inCh.5 a method to pre-
pare long-range ordered monolayers of silica nanoparticles in a two-dimensional
lattice is presented and studied. The monolayer study is extended in Ch.6 to a
layer of a hemispherical cobalt ferrite nanoparticles in a two-dimensional lattice
that is prepared by high-temperature treatment. And finally, in Ch.7, a three-
dimensional arrangement of iron oxide nanocubes obtained using templated as-
sisted self-assembly method is discussed. The conclusion and an outlook have
been provided in Ch.8.
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2. Theoretical Background

2.1. Magnetism

Electrons carry an intrinsic magnetic moment arising from its intrinsic properties
of spin and electric charge and it has an orbital angular momentum that comes
from it’s orbiting around a nucleus in an atom.
Classically, if a current I flow in a loop of area |d⃗S|, then the magnetic moment
d⃗µ is given:

d⃗µ = Id⃗S (2.1)

The magnetic moment µ for a loop with a finite size is equal to the summation
of the magnetic moments of equal infinitesimal current loops distributed through
the loop area. So, the total magnetic moment is given as:

µ = ∫ d⃗µ = I ∫ d⃗S (2.2)

In atoms the magnetic moment µ⃗ is associated with an orbiting electron lies
along the same direction as it’s angular momentum L⃗, the relation between the
µ⃗ and L⃗ is given as:

µ⃗ = γL⃗ (2.3)

Where γ is a gyromagnetic ratio constant. The energy E of a magnetic moment
µ⃗ in a magnetic filed B⃗ is given by:

E = −µ⃗ ⋅ B⃗ (2.4)

The minimum energy is achieved when the magnetic moment µ⃗ lies along the
magnetic field. The torque G on the magnetic moment is given by:

G⃗ = µ⃗ × B⃗ (2.5)
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Since the magnetic moment µ⃗ is associated with the angular momentum L⃗ by
equation 2.3 and the torque is equal to the change rate of the angular momen-
tum, then, the magnetic moment can be written as:

d⃗µ

dt
= γµ⃗ × B⃗ (2.6)

This means that the magnetic moment precesses around the magnetic field with
a Larmor precession:

ωL = γB (2.7)

The magnetic moment for an electron with a charge e and mass me moving in
an orbit of radius r and speed v:

µL = πr2I = − e

2me

L (2.8)

The current I = e
τ = ev

2πr , where τ is the orbital period, v is the speed and r is
the radius of the circular orbit. The angular momentum L = mevr.

In quantum mechanics, the angular momentum is conserved only if the symme-
try allows (i.e. [H, L] = 0), then the magnetic moment can be written as:

µL = −gµB
L

h̵
(2.9)

Where g is known as the g-factor of the electron has an approximate value of 2,
L is electron orbital angular momentum and µB is the Bohr magneton, defined
by:

µB = eh̵

2me

(2.10)

Bohr magneton takes the value 9.274×10−24 Am2 and it describe the size of the
atomic magnetic moments.
The magnetic moment due to the electron spin s is given by:

µs = −gµB
S

h̵
(2.11)
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Where S is the electron spin angular momentum. The energy of an electron in
magnetic field given as:

E = −µ⃗ ⋅ B⃗ = gµBmsB (2.12)

In a magnetic field, the energy level of an electron will split by an amount of
gµBB which is known as Zeeman splitting. For an electron with spin 1

2 , ms can
take values ±1

2 and the electron energy level split into two levels with an energy:

E ≈ ±µB (2.13)

2.1.1. Magnetization

The magnetization M of magnetic solid consists of a large number of atoms is
defined as the magnetic moment (m) per unit volume (V).

M⃗ = m⃗
V

(2.14)

In the presence of an external magnetic field H⃗, the magnetic induction B⃗
induced inside the magnetic material with magnetization M given as:

B⃗ = µ0(H⃗ + M⃗) (2.15)

Where µ0 = 4π × 10−7Hm−1 is the permeability of the free space.
In the free space (vacuum), there is no magnetization, so equation 2.15 becomes:

B⃗ = µ0H⃗ (2.16)

For the case for the linear materials i.e. the magnetization M⃗ is linearly related
to the magnetic field H⃗ and it is given as:

M⃗ = χH⃗ (2.17)

Where χ is the magnetic susceptibility, which is a dimensionless quantity. The
χ values distinguish between two different types of magnetic materials.
1) Diamagnetic material with χ < 0
2) Paramagnetic material with χ > 0
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2.1.1.1. Diamagnetism

All materials show diamagnetism, which is weak and has negative magnetic
susceptibility. Diamagnetism means that the magnetic field induces a magnetic
moment, which opposes the applied magnetic field. Diamagnetism can be ex-
plained classically via Lenz’s law, but it is a purely quantum phenomenon. The
diamagnetic susceptibility using first-order perturbation theory is given by [28]:

χdia = −
Ne2µ0

6V me

Z

∑
i=1

< r2
i > (2.18)

Where, N is the ions number, V is the volume, me is the electron mass and
µ0 is the vacuum permeability. The diamagnetic susceptibilitity are largely
temperature independent.

2.1.1.2. Paramagnetism

In paramagnetism, the applied magnetic field induces a magnetization aligned
parallel to the applied magnetic field. The paramagnetic susceptibility is pos-
itive, but very small and it depends on the strength of the applied magnetic
field. Paramagnetism phenomena are observed in materials with unpaired elec-
trons. At finite temperature, the spins are randomly oriented due to the thermal
fluctuations (i.e. there’s no interaction between the magnetic moments). The
magnetization depends on the total angular momentum J⃗ which is a sum of the
orbital angular momentum L⃗ and the spin angular momentum S⃗.

J⃗ = L⃗ + S⃗ (2.19)

The paramagnetic susceptibility is given by [28]:

χpara =
M

H
≈ µ0M

B
=
nµ0µ2

eff

3kBT
(2.20)

Where µeff is the effective moment given by:

µeff = gJµB
√
J(J + 1) (2.21)

Equation 2.20 demonstrates that the magnetic susceptibility is inversely pro-
portional to the temperature T, which is known as Curie’s law.
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2.1.2. Magnetic interactions

Long range ordering like Ferromagnetic (FM), Antiferromagnetic (AFM) and
Ferrimagnetic (FIM) arises due to the interactions between the magnetic mo-
ments. These interactions will be discussed briefly in this section.

2.1.2.1. Magnetic dipolar interaction

The first interaction that plays a role in magnetic ordering is the magnetic dipo-
lar interaction. Generally, the magnetic moments are similar to the magnetic
dipoles and can show dipole-dipole interaction amongst them. A magnetic field
produced by one dipole can interact with the neighboring magnetic dipole, and
vice versa. The dipole-dipole interaction energy between two dipoles µ⃗1 and µ⃗2
separated by a distance r⃗ is given by:

Edd =
µ0

4πr3 [µ⃗1 ⋅ µ⃗2 −
3
r2 [(µ⃗1 ⋅ r⃗)(µ⃗2 ⋅ r⃗)] (2.22)

The dipole-dipole energy depends on the separation between the two dipoles
and the orientation of its moments. The behaviour of this interaction, either
repulsive or attractive depends on the orientation of the nanoparticles spin.
For atomic moments with µ ∼ 1µB separated by ∣r⃗∣ = 0.1 nm, the ordering
temperature is usually of the order of 1 K, which is quite weak compared to
the normal thermal energy. Therefore the magnetic dipolar interaction is too
weak to account for the ordering at high temperature in solids because it can
easily be overcome by thermal fluctuations at a temperature of a few Kelvin.
For particles with large magnetic moments separated by a distance in the nm
range, the magnetic dipolar interaction can be a hundred orders of magnitude
stronger. Therefore, magnetic dipolar interactions are important in the ordering
of nanoparticles.

2.1.2.2. Exchange interaction

Exchange interaction plays a significant role in the long-range magnetic order
phenomena such as ferromagnetic (FM), antiferromagnetic (AF) and ferrimag-
netic (FiM). Exchange interaction is a result of Coulomb interaction and the
Pauli principle. Where Coulomb repulsion tries to repel electrons from each
other when they are together, while Pauli principle state that two electrons
with the same spin quantum number can not occupy the same state, therefore
they have to align antiparallel. So, the total spin state can be 0 or 1, which is
known as singlet (S=0) and triplet (S=1) states, respectively.
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Origin

Consider a simple system with two electrons. In first order perturbation theory,
the total wavefunction Ψ(r⃗) of the state can be constructed from a product
of the two electron states ψa(r⃗1)ψb(r⃗2), where ψa(r⃗1) is the wavefunction for
the first electron at position r⃗1 and ψb(r⃗2) is the wave function for the second
electron at position r⃗2. The product state doesn’t follow the exchange symme-
try, it has to be consistent under electrons exchange, and it has to be a linear
combination of ψa(r⃗1)ψb(r⃗2) and ψa(r⃗2)ψb(r⃗1).
For electrons (fermion), the overall wave function which is a product of the spa-
tial and spin states has to be antisymmetric. If the spin state is antisymmetric
singlet state χS, then the spatial state has to be symmetric, while if the spin
state is symmetric triplet state χT , then the spatial part has to be antisymmet-
ric. The wave functions of the singlet state χS and the triplet state χS can be
written as [28]:

ΨS =
1√
2
[ψa(r⃗1)ψb((⃗r2) + ψa(r⃗2)ψb(r⃗1)]χS

ΨT = 1√
2
[ψa(r⃗1)ψb(r⃗2) − ψa(r⃗2)ψb(r⃗1)]χT (2.23)

The eigen values (energies) of the two states by assuming the spin states χS and
χT are normalized.

ES = ∫ Ψ∗
SĤΨS d⃗r1d⃗r2

ET = ∫ Ψ∗
T ĤΨT d⃗r1d⃗r2 (2.24)

The difference between the singlet and the triplet energies states are

ES −ET = 2∫ ψ∗a(r⃗1)ψ∗b (r⃗2)Ĥψa(r⃗2)ψb(r⃗1)d⃗r1d⃗r2 (2.25)

The exchange integral J is defined as the difference between the singlet
and the triplet states energies

J = ES −ET2 = ∫ ψ∗a(r⃗1)ψ∗b (r⃗2)Ĥψa(r⃗2)ψb(r⃗1)d⃗r1d⃗r2 (2.26)
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Where the Hamiltonian Ĥ is given as

Ĥ = 1
4(ES + 3ET ) − (ES −ET )S⃗1 ⋅ S⃗2 (2.27)

Where S1 ⋅S2 = −3
4 for the singlet state and S1 ⋅S2 = 1

4 for the triplet state. The
spin part in the Hamiltonian (equation 2.27) describing the exchange interaction
between two neighbouring spins S⃗1 and S⃗2 and can be written as:

Ĥspin = −2JS⃗1 ⋅ S⃗2 (2.28)

If J > 0, Es > ET , then the triplet state is favored and the two spins prefer to
align parallel to each other, while if J < 0, ES < ET , the singlet state is favored
and the two spins prefer to align antiparallel to each other. The Hamiltonian
for many electrons system is described by Heisenberg model:

Ĥ = −2∑
i<j
JijS⃗iS⃗j (2.29)

Where Jij is the exchange constant between S⃗i and S⃗j, the summation i < j to
avoid the double counting of the interaction between S⃗i and S⃗j.
The exchange integral has some general features, such as if the two electrons
belong to the same atom, then the exchange integral is positive and the triplet
state is more favored with the antisymmetric spatial state. This minimizes the
Coulomb repulsion between the two electrons by keeping them apart, which is
consistent with Hund’s first rule. While if the two electrons belong to different
atoms, in this case, it is more favorable if the electron states (joint state) are
shared between the two atoms, which leads to bonds formation. In this case,
molecular orbitals have to be considered rather than atomic orbitals. The molec-
ular orbitals can be bonding (spatially symmetric) or antibonding (spatially an-
tisymmetric), with the antibonding state having higher energy compared to the
bonding state. This leads to a singlet antisymmetric states and the exchange
integral is negative.
The exchange interaction can be further subdivided into the following forms.

Direct exchange

If two magnetic atoms are close enough to each other, then their magnetic
orbitals overlap directly without the need for an intermediary, which means the
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2. Theoretical Background

electron of one atom can hop easily to its neighboring atom. This kind of ex-
change interaction is known as a direct exchange interaction. This interaction
is quite rare in rare earth elements where 4f electrons are strongly localized and
lying close to the nucleus and for transition metals where 3d electrons are also
localized. In these cases, to explain the exchange interaction, the band character
should be taken into account in addition to the localized electrons. Therefore,
in some kind of magnetic materials, it is crucial to consider indirect exchange
interaction.

Indirect exchange

In most magnetic materials usually in ionic solids such as MnO and MnF2,
the direct exchange interaction is impossible. But it shows an indirect exchange
interaction where the non-neighboring magnetic ions interact via a nonmagnetic
ion like oxygen which is placed in between the magnetic ions. The exchange in-
teraction is given by:

J ∼ −t2
U

(2.30)

The above equation describes the kinetic exchange in the Hubbard model, where
t known as the hopping integral and U is the Coulomb energy. This equation
explains the virtual hopping processes shown in figure 2.1. It is crucial to
remember that hopping does not involve spin-flip.
Indirect exchange interaction consists of several types which will be introduced
in the following paragraph.
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2.1. Magnetism

Figure 2.1.: Superexchange interaction between two magnetic ions (Co+2) mediated
by a non-magnetic ion (O−2). (a) and (b) show the first GKA rule:
antiferromagnetic order is favored between two half-filled or two empty
orbitals of magnetic ions with 180○ arrangement. (c) show the second
GKA: ferromagnetic order is favored between one half-filled orbital and
one empty orbital of magnetic ions with 180○ arrangement. (d) show the
third GKA rule: ferromagnetic order is favored between two half-filled
orbitals of magnetic ions with 90○ arrangement. Inspired from [29]
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Consider a transition metal oxide like CoO, an exchange interaction between
two 3d-metal ions (Co+2) mediated via an oxygen 2p-orbital (O−2) is known as
indirect superexchange interaction which is longer ranged than the direct
exchange interaction. Superexchange interaction depends strongly on the occu-
pation of the metal orbitals as well as on the angle between the metal ions and
the mediating oxygen atom. The sign of the superexchange interaction can be
determined via Goodenough-Kanamori-Anderson rules (GKA). Figure
2.1 shows the Goodenough-Kanamori-Anderson rules. For the two Co+2 metals
and the O−2 atom lying on one line (180○), one obtain antiferromagnetic order
between two half-filled orbitals or two empty orbitals as shown in figure 2.1 (a)
and (b) because only antiparallel spin alignment allows electrons to hop between
the p-orbital in the non magnetic ion O−2 and the d-orbitals in the both Co+2

magnetic ions, thus reducing the kinetic energy. With parallel arrangements,
electrons are only allowed to hop between the non magnetic ion O−2 and one
Co+2 magnetic ion, due to Pauli principle which states that two electrons with
the same quantum state can’t occupy the same orbital. This kind of interaction
is known as the first GKA rule. The second GKA rules explain the case for
superexchange interaction between one half-filled orbital and one empty orbital
where the spins prefer to align parallel in neighboring magnetic ions (figure2.1
(c)) because according to the first Hund’s rule the total spin angular momentum
is maximized. The third GKA explain the 90○ superexchange (figure 2.1(d)) for
two half-filled metal orbitals, ferromagnetic order is more favored in this case,
because of the reduction of the Coulomb repulsion of parallel spin orientations
of electrons within atoms, which leads to Hund’s first rule.
For superexchange interaction, both magnetic ions have the same valence, only
virtual charge transfer is involved in this case. If the magnetic ions are in mixed-
valence state then during the exchange interaction, real charge transfer may take
place. This kind of exchange interaction known as double exchange interac-
tion which is depicted schematically in figure 2.2. Consider MnO oxide, where
Mn ion exist in oxidation state 3 or 4 (Mn+3 or Mn+4), double interaction takes
place when an electron from Mn+3 ion hops into the oxygen 2p orbital, while
simultaneously an oxygen 2p orbital hops on the Mn+4 site. The hopping of an
electron between Mn+3 and Mn+4 is possible if the spins of the electrons of the
two neighboring metal ions are parallel. Therefore, double exchange interaction
between Mn+3 and Mn+4 ions is ferromagnetic, because ferromagnetic lowers the
energy of the system.
In certain metals, the exchange interaction between magnetic ions can be me-
diated by the conduction electrons. These electrons are polarized by a localized
magnetic moment and then coupled to another localized magnetic moment. This
kind of indirect exchange interaction known as Ruderman, Kittel, Kasuya
and Yosida (RKKY) interaction. The coupling depends on the distance
between the localized magnetic moments and it is given by:
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Figure 2.2.: Double exchange interaction between Mn+3 and Mn+4 mediated by an
O−2 ion. Inspired from [29].

JRKKY (r) ∝
cos 2kF r

r3 (2.31)

Where r is the distance and kF is the radius of the Fermi surface. RKKY inter-
action is a long range interaction and oscillatory in nature with the oscillation
wavelength of π

kF
. The interaction can be ferromagnetic, antiferromagnetic

depending on the distance.

2.1.3. Magnetic order

Depending on the interactions between the magnetic moments in a solid, it can
show long-range magnetic order. The ordering can lead to ferromagnetism order
in which all the magnetic moments align parallel to each other and antiferro-
magnetism in which all the magnetic moments align antiparallel to each other.
In this section, we will consider different types of the magnetic ground state
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(figure 2.3) which can be produced due to the interactions explained in Sec.
2.1.2.

Figure 2.3.: Magnetic spin arrangements of (a) a ferromagnetism, (b) an antiferro-
magnetism and (c) a ferrimagnet.

2.1.3.1. Ferromagnetism (FM)

In a ferromagnet, the magnetic moments are aligned parallel to each other as
shown in figure 2.3(a). It has a spontaneous magnetization even in the absence of
applied field, which arises due to the exchange interaction which was described in
more detail in Sec. 2.1.2.2. FM order is usually found in systems with itinerant
electrons. The appropriate Hamiltonian for a ferromagnet in an applied field B⃗
given as:

Ĥ = −∑
ij

JijS⃗i ⋅ S⃗j + gµB∑
j

S⃗j ⋅ B⃗ (2.32)

The first term on the right side is known as the Heisenberg exchange energy
where Jij is the exchange constant which is positive for FM. The second term
on the right side known as the Zeeman energy term in the presence of a field.
The origin of FM was explained by the Weiss model. He assumed that each
magnetic moment experiences a mean-field or molecular field given by:

⃗Bmf = λM⃗ (2.33)
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Where λ is a constant known asWeiss coefficient which parametrizes the strength
of the molecular field as a function of the magnetization and M⃗ is the magne-
tization. Now, we can treat the problem as a paramagnet placed in a magnetic
field B⃗ + ⃗Bmf . At low temperatures, the magnetic moments are aligned by the
internal mean-field even without the external magnetic field. While, at higher
temperatures, thermal fluctuations begin to destroy the aligned magnetic mo-
ments and finally at the critical temperature TC , the order becomes destroyed.
The magnetic susceptibility for FM is given by:

χ∝
1

T − TC
(2.34)

Where TC is the Curie temperature.
Equation 2.34 known as Curie-Weiss law explains the inverse relation between
the magnetic susceptibility and the temperature as shown in figure 2.4.

Figure 2.4.: Magnetic susceptibility vs. temperature for ferromagnetic system.

2.1.3.2. Antiferromagnetism (AF)

For simple cases, the system called antiferromagnetism if the nearest neigh-
bor magnetic moments aligned antiparallel to each other (figure 2.3 (b)). The
exchange interaction is negative J < 0. Very often, it is considered as two in-
terpenetrating sublattices (green and red), where the magnetic moments in one
sublattice points up (+) (green lattice) and on the other sublattice points down
(-) (red lattice) (see figure 2.5). Similar to a ferromagnet, the Weiss model is
used to find the solution for Curie temperature. Consider the assumption that
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Figure 2.5.: Antiferromagnetic moments configurations can be decomposed into two
interpenetrating sublattices.

the molecular field experienced by one sublattice is proportional to the magne-
tization of the other sublattice. The molecular fields of the two sublattices can
be written as:

B+ = −∣λ∣M− (2.35)

B− = −∣λ∣M+ (2.36)

Then the magnetization of each sublattice can be written as:

M± =MsBj(
gJµBJ ∣λ∣M∓

KBT
) (2.37)

Where Bj is the Brillouin function
The two suplattices are equivalent in magnitude and have different direction.
So,

∣M+∣ = ∣M−∣ = ∣M ∣ (2.38)

The molecular field on each sublattice is similar to the one for FM. It disap-
pears above a transition temperature known as Ne′el temperature TN . The
antiferromagnetic susceptibility can be written as:

χ∝ 1
T + TN

(2.39)
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It is important to know the direction of the applied field with respect to the
direction of the sublattice magnetization when the magnetic field applied below
TN . At 0 K, if the field applied parallel to the magnetization then the suscepti-
bility is zero (χ∥), while if the field applied perpendicular to the magnetization
direction then the susceptibility is non zero (χ⊥). Figure 2.6 shows the variation
of χ∥ and χ⊥ with temperature.

Figure 2.6.: Magnetic susceptibility vs.temperature for antiferromagnetic material.

A spin-flop transition is observed when a strong field is applied parallel to the
magnetization direction, where the sublattice with the opposite moment be-
comes parallel to the applied field. In this case, the Zeeman energy dominates
and can overcome the exchange interaction.

2.1.3.3. Ferrimagnetism (FiM)

The system called Ferrimagnetism if the two sublattices described in the anti-
ferromagnet case have different magnitude, ∣M+∣ ≠ ∣M−∣, then they don’t cancel
out and a net magnetization is expected.(see figure 2.3 (c)). Ferrimagnestism
depends on the crystal structure of the material and its magnetic susceptibility
does not follow the Curie Weiss law.

2.1.4. Magnetic anisotropy

In some materials, it is easier to be magnetized in one direction than the others.
This preferred direction of the spontaneous magnetization known as easy axes
determined by internal energy known as magnetic anisotropy. In the material,
one can observe two different directions known as easy axes with the lowest
energy cost and hard axes with the maximum energy cost. The materials have
the lowest energy when the magnetization aligns along the easy axes, and a
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smaller field is required to align the magnetization along the easy axes during a
reversal process. The magnetic anisotropy comes firstly from spin-orbit coupling
which is responsible for magnetocrystalline anisotropy, surface anisotropy and
magnetostriction and secondly from long-range dipolar interaction between the
moments which originates from the shape of the system [28]. Magnetocrystalline
and magnetostatic anisotropy should be taken into consideration for determining
the anisotropy in bulk materials, while shape, strain and surface anisotropy
needs to be considered in nanostructured materials [30]. Depending on the
orientation directions of the magnetic moment, the magnetic anisotropy energy
can be written as:

Ea =KV sin2 θ (2.40)

Where θ is the angle between the easy axis and the magnetization.
Magnetic anisotropy originate from various sources as explained in the following.

Shape anisotropy
The shape anisotropy is related to the shape of the material as the name ex-
presses and it is not an intrinsic property of the material. Due to the demag-
netization energy, the shape of the material can create an additional anisotropy
known as shape anisotropy. The demagnetization energy or demagnetization
field originates from the charges or poles at the surface which produced by a
magnetized body will act in opposition to the magnetization that produces it.
The demagnetization energy Ed can be written as:

Ed = −
µ0

2 ∫ M⃗ ⋅ H⃗dmdV (2.41)

Where M⃗ is the magnetization and H⃗dm is the demagnetization field induced by
the magnetic moment inside the material given as H⃗dm = −N⃗ ⋅M⃗ with N is the de-
magnetization tensor which may vary along different directions due to the shape
anisotropy. For example, a spherical body has zero shape anisotropy, because
the demagnetization field is isotropic in all direction, and the demagnetization
factor Nx=Ny= Nz=1

3 . While, in the case of an ellipse body, the demagnetiza-
tion energy is smaller if the magnetization lies along the major axes than along
the minor axes, which gives easy axes of magnetization along the major axes.
The shape anisotropy energy of the ellipsoidal body given as [31]:

Eshape =
1
2µ0V (NxM

2
x +NyM

2
y +NzM

2
z ) (2.42)
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WhereMx,My,Mz and Nx,Ny,Nz are the components of the magnetization and
the demagnetization factors along X, Y , Z directions. The demagnetization
factor always satisfies:

Nx +Ny +Nz = 1 (2.43)

The energy barrier between two minima caused by the shape anisotropy can be
calculated by the difference between the easy and hard axes [32]:

∆E = −1
2µ0VM

2(Neasy −Nhard) (2.44)

Magnetic moments prefer to lie along the easy axes if the anisotropy energy
cannot be overcome.

Magnetocrystalline anisotropy
It is an intrinsic property of the material. For different orbitals, energy splits into
various levels due to the electrostatic interaction between the electron orbitals
and its environment, known as the crystal field effect. Due to the crystalline
symmetry of the lattice, the wavefunctions of the neighboring orbitals exhibit
different overlap energies for different orbitals orientations which, together with
the spin-orbit interaction, is the cause of the magnetocrystalline anisotropy. The
direction of the spontaneous magnetization inside a solid is influenced by the
crystalline symmetry. Due to the spin-orbit interaction or quenching of the or-
bital angular momentum, some crystallographic directions of the magnetization
are preferred than the others.
For a hexagonal lattice, the easy axes are along the c-axes of the unit cell, which
known as uniaxial anisotropy. The energy associated with it given as:

Euni =K1V sin2 θ +K2V sin4 θ + ..... (2.45)

Where, K1, K2, etc. are the anisotropy constant, V is the volume and θ is
the angle between the c-axes (easy axes) and the magnetization direction. The
anisotropy constant have a strong temperature dependence, it is considered as
a constant below Tc. In most cases, K1 is much larger than the other higher-
order terms which can then be neglected. Therefore, the magnetocrystalline
anisotropy energy can be written as:

Euni =KV sin2 θ (2.46)
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For a cubic system, the cubic anisotropy is given as:

Ecubic =K1(
1
4 sin2 θ sin2 2φ + cos2 θ) sin2 θ + K

2

16 sin2 2φ sin2 2θ sin2 θ + ..... (2.47)

Where θ and φ ar the polar and the azimuthal angles between the preferred
direction and the magnetization.

Surface anisotropy
Besides these two anisotropy types discussed above, a surface anisotropy origi-
nates from atoms at surfaces which are not saturated. Surface anisotropy plays
an important role over magnetocrystalline anisotropy and magnetostatic ener-
gies, especially in reduced dimensional systems. The effective surface anisotropy
for small spherical particles is given as:

Keff =KV +
S

V
KS =KV +

6
d
KS (2.48)

Where S
V is the surface to volume ratio with S = πd2 and V = πd3

6 , d is the
diameter of the particle. KV is the volume anisotropy consisting of the magne-
tocrystalline, magnetostriction and shape anisotropy terms. KS is the surface
anisotropies.

2.1.5. Exchange Bias (EB)

Exchange bias are a new type of magnetic anisotropy known as exchange anisotropy
was first discovered in the study of ferromagnetic cobalt with antiferromagnetic
cobalt oxide shell by Meiklejohn and Bean [25]. Exchange anisotropy or unidi-
rectional anisotropy is observed in torque measurement after the sample (bilayer
system) cooled below the Ne′el temperature of the antiferromagnetic cobalt ox-
ide within a magnetic field, starting at temperature T (TN < T < TC , where TC
is the ferromagnetic Curie temperature). The measured hysteresis loop observed
at T « TN appears to be shifted as if there’s another magnetic filed that was
present in addition to the applied magnetic field due to the exchange coupling
between the ferromagnetic and antiferromagnetic materials at the interface[33].
Figure 2.7 explains the typical model to understand the EB phenomena. Con-
sider that the Ne′el temperature of the antiferromagnetic material is smaller
than the Curie temperature for the ferromagnetic material. Usually, an ex-
ternal field is applied to fix the direction of the ferromagnetic material during
cooling the system, at T > TN , the magnetic moments in the ferromagnetic
layer are aligned along the applied magnetic field, while it is randomly ordered
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Figure 2.7.: Phenomenological picture of exchange bias for an AF-FM bilayer and
illustration of the spin order during the hysteresis measurement. Inspired
from [34]

in the antiferromagnetic layer (1). After the system cooled below Ne′el tem-
perature the antiferromagnetic moment at the interface chooses the state that
minimizes the energy due to the coupling to the interfacial magnetic moments of
the ferromagnetic via exchange interaction. They align parallel or antiparallel
to each other depending on the exchange constant JAF−FM (2). The ferro-
magnetic moments start to rotate when the magnetic field starts to decrease.
Therefore, the coupling between the interfacial the ferromagnetic moment and
the antiferromagnetic moments stabilize the parallel order of the ferromagnetic
interfacial moments to the direction of the cooling field. When the external
field reverses the ferromagnet moments, the antiferromagnetic moments do not
switch if the assumption of sufficiently high anisotropy is fulfilled (3-4). The
antiferromagnetic moments at the interface try to keep the ferromagnetic mo-
ments in their original direction. Consequently, the magnetic field Hc1 needed
to reverse the ferromagnet moments is larger than the coercive field Hc for sin-
gle ferromagnetic layers. Further decrease of the magnetic field (i.e. increase in
the negative direction), at this point all ferromagnetic moments align in the op-
posite direction. The antiferromagnetic order remains the same even when the
magnetic field switches all ferromagnetic moments due to the large anisotropy
of the antiferromagnetic. For increasing the magnetic filed the interfacial fer-
romagnetic and antiferromagnetic moments are satisfied to align antiparallel to
each other for JAF−FM < 0 or parallel to each other for JAF−FM > 0 again due
to the exchange interaction (5-2). Therefore, the magnetic field Hc2 needed to
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reverse the ferromagnetic moments back along the positive direction is smaller
than the coercive field Hc. So, the center of the hysteresis is shifted towards
the negative direction (i.e. exchange bias). The EB field can be calculated as
Hex=1

2(Hc1 +Hc2).
Practically, due to the thermal fluctuation, interface roughness, etc, the mag-
netic moments in the ferromagnetic layer may not align perfectly as shown in
figure 2.7. Also, if the antiferromagnetic layer has a small anisotropy, the anti-
ferromagnetic moment may switch when the interfacial ferromagnetic moments
are aligned. Therefore, an increase of Hc2 is expected as well as an increase in
the coercive field.
EB has attracted much interests in thin-film systems due to their applications in
industrial devices as well as on control the thickness of the antiferromagnetic and
ferromagnetic layer and the roughness at the ferromagnetic-antiferromagnetic
interface and in nanostructured systems because of its possibility to overcome
the superparamagnetic limit due to the finite size effect, so it makes the appli-
cation of nanoparticle in high-density data storage suitable [35].

2.1.6. Superparamagnetism

Superparamagnetism explains a form of magnetism, which appears in small fer-
romagnetic or ferrimagnetic nanoparticles. It occurs in nanoparticles composed
of a single magnetic domain.
Formation of domain walls in ferromagnetic materials is controlled by the com-
petition between the energy cost for domain wall formation and the energy gain
from the magnetostatic energy which is known as demagnetizing energy density
ED and is given by:

ED = −1
2µ0NM

2
S (2.49)

Where µ0 is the vacuum permeability, N is the shape dependent demagnetiza-
tion tensor and Ms is the saturation magnetization. The domain wall energy
becomes more important compared with the demagnetization energy with de-
creasing grain size. Below a certain critical diameter, the ferromagnetic nanopar-
ticles become single magnetic domain and behave as a permanent magnet. This
critical diameter is given as:

dc ≈ 18
√
AKeff

µ0M2
S

(2.50)

Where A is the exchange constant, proportional to J, Keff is the effective mag-
netic anisotropy constant, and MS the saturation magnetization.
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The magnetization in a single magnetic domain nanoparticle is preferably ori-
ented along an easy axis, and an energy barrier ∆E = KV (where K is the
anisotropy constant and V is the volume) has to overcome for the magnetiza-
tion reversal.
If the nanoparticles are separated enough to prevent any interparticle interac-
tions, the directions of the superspins in the absence of a magnetic field are only
a result of the competition between thermal fluctuation and anisotropy. For
large particles, the energy barrier ∆E is large, and can’t be overcome by the
thermal energy, so the superspins stay along their easy axis below the critical
temperature of the material. While for very small particles, where the energy
barrier ∆E =KV decreases below the thermal energy kBT ≿ KV, the nanopar-
ticle superspin can thermally fluctuate with time in analogy to the spins in a
paramagnetic even below its critical temperature. This magnetic state is called
superparamagnetism (SPM) [36, 37]. The curve of a superparamagnetic system
follows the classical Langevin behavior

M(H,T ) = µM
⎡⎢⎢⎢⎢⎣

coth
⎛
⎝
µH

KBT

⎞
⎠
− KBT

µH

⎤⎥⎥⎥⎥⎦
= NµL

⎛
⎝
µH

KBT

⎞
⎠

(2.51)

Where N is the number of particles, µ is the integral particle moment, and L(x)
the Langevin function.
The magnetic moment has usually only two stable orientations antiparallel to
each other due to the nanoparticles anisotropy, separated by an energy barrier
∆E. These orientations define the nanoparticle’s easy axis. At finite tempera-
ture, the magnetization starts to flip and reverse its direction. The mean time
between two flips of superspins is called as Ne′el-Brown relaxation time τ , and
is given by Ne′el-Arrhenius equation [28, 38, 39]:

τN = τ0 exp
⎛
⎝
KV

kBT

⎞
⎠

(2.52)

Where τN is the average time of the randomly flip of the magnetization of the
nanoparticles as a result of the thermal fluctuations, τ0 is a pre-factor, charac-
teristic of the material called the attempt time which is usually ∼ 10−9 second
[38, 40].
The magnetization of a single superparamagnetic nanoparticle goes to zero if the
average measurement time t » τN because the nanoparticle magnetization will
flip several time during the measurement (superparamagnetic state), while for t
« τN , the measured magnetization will be similar to the instantaneous magneti-
zation was at the beginning of the measurement (blocked state). The transition
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between superparamagnetic and blocked state occurs at t = τN . The transition
between these two states is temperature-dependent as given in equation 2.53
[28, 38] because the measurement time is kept constant and the temperature is
varied.

t = τ(TB) = τ0exp
⎛
⎝
KV

kBTB

⎞
⎠
→ TB = KV

kB ln( t
τ0
)

(2.53)

When the temperature decrease (decreasing in the thermal energy), the τN in-
creases. τN becomes comparable to t below a characteristic temperature known
as blocking temperature (TB). In this case, the superspins are blocked in one
of the energy minima during the measurement. The blocked state can only be
observed when τN ≥ t. TB depends on the measurement time t. For T > TB,
the superspins can easily be flipped by thermal fluctuations, while for T < TB,
the superspins are in the blocked state.
The blocking temperature depends on measurement time and it is not an in-
trinsic temperature like the Curie temperature. To study the magnetization
in superparamagnetic particles, different measurements were carried out. In a
magnetization versus field measurement at a fixed temperature (hysteresis), if
the hysteresis cycle τM−H » relaxation time τ(T ), then a closed S-shape is ob-
served similar to a paramagnet with a high magnetic moment. While if τM−H «
relaxation time τ(T ), then an open loop is observed similar to a ferromagnetic
system. Another unique measurement is the magnetization versus temperature
at a fixed field known as zero field cooling (ZFC) and field cooling (FC). In ZFC,
the sample is cooled from a high temperature usually from above the blocking
temperature to a very low temperature in zero field, then a small field is applied
and the magnetization is recorded. In FC measurement, the sample is cooled
in a field and the magnetization is recorded. The ZFC and FC curves split at a
temperature Ts. The ZFC shows a maximum at the blocking temperature (TB).
If the volume of all the particles is the same, which means there’s no distribution
in the energy barriers, then Ts = TB but for polydisperse system Ts>TB.
In most practical cases an ensemble of particles is taken without any interpar-
ticle interactions which are known as a superparamagnetic ensemble. Above
TB one can observe a zero net magnetization because the superspins fluctuate
like in a paramagnet. After cooling the ensemble below TB in a zero filed, the
superspins are blocked and the magnetization still zero. When a small filed
applied then it can lead to align few of the blocked superspins along the field
direction and a small magnetization is recorded. By increasing the tempera-
ture, more and more superspins start to align along the applied field direction.
Therefore, the magnetization increase with increasing temperature. The highest
value of the magnetization observed at T = TB, where all the superspins go to
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unblocked state. Above TB, thermal fluctuation dominates, the magnetization
decrease following 1

T and the system becomes in a reversible state. In FC, ap-
plying a field then cooling down, the magnetization follows the same behaviour
as for the ZFC case. But below TB, the system goes into an irreversible state,
the superspins are blocked in a way that the net magnetization is higher than
the ZFC net magnetization. In this case, the superspins are blocked along the
applied field direction, as the temperature decrease, the magnetization increase.
But usually in many systems, the interparticle interactions cannot be neglected.
For example in nanoparticles, dipolar interaction is the most dominant interac-
tion. Therefore, the energy of ithparticle can be written as:

Ei = −KiVi(K̂i ⋅m̂i)2−µ0MsViH⃗ ⋅m̂i+
µ0M2

s

4π ∑
j

ViVj
m̂i ⋅ m̂j − 3(m̂i ⋅ r̂ij)(m̂j ⋅ r̂ij)

r3
ij

(2.54)
Depending on the strength of the interactions, different magnetic states can be
observed for an ensemble of nanoparticles which are characterized by the relax-
ation time of nanoparticle ensembles [38].

(i) Superparamagnetism (SPM): τ = τ0exp( KV
kBT

)

(ii) Modified superparamagnetism: τ = τ0exp(∆E∗
kBT

)

(iii) Glass like freezing: τ = τ0exp( ∆E∗
kB(T−T0))

(iv) superspin glass (SSG): τ = τ∗0 (
T−Tg
Tg

)
−zv

(v) Superferromagnetism (SFM):τ = τ∗0 (T−TcTc
)
−zv

For the non-interacting nanoparticles, τ is described by equation 2.52. When
the nanoparticles start to interact with each other, a modified energy barrier
introduced as in case (ii). The first and the second model have similar behavior
except the energy barrier is different. As the interaction strength increase, they
start to behave glass-like as in case (iii), where T0 is the glass temperature. This
case is known as Vogel-Fulcher law. For strong interactions, SSG behavior is ob-
tained, τ can be explained by the case (iv), where Tg is the critical temperature
and v is the critical exponent of the correlation length ξ given as:

ξ ∝ (
T − Tg
Tg

)−v (2.55)
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τ ∝ ξz (2.56)

If the nanoparticle interacts strongly with each other, then a ferromagnetic like
ordering can be observed, which is known as Superferromagnet, then τ can be
described as the case (v) with Tc is the Curie temperature.
Experimentlly, the different states can be distinguished by measuring AC-susceptibility
and fitting the data by one of these models to describe their magnetic behavior.

2.2. Self-assembly

Self-assembly works as a tool for assembling the components of a system into a
larger, functional unit and it is a manifestation of a spontaneous arrangement of
the disordered components into an ordered form by controlling the interactions
between the components and the environment. Self-assembly is a widespread
phenomena in nature on all different length scales, such as the formation of
galaxies, weather system and atoms arranging in crystal structure [24, 41]
Self-assembly of individual building blocks (atoms, molecules, nanoparticles)
into nano dimensional unit has shown novel properties, which is very different
than its bulk form.
Assembling of these building blocks, particularly NPs into two- and three dimen-
sional ordered form, play a major role in different applications such as magnetic
data storage media[12], bandgap engineering [42] and electronic devices [43, 44].
Furthermore, it leads to fabricate materials with novel properties. The sponta-
neous arrangements of the NPs into ordered form arises due to the interaction
between their superspins via different inter-particle interactions and thus show
a collective effect. Furthermore, the interaction forces are also fundamental and
important for understanding the existence of nanoparticles in solutions without
agglomeration.
Understanding self-assembly of NPs requires a comprehensive knowledge of dif-
ferent interactions that drive this process. NPs may self-assemble into different
lattice structures depending on the interactions between the particles at the
nanoscale (1 - 100 nm).
This section will focus on the inter-particle interactions leading to the formation
of ordered structure from solution and the strength of the interaction.

2.2.1. Van der Waals force

Van der Waals (vdW) force is the most widespread force existing at the nanoscale.
It is a term explaining the electromagnetic fluctuations arising due to the ran-
dom motion of negative and positive charges present in an atom, molecule, or
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bulk. It is the weakest of the chemical forces which contribute to the inter-
molecular interaction. It acts only over a very short range. It can be attractive
or repulsion depending on the distance between the molecules. Usually, it is
an attractive force in the NP solution, which tries to aggregate particles in the
solution. But a proper ligand surrounding the particles can be used to harness
this interaction in guiding two- and three-dimensional self-assembly of NPs. The
vdW interaction can be quantified by various theoretical approaches: Hamaker
integral approximation which neglects the many-body effects between the atoms,
Dzyaloshinskii Lifshitz Pitaevskii (DLP) which is derived from continuum ap-
proach and Coupled-dipole method (CDM) which take a discrete pairwise sum-
mation plus the many-body effects [45].

2.2.2. Magnetic interactions

Some magnetic materials, like diamagnetic or paramagnetic, in the absence of
a magnetic field, their magnetic moments behave independently and weak mag-
netic interactions exist between their magnetic moments. However, there are
several magnetic materials which show a spontaneous magnetic order even in
the absence of a magnetic field due to the magnetic interactions between their
magnetic moments, such as ferromagnetic, antiferromagnetic and ferrimagnetic
materials. Basically, in magnetic nanoparticles, the magnetic moments lie along
the preferred direction "easy axis" with a huge value known as "superspin". Be-
low a certain temperature, The superspin undergoes thermal fluctuation accord-
ing to Ne′el-Brown model (Ne′el-Arrhenius model) where the mean fluctuation
time is given in equation 2.52.

Each nanoparticle behaves like a single magnetic dipole with a magnetic mo-
ment:

m = VM (2.57)

Where V is the volume of the NP and M is the saturation magnetization.
The field generated by each dipole at point r⃗ is given by:

H⃗(r⃗) = 1
4πµ0

3(m⃗ ⋅ r̂) − m⃗
r3 (2.58)

Where r̂ is the unit vector in the direction of r⃗.

The magnetic energy and the corresponding force is given by:

Um = −m⃗ ⋅ H⃗ (2.59)
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F⃗ = −∇⃗Um (2.60)

The dipole-dipole interaction is given by:

Edd =
m⃗1 ⋅ m⃗2 − 3(m⃗1 ⋅ r̂)(m⃗2 ⋅ r̂)

4πµ0r3 (2.61)

From equation 2.61, the magnetic dipolar interactions depend on the separation
between the two dipoles and the orientation of the nanoparticle spin. Magnetic
dipolar interaction is a long range interaction compared with vdW interaction
as mentioned in Sec. 2.2.1. The magnetic dipolar interaction becomes attractive
in nature for in-line dipoles where m⃗1 ⋅ m⃗2 = m2 and m⃗1 ⋅ r̂ = m⃗2 ⋅ r̂ = m, so Edd
= −m2

2πµ0r3 . Also, it is attractive when the two dipoles are oriented antiparallel to
each other where m⃗1 ⋅ m⃗2 = −m2 , m⃗1 ⋅ r̂ = m⃗2 ⋅ r̂ = 0 so, Edd = −m2

4πµ0r3 . While,
magnetic dipolar interaction becomes repulsive, if the two dipoles are oriented
parallel to each other, where m⃗1 ⋅m⃗2 = m2 and m⃗1 ⋅ r̂=m⃗2 ⋅ r̂ = 0 so, Edd = m2

4πµ0r3 .
The dipolar arrangements depends on the external magnetic field as shown in
figure 2.8.

For most magnetic materials, the dipolar interaction does not play an impor-
tant role in the magnetic ordering for atomic spins m = 1µB which corresponds
to a dipolar energy Edd ≈ 10−23 J or an ordering temperature T ≈ 1 K, while it
plays a role in the assembly of the nanoparticles, where m = 103−105µB, which
corresponds to an ordering temperature T ≈ 10−103 K [30]. But this interaction
holds good for static dipoles ( i.e. when the superspins are in a "blocked" state).
But for superparamagnetic (SPM) nanoparticles, the magnetic moment or su-
perspins fluctuate over time. This fluctuation leads to weak dipolar interaction
given as [46, 47]:

Eddfluc =
−1

3kBT
( m1m2

4πµ0r3)
2

(2.62)

Where m1 and m2 are the two fluctuating dipoles separated by a distance r, KB

is the Boltzmann constant, T is the temperature and µ0 is the vacuum perme-
ability. From equation 2.62, the dipolar interaction due to the fluctuations is
proportional to ≈ 1

r6 which is much weaker than the static dipolar interaction,
equation 2.1.2 (≈ 1

r3 ). The dipolar interaction becomes weaker when the aver-
age distance between the nanoparticles very large, while it becomes stronger for
smaller distances between the nanoparticles. For the complex and anisotropic
shape of the nanoparticles, higher-order terms or multipole interaction have to
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Figure 2.8.: Effect of the external magnetic field on the arrangements of the dipoles.

be added to the total interaction.

The nanoparticles can self-assemble in different structures such as chains or
rings due to the magnetic dipolar interaction which provides a directional ori-
entation. For the larger diameter of nanoparticles, the dipolar interaction is
stronger and leads to the formation of connected networks over a certain area.
The nanoparticles tend to self-assembled in superlattices at high dipolar inter-
action (at the high magnetic field). For nanoparticles with high volume fraction,
it tends to form hexagonal close-packed (HCP) or face-centered cubic structures
due to entropic effects.
The self-assembly has two main effects at a higher magnetic field [48]: Firstly,
it includes smaller magnetic nanoparticles in deciding the self-assembly, which
had a weak interaction due to the SPM effects. Second, the phases are oriented
along with the applied field directions, which provides an anisotropic effect due
to the self-assembly.
Self-assembly of nanoparticles can be driven by many other forces, which will
be explained in Sec. 2.2.3. But the important point is to decide which interac-
tions dominate at that size, shape, separation, and external parameters like the
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magnetic field.

2.2.3. Other forces

There are several types of forces that play a major role in the ordering of
nanoparticles. Most of these forces arise from static or transient electromag-
netic interactions between atoms or molecules. Though the importance of the
forces in the self-assembly of nanoparticles, but still possible to self- assemble
these particles in absence of these forces, such as, at low concentration, the
depletion force or the confinement effects could lead to some order, which arise
from entropic effects and at high concentrations, ordering forms arises from pure
entropic effect. In this section, a brief explanation about the forces leading to
the ordering of the nanoparticles is given .

2.2.3.1. Steric repulsion

To minimize the surface energy, the nanoparticles in solutions tend to aggre-
gate due to the attractive vdW, or dipolar interactions. In order to avert this
effect, there should be some kind of repulsive force. This can be provided by
electrostatic repulsion which is activated in some aqueous or ionic solution by
adjusting the pH value or by steric repulsion which is activated in organic sol-
vents by coating the particles by some surfactant or ligand chains. Usually,
these chains have grafted the particle from one end and the other one is kept
free. When this particle approaches another particle, the free end of the chains
repels each other due to the steric repulsion. Therefore, the nanoparticle is kept
separate.

2.2.3.2. Electrostatic force

It is an attractive or repulsive interaction between objects having electric charges.
It is usually observed in colloids or ionic particles, to stabilizing the particles
from agglomeration. By changing the pH value for the solvent, the particles
become charged. The charged ligand shells can be attached to the charged par-
ticles giving rise to electrostatic interaction which depends on the geometry of
the particle that determines the surface charge distribution. The strength of
this force depends on the number of positive and negative ions surrounding the
charged particles.

2.2.3.3. Capillary force

It is a kind of pressure exerted on the two surfaces due to the solvent meniscus
between two adjacent particles or curved surfaces. The capillary force acts as
an adhesive force. It is used to self-assemble the nanoparticles into 1- 2- or
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3-dimensional structure [49, 50]. In some cases, if the surfactant covered the
particles have an ionic head or electric dipole, then water can penetrate to the
interface between the particle and the substrate, which left the particles above
the surface and can help in ordering or aggregation of the particles [51, 52]. The
solvent between two freely moving nanoparticles separated by a small distance
tends to adhere to the particles. The particles are brought closer together to
reduce surface tension.

2.2.3.4. Convective force

It can control the self-assembly in the bulk or surfaces and it acts like an ex-
ternal magnetic and electric field [52]. Also, it is aided by directional fluid
motion. Typically, nanoparticles confined in two-dimensional structures due to
the hydrodynamic and capillary forces [53].

2.3. Scattering

Scattering describes the general physical process, where it can be defined broadly
as the redirection of radiation out of the original direction of propagation, due to
the interaction with another object. In a broad perspective, scattering includes
the different types of radiation - light, X-ray, electron, neutron, etc. Scattering
includes simple processes such as the daily seeing process, where after the light
wave is emitted from a light source like a light bulb or the sun, it is scattered
from an object in the surrounding before it finally detected with the eyes. Also,
scattering includes the process where after the x-rays are produced when the
electrons are suddenly decelerated upon collision with the metal target; it inter-
acts with the sample before it is detected with a detector. Moreover, neutrons
are including in the scattering techniques, where after the neutrons are gener-
ated in a nuclear reactor, it interacts with the sample located in the instrumental
hall before it is measured with a detector.
In this study, multiple X-ray and neutron scattering techniques are applied to
study the nuclear and magnetic structure of nanoparticles and their assemblies.
In order to understand the rich information that can be gained using these
techniques, a brief introduction of the general scattering theory is presented in
Sec.2.3.1 and in Sec. 2.3.2 the interaction of X-rays and neutron with matter
is given. Then the theory behind the main techniques used in this study is
discussed: small-angle X-ray scattering in Sec. 2.4, X-ray reflectometry in Sec.
2.5, neutron reflectometry in Sec. 2.6 and grazing-incidence small-angle X-ray
scattering in Sec. 2.7.
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2.3.1. Scattering theory

Generally, in our study, the scattering process describes the scattering of neu-
trons or X-ray photons, after interacting with the sample as depicted in figure
2.9. An incoming wave k⃗i with defined direction can interact with the sample
and due to this it deviats from its direct path, exiting as outgoing wave k⃗f .
The process is called elastic scattering if there is no change in the energy be-
tween incident and scattered wave (i.e. Ei = Ef ) and |k⃗i| = |k⃗f | and otherwise
it is called inelastic scattering process. The scattering vector describing the
momentum transfer during scattering process is defined as

Q⃗ = k⃗f − k⃗i (2.63)

For elastic scattering, the magnitude of the scattering vector Q⃗ can be directly
calculated from the wavelength λ and scattering angle 2θ between k⃗i and k⃗f as:

Q = ∣Q⃗∣ =
√
k2
i + k2

f − 2kikf cos 2θ =
√

2k2(1 − cos (2θ)) =
4π
λ

sin θ (2.64)

where it is used that |k⃗i| = |k⃗f | = k = 2π
λ .

Figure 2.9.: Schematic of the general scattering process. An incoming wave with
a wave vector ki (red) interacts with the target (yellow) and produces
an outgoing wave with wave vector kf (green) then it is detected by a
detector.

From a broad perspective, scattering theory determines the probabilities for a
transition of a particle to go from an initial state to a final state determined by
their energy and momentum. Thereby, it provides a method to calculate from
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a model the expected scattering intensity, which can be compared to an actual
scattering experiment. Moreover, it allows predicting experimental observations
from the fundamental interactions postulated by the theory.

The problem that needs to be solved in non-relativistic physics, e.g. for neu-
trons, is the time-independent Schrödinger equation (equation2.65). Also, for
electromagnetic waves such as X-rays, the propagation and interaction with mat-
ter are described better by quantum electrodynamics. However, classical elec-
trodynamics in some cases is sufficient and the scattering theory from Maxwell’s
equations leads to the same type of problem as for the Schrödinger equation,
more details are discussed in App. A.2.

⎡⎢⎢⎢⎢⎣
− h̵2

2m∆2 + V (r⃗)
⎤⎥⎥⎥⎥⎦
ψk(r⃗) = Eψk(r⃗) (2.65)

Where V (r⃗) is the potential with the boundary condition V (r⃗) = 0 for r⃗
outside the scattering region.
The energy E is determined by the energy of the incident plane wave Ek = h̵2

2mk
2.

Introducing G0 as a Green function,

⎡⎢⎢⎢⎢⎣

h̵2

2m∆2 +E
⎤⎥⎥⎥⎥⎦
G0(r⃗, r⃗′∣E) = δ(r⃗ − r⃗′) (2.66)

Now, for the free potential Schrödinger equation, equation 2.65 is given as,

⎡⎢⎢⎢⎢⎣

h̵2

2m∆2 +E
⎤⎥⎥⎥⎥⎦
ψk(r⃗) = V (r⃗)ψk(r⃗) (2.67)

The above equation can be transferred into an integral equation,

ψ′k(r⃗) = ψk(r⃗) + ∫ d3r′G0(r⃗, r⃗′∣E)V (r⃗′)ψ′k(r⃗′) (2.68)

Where V (r⃗′) ψ′k(r⃗) are conceived as inhomogeneity of the differential equa-
tion (equation 2.66) and ψk(r⃗) is the plane wave solution of the free potential
Schrödinger equation. The above equation is known as Lippmann-Schwinger
equation.

The Green function G0(r⃗, r⃗′∣E) is not uniquely determined by the Schrödinger
equation 2.65. The unique solution requires a boundary condition, which is
chosen such that the solution ψ′k(r) describes outgoing scattered wave. Then,
the Green function can be written as as explained in details in APP. A.1,
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G0(r⃗, r⃗′∣E) = −2m
h̵2

1
4π

eik⃗∣r⃗−r⃗′∣

∣r⃗ − r⃗′∣
(2.69)

Where k =
√

2m
h̵2 E.

The Green function describes the stationary radiation of a particle with energy
E generated at r⃗′ by a spherical wave outgoing from the target. Also, the Green
function gives the wave amplitude at location r⃗ under the condition that the
wave is not further scattered during the propagation from r⃗ to r⃗′.
In a standard experiment setup, the distance between target and detector

is significantly larger than the size of the sample ∣r⃗∣ » |r⃗′|, for large distances
between r⃗ and the scattering center r⃗′, a good approximation in calculation is,

∣r⃗ − r⃗′∣ = r⃗ − r⃗ ⋅ r⃗
′

r
(2.70)

1
∣r⃗ − r⃗′∣

= 1
r⃗
+O

⎛
⎝

1
r⃗2

⎞
⎠

(2.71)

Inserting the above approximations in equation 2.69, the asymptotic form as
well as the far field limit of the Green function can be obtained,

G0(r⃗, r⃗′∣E) = −2m
h̵2

1
4π

eik⃗r⃗

r⃗
e−ik⃗r̂⋅r⃗′ +O

⎛
⎝

1
r⃗2

⎞
⎠

(2.72)

Inserting the above equation into equation 2.68, then the asymptotic solution
of the wave function ψ′k(r⃗) for large distance r⃗,

ψ′k(r⃗) = eik⃗r⃗ +
1
r⃗
eik⃗r⃗fk(r̂) (2.73)

Where f(r̂) = f(θ, φ) is the scattering amplitude and is given by,

fk(r̂) = −
2m
h̵2

1
4 ∫ d3r⃗′e−ik⃗′r⃗′V (r⃗′)ψ′k(r⃗′) = −4π h̵

2

2mT (k⃗′, k⃗) (2.74)
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Where T (k⃗′, k⃗) is the transmission matrix which is proportional to the scatter-
ing amplitude.

At V = 0, the scattering wave function is specified by the unperturbed incident
plane wave,

ψ
′(0)
k (r⃗) = eik⃗r⃗ (2.75)

In Born approximation, the equation of the scattering amplitude (equation 2.74)
given as,

fk(r̂) = −
2m
h̵2

1
4π ∫ d3r⃗′e−ik⃗′r⃗′V (r⃗′)eik⃗r⃗′ = −2m

h̵2
1

4πV (Q⃗) (2.76)

Where V (Q⃗) denotes the Fourier transform of the potential with the momen-
tum transfer Q⃗.
In Born approximation, the incoming wave scatters only once inside the target
potential before forming the scattered wave. This is the concept behind the
kinematic theory of scattering, that simplifies the interpretation of the scatter-
ing experiment.

The differential cross section is given as,

dσ

dΩ =
⎛
⎝

2m
h̵2

⎞
⎠

2
π

2 ∣V (Q⃗)∣2 (2.77)

The geometry of the scattering cross section is shown in figure 2.10. The
scattered intensity is observed by a detector, which covers a small solid angle
dΩ = dS

r2 with dS is the detector area and r is the sample-to-detector distance. A
general measure of the scattered intensity I(Q⃗) is the differential cross section
dσ
dΩ if the change of the energy of the radiation during the scattering process
neglected, which is defined by the number of particle dN counted per unit time
dt scattered into a cone of solid angle dΩ in the detector located at a distance
r under scattering angle θ.

2.3.2. X-ray and neutron matter interaction

X-ray and neutron scattering are complementary techniques. X-rays are electro-
magnetic radiation that is mostly scattered at the electrons of the atomic shell.
The photon energy is given by E = hν = hc

λ = h̵ck, the charge is zero, the magnetic
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Figure 2.10.: Geometry of the scattering cross section: number of particle N per unit
time dt measured by a detector at a distance r, scattered into an element
of solid angle dΩ in direction (θ,Φ) . Adapted from[54]

moment is zero and the spin is 1. X-rays show particle as well as wave properties.
Neutrons are an elementary particle with a mass of mn = 1.675 ⋅ 10−27kg, charge
is zero, spin is 1

2 , the magnetic moment is µn = 1.913µN , the nuclear magneton is
µn = eh

4πmp = 5.05 ⋅ 10−27JT −1, the kinetic energy is E = mnν2

2 = kBT = ( h̵k2π)
2, with

k = 2π
λ . It has a particle as well as wave properties. The neutron has several fac-

tors that make it a powerful experimental probe for matter investigation. First,
neutrons are highly penetrating, they have no charge and interact with mat-
ter via the relatively weak neutron-nucleus interaction. The highly penetrating
capability of neutrons ensures that the results obtained from neutron scatter-
ing measurements are representative of the bulk, rather than surface layers.
Second, the neutron scattering cross-section for a given element is not related
to the atomic number, meaning that neutron scattering is an ideal method to
study materials containing light elements such as oxygen and hydrogen. Third,
neutron possesses a magnetic moment, therefore neutron scattering is used to
study magnetic materials.
Similarities between the scattering of neutrons and x-rays from the surface are
obvious. When an x-ray or neutron beam is incident on a material, reflections
occur due to the interaction between the incident beam and the atoms. The
scattering process is schematically shown in figure 2.11(a). The condition for
reflection to occur given as:

nλ = 2d sin θ (2.78)
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Figure 2.11.: An illustration of a reflection from a sample (a) Bragg reflection from
planes separated by a distance d, (b) Laue representation of a Bragg
reflection.

Equation.2.78 is known as Bragg′s law, where λ is the x-ray or neutron
wavelength, d is the spacing of the reflecting plane as shown in figure 2.11 (a), θ
is the diffraction angle measured with respect to the incident beam, and n is an
integer known as the order of the corresponding reflection. From equation.2.78,
the peak position can be determined, while the intensity of the peak can be
determined by the coherent interference of the individual atoms, and is usually
described in terms of the unit cell structure factor [55].

F (Q⃗) = ∑
m

bie
iQ⃗⋅r⃗ie−wi (2.79)

Where r⃗i is the position of atom i with respect to the origin of the unit cell, wi
is the Debye-Waller factor, which describes the attenuation of x-ray scattering
or coherent neutron scattering by thermal motion (i.e. a measure of the thermal
vibration of atom i). The scattering amplitude of atom i is given as bi which
is known as the neutron scattering length in the neutron scattering field, where
in this case, does not depend on the Q⃗ and appears to vary randomly with the
atomic number Z. In x-ray scattering field, bi is known as atomic scattering
factor, where in this case proportional to the atomic number Z and decreases
rapidly with increasing Q⃗.

The Bragg′s law in equation.2.78 requires that the scattering vectors Q⃗ equal
the reciprocal lattice vector G⃗.

Q⃗ = k⃗f − k⃗i = G⃗ (2.80)
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The above equation is known as Laue′s representation of Bragg′s law, illus-
trated in figure 2.11 (b).

To calculate the differential cross-section, it is important to know how the scat-
tering wave and the sample interact with each other, which is represented by
the potential V. The derivation of the differential cross-section for quantum me-
chanical particles is shown in Sec.2.3.1 and in App. A.2 it is shown that a similar
formula results for X-rays from classical electrodynamics. The dominant cou-
pling to consider in the case of X-rays is the electromagnetic interaction of the
X-ray photons with the electron shells of the atoms forming the material. When
considering an electron cloud to oscillate in phase with the incoming X-ray, the
differential cross-section is given as

dσ

dΩ = ∣êi ⋅ êf ∣2 ∣∫ dV e−iq⃗r⃗reρe(r⃗)∣
2

(2.81)

Where ∣êi ⋅ êf ∣2 is a polarization factor depending on the experiment geometry
and the source, re is the classical electron radius which is in the order of 2.8 fm
and ρe is the density distribution of the electron cloud. The above equation is
known as Thomson scattering, which is derived by assuming that the electron
cloud follows the incoming wave via Newton’s second law F⃗ =ma⃗ = −E⃗e. From
the above assumption, the resonance, absorption and dispersion effects are ne-
glected. The previous effects become important when the energy of the X-rays
is close to the material electronic transitions or is high enough that it ejects
electrons from their respective positions. However, such effects in this work are
slight and more discussion about it can be found in [56].

For neutrons, there are two main interactions that occur with the material.
One is the scattering of neutron via the short-ranged residual strong interaction
with the atomic nuclei and the other one is scattering via the electromagnetic
interaction with the internal magnetic field of the sample due to the magnetic
moment of the neutron. For the nuclear scattering, the length scale of the resid-
ual strong force is on the order of (10−15m), whereas the wavelength of thermal
neutrons (10−10m) is much larger. Therefore, the nucleus can be considered
point-like and the potential for the scattering of a free neutron from a collection
of nuclei positioned at r⃗i can be modeled by a sum of Fermi pseudopotentials

V (r⃗) = 2πh̵2

m
∑
i

biδ(r⃗ − r⃗i) (2.82)
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Where bi is the nucleus scattering length, which is different for every element
and isotope and it includes the information to distinguish between them. The
experimental values of the scattering length have been tabulated for most iso-
topes [57]. In general, the scattering length is a complex number b = b′ − ib′′,
where the complex part (b′′) describes the neutron absorption due to nuclear
reactions. Moreover, the scattering length includes a coherent bc and incoherent
bi cross section, where bi depends on the relative orientation of the neutron spin
s⃗ to the nucleus angular momentum I⃗

b = bc +
2bi√
I(I + 1)

s⃗ ⋅ I⃗ (2.83)

In equation.2.82 the sum can be replaced by a scattering length density when
the exact atomic structure of a material is not of interest

∑
i

biδ(r⃗ − r⃗i) → ρ(r⃗) (2.84)

The value of ρ(r⃗) is determined by summing over the scattering lengths of all
atoms in a unit cell of volume Vuc for a given material at position i,

ρ(r⃗) = 1
Vuc

n

∑
i

bi (2.85)

Thus, the differential cross section of neutrons is given as

dσ

dΩ = ∣∫ dr⃗e−iQ⃗r⃗ρ(r⃗)∣
2

(2.86)

It is necessary to mention here that for X-rays, the same formula applies when
the X-ray scattering length density is identified from the electron density as
ρ = reρe. Therefore, all the following discussion includes both the scattering of
X-rays from the electron clouds of matter and the scattering of neutrons from
the nuclear structure. The magnetic scattering of neutron from the magnetic
structure of a material can be defined by adding a Zeeman potential to the
Hamiltonian

Vm(r⃗) = −µ⃗n ⋅ B⃗ (2.87)
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Where µ⃗n = µnσ̂ is the neutron magnetic moment which is in the order of
µ⃗n = 9.662 ⋅ 10−27JT −1 and quantum mechanically is given by the spin operator
σ̂, and B⃗ is the magnetic field produced by the sample due to the bound electron
orbital motion and spins.
The formula for the magnetic scattering amplitude contribution (i.e. contri-
bution by the spin) to the differential cross section is similar to the nuclear
scattering contribution as Fourier transform over a magnetic scattering length
density

fM(Q⃗) = µ̂n ⋅ ŝ⊥∫ dr⃗e−iQ⃗⋅r⃗ρmag(r⃗) (2.88)

The ŝ⊥ is the part of the spins that are directed in the plane perpendicular
to the scattering vector Q⃗. So, polarized neutron scattering allows to measure
the spin density of a sample in that plane and the magnetic scattering length
density (ρmag(r⃗)) is given by the spin density as

ρmag(r⃗) =
mn

h̵2
µ0

2πµBµnSe(r⃗) (2.89)

In an experiment, the polarization of the incoming neutron beam is defined by
a polarizer and stabilized by a weak magnetic guide field. When ŝ⊥ is parallel
(anti-parallel) to this direction, fM contributes with a positive(negative) sign to
the differential cross section and the direction of the spin is conserved during the
scattering. While, when ŝ⊥ is perpendicular to this direction, the spin operator
results in a flip of the neutron spin (i.e. spin is not conserved) during the
scattering process. This allows one to measure additionally the direction of
the magnetization in the plane perpendicular to the scattering vector through
careful analysis of the non-spin flip and spin flip channels.

2.3.3. Bragg diffraction

A crystal or crystalline material is a solid material whose constituents, such as
atoms, molecules, or ions, are arranged in a highly ordered microscopic struc-
ture, forming a crystal lattice that extends in all directions. To find the crystal
structure for any crystalline materials, Bragg diffraction is a suitable technique.
In addition, the crystal is defined as a periodic repetition of elementary building
blocks known as unit cells, which are described by the lattice vectors b⃗1, b⃗2, b⃗3
along the edges of the unit cell. The crystal is represented by a translation
vector T⃗ defined as:

T⃗ = Ab⃗1 +Bb⃗2 +Cb⃗3 (2.90)
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2.3. Scattering

Where A, B and C are integers. Each lattice site occupied by atoms or molecules
known as basis. Therefore, the crystal is a combination of lattice and basis.
The total scattering amplitude of a crystal is a summation of scattering factors
of all the basis present, which is defined as:

S(Q⃗) = ∑
i

fi(Q⃗)eiQ⃗⋅r⃗i (2.91)

Where fi(Q⃗) is the form factor of the basis positioned at r⃗i.
Equation 2.91 can be written as a combination of summation over all the lattice
point and summation over all basis vectors in a unit cell:

S(Q⃗) = ∑
T⃗+r⃗j

fj(Q⃗)eiQ⃗⋅(T⃗+r⃗j) = ∑
j

fj(Q⃗)eiQ⃗⋅r⃗j∑
t

eiQ⃗⋅T⃗ (2.92)

Where the first term ∑j fj(Q⃗)eiQ⃗⋅r⃗j is known as structure factor.
In a real diffraction measurement, the square of the total scattering amplitude
is measured, which is known as the scattering function defined as:

W (Q⃗) = ∣S(Q⃗)∣2 = ∣∑
j

fj(Q⃗)eiQ⃗⋅r⃗j ∣2∣∑
t

eiQ⃗⋅T⃗ ∣2 (2.93)

The second term ∑t eiQ⃗⋅T⃗ in equation 2.91 can be written as:

∑
t

eiQ⃗⋅T⃗ =
Nb1

∑
A=0

eiQ⃗⋅Ab⃗1 +
Nb2

∑
B=0

eiQ⃗⋅Bb⃗2 +
Nb3

∑
C=0

eiQ⃗⋅Cb⃗3 (2.94)

Where Nb1 ,Nb2 ,Nb3 is the number of lattice planes in the crystal. The modulus
of the three Cartesian coordinates in equation 2.94 are given as:

RRRRRRRRRRR

Nb1

∑
A=0

eiQ⃗⋅Ab⃗1

RRRRRRRRRRR

2

=
sin2 (Nb1Q⃗⋅b⃗1

2 )

sin2 ( Q⃗⋅b⃗1
2 )

(2.95)

RRRRRRRRRRR

Nb2

∑
B=0

eiQ⃗⋅Ab⃗2

RRRRRRRRRRR

2

=
sin2 (Nb2Q⃗⋅b⃗2

2 )

sin2 ( Q⃗⋅b⃗2
2 )

(2.96)
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RRRRRRRRRRR

Nb3

∑
C=0

eiQ⃗⋅Ab⃗3

RRRRRRRRRRR

2

=
sin2 (Nb3Q⃗⋅b⃗3

2 )

sin2 ( Q⃗⋅b⃗3
2 )

(2.97)

When the denominator is zero in equations 2.95, 2.96 and 2.97, then the W (Q⃗)
has a peak. Therefore, Q⃗ ⋅ b⃗1=2πh, Q⃗ ⋅ b⃗2=2πk and Q⃗ ⋅ b⃗3=2πl or Qx=(2π

b1
)h,

Qy=(2π
b2
)k, Qz=(2π

b3
)l, which is equal to the reciprocal lattice vectors b⃗∗1, b⃗∗2 and

b⃗∗3. The intensity is maximal, when the scattering vector Q⃗ is equal to the
reciprocal lattice vector G⃗ as shown previously in figure 2.11 (b):

Q⃗ = G⃗ (2.98)

G⃗ is defined as:

G⃗ = hb⃗∗1 + kb⃗∗2 + lb⃗∗3 (2.99)

Where h, k and l is the Miller indices. The reciprocal lattice vectors b⃗∗1, b⃗∗2 and
b⃗∗3 are given as:

b⃗∗1 = 2π b⃗ × c⃗
a⃗ ⋅ (b⃗ × c⃗)

(2.100)

b⃗∗2 = 2π c⃗ × a⃗
a⃗ ⋅ (b⃗ × c⃗)

(2.101)

b⃗∗3 = 2π a⃗ × b⃗
a⃗ ⋅ (b⃗ × c⃗)

(2.102)

The above equations lead to the following identities,

b⃗i ⋅ b⃗∗j = 2πδij (2.103)
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2.3. Scattering

Where δij=1 in case i=j and 0 in case i ≠ j.

Equation 2.98 is known as the Laue condition, which is equivalent to Bragg′s
law of diffraction.
The Bragg′s law state that the path difference should be integer multiple of λ
for the constructive interference or for Bragg peaks as shown in figure 2.11 (a).
Each point in the reciprocal space is related to a set of planes in the real space,
where ⃗Ghkl is perpendicular to the planes with Miller indices (hkl) and the
magnitude of the reciprocal lattice vector given as:

∣ ⃗Qhkl∣ =
2π
dhkl

(2.104)

Where dhkl is the distance between lattice planes with Miller indices (hkl).
The equivalence of Laue condition and Bragg law rise from the relation between
reciprocal lattice points and real space lattice planes. To show this equivalence
equation 2.98 can be written as:

k⃗f = G⃗ + k⃗i

By taking the square of the above equation:

k2
f = G2 + 2G⃗ ⋅ k⃗i + k2

i

The above equation becomes G2 = −2G⃗ ⋅ k⃗i because ∣k⃗i∣ = ∣k⃗f ∣.

G⃗ ⋅ k⃗i = Gk sin θ. By substituting G=2π
d and k=2π

λ , the Bragg law can created
from Laue equation as follows.

G = 2k sin θ → 2π
d

= 22π
λ

sin θ → nλ = 2d sin θ

2.3.4. Ewald sphere construction

The most useful way of imagine the possible Bragg reflections and understand-
ing the occurrence of the diffraction spot is the Ewald sphere construction. The
incident beam with a wave vector k⃗i is assumed to strike the reciprocal lattice
at some arbitrary points. Ewald sphere is a sphere of radius 2π

λ where the origin
of the reciprocal lattice lies at the edge of the Ewald sphere in the transmitted
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beam as shown in figure 2.12. Whenever the reciprocal lattice points intersect-
ing Ewald sphere or lie exactly on it, Bragg’s condition will be satisfied and the
corresponding (hkl) plane will appear in the scattering pattern. Ewald sphere
construction does not ensure that the reciprocal lattice will intersect it. There-
fore, the crystal has to be rotated in order to move more reciprocal lattice points
through the Ewald sphere.

Figure 2.12.: Ewald sphere construction: When the reciprocal lattice point intersect-
ing the sphere, the Bragg condition is satisfied.

For the observations of the Bragg peaks for single crystal. The single crystal
has to be rotated for exact alignment of the reciprocal lattice with respect to
the incident beam. When the sample is rotated, the reciprocal lattice is also
rotated and in this case the scattering vector Q⃗ becomes larger than the recipro-
cal vector G⃗, then the Bragg peaks will disappears. But for powder samples the
reciprocal lattice is described by concentric spheres instead of points as shown
in figure 2.13, because powder sample consists of all possible lattice planes ran-
domly oriented in all possible directions. The Ewald sphere will cut all the
concentric spheres , which appears as Debye-Scherrer rings instead of points.
All scattering wave vectors k⃗f shown in figure 2.13 satisfy the Bragg condition
simultaneously. It is possible to do this scan in transmission geometry or for
scattering under grazing incidence. Each ring appears at different scattering
angle (2θ). These different (2θ) values can be obtained via a detector scan over
the whole angular range.
In nanoparticle system, each nanoparticle could be a single crystal. But there
may they arranged in a random way, which look like a powder pattern. There-
fore to capture all possible reflections from nanoparticle films, scattering under
grazing incidence is a sufficient technique by scanning the exit beam over ar-
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bitrary wide angles and keeping the incident beam close to the total reflection
condition.

Figure 2.13.: Ewald sphere construction for powder samples.

2.4. Small Angle X-ray Scattering (SAXS)

Small-angle scattering (SAS) is a technique to study nanometer-sized objects
when the wavelength of the scattered particle is in the order of a few Ångström
ångström. SAS experiment arises from two primary sources, known as x-ray
source (small-angle x-ray scattering (SAXS)) and neutron source (small-angle
neutron scattering (SANS)), but only SAXS will be the main focus of this study.
Here, the forward scattering of a collimated beam through a sample is mea-
sured on a position-sensitive detector around an opening angle in the order
of 2θ = 0.1○ − 10○. Also, in this experiment geometry, the sample-to-detector
distance needs to be large to observe the scattering pattern with reasonable
resolution due to the small-angle scattering. As the magnitude of the scattering
vector Q is proportional to sin (θ) and Q is inversely proportional to the probed
length scale, as introduced in previous sections, Q⃗ = 4π

λ sin θ. This means that
scattering at small angles (θ), larger length scales are probed from this scatter-
ing technique.
SAS measurements are based on the interference of coherent radiations. For ob-
jects has to be investigated by SAS, its microscopic characteristic length has to
be of the same order of magnitude as the wavelength of the incoming radiation.
Usually, the samples measured with SAS technique are dispersed in a solvent
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with random orientations like nanoparticles, which is the main interest in our
study. The scattering intensity in SAS is measured in transmission geometry,
where the size, size distribution and shape of the particles can be determined.
In order to avoid multiple scattering, mostly thin samples with a high transmis-
sion rate are investigated by this technique.

In general, the local interaction of radiations with matter is characterized by a
scattering length bi, and its density ρ(r) = ρi(r)bi, with ρi(r) being the local
density of scatterers. Thus the scattering length density (SLD) is give by:

ρ(r⃗) = ∑
N
i=1 bi(r⃗)
V

(2.105)

Where V is the volume.
In the following, the application of small-angle scattering to study nanoparti-

cles in dispersion is explained. First step, will consider a dispersion that consists
of monodisperse and equally oriented nanoparticles. Here in this case, the scat-
tering length density is given as a constant background value given by the solvent
ρs and parts in the solvent where it is replaced by the nanoparticles. The latter
is given as a summation over ρp(r⃗) because all particles are equally oriented and
of the same shape. ρp(r⃗) contains the complete description of the particle shape
and it’s composition. Also, ρp(r⃗) is shifted to the different center positions r⃗i
of the nanoparticles

ρ(r⃗) = ρs +
N

∑
i=1

∆ρp(r⃗ − r⃗i) (2.106)

The nanoparticle scattering length density can be written as convolution of two
functions: a function ∆ρp(r⃗), which describes the shape and composition of
a single nanoparticle, and a function S(r⃗) describing the exact position of N
nanoparticles in the solvent

ρ(r⃗) = ρs + (S ∗∆ρp)(r⃗) (2.107)

Where S(r⃗) is given as

S(r⃗) =
N

∑
j=1
δ(r⃗ − r⃗j) (2.108)
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The macroscopic differential cross section, which is the differential cross section
scaled to the integrated volume given as

d∑
dΩ = dσ

dΩ
1
V

(2.109)

can be evaluated in the Born approximation by inserting the scattering length
density (equation 2.107) in equation 2.86

d∑
dΩ = 1

V

RRRRRRRRRRRR
∫
V

dr⃗′e−iQ⃗r⃗′ρ(r⃗′)
RRRRRRRRRRRR

2

= 1
V

RRRRRRRRRRRR
∫
V

dr⃗′e−iQ⃗r⃗′(S ∗∆ρp)(r⃗′) + ∫
V

dr⃗′e−iQ⃗r⃗′ρs

RRRRRRRRRRRR

2

(2.110)

The integral over the constant solvent scattering length density eQual 2πδ(Q⃗)ρs
is evaluated to zero for Q⃗ ≠ 0. The case of Q⃗ = 0 corresponds to forward scat-
tering, which is not studied in small-angle x-ray scattering as the direct beam is
blocked to protect the detector. The convolution theorem turns the remaining
integral to a product of two integrals

d∑
dΩ = N

V

1
N

RRRRRRRRRRRRR

⎛
⎝∫

dr⃗e−iQ⃗r⃗S(r⃗)
⎞
⎠
⎛
⎝∫
VP

dr⃗e−iQ⃗⋅r⃗(ρp(r⃗) − ρs))
RRRRRRRRRRRRR

2

(2.111)

The above equation means that the macroscopic differential cross-section is de-
scribed by two factors. The first integral is known as the structure factor S(Q⃗)
and the second integral is called the form factor F (Q⃗). The structure fac-
tor arises from the arrangement of particles and it becomes relevant when the
nanoparticles solvent is too dense, therefore the nanoparticles tend to attract
each other and aggregate. Therefore, the interactions between the nanoparticles
in solvent can be described by the structure factor S(Q⃗)). The structure factor
S(Q⃗) = 1 for an ensemble with identical, uncorrelated particles. While S(Q⃗) ≠ 1
for the correlated particles, due to the interactions between the particles. Struc-
ture factor is most prominent at small Q values, while at large Q values only
the inner particle structure is visible, not the arrangements of the particles in
space. The form factor describes the scattering due to the shape and properties
of a single nanoparticle. In the definition of the volume integral for the form
factor, it is enough to integrate over the volume of a single particle Vp as the
integration is 0 outside. The integral, before applying the magnitude square, is
called the form factor amplitude and is denoted by a lower case f(Q⃗), because
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the magnitude removes the phase of the amplitude.

The case S(Q⃗) = 1 is most often the desired one in a small-angle scattering
experiment on nanoparticles as it eliminates the need to model a structurefac-
tor. Therefore, in an experiment, the sample is diluted such that the structure
factor is approximately 1, but the measured intensity is still strong enough to
be counted in a reasonable amount of measurement time. In this case, only the
form factor F (Q⃗) for a specific sample needs to be modeled.
For a form factor, the simplest model to solve of a nanoparticle is a sphere due to
it’s high symmetry. The scattering length density is then just a constant within
the volume of the sphere and the form factor Fsph(Q⃗) can be solved analytically
to

Fsph(Q⃗) =
RRRRRRRRRRRRR
∫
Vp

dr⃗e−iQ⃗r⃗(ρp − ρs)
RRRRRRRRRRRRR

2

(2.112)

=
RRRRRRRRRRRR
(ρp − ρs)

R

∫
0

dr

2π

∫
0

dφ

π

∫
0

dθr2 sin (θ)e−iQr cos (θ)
RRRRRRRRRRRR

2

= ∣4πR3(ρp − ρs)
sin (QR) −QR cos (QR)

(QR)3 ∣
2

= V 2
sph(ρp − ρs)2 ∣3sin (QR) −QR cos (QR)

(QR)3 ∣
2

(2.113)

where Vsph is the volume of the sphere. Thus, the macroscopic differential
cross section for diluted nanospheres in a solvent is given as

d∑
dΩ = αVsph(ρp − ρs)2 ∣3sin (QR) −QR cos (QR)

(QR)3 ∣
2

(2.114)

with α = NVsph
V is the volume concentration of the particles in the solvent. The

above equation shows that the differential cross section depends on the particle
concentration, volume and contrast to the solvent which is mainly used for con-
trast variation techniques in neutron scattering experiment. The derivation of
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further form factors such as a cube or core shell is described briefly in App.E.

The size, size distribution and shape of the particles can be determined by
fitting the measured intensity with the calculated intensity. Mostly, there are
distributions of different sizes in real systems. Therefore, the scattered intensity
I(Q⃗, r⃗) is folded with the size distribution function χ(r⃗):

Ireal(Q⃗) = Iideal(Q⃗, r⃗) ⊛ χ(r⃗) (2.115)

Where Ireal and Iideal represents the real measured intensity and the ideal inten-
sity for any calculated particulate size and form, respectively. The magnitude of
the polydispersity is described by a constant know as polydispersity index (PDI)
given as:

PDI = σ(χ(r⃗)
µ(χ(r⃗)

(2.116)

Where σ(χ(r⃗)) is the standard deviation of the size distribution function and
µ(χ(r⃗) is the mean of the size distribution function. In this study, the size
distribution of the nanoparticles is described by a log-normal function:

d(R,R0, σ) =
1√

2πσR
exp

⎛
⎝
−

(ln R
R0

)2

2σ2

⎞
⎠

(2.117)

Where R is the spherical nanoparticle radius, R0 is the mean value of the radius,
and σ is the lognormal standard deviation.

2.5. X-ray Reflectometry (XRR)

Reflectometry is a surface-sensitive analytical technique to study the structure
of a thin films or multilayers perpendicular to the substrate. In particular,
X-ray reflectometry allows to study the average electron density in a sample
with depth resolution. The basic principle behind this technique is that the
reflected beam is collected at a reflected angle equal to incident angle (specular
reflectivity). The scattering vector is parallel to the z-axis, perpendicular to the
substrate. It has the effect that the integral over the scattering potential in the
previously discussed BA (equation 2.74) reduces to a one dimensional problem

∫ dr⃗e−iQ⃗⋅r⃗V (r⃗) = ∫ dZe−iQz ⋅ZV (Z) (2.118)

51



2. Theoretical Background

where V is the laterally integrated potential

V (Z) = ∫ dX ∫ dY V (r⃗)

(2.119)

Then, reflectometry is a one dimensional problem, where the sample is com-
pletely modeled by the laterally averaged scattering potential with respect to
the Z axis.

Figure 2.14.: Reflection and refraction from a surface.

Reflection from a surface: A simple approach will be considered here in
order to understand reflectivity from a laterally homogeneous medium. Figure
2.14 shows the reflection geometry, where a monochromatic, well collimated
beam impinges from the vacuum side onto a flat surface under a small incidence
angle αi and the scattering vector Q⃗ is perpendicular to the sample surface.
Afterwards, the x-ray beam is partly reflected from a sample surface. The
reflected intensity of x-rays is measured in the specular direction (αi = αf = α).
The transmitted wave makes an angle αt with the surface.
The scattering vector Q is along Z-axis and is given by:
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Q = Qz = 2k sinα (2.120)

According to Snell’s law,

n1 sinα = n2 sinαt

and with the refractive indices n1 = 1 (vacuum) and n2 = n:

⇒ sinα = n sinαt (2.121)

At an incident angle (αi) = critical angle (αc), all the beam is reflected and no
beam transmitted into the sample, i.e. αt = 0. Therefore, the refractive index
can be written as:

n = sinαc (2.122)

The refractive index n = 1− δ + iβ depends on the material and beam type. For
x-ray, the value of the dispersion δ and the absorption β terms are give as:

δ = 2πr0ρe
k2
iZ
∑
j

fj(Q⃗) + f ′j(E) ≃ λ
2r0ρe
2π ≃ 2πr0ρe

k2
i

(2.123)

β = 2πr0ρe
k2
iZ
∑
j

f ′′j (E) = µ λ4π = µ

2ki
(2.124)

Where f ′ is the dispersion correction term, µ is the absorption coefficient of the
material, ρe is the electron density and r0 is the classical electron radius. Both
coefficients are energy dependent, which is neglected in the above equations.
For very small incident angles and far away from resonance edges, the refractive
index can be written as:

n = 1 − δ = 1 − λ
2r0ρe
2π = 1 − α

2
c

2
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⇒ αc =
√

λ2roρe
π

=
√

4πr0ρe
k2 (2.125)

Equation 2.125 becomes in Q-space:

Qc = 2k sinαc ≃ 2kαc =
√

16πr0ρe (2.126)

Equation 2.126 shows that the critical scattering vector Q⃗c is in this approxi-
mation independent on the wavelength λ. It depends on the classical electron
radius and the electron density which is a function of the atomic number Z (i.e.
is a function of material properties).
From the refractive index definition:

n = kt
k
= sinα

sinαt
(2.127)

For small angle the transmitted wave vector kt = nk and the transmitted angle
αt =

√
α2 − α2

c .
At an incident angle below αc an evanescent wave propagates parallel to the
sample surface and decreases exponentially from the sample surface to the bot-
tom of the sample. This wave provides information about the in-plane lattice
parameter which can be determined by grazing incidence diffraction method.
One has to go to an angles higher than the αc in order to extract the electron
density variation of the sample.
The reflection and the transmission coefficients can be written as:

r(α) = ER0

EI0
= α − αt
α + αt

(2.128)

t(α) = ET0

EI0
= 2α
α + αt

(2.129)

Where EI0,ER0 and ET0 are the incident, reflected and transmitted amplitudes,
respectively.
Transformation of equations 2.128 and 2.129 into Q-space can be written as:

r(Q) = Q −Qt

Q +Qt

(2.130)
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t(Q) = 2Q
Q +Qt

(2.131)

Where Q = Q
Qc

= α 2k
Qc

and Qt = Qt
Qc

= αt 2k
Qc
.

The reflectivity (R) is defined as the modulus squared of the ratio of the re-
flected and incoming waves, while the transmissivity (T ) is defined as the mod-
ulus squared of the ratio of the transmitted and incoming waves.

R = ∣r∣2⇒ R = ∣α − αt
α + αt

∣
2
= ∣Q −Qt

Q +Qt

∣
2

(2.132)

T = ∣t∣2⇒ T = ∣ 2α
α + αt

∣
2
= ∣ 2Q
Q +Qt

∣
2

(2.133)

In case Q >> 1, then Q2 −Q2
t=1 and Q +Qt ≈ Q. Therefore the reflectivity and

the transmissivity becomes:

RF ∝≈ Q−4 (2.134)

TF = 1 (2.135)

Equation 2.134 known as the Fresnel reflectivity. Means the reflected wave in
phase with the incident wave.
In case Q << 1, the reflected wave is out of phase with the incident wave and an
evanescent waves are observed.

In the case of reflection from layers on a substrate, multiple transmissions
and reflections take place at both surface and interface before the beam exits
the sample. Then, the reflected beams from the different interfaces interfere
with each other. The maximum intensity is obtained, when the path length
difference between two reflected beams is an integer multiple of the wavelength
(Bragg’s law).
For a simple system consider one layer added on top of the substrate. Here, one
has to deal with two interfaces. The first one between the vacuum and the layer
and the other one between the layer and the substrate. The phase difference
between the reflected intensities from the two interfaces are varied by changing
the incident angle αi. Therefore, the beams that are reflected from the two
interfaces interfere with each other, which gives an oscillation in the reflectivity
measurement known as Kiessig oscillations. At large Q(z), the thickness of the
layer is related to the oscillation period by the following relation:
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∆Qz =
2π
d
⇒ d = 2π

∆Qz

(2.136)

Where ∆Qz is the difference between two successive maxima or minima. Using
the relation between Q-space and α, Qz = 2k sinα = (4π

λ ) sinα ≈ (4π
λ )α, then

equation 4.6 becomes in angular term:

d = π

k∆α = λ

∆α (2.137)

Where ∆α is the difference between two maxima or minima in radian.
In case more than one layer on the substrate exists, such as superlattices with
two different layers with thicknesses d1 and d2, and these two layers are repeated
several times. The combined periodicity is given by D = d1 + d2 as shown in
figure 2.15. One can observe that the reflectivity measurement shows some
maxima Kiessig fringes which appear with a periodicity of 2π

D . In addition, one
can observe much weaker oscillation with a period given by the thickness of
the total layer. In order to calculate the reflectivity for a multilayer system,
Parratt formulated an approach to add all the reflected and transmitted beam
amplitudes to the total reflected beam [56, 58].

Figure 2.15.: Schematic representation of two layers of thickness d1 and d2 on a sub-
strate with a total periodicity D.

2.6. Polarized neutron reflectometry (PNR)

Similarities between x-ray and neutron reflectivity are obvious. X-ray reflectom-
etry allows one to study the average electron density in a sample with depth
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resolution as mentioned in the previous section, whereas neutron reflectome-
try allows one to probe the nuclear structure. Additionally, polarized neutron
reflectometry (PNR) allows in principle to resolve the magnetic density with
depth resolution [59]. Neutron basically interacts with the nuclear potential
and it interacts with the local magnetic induction B⃗ in the sample due to the
magnetic moment µ⃗ generated by the unpaired electrons inside the atoms for
the magnetic materials.
Due to the pronounced differences in the neutron scattering length density of
different isotopes, neutrons often provide better contrast and don’t damage sam-
ples. On the other hand, x-rays provide better Q resolution and higher Q values.
In contrast to x-rays, magnetic systems are easily probed by polarized neutron
reflectometry due to magnetic dipole interaction with unpaired electrons.

When neutrons interact with matter, an interaction potential is added, which
is described as a Fermi pseudo potential

VF = 2πh̵2

mN

ρNb (2.138)

Where mN is the neutron mass, ρN is the nuclear density and b is the scattering
length. Solving the Schrödinger equation for the interaction given in a bove
equation

h̵2

2m
dψ2

dr2 + (E0 − VF )ψ = 0 (2.139)

with ψ(r) = ψ+(r)∣+ > +ψ−(r)∣− > for the two spin states of the neutron. It
follows with

k2 = 2m
h̵2 (E0 − VF ) (2.140)

dψ2

dr2 + k2ψ = 0 (2.141)

If the interaction of the neutron wave is with a magnetic material, then the
interaction potential is modified with a magnetic interaction by

VM = VF − γnµN σ⃗B⃗ (2.142)
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Where γn is the gyromagnetic factor, µN is the nuclear magneton and σ⃗ =
(σx, σy, σz).

k±2
j = 2m

h̵2 E0 − 4πρNbj ±
2m
h̵2 γnµN σ⃗B⃗ (2.143)

which gives four wavevectors for the four spin states k++2
j , k+−2

j , k−+2
j , k−−2

j and
four reflectivities R++,R+−,R−+,R−−. Where R++ and R−− are produced when
the neutron spin direction is not changed after it is scattered at the sample,
which is know as the non spin flip (NSF) scattering, which happens when M⃗
align parallel to the applied field. While if the spin direction of the neutron is
flipped after scattering, R+−,R−+ are produced, which is known as spin flip (SF)
scattering which happens when M⃗ oriented perpendicular to the applied field.
PNR is not sensitive to the magnetization parallel to the scattering vector Q⃗
(Z-component).
The Schrödinger equation for the potential of neutron states (i.e up and down
states) can be simplified into two coupled one-dimensional linear differential
equations

ψ”
+(z) + [k2

z − 4πbρN + 2mγnµn
h̵2 B∥]ψ+(z) +

2mγnµn
h̵2 B⊥ψ−(z) = 0 (2.144)

ψ”
−(z) + [k2

z − 4πbρN − 2mγnµn
h̵2 B∥]ψ−(z) +

2mγnµn
h̵2 B⊥ψ+(z) = 0 (2.145)

2.7. GISAXS

Additionally to the perpendicular structure, as described in the previous section,
it is interesting to study the lateral structure of nanoparticle assemblies to gain
the complete three-dimensional information. For this purpose grazing-incidence
small-angle x-ray scattering (GISAS) has assured as an efficient technique to
measure the off-specular scattering from which in-plane order within a sample
can be extracted with high resolution. GISAXS is a surface-sensitive scattering
technique with minimum penetration depth 10 nm used to probe the nano-
structure of thin films. Also, it is a versatile and powerful tool, which enables
characterization of nanoscale objects deposited on surfaces such as nanoparticles
and nanostructured surfaces such as lithographic patterns, which is the main
focus of this study. Furthermore, GISAXS enables studies of nanoscale density
correlations and/or the shape of nanoscopic objects at surfaces, at buried inter-
faces, or in thin films.
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GISAXS technique combines features of the small-Angle X-ray Scattering and
the diffuse X-ray Reflectivity.

The geometry of a GISAXS experiment along with the reciprocal axes is il-
lustrated in figure 2.16. The incoming x-ray beam enters the sample along k⃗i
under a very small angle αi with respect to the surface, which results in a large
footprint on the sample, and scattered along k⃗f in the direction (αf ,2θf ). The
Cartesian z-axis is the normal to the surface plane, the x-axis is the direction
along the surface parallel to the beam and the y-axis perpendicular to it. The re-
ciprocal coordinates are related to the scattering angles in real space throughout
the following relations:

Qz = k(sinαf + sinαi) (2.146)

Qy = k(sin 2θf cosαf) (2.147)

Qx = k(cos 2θf cosαf − cosαi) (2.148)

Where k = 2π
λ with λ is the wavelength of the x-ray, αi is the incident angle,

αf is the exit angle and 2θf is the in-plane angle. From GISAXS pattern, the
reflected beam observed above the horizon, and the transmitted beam observed
below the horizon as shown in figure 2.16.

GISAXS has various cases that provides different information: first case, as
the in-plane angle 2θf = 0, αf = αi, and Qx = Qy = 0 and Qz ≠ 0, then specular
reflectivity can be observed which depends on the incident angle αi. From
specular reflectivity, depth-sensitive information like information about layer
thickness and surface roughness can be obtained. Second case, if 2θf = 0, and
αf ≠ αi, then off specular reflectivity is obtained. Third case, If 2θf ≠ 0
and αf ≠ αi, then scattering patterns containing information about the lateral
ordering can be obtained.

The GISAXS measurement is performed in different geometry than SAXS as
shown in figure 2.16. In GISAXS, the incident angle is chosen to be close to
the critical angle of the sample, where the Born approximation (BA), which is
not taken into account the reflection-refraction effects at the surface of the sub-
strate (i.e.is not accurate enough to reliably calculate the scattering). It has to
be modified to account for reflection and refraction effects at the interfaces of a
sample. This is provided by the distorted-wave Born approximation (DWBA),
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Figure 2.16.: GISAXS geometry with the reciprocal axes.

where the scattering wave function is no longer assumed to be a plane wave
within the sample such as in the Born approximation. In DWBA, in addition
to the normal scattering event as assumed in (BA), the other three events, a
reflection followed by scattering, or a reflection after the scattering, or reflection
followed by scattering and a second reflection are taken into consideration. Fig-
ure 2.17 shows the four different scattering events encountered in DWBA and
involved in GISAXS geometry.

Born approximation is accurate in case if the scattered field is small, com-
pared to the incident field, in the scatterer, where it is treated as a perturbation
of free space or of a homogeneous medium. Also, in this case, the incident wave
is considered as a plane wave. When the previous mentioned criteria is not
satisfied, BA has to be modified to so called DWBA due to the perturbative po-
tential δV (r⃗) in equation 2.149. In general, the free space zero-potential in BA,
V0(r⃗) = 0, is replaced by a non-trivial reference potential V1(r⃗) of a known scat-
tered field ψ(r⃗) obtained from the solution of the Lippmann-Schwinger equation
(equation 2.68). In the DWBA, the scattering potential is split as

V (r⃗) = V1(r⃗) + δV (r⃗) (2.149)

Where the potential V1(r⃗) can be treated exactly to determine the wave function
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Figure 2.17.: Four events involved in the scattering process in GISAXS geometry.
The first event corresponds to the simple Born approximation. While
the other events shows reflection at the interface

of the scattering problem for the case δV (r⃗) = 0 and the perturbation δV < V1
is treated analogue to the Born approximation, but instead of plane waves, the
previously determined wave function is used. In GISAXS, V1 represents the one
dimensional description of the layered structure for the sample, and δV collects
all fluctuations in x and y direction.

In DWBA, the scattering field ψ′(r⃗) due to the potential V is determined via
applying BA to the scattering of the incident wave ψ(r⃗)

ψ′(r⃗) = ψ(r⃗) + ∫ d3r′G1(r, r′∣E)(r⃗′)ψ(r⃗′) (2.150)

The distorted incident wave is the outgoing wave solution and G1(r⃗, r⃗′∣E) is the
Green function with the outgoing boundary condition for the same potential

⎡⎢⎢⎢⎢⎣

h̵2

2m ▽2 −V1(r⃗) +E
⎤⎥⎥⎥⎥⎦
ψ(r⃗) = 0 (2.151)

⎡⎢⎢⎢⎢⎣

h̵2

2m ▽2 −V1(r⃗) +E
⎤⎥⎥⎥⎥⎦
G1(r⃗, r⃗′∣E) = δ(r⃗ − r⃗′) (2.152)

To satisfy the boundary conditions, it is required that the distorted wave func-
tion behaves in the asymptotic limit as a plane wave plus an outgoing wave
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ψ(r⃗) → eikr + 1
r
eikrf 1

k (θ, φ) (2.153)

Thus, the total scattering amplitude fk(θ, φ) in DWBA is given as

fk(θ, φ) = f 1
k (θ, φ) + δfk(θ, φ) (2.154)

where f 1
k (θ, φ) is the scattering amplitude for the potential V1(r⃗)

f 1
k (θ, φ) = −

2m
h̵2

1
4π ∫ d3r⃗′e−ik

′r′V1(r⃗′)ψ(r⃗′) (2.155)

and δfk(θ, φ) is calculated in BA ψ(r⃗) = ψ′(r⃗)

δfk(θ, φ) = −
2m
h̵2

1
4π ∫ d3r⃗′ψ′∗(r⃗′)δV (r⃗′)ψ′(r⃗′) (2.156)

In the following, the simplest DWBA formalism will be discussed. Here, the
sample is assumed to be a flat interface, with a variety of nanoscale scattering
objects distributed over it. Thus, the scattering intensity can be split into a
Form Factor f(Q⃗) and Structure Factor S(Q⃗)

I(Q⃗) = ⟨ ∣f(Q⃗)∣2 ⟩S(Q⃗∥) (2.157)

In the BA, the Form Factor is simply given as

f(Q⃗) = ∆ρ∫
V

eiQ⃗r⃗dV (2.158)

The DWBA introduces additional terms to account for reflection and refrac-
tion effects. Figure 2.17 shows the four events involved in GISAXS scattering
process. The first term is the BA, while the next three terms describe various
specific multiple-scattering events. The various terms interfere coherently; thus
the final scattering that is measured on the detector comes from their combina-
tion:
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FDWBA(Q∥, kiz, kfz) = F (Q∥, kiz − kfz)
+ rF (αi)F (Q∥, kiz + kfz)
+ rF (αf)F (Q∥,−kfz − kiz)

+ rF (αi)rF (αf)F (Q∥,−kfz + kiz)
(2.159)

The first term in the right side in the above equation belongs to (BA), while the
other three terms belongs to (DWBA). It is obvious from the above equation
that the higher-order contributions to the form factor are multiplied by the
Fresnel reflectivity rF because these terms involve reflection events.

rF = kz − k̃z
kz + k̃z

(2.160)

where k̃z = −
√
n2k2

0 − ∣k∥∣2 and n is the complex refractive index of the substrate.

Using the effective form factor(equation 2.159), the total incoherent cross-section
becomes:

dσ

dΩ = ⟨ ∣fDWBA(Q⃗∥, kiz, kfz)∣
2 ⟩S(Q⃗∥) (2.161)

The detailed implementation of the DWBA for nanostructures is well discussed
in the manual of the software package BornAgain [60], which is used for the
simulation of GISAXS data in this work.
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techniques

Methods for samples preparation and the characteristics of all instruments used
for investigations in the framework of this thesis are briefly introduced in this
chapter.

3.1. Sample preparation

The sample preparation and the NP assembly methods to create nano-structures
or nano-crystalline objects can be divided into three categories depending on
the growth strategy [1]. These are (i) top-down, (ii) bottom-up, and (iii)
virtual fab. The top-down category is the most traditional way of miniatur-
ization by breaking a large structure "manually" or via kind of self-structuring
process into smaller structures until the dimensions reach the nanometer range.
These processes include deposition and lithographic techniques. In all of these
techniques, one needs external tools to get nano-sized structures. This approach
is undesirable in industries because with decreasing size the manufacturing cost
grows up.
An alternate way to the top-down approach is the bottom-up approach, where
the structure is created by assembling nanostructure units into desired struc-
tures via interaction forces. For example, NPs having a size between 1 nm to
100 nm can be used to build monolayer or multilayer structures by controling
the aggregation process. The bottom-up methods include self-assembly or self-
organization of nanostructures on templates, these methods are easier to access
and cheaper compared with the top-down methods. Also, via these methods,
one can produce uniform nanostructures with few defects and long-range orders.
Virtual fab is the last category technique to create nano structures or nano-
crystalline objects which is based on simulation and theoretical works in a virtual
world as explained by Bader et al [61].
Self-assembly methods of nanostructure units like NPs into two- and three-
dimensional ordered NPs are the simplest methods. In this thesis, various self-
assembly methods have been used, as shown in figure 3.2.
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3.1.1. Top-down methods

3.1.1.1. Electron beam lithography (EBL)

One application of electrons beam is to create nanostructure by electron beam
lithography technique and another application is imaging as will discuss later.
EBL is a fundamental technique in nanofabrication, allowing the direct writing
of structures down to sub-10 nm dimensions. Derived from the early Scan-
ning Electron Microscopes (SEM), the technique briefly consists of scanning an
electron beam over a surface covered by an electron sensitive material (e-beam
resist) that changes its solubility properties according to the energy deposited
by the electron beam. Here, in this section, just the writing process will be
explained and the details of templates preparation for nanoparticles deposition
will be explained later in chapter 4. Figure 3.1 shows the main steps involved
in the EBL process. In the development step, the exposed or unexposed regions

Figure 3.1.: Sketch of the major steps of EBL process.

are removed depending on the resist nature, either positive or negative tone.
For negative resist, the portion exposed to the electron beam is insoluble in the
developer due to the polymerization of the chemical structure of the photoresist
when it is exposed to the e-beam, while for positive resist, the portion exposed
to the electron beam is soluble in the developer due to the change in the chemi-
cal structure when the photoresist is exposed to the e-beam. By using negative
resist, the material is first deposited and then the structure is created, while by
using positive resist, the structure is created then the material is deposited. In
the present study, only the positive photoresist was used. The common positive
e-beam resists are Polymethylmethacrylate (PMMA) with 200K as a molecular
weight and 4% dilution in chlorobenzene, PMMA with 950K molecular weight
and 2% dilution in chlorobenzene, and CSAR 62 (AR-P 6200). The photoresist
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is deposited on the substrate via the spin-coating method to ensure a homoge-
neous and uniform thickness of the resist over the whole sample area such that
the focus does not change laterally while scanning the electron beam over the
sample, especially while writing structures near or below 100 nm. The photore-
sist layer thickness depends on the rotational speed, time of rotation, and the
atomic weight. However, the thickness becomes less by increasing the rotational
speed and the time. It’s crucial to mention that the corners and the edges of
the sample should be avoided for lithography.
The patterns can be created by GDSII, DXF, ELM and ASCII text-editor
database provided by the Raith Turnkey 150 software or Elphy software. The
exact dimensions and the shape of the structure (lines, rectangles, circles...etc)
can be drawn by these programs. For example, to make a rectangular pattern
of groove width W and depth L, the electron beam is scanned over the length
L along the width W with a step size d. The final dimension of the structure is
determined by different parameters: Dose factor D, beam current I, and the
time for writing each step (dwelling time τ) which is the same as the exposure
time. The previous parameters are related by this relation:

τ = Dd
2

I
(3.1)

The dwelling time is related to the fact that when electron beams impinge on
the polymer chain (resist), try to break the bond and shorten it by transferring
the energy. The broken polymer chains have smaller molecular weights and can
be washed away in the subsequent development step. For a chemical change to
happen in the polymer chain, certain exposure time is required. As developers
used for positive resist are AR 600-546 for 60s, Isopropyl alcohol (IPA) for 30s
to stop the development process and then Deionized water (DI) for 30s. From
the previous equation, the development time is decided by the Dose factor, the
beam current and the size of the nanostructures.
In this thesis, trenches were prepared using EBL, which were used as a template
for nanoparticle self-assembly. This will be discussed in detail in chapter 4.

3.1.2. Bottom-up methods

3.1.2.1. Drop-casting

The drop-casting method is one of the simplest techniques that can be used for
sample preparation. Here, a certain volume of NP dispersion is dropped onto
Si(100) substrates where it assembles on the substrate with different thicknesses.
The obtained morphology of the NP assemblies using this method depends on
the evaporation rate of the solvent as well as the amount of the NPs dropped
on the substrate. The schematic picture for this method is shown in figure 3.2
(a).
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Figure 3.2.: Schematics of various methods for NP self-assembly used in this thesis:
(a) Drop-casting, (b) Spin coating, (c) Dip coating.

3.1.2.2. Spin-coating

Here, the substrate is fixed on a rotating stage of a spin coating device, after
that, the NP dispersion is dropped in the middle of the substrate, subsequently,
it starts to rotate with suitable rotation speed and time. The thickness of the
NP layer depends on the rotation speed, time and concentration of the NP
dispersion. Figure 3.2 (b) shows the schematic picture for this method.

3.1.2.3. Dip-coating

The third method used in this study is dip coating. It consists of a few steps car-
ried out directly after each other as shown in figure 3.2 (c). Here, the substrate
is immersed in the NP solvent at a constant speed, keep it for a while inside
the solvent and then pull it up with a constant speed. The NP layer deposits
itself on the substrate while it is pulled up and the excess liquid will drain from
the surface, during this time the evaporation of the solvent start. The thickness
and the uniformity of the NP layer can be controlled by many factors: submer-
sion time, withdrawal speed, number of dipping cycles, the composition and the
concentration of the solvent.
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3.2. Electron microscope

Electrons are an elementary ionizing radiations particles with a negative charge,
which produces various signals when it interacts with a specimen. Different in-
teractions can occur and various products can be obtained when the electrons
hit the material, as summarized in figure 3.3. Depending on the detection meth-
ods, the wealth of different information about the specimen such as morphol-
ogy, topology, topography (secondary electrons), crystal structure (elastically
scattered electrons), and composition of a material can be achievable. The ba-

Figure 3.3.: Interaction of electrons with matter leading to several secondary effects.

sic concept of electron microscopy is that the accelerated electrons act not as
particles but as waves too. In non-relativistic approximation, the de Broglie
wavelength associated with electron is

λ = h

P
= h√

2meeV
(3.2)

Where, h is the Plank constant, P =
√

2meeV is the momentum, e is the electron
charge and V is the accelerating voltage.
Electron microscopy usually operates in two different modes. The first mode is
called scanning electron microscopy (SEM), which probes a bulk sample with
smaller energies of the order of 20 keV and wavelength of the order of 0.00863
nm which is much smaller than the optical and x-ray wavelength. The other
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mode is called transmission electron microscopy (TEM), which probes very thin
specimen and operates at energies of the order of few hundred keV, in this case,
the relativistic effect has to be taken into account and added to the wavelength
expression as

λ = h
√

2meeV (1 + eV
2mec2 )

(3.3)

3.2.1. Scanning Electron Microscopy (SEM)

One of the most common techniques for sample characterization, particularly
to study the morphology of nanoparticles and thin films is Scanning Electron
Microscopy (SEM). Using a focused beam of high energy electrons it produces
direct space images of the sample with a resolution in the nanometer range.
In SEM, a beam of electrons is produced at the top of the microscope by an
electron gun. The electron beam is accelerated through high voltage ( 0.5-30
kV) and passes vertically through a system of apertures and electromagnetic
lenses to produce a focused beam of electrons onto the sample. The beam scans
the sample surface by scanning coils which direct the beam across the sample
in a grid fashion manner. Once the beam hits the sample, which needs to be
conducive to avoid charging effects, and it has to be dry and vacuum stable,
secondary electrons are ejected from it via inelastic scattering and collected by
a detector to provide information about the topography of the sample [62].
The schematic setup of the SEM device which consists of an electron gun, con-
denser lens, scanning coils and the objective lens is shown in figure 3.4. SEM
consists of two separate regions, the electron column region and the sample
chamber region which maintained at a lower vacuum and it is separated from
the electron coulomb by a small valve and it contains the detector. While the
electron region contains the source of the electrons and the lens system, and it
is maintained at a higher vacuum to avoid any loss of electrons.
The SEM images shown in this thesis were obtained using the SU8000 Hitachi
instrument at the PGI-7 institute (Peter Grünberg Institute for electronic ma-
terials). Its electron gun is designed for Cold Field Emission (CFE), where the
electric field is applied to a very fine tungsten tip. This enables the electrons
to overcome the work function and escape from the material. An alternative is
a thermal emission, where the filament is heated to extract electrons. In addi-
tion, field emission can be thermally assisted, which is referred to as Schottky
emission [63].
The electrons are generated at the top of the microscope by the electron gun.
These are emitted when their thermal energy overcome the work function of
the gun material. They are accelerated and attracted by the positively-charged
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Figure 3.4.: Schematical setup for a scanning electron microscope.

anode. The electromagnetic lenses used to control the path of the electrons
when current passes through the coils. The electromagnetic lenses consist of
two types of lenses: the condenser lens which converges the beam before the
electron beam cone opens again and it defines the resolution. The objective
lens which converges the beam once more before hitting the sample and it fo-
cuses the beam onto the sample.
When the electrons interact with the sample, this can result in the generation of
many different types of electrons or photons. In the SEM, two types of electrons
used for imaging are the backscattered electron (BSE) mode and the secondary
electron (SE) mode. The BSE’s belongs to the primary electron beam and
are reflected after elastic interaction between the beam and the sample. On
the other hand, SE originates from the atoms of the sample due to the inelas-
tic interaction between the electron beam and the sample. BSEs emerge from
deeper regions of the sample while SE originates from surface regions (figure
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3.5). Therefore, BSE and SE both carry different types of information. The
BSE can prob the specimen composition due to the sensitivity to differences
in atomic number. While the SE show very good surface details (topological
contrast).

Figure 3.5.: Diagram explaining different types of signals emitted by the interaction
between the incident electron beam and the sample surface and the area
from which they originate.

3.2.1.1. Imaging

The resolution of the image depends on the magnification, i.e the area on the
specimen scanned by the electron beam which is smaller than the display and
the number of pixels of the detector. The resolution in the SEM is controlled by
the size of the interaction volume and it is limited by spherical and chromatic
aberrations in magnetic lenses. Also, at higher magnification, astigmatism play
an important role. For a high magnification image, the alignment of the electron
beam is important to get a better-focused beam at the sample. The alignment
of the beam is carried out in different steps as explained in the following.
Firstly, at low magnification , the sample stage height from the end of the elec-
tron column is varied to get an optimum height and best focus. Then, the
mechanical aperture is adjusted manually to have a circular and maximum ex-
posure of the beam. Second, at high magnification an alignment of the lens
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to ensure that the electron beam passes through the optical axis of the lenses.
After all these adjustments, if an astigmatism is observed i.e. an inhomogeneous
field in the deflection coil lead to an elliptical beam instead of a circular one,
an eight pole electromagnet is housed in the objective lens to avoid this. The
shape of the beam can be tuned, by adjusting the current in the electromagnet
[64].
When the incoming electron beam interacts with the sample, different products
are generating as shown in figure 3.3. The secondary electrons which are in-
elastically scattered from the sample are the only products that contribute to
imaging. The penetration of the incoming electron beam depends on the elec-
tron energy, atomic mass and the density of the sample. As mentioned before,
the resolution of the image depends on the interaction volume. In addition, it
depends on the conductivity of the sample. The sample has to be conducive
to prevent the accumulation of the electrostatic charge at the surface. These
charges create a negative potential over the sample surface and this negative
potential deflects the incoming electron beam and also changes the path of the
secondary electrons. This produces artifacts in the imaging. The secondary
electrons are accelerated towards the detector, then the generated photons are
guided by light pipe and then hit a photomultiplier to generate photoelectrons
which are then amplified and converted into an image by a CRT or CCD camera.

3.3. Magnetometry

3.3.1. Superconducting Quantum Interference Device (SQUID)

SQUID magnetometer is a very sensitive magnetometer (10−8 emu (10−11 Am−2)
due to the special design of the detection coil and the Josephson junction, which
is used for high-precision measurements of magnetic properties of tiny samples
with tiny magnetic moments. Here, a vertical magnetic field from -7 to 7 T
is available which is produced by a superconducting magnet. It also provides
a high-precision temperature ranging from 1.9 - 400 K. SQUID uses the prop-
erties of electron-pair wave coherence and Josephson junctions to detect very
small magnetic signals. The central elements of SQUID is a superconducting
ring incorporated with a Josephson junction (figure 3.6).
In this study, a commercial SQUID magnetometer (Quantum Design, model
MPMS XL) was used to study the macroscopic magnetization of our systems.
The SQUID device is shielded by a magnetic shield from the external magnetic
field and the sample space. SQUID is connected to the detection coil (pickup
coil) around the sample space by superconducting wires. The detection coil used
in our SQUID magnetometer is a second-order (second derivative) gradiometer
as shown in figure 3.7 to avoid any background signal from a homogeneous field
and it is surrounded by a superconducting magnet (type II) in order to get a
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Figure 3.6.: Superconducting Quantum Interference Device (SQUID) as simple mag-
netometer.

uniform magnetic field over the sample. The upper and lower coils are rotating
clockwise, while the two coils in the middle are rotating counter-clockwise. Due
to this unique geometry, only the stray field is detected from the sample and
any change in the field outside the coil is not detected. The sample is moved
through the pickup coil where it is mounted in a drinking straw of diameter 9
mm and attached to the end of a sample rod. Then the sample rod is inserted
into the sample space which is maintained at low pressure and filled with He
gas in order to cool the sample.

3.3.1.1. Josephson junction

Josephson junction made of two superconductors connected through a small
insulating layer (figure 3.8). It is inductively coupled to an rf circuit and it
forms the foundation of the SQUID.
The magnetic flux quantization in a superconducting ring and the Josephson
effect are the two fundamental physical properties that determine the SQUID
function.
The magnetic flux inside a superconducting ring (figure 3.6) is quantized [64]
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Figure 3.7.: Schematic setup of the detection system with second-order gradiometer
for an rf-SQUID, the inset shows the response curve versus sample posi-
tion fitted with a point dipole approximation. Inspired from [65]

and the total magnetic flux inside it is given by [66]:

φT = ∮ B⃗ ⋅ d⃗s = nφ0 (3.4)

Where B⃗ is the vector potential, n is an integer and φ0 is the flux quanta given
by:

φ0 =
h

2e ≈ 2.07 × 10−15Tm2 (3.5)

The interesting physics arises from the tunneling of Cooper pairs (electron-
electron pair) across the insulating barrier. The phenomenological supercon-
ductors wave functions can be written as [66]:

ψ(r⃗) =
√
ns ⋅ exp(iφ(r⃗)) (3.6)
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Figure 3.8.: A Josephson junction: It is made of two superconductors connected
through a small insulating layer.

where φ(r⃗) is the phase factor and ns = ψ ⋅ ψ∗ is the Cooper pair density.
The current density through the barrier (insulator) separated the two supercon-
ductors can be written as:

I = I0 sin(δ) (3.7)

Where I0 is the critical current density and δ = φ2 - φ1 is the phase difference
between the two superconductors.
The above equation is known as the first Josephson equation and describes
how the tunneling current depends on the phase difference between the two
superconductors.
If a voltage V is applied across the Josephson junction, then the current density
can be written as:

I = I0 sin(φ2 − φ1 − ωt) (3.8)

Where ω is given by:

ω = 2eV
h̵

(3.9)

The above equation is known as the second Josephson equation which tells that
the current oscillates with a frequency ω.

3.3.1.2. Modes of measurements

Quantum design provides two different transport options to be used for mea-
surements with the MPMS. One is transported DC option and the other is
Reciprocating Sample Option (RSO) transport option. The DC option is the

75



3. Instruments and experimental techniques

default mode in MPMS and is a part of the base system and performs the
stepped DC scan. The RSO transport option is primarily used for samples with
a small magnetic moment which offers a relatively fast type of measurement
and allows more averaging and better noise rejection than the DC option. The
RSO option is more preferred for routine magnetic measurements because it can
perform both the stepped DC scan and the RSO scan. Furthermore, the RSO
is cheaper in construction but less sensitive than DC. In the DC technique, the
sample starts at the lowest point of the scan length and sequentially it moves
upward through the superconducting pickup coils and it is returned to the start-
ing point at the end of each scan. While in the RSO technique, the sample starts
in the middle of the scan length and it moves down, up then back down to stop
in the center. The DC SQUID contains two parallel Josephson junction (figure
3.9a), while the RSO SQUID contains one Josephson junction (figure 3.9b). In

Figure 3.9.: (a) A DC SQUID is made up of two Josephson junctions a and b con-
nected in parallel, (b) RSO SQUID is made of one Josephson junction
superconducting loop in an external magnetic field.

the DC SQUID the direct current I is the sum of currents I1 and I2 along two
branches, which is given by

I1 =
I0

2 sin δa (3.10)

I2 =
I0

2 sin δb (3.11)
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Where δa = δ0 + qe
h̵ φ and δb = δ0 - qe

h̵ φ.
In the presence of a magnetic field B, a magnetic flux φ is created and results
in a phase difference in the current of the superconductors. The difference is
given by:

δa − δb =
2qe
h̵
φ (3.12)

Then the total current can be written according to equation 3.7 as:

I = I0 sin δ cos(π φ
φ0

) (3.13)

Where φ0 = h
2qe ≈ 2.07 × 10−15 Tm2.

An oscillation in the current is produced due to change in applied magnetic
flux. The internal flux inside the SQUID φi jumps in steps by factors of φ0 if
the applied magnetic flux more than 1

2φ0
because the internal flux φi which is

quantized, is related to the applied magnetic flux. These steps determine how
sensitive a DC SQUID can be.
For RSO SQUID, the total flux quantization is given by [66]:

φ = φe −LI (3.14)

Where φe is the external flux due to the rf oscillating circuit, L is the inductance
and I is the current flowing in the loop.

The phase change around the loop is given as

δ + 2qe
h̵ ∮

B⃗ ⋅ d⃗s = δ + 2qe
h̵
φ (3.15)

Where δ is the phase difference across the junction.

The phase change around the loop in equation 3.12 must be equal 2πn, then δ
is given by

δ = 2πn − 2qe
h̵
φ = 2πn − 2π φ

φ0
(3.16)
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Then the current in the loop becomes

I = I0 sin δ = I0 sin(2π φ
φ0

) (3.17)

From equation 3.14 the current is given by

I = φ − φe
L

(3.18)

A stable flux state will be obtained when equation 3.14 and 3.15 are satisfied
simultaneously.

The flux φ through the loop can be written as [66]:

φ = φe −LI0 sin(2π φ
φ0

) (3.19)

The magnetic flux jumps from one quantum level to another, only when the
current equal the critical current. To use SQUID as a detector for magneti-
zation, it is coupled inductively to an external LC rf oscillating circuit (figure
3.10), where the resonance frequency of this circuit is given as ω0= 1√

LC
. The

inductance L and the capacity C comes from the superconducting loop and the
Josephson junction of the SQUID ring. The SQUID ring is coupled to the sig-
nal that transferred from the pickup coil. The current that transferred from the
pick-up coil creates an additional magnetic flux which penetrates the SQUID
ring, due to this, a current is generated inside the superconducting ring which
reduces the total flux inside it. In this thesis an rf SQUID based on the above
principle was used for the magnetization measurement.

3.3.1.3. Theory of operation

The magnetic signal of the sample is obtained via a second-order gradiometer
superconducting pick-up coil with four windings (figure 3.7). This coils with
a SQUID antenna (orange in figure 3.10) forms a part of the whole supercon-
ducting circuit transferring the magnetic flux from the sample to an rf SQUID
device, which is located away from the sample in liquid helium path. The rf
SQUID device acts as a magnetic flux-to-voltage converter (black in figure 3.10).
The output voltage amplified and read out by the magnetometer’s electronics
(green in figure 3.10). When the sample is moved up and down through the
pickup coils, it produces an alternating magnetic flux in the pick-up coils which
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Figure 3.10.: Schematic diagram of an rf SQUID with one Josephson junction.

leads to an alternating output voltage of the SQUID device. The flux changes
and the SQUID sensors provide a response curve for voltage versus distances as
shown in figure 3.7. "MPMS MultiVu" software used to measure the response
curve. Then the response curve is fitted with a theoretical curve of a single
point dipole, the sample position can be specified. Then the "MPMS MultiVu"
software calculates the magnetic moment of the sample using a measurement
algorithm. This method works for both options of the SQUID magnetometer.

3.3.1.4. Measurement Procedures

To get information about the magnetic ordering of the magnetic nanoparti-
cles and other properties (e.g. the blocking temperature TB), temperature-
dependent magnetization has been measured via Zero Field Cooled (ZFC)- Field
Cooled (FC) measurement procedure (figure 3.12). ZFC magnetization curves
are measured after the sample is cooled from high temperatures (here 400 K) to
a low temperature (here 5K) in the absence of a magnetic field. After that small
magnetic field is switched on and the magnetization of the sample is recorded
during heating up to the maximum temperature. For an FC magnetization
curve, the magnetization of the sample is measured during cooling the sample
from high temperature to low temperature in the presence of a magnetic field.
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Figure 3.11.: SQUID = flux to voltage converter

Furthermore, field dependent magnetization curves, M(H), were measured via
changing the magnetic field at a constant temperature.

3.4. X-ray instruments

Generally, X-rays are conventionally generated by x-ray tubes in laboratories
when the matter is irradiated by a beam of high-energy charged particles such
as electrons. In an x-ray tube, a filament is heated to produce electrons which
are then accelerated towards the anode which is positive. Then the electrons
knock out core electrons from the anode, which gives rise to x-ray radiation.
X-rays are guided up to the sample, where it pass through a monochromator
and slits to obtain a monochromatic and well-collimated beam. The size of the
beam can be defined by slits before the sample depending on the experimental
requirements.

80



3.4. X-ray instruments

Figure 3.12.: Measurement procedures for (a) zero filed cooling and (b) filed cooling,
where green arrows mark the paths along which the magnetization is
recorded.

3.4.1. Gallium Anode Low-Angle X-ray Instrument (GALAXI)

The JCNS GALAXI (Gallium Anode Low-Angle X-ray Instrument) diffractome-
ter at Forschungszentrum Jülich, is a high brilliance laboratory small-angle
X-ray scattering instrument [67]. Figure 3.13 shows the main components of
GALAXI. Chemical correlation at nanometer and mesoscopic length scales in
bulk materials and structures deposited on a surface can be investigated by us-
ing this instrument.
Here, a Metaljet source built by Bruker AXS is used to produce X-rays with
a wavelength of 0.13414 nm. An electrons beam at 70 keV energy and 200 W
power hits the liquid metal jet composed of GaInSn alloy, and then x-rays are
produced. After Parabolic Montel optics, monochromatic GaKα radiation with
an energy of 9243 eV is achieved. Afterward, the beam size can be defined and
collimated with an inclination of 0.4○ by using two slits S1 and S2 separated by 4
m distance. After that, a third slit S3 is used to reduce the background. At the
sample position, a beam with a flux of 109 photons/mm2 hits the sample and
the scattered photons are detected by a Pilatus 1M 2D position-sensitive detec-
tor with 169 x 179 mm2 active area. The X-ray flight path between the X-ray
source and the detector is fully evacuated. Different Q-ranges can be detected
by changing the sample to detector distance between 835 mm to 3535 mm in 5
steps, and thus structure with different correlation sizes up to 200 nm can be
studied. GALAXI has different applications in the hard matter filed as well as in
soft matter field. Hard matter applications include determination of the size and
size distribution of nanoparticles in solutions or deposited on surfaces as well
as the ordering between those nanoparticles, also reflectometry measurement
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Figure 3.13.: Schematic drawing of GALAXI showing its main components.

for layered thin films, in order to determine the thickness of the layers and the
interfacial profiles. Soft matter applications include nanocomposite materials
and polymers with different topology.

3.4.1.1. Small Angle X-ray Scattering (SAXS)

In SAXS experiments as presented in this work, the X-ray beam with a small
spot size is directed towards the nanoparticles dispersion, which is filled in quartz
glass capillaries (Hilgenberg GmbH) with 1.5 mm outside diameter to reduce
multiple scattering events in the dispersion and 0.01 mm wall thickness, which
is closed by a silicone ball was added by using a silicone gun to allow the mea-
surement of the dispersions in a vacuum. The scattered intensity is recorded on
a position-sensitive detector at a sample-to-detector distance LSDD behind the
sample. All SAXS measurements in this thesis are performed in transmission
geometry with two different detector distances, short detector distance of 835
mm and long detector distance of 3535 mm were measured. By GALAXI, mul-
tiple samples can be measured automatically under the same set up over a day,
the capillaries are placed in a sample holder that can hold up to 11 capillaries
as shown in figure 3.14. To bring the respective capillary of the dispersion of
interest into the beam path, the sample holder can be shifted vertically. The
capillaries filled with the solvent and the nanoparticle dispersions as well as an
empty capillary is measured under the same conditions as a reference sample
for the subtraction of the background.

In order to determine the beam center and the sample-to-detector distance,
silver behenate (AgBH) is measured for a short time 120s. AgBH generates
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Figure 3.14.: Samples of SAXS experiments filled in a samples holder that can move
vertically for automatic measurement of multiple samples over a day.

sharp rings at multiples of a scattering vector with magnitude QAgBH = 1.076
nm−1. Thus, by doing the azimuthal integration of the detector data, as shown
in figure 3.15, both the beam center and the sample-to-detector distance can
be determined quickly. The distance LSDD is obtained by determining whether
the peak center positions are truly at multiples of QAgBH . To load the raw tif
file obtained from the detector and for the coordinate transformation, Fit2D
software is used [68].

Furthermore, in order to put the count rate of the detector into absolute
units of cm−1, a pre-characterized calibration sample needs to be measured
to determine the conversion factor. For this purpose, a fluorinated ethylene
propylene (FEP) (Dupont, USA) is measured at the largest sample-to-detector
distance, which produces a broad ring on the detector where the peak value
IpeakFEP in figure 3.16 (left) is compered to the numeric value obtained from ESRF
beam line, (dΣ

dΩ)
ESRF

peak
= 6.6577 ± 0.0019 mm−1. The transmission of FEP at

the wavelength of GALAXI is TFEP = 0.52 and its thickness is dFEP = 0.035
cm. The absolute unit calibration of SAXS data is performed according to the
procedure in appendix D.

The thickness and the transmission for each sample, are determined by a ver-
tical scan (Pz) of the samples and measuring the intensity of the beam on a
single-pixel detector as shown in figure 3.16 (right). The vertical scan provides
the intensity of the direct beam, the blocked beam and the profile of the sam-

83



3. Instruments and experimental techniques

Figure 3.15.: AgBH calibration to determine the beam center and the sample-to-
detector distance. In the left, the measured intensity recorded on the
detector. on the right, the transferred measured intensity to polar co-
ordinates, where from the projection on Q, the optimal parameters for
beam center and sample-to-detector distance are determined.

ples. The scan value at the position where the sample is measured provides the
transmission value of the sample by butting the transmission of the direct beam
(TD,beam) to one and the transmission of the blocked beam (TB,beam) to zero.
While the width of the sample (Dsample) is determined from the obtained width
value from the sample profile at the half transmission value between the max-
imum sample profile transmission (Tsample) and the determined transmission
value at the center.

To obtain the scattering from the nanoparticles, the scattering from the sol-
vent and the capillary need to be subtracted from the sample as shown in ap-
pendix D. Each sample is measured at two sample-to-detector distance: short
sample-to-detector distance to increase the measured range of the magnitude
of scattering vector Q and large sample-to-detector distance to study the low
Q range. The data from both distances are merged into a single data set for
modeling a form factor to determine the sample structure.

A typical SAXS setup used in GALAXI (Sec.3.4.1) is shown below in figure
3.17: a Metaljet source emits a beam of X-rays which is focused and monochrom-
atized by Parabolic Montel optics. The size of the beam is adjusted by a system
of slits ( S1 & S2), then the beam hits the sample and enters the flight path,
which has to be under vacuum because air scatters the beam. The symmetric
pattern on Pilatus 1M 2D position-sensitive detector produced, which is radially
averaged to give the typical plots of diffracted intensity versus scattering vector
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Figure 3.16.: Scattering curve of FEP measured by the ESRF (left) and the vertical
scan of the sample holder (right) from which the sample transmission
and the width can be determined to scale the data to absolute unit.

Q = 4π
λ sin θ. The Q dependent intensity curves were fitted using the "SasView"

software to find a suitable form factor. From SAXS data, information about the
shape, mean size and size distribution of the nanoparticle can be obtained.

Figure 3.17.: Illustration of SAXS measurement principle, where the beam come from
right to left.

3.4.1.2. Grazing Incidence Small Angle X-ray Scattering (GISAXS)

In this work, small-angle x-ray scattering under grazing incident (GISAXS) mea-
surements have been performed for multiple samples presented in this work. The
measurement has been performed in reflection geometry. For the experiment,
the sample is placed on a flat holder as shown in figure 3.18, that can be ad-
justed with two translational (along y-axes and z-axes) and two rotational (α
and β) degrees of freedom as shown in the geometry of the GISAXS experiment
(figure 3.19). The sample holder can be moved in a vertical direction to center
the sample and in the plane to set the beam at the center of the sample. Fur-
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thermore, to set the desired incident angle, the sample stage is tilted and while
moving the stage, multiple scans of the beam transmission are performed to
center the sample first and to be sure that the zero angle corresponds to the flat
sample orientation. Usually, the incident angle is set close around the critical
angle of the total reflection of the studied material.

Figure 3.18.: The sample holder for the GISAXS experiment that can be tilted and
moved in three dimensions.

During the measurement, a monochromatic X-ray beam with an incident wave
vector k⃗i, which lies in the XZ, plane is directed on a sample surface with a very
small incident angle αi with respect to the surface. The X-ray is reflected off the
substrate surface, scattered from the particles along k⃗f in the direction (αf , θ).
The Z-axis defines the out-of-plane component of the scattering vector while
Y-axis defines the in-plane component of the scattering vector. The condition
αi = αf satisfies the specular reflection condition. The scattered intensities lie
on the YZ plane are detected by a 2D detector. The samples were measured for
a few hours at one fixed angle until sufficient counting statistics are obtained.
To remove the horizontal stripes in the scattering data, the detector is shifted
five times vertically during the measurement. The data obtained from GISAXS
measurement as an image file where the scale is defined by the pixels. However,
to obtain information about the nanoparticle size, shape and crystallite size one
has to convert the images on the reciprocal scale. At first, one has to convert
pixels to angles by knowing information about the position of the direct beam
(yc,zc), sample to detector distance (LSDD) which can be determined from AgBH
as descried before in Sec. 3.4.1.1. By knowing the beam center and LSDD, the
scattering angles are determined from the geometry in figure 3.19 for each pixel
on the detector with (y,z) coordinate

θ = arctan
⎛
⎝
(y − yc)dpix
LSDD

⎞
⎠

(3.20)
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Figure 3.19.: Three dimensional view of the geometry of the GISAXS measurements
along the x-axis on the yz plane with the scattering angles.

αf = arctan
⎛
⎝
(z − zc)dpix
LSDD

⎞
⎠

(3.21)

where dpix = 0.172 mm is the pixel size of the detector. From the scattering
angles, the scattering vector coordinates can be given as:

Q = 2π
λ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(cos (αf) cos (2θf) − cos (αi))
cos (αf) sin (2θf)
(sin (αi) + sin (αf))

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Only small angles are involved in GISAXS, therefore the trigonometric func-

tions in the previous equations can be approximated by cos (x) ≈1 and sin (x) ≈
x, which yields to first approximation"

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

2π
λ
( (y−yc)dpix

LSDD
)

2π
λ
( (z−zc)dpix

LSDD
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
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From the GISAXS data, different characteristic length scales from the peaks
periodicity and peak widths can be determined. As well as, GISAXS data is
studied by comparison with a calculated model for the diffuse scattering in the
framework of the distorted-wave Born approximation. Therefore, the software
package BornAgain [60] is used to formulate and calculate specific nanostructure
models. The experimental data can be compared with the simulated data in
order to obtain the desired information.

3.4.1.3. X-ray Reflectometry (XRR)

XRR measurements described in this thesis have been performed at GALAXI
instrument. It is an analytical non-destructive technique used to analyze X-
ray reflection intensity curves from grazing incident X-ray beam to determine
the parameters of a single nanoparticle layer or multi-layer including thickness,
density, and surface or interface roughness using the effect of total external re-
flection of X-rays.

In XRR experiments, the X-ray reflection of a sample is measured around the
critical angle. The X-ray beam reflected by a sample at grazing incidence an-
gles, where below the critical angle of total external reflection, it penetrates
only a few nanometers into the sample and above this angle, the penetration
depth increases rapidly. In XRR, the electron density changes at every interface,
where a part of the X-ray beam is reflected. The interference of these partially
reflected X-ray beams creates an oscillation observed in the reflectivity curve.

When the X-rays incident on a flat surface of a material at a grazing angle
is smaller than the critical angle for the total reflection of the material, it un-
dergoes total reflection. Thus, XRR is related to the values of the refractive
index and X-ray wavelength.

Figure 3.20 shows a simple geometry of XRR measurement for a simple sys-
tem consisting of a single homogeneous film on top of a homogeneous substrate,
the incoming X-ray beam has to pass through two interfaces: first the air/film
interface and second the film/substrate interface. At each interface, one part
of the beam is reflected while the remaining part is continuing its original path
(transmitted). The reflected beam at the lower interface have to travel a longer
distanc than the beam eflected at the upper interface. Since X-rays can be con-
sidered as electromagnetic waves, this path difference results in a phase shift
between X-rays reflected at the upper and at the lower interface. This path
difference however changes when changing the incident angles. Therefore, os-
cillation can be observed. The distance between two maxima or two minima
(D = 2π

Q ) directly proportional to the film thickness.
In a typical X-ray reflectometry experiment on GALAXI, a sample is placed
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Figure 3.20.: Schematic of X-ray reflectometry measurement.

on a flat holder that can be moved in the vertical direction to center the sample
and in the plane to set the beam at the center of the sample. Furthermore, it can
be tilted to set the desired incident angle. To center the sample, three alignment
procedures are performed. The sample holder at the beginning is moving in the
vertical direction to center the sample, then followed by a horizontal scan to set
the beam at the center of the sample. The measurement usually performed at a
short sample detector distance for observing a wide q-range and under specular
condition. In an experiment, the XRR profile is then obtained by mutually mov-
ing and counting the scattered X-rays under a specular condition with respect
to the incident angle.

The investigation of the reflectivity curve has been performed by determina-
tion models of vertical scattering length density profiles, which reproduce the
characteristics and the required information from the data. The phase of the
reflectivity can’t be recorded from the XRR measurement, thereby, it is not
possible to uniquely deduce from the measured intensity the scattering length
density profile. Therefore, a reasonable profile must be determined that is con-
sistent with the measured intensity.

Typically, the measurements have been performed with two periods, first period
with low counting time (t ≈ 5 s / step) which produce the low Q-range data and
second period with high statistics ( t ≈ 121 s / step) which reproduce the high
Q data. Usually, a range of θ = 0○ – 2○ is measured in this thesis in a step size
of 0.002○, which corresponds to a Q range of 0 – 3 nm−1.
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3.5. Neutron techniques

Neutrons are electrically neutral, have a diameter of ≈ 1.7 × 10−15 m and usu-
ally penetrate matter easily. Neutrons are produced by nuclear fission or by
spallation. In this study, the neutron measurements were performed by using
neutrons produced by fission of uranium produced from the fuel elements "nu-
clear reactor, FRM II" which is located in Garching, Germany.
Nuclear fission includes splitting of the nucleus of heavy atoms into two or more
smaller, lighter nuclei. Neutrons and gamma photons and huge amounts of en-
ergy are released due to the fission process.
Neutrons are guided up to the sample via neutron guide through bundled re-
flection. Monochromators and slits are used to obtain a monochromatic and
well-collimated beam. The size of the beam can be defined by slits before the
sample, depending on the experimental requirements.

3.5.1. Magnetic reflectometer MARIA

The magnetic reflectometer MARIA with a high incident angle, is a neutron
reflectometer with polarization analysis, which is operated by the Jülich Center
for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) in Garch-
ing, Germany [69]. It is designed to study samples with a layer thickness of 0.3
– 30 nm and can be used in GISANS mode to study lateral structures in the
range from nm to µm. Furthermore, the structures of a thin magnetic layer up
to monolayer can be investigated by using this instrument. The sample sizes
are typically in the order of 10×10 mm2 and using a monochromator (Velocity
selector), the wavelength of the neutrons can be chosen in a range of λ = 4.5Å
to 10Å for polarized neutrons, with the highest intensity at 4.5Å and in the
range from 4.5 Å to 40 Å for unpolarized neutrons which provides a Qz range
from 0.002 Å−1 to 3.2 Å−1. To study the magnetic structure of a sample, an
electromagnet with up to 1.3 T is available, as well as a cryostat to cool the
sample down to 4 K.

The schematic representation of MARIA is given in figure 3.21. The incom-
ing neutrons beam which is produced by the reactor is guided to the instrument
through the neutron guide (vertically focusing elliptic guide). The Fermi chop-
per can be used to define the start time of the neutrons. Polarized neutrons
are generated by a double reflection polarizer placed after the velocity selec-
tor, and spin reversal is performed by an RF-flipper. A pair of slits S1 and S2
separated by 4 m distance is used to define the beam size before the neutron
beam hits the sample. The sample is mounted in a hexapod for the sample
movement (figure 3.22). MARIA provides temperature from 4 K up to room
temperature by using a cryostat around the sample position. Magnetic field up
to 1.3 T can be provided in the standard configuration. Behind the sample, a
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Figure 3.21.: The MARIA instrument at Heinz Maier-Leibnitz Zentrum used for (po-
larized) neutron reflectometry.

3He cell analyzer is placed in order to analyze the neutron state. At the sample
position, a polarized neutron beam with flux 5 ⋅ 107 n cm−2s−1 hits the sample
and the scattered intensity is recorded by a position-sensitive 3He 2D detector,
which has 1024 × 1024 pixels with a quadratic dimension of 0.576 mm. The
sample-to-detector distance in the standard setup is 1.91 m. The sample and
collimation apertures for reflectometry experiments are typically set to 2 mm
along the scattering geometry, and the distance in between is 4.1 m. This gives
an instrumental resolution of approximately 0.01 nm˘1. Additionally, the neu-
trons have a wavelength spread of ∆λ

λ = 0.1 (FWHM).
Similar to GALAXI, the neutron reflectometer is controlled onsite by the NICOS
software and the data is provided as compressed text files for each detector im-
age and each angle.
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The typical applications of MARIA is to investigate depth-resolved the lat-
erally averaged magnetization (reflectivity), and the correlations between their
lateral fluctuations (GISANS). Moreover, MARIA can be used to investigate
the magnetic roughness and the formation of magnetic domains in the layered
structures.

Figure 3.22.: Hexapod sample table.

3.5.1.1. Polarized Neutron Reflectometry (PNR)

The fundamentals of the neutron reflectometry can be discussed in the same
framework of the x-ray reflectometry. In neutron reflectometry, the average
nuclear structure of the layers can be studied instead of probing the vertical
electron density as in the X-ray reflectometry. Moreover, by using polarized neu-
tron reflectometry (PNR), the magnetic spin density of the layers can be deter-
mined and the depth dependence of the in-plane magnetization profile [59, 70].
The PNR experiment presented in this thesis was performed at MLZ beamline
MARIA, where the reflected neutron beam is collected on a position-sensitive
detector. The scattered reflectivity of the polarized neutrons at MARIA is mea-
sured by varying the angle from sample to source and detector. Monochromatic
neutrons are measured on a detector at specular condition (αi = αr).
The alignment procedure for the sample differs from the XRR. In the beginning,
a laser pointer is used to prealign the sample because the used silicon substrate
is transparent for neutrons. The final alignment of the sample is performed by
moving it until observing the intensity of the reflected beam on the position-
sensitive detector.
During the experiment, the reflectivity curve is measured by rotating the sample
and the detector simultaneously, then the neutrons are integrated until reaching
a counting statistic above the noise level. From the neutron reflectivity experi-
ment, for each measured angle, a two-dimensional image is obtained, where one
dimension is the pixel coordinates z along the scattering angle and the other
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dimension is the incident angle for the respective line.
Figure 3.23 shows the typical configuration of the specular PNR experiment,

where neutron reflectivity is measured as a function of the wave vector transfer
Qz. The polarization of the neutron either parallel or antiparallel to the applied
field direction. Typically, four cross-sections (R++, R+−, R−+, R−−) are measured
to determine the depth profile of the averaged in-plane magnetization vector.
The symbols of + and – label the spin polarization of the neutron beam being
parallel (spin-up) and antiparallel (spin down) to the magnetic field H, respec-
tively. Where (R++, R−−) called non spin-flip (NSF) cross-sections, which yield
M∥ as a function of Q, while (R+−, R−+), called spin-flip (SF) cross-sections,
which yield M⊥ as a function of Q. In addition to the in-plane magnetization
vector, in-plane correlated roughness and magnetic stripe domains can be deter-
mined from off-specular PNR experiment where αi ≠ αr which is not illustrated
here.

In this thesis, PNR measurements of a monolayer of cobalt ferrite nanopar-
ticles film were performed in order to get information about the magnetization
depth profile of the COF NP monolayer. More details about the results will be
explained later in chapter 6.

Figure 3.23.: Typical configuration of specular PNR experiment. Neutrons are polar-
ized, either parallel or antiparallel to the external magnetic field H⃗. The
M⃗∥ and M⃗⊥ are the two projections of M with respect to H⃗.
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gratings by grazing incidence small
angle x-ray scattering (GISAXS)

Periodic structures on silicon surface with sub-µm and nm dimensions are be-
coming more interesting due to the wide range of technological applications such
as anti-reflective surfaces, grating couplers for biosensors, masks for semiconduc-
tor photolithography and diffraction gratings for spectrometers and monochro-
mators in synchrotron radiation beamlines and free-electron lasers. Further-
more, gratings are considered as very precisely fabricated model systems for
methodological studies of tools in dimensional nanometrology. Gratings are a
highly ordered system because they can be produced with a high accuracy using
different technologies such as electron beam lithography (EBL). In this chapter,
the fundamentals of the GISAXS experiment on grating lines that performed at
GALAXI instrument in Forschungszentrum Jülich will be described first. Then
the mathematical principles of the data analysis and numerical simulation will
be given. Later on, the structural characterization of two different grating struc-
tures with different dimensions, from large structures up to almost 300 nm down
to structure smaller than 300 nm by GISAXS and XRR will be presented.

4.1. GISAXS on grating structures

GISAXS is a well know X-ray scattering technique, which permits access to
nanostructured surfaces, buried structures and depth-resolved profile in layer
systems. Furthermore, information on structural roughness and on long-range
periodic perturbations can be obtained by GISXAS.
The cross-sectional view of the surface gratings shown schematically in figure
4.1(a) with grating height H and period P, which is equal to the sum of the
groove width W and the mesa width D. The structure factor S(q⃗) in equation
4.1 dominate in the scattering intensity distribution of the gratings because
gratings considered as a highly ordered system of scatterers.

I(Q⃗) ∝ NF (Q⃗)S(Q⃗) (4.1)
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Where F (Q⃗) is the form factor characterizes the shape of the scatterers (i.e.line
shape) and N is the number of the scatterers. The geometry of GISAXS mea-
surement [71] at the trench-patterned substrate is shown schematically in figure
4.1(c). A monochromatic X-ray beam with an incident wave vector k⃗i is directed
on a sample surface with a small incident angle αi. The resulting reflected and
scattered radiation with wave vector k⃗f is collected with a detector at exit an-
gles αf and 2θf . Where the X-Y plane is the sample plane, the X-axis lies in
the scattering plane and Z-axis perpendicular to the sample plane. With this
coordinate system, the scattering vector Q⃗ = k⃗f − k⃗i takes the form:

Qx = k(cos 2θf cosαf − cosαi)
Qy = k(sin 2θf cosαf)
Qz = k(sinαi + sinαf)

(4.2)

GISAXS measurement for trench-patterned substrates has already been de-
scribed by several groups [72] and [73]. The GISAXS measurement as the
incoming beam along the grating lines is called non-coplanar geometry, coni-
cal mounting, or sagittal diffraction geometry. It is called coplanar geometry
when the incoming beam is perpendicular to the grating lines [74]. The scattered
pattern obtained from gratings can be understood by reciprocal space represen-
tation [74, 75]. The grating lines periodically extending in the y-direction with
vanishing height represented in reciprocal space as a series of grating truncation
planes (GTP) as shown in figure 4.1(b) that are perpendicular to the grating
surface and parallel to the grating lines. The GTP is parallel to the Qz and Qx

and separated by δQy = 2π
P , where P is the gratings period as shown in figure

4.1(b).
The scattered pattern of the grating lines (figure 4.1(c)) was recorded by the

detector, arises from the intersection of the Ewald sphere with radius 2π
λ and

the grating truncation planes which is the reciprocal space representation of the
grating lines as shown in figure 4.2(b). Depending on the azimuthal angle φ
between the grating line and the direction of the incident beam, two special
cases can be identified: the first case, as the incoming beam directed along the
lines (figure 4.2(a))(i.e. φ = 0○) and the second case, as the incoming beam
perpendicular to the lines (figure 4.2 (b))(i.e. φ = 90○).
In case of the incoming beam parallel to the lines, the Ewald sphere intersects

the grating truncation planes as drawn in figure 4.2 (c). This gives periodically
grating truncation rods repeated along Qy (orange lines in figure 4.2(c)). The
intersection between the Ewald sphere and the grating truncation rods arises
semi-circular spots (red spots in figure 4.2 (c)) while the blue spot indicates
the specular reflection spot on the detector. The GISAXS pattern of grating
lines is strongly dependent on the misalignment of the lines with respect to the
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Figure 4.1.: Schematic representation of grating lines with period P, mesa width D,
groove width W and height H. (a) Cross-sectional view in real space.
(b) Reciprocal space representation of grating lines. (c) Scattering of a
collimated X-ray beam from grating lines oriented parallel with respect
to the incident beam (i.e. φ = 0○)

direction of the direct beam (i.e. the azimuthal angle φ between the lines and
the direct beam).

While in the case of the incoming beam perpendicular to the lines, i.e. φ = 90○,
the lines are aligned in the usual orientation of a diffractive optical element. In
this case, due to the constructive interference between the waves reflected from
the top and the bottom of the grating lines, the dominant features are the
grating diffraction orders along Qz direction. The reflection grating formula or
grating equation for the distance between interference maxima of the orders n
and n+∆n along Qz, obtained from the optical path difference formula ∆s =
P (cos (αf) − cos (αi)) can be written as:

∆nλ = P( cos (αf,(n+∆n)) − cos (αf,(n))) (4.3)

In case φ = 90○ the grating truncation planes shown in figure 4.1(b) are paral-
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lel to the detector plane. Therefore, no grating truncation rods are visible and
the detector plane only contains the specular axis.
Furthermore, if the grating is rotated by the angle φ in the sample plane, the
grating lines become no longer parallel to the x-axis and the grating truncation
planes rotated around the z-axis by φ, therefore the scattering pattern of the
grating becomes asymmetric.
The positions of the grating diffraction orders can be determined from the fol-
lowing relations [76]:

αf = arcsin
⎧⎪⎪⎨⎪⎪⎩
[ sin2αi −

⎛
⎝
nλ

P

⎞
⎠

2

− 2nλ sinφ cosαi
P

]
1
2 ⎫⎪⎪⎬⎪⎪⎭

(4.4)

θf = arcsin
⎛
⎝

cosφnλ
sinφnλ + P cosαi

⎞
⎠

(4.5)

Or, in Qy-Qz coordinates as follows:

Qz =
2π
λ

cosα sinα
⎧⎪⎪⎨⎪⎪⎩

1 + [1 −
⎛
⎝

nλ

P sinα
⎞
⎠

2

]
⎫⎪⎪⎬⎪⎪⎭

(4.6)

Qy =
2π
P

(4.7)

With n is the diffraction orders number and P is the gratings period.

4.2. Direct data analysis and numerical simulation

The phase problem of scattering results from the fact that only the absolute
square of magnitude ∣ψf((⃗ki, k⃗f))∣2 of any scattered wave ψf is measured by the
detector because it is not possible to separate the structure factor S(q⃗) and
the form factor F (q⃗) in equation 4.1. Therefore, in this case, only information
about the wave amplitude is observable and missing the phase information. As
a result, the form factor in equation 4.1 can’t be obtained directly from the
inverse Fourier transform of the measured scattering pattern.

In order to get real-space structural information from reciprocal space scat-
tering patterns, simulation, and data analysis are required to solve the phase
problem. In scattering under grazing incidence, the popular methods used to
analyze the data are:
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Figure 4.2.: (a) The parallel orientation between incident beam and grating lines i.e.
φ = 0○. (b) The perpendicular orientation between incident beam and
grating lines i.e. φ = 90○. (c)The intersection of grating truncation rods
(orange lines) which are the reciprocal space representation of grating
lines and the Ewald sphere (grey mesh) in reciprocal space reconstruction
in case of parallel orientation. The intersection leads to semi-circular
sharp spots (red spots) on the detector. (d) Misalignment between the
incident beam and the grating lines (i.e. the direct beam almost parallel
to the grating lines).

(I) In order to find a closest and similar model of the measured scattering data
(two-dimensional pattern), numerical modeling of the F (q⃗) and S(q⃗) is required.
This method requires careful selection and physically meaningful models for the
form factor and for the structure factor and the validation of the chosen model.
Several software packages are available for the calculation, simulation and fit-
ting of the GISAXS scattering patterns in the framework of Born approximation
(BA) and Distorted Wave Born Approximation (DWBA) [77–80].

(II) Fourier transform of the scattered intensities, known as the Patterson func-
tion [81], which yields the power spectral density (PSD) or what is known as an
autocorrelation function. The PSD provides information about the lateral and
the vertical correlation lengths which allow access to the oscillatory part of the
scattering pattern.

In order to obtain qualitative insights into the morphology and into the evo-
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lution of the nanostructural dimensional parameters, a numerical simulation of
the measured GISAXS pattern by careful selection of suitable models with suit-
able parameters for the F (q⃗) and S(q⃗) was performed.
Also, it is possible to get the structural parameters directly from the scattering
data without requiring numerical simulation of the form factor and the structure
factor. By this method, access to the uncertainties of the dimensional param-
eters obtained by scattering measurements is possible, which includes GISAXS
and XRR in the framework of this thesis. The dimensional parameters ob-
tained in this way could be considered as starting or reference values for more
advanced and complex data analysis. Furthermore, the parameters obtained by
direct data analysis help to reduce the parameters for simulation and increase
the accuracy of the optimized model parameters by giving them strong variation
ranges of the starting parameters.

Direct data analysis of the GISAXS and XRR data allows traceability of the
scattering measurements and it gives a general understanding of the model used
and its uncertainty.
The direct analysis of the GISAXS and XRR data in this thesis is based on
the Fourier transform of the scattered intensity and determining separation dis-
tances directly from the scattering image or from the reflectance profile.

Fourier transform
The Fourier transform of the intensity carried out of the one-dimensional data
profile, i.e. horizontal line cuts along Qy or vertical line cut along Qz in GISAXS
and reflectance curves in XRR. The Fourier transform can be defined as the in-
tegrable function f(x) as:

F (ξ) =
∞

∫
−∞

f(x)exp(−i2πξx)dx (4.8)

The PSD can be obtained from the absolute square of the Fourier transform
in equation 4.8:

PSD(ξ) = ∣F (ξ)∣2 (4.9)

4.3. Dimensional nanometrology of surface gratings

Several techniques were reported on the fabrication of surface structures with
great accuracy and dimensions down to several manometers such as photolithog-
raphy tools in the Extreme Ultra-Violet regime (UV) (EUV lithography) and
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directed self-assembly of block copolymer (BCP) thin films. Suitable metrology
techniques are required in order to measure the surface structural parameters
with sufficient accuracy. Different analytical techniques are available for direct
analysis, such as atomic force microscopy (AFM), scanning electron microscopy
(SEM) as well as for indirect analysis, such as GISAXS and XRR.

Microscopy methods
Microscopy methods, such as scanning electron microscopy (SEM), belong to
the real space or direct methods of nanometrology. The images obtained by
these methods represent the real space of the sample on the field of measure-
ment, which typically covers an area in the range of µm2. Real space methods
do not require abstract models for the shape of the investigated nanostructures
like indirect scattering methods. Furthermore, they yield only local information
about the structure surface.
Scattering methods

On the opposite of the microscopy techniques, X-ray scattering techniques do
not provide a direct topography of the surface but the information in reciprocal
space can be brought back to real space by fitting procedure of the measured
X-ray data. The patterns produced by these methods represent the reciprocal
space of the sample, which covers a large area. The reciprocal space or indirect
method requires an abstract model, which yields the structural parameters, i.e.
gratings period P and groove width W. Also, scattering methods yield global
information and also they yield statistically significant average feature sizes,
which sometimes are more relevant than the very localized size information of
the real space methods. Furthermore, GISAXS techniques provide surface sen-
sitivity and a variation of the probed scattering depth.
It is easy to detect any periodic structure along a specific direction of the re-
ciprocal lattice by performing a scan of the wave vector along this direction.
Statistical information integrated over a large area covered by a footprint of
the incident beam on the surface of the material can be obtained by this scan.
Therefore, the scattering pattern averaged over a large area and it is not local-
ized information like the information obtained from microscopy techniques.

4.4. Large pitches close to 300 nm

This section focuses on characterizing grating lines with large pitches on a silicon
substrate. The characterization was done locally by SEM to obtain real-space
information and globally by GISAXS to obtain reciprocal space information.
Furthermore, XRR measurements on the grating lines were carried out to deter-
mine the height of the grating lines and the thickness of the capping layer. The
gratings presented in this section have been fabricated on 10×10×0.5mm3 silicon
substrate and co-designed with the Eulitha company, Switzerland. These grat-
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ings have been created by the displacement talbot lithography method, which
will be explained briefly in Sec. 4.4.1. Furthermore, discrete Fourier transform
(DFT) of extracted and pre-processed GISAXS intensity profiles were done for
this gratings, for the determination of the grating parameters such as D, W, H,
and P.

4.4.1. Materials and methods

The sample is 10 × 10 × 0.5 mm3 silicon substrate with a periodic rectangular-
shaped grooves. The grating lines have period P of 300 nm, a groove width W
of 150 nm and a line-height H of 100 nm. The structure was produced by the
displacement talbot lithography method [82].

Displacement talbot lithography (DTL) is a very active lithographic method
for patterning periodic structure with features ranging from a few micrometers
down to sub nanometers. A high-resolution photolithography periodic structure
like diffraction gratings could be obtained by DTL without need projection of
complex and expensive optics. Furthermore, DTL is able to obtain sub-micron
resolution periodic patterns over large areas with low cost and it enables to print
gratings with absolute control of period and grating phase. DTL is a contactless
method (i.e. do not require contact between the mask and the substrate) in con-
trast to the photolithography methods which require perfect contact between
the mask and the substrate. Talbot effect considered as an interference based on
self-imaging phenomena of a periodic structure illuminated by a monochromatic
and collimated light beam. In the case of grating lines, the Talbot self-images
appear and repeat in the light propagation direction with a Talbot period of
2P 2

λ , where P is the grating period and λ is the wavelength of the light. In
DTL, during the exposure, the distance between the mask and the substrate
is changed by one or multiple Talbot periods as shown in figure 4.3(a). More
details about the principle of DTL published in [82] [83].

Figure 4.3(b) shows a schematic representation of the gratings fabrication pro-
cess. Briefly, after the DTL exposure (figure 4.3 (a)) by commercially available
PhableR 100 system from Eulitha (Switzerland) by using Cr mask, the pattern
is transferred from photoresist into an antireflective coating (ARC) by reactive
ion etching (RIE) in an oxygen plasma. Then, the pattern is further transferred
into a Cr hard etching mask by RIE. The residuals of ARC and photoresist are
removed by RIE in oxygen plasma after Cr etching. Finally, the patterns trans-
ferred into the silicon substrate using SF6/C4F8 by deep reactive ion etching
(DRIE). The details of the parameters used in the fabrication of the grating
lines presented in this section are attached in Appendix B, where all of these
parameters are taken from the sample preparation report of Eulitha company.
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Figure 4.3.: (a) Schematic diagram showing the DTL method. The photoresist coated
substrate is moved towards the mask by approximately one Talbot period
during the exposure. (b) Schematic representation of the fabrication pro-
cess of the grating lines by DTL method: (a) exposure and development
of photoresist; (b) dry etching into anti-reflective coating (ARC); (c) dry
etching into Cr layer; (d) etching of Si substrate.

4.4.2. Scanning Electron Microscopy (SEM)

The easiest and direct way to investigate the morphology of the gratings formed
on the silicon substrate is to carry out direct imaging of the surface by SEM as
shown in figure 4.4. The SEM yields real space information about the substrate
surface, the uniformity of the gratings pattern, the sharpness of the structure
and the quantitative characterization of the grating parameters (groove width
and gratings period). SEM image in figure 4.4(a) confirms a periodic array
of parallel stripes with a groove width of 150 nm and a period of 300 nm.
Figure 4.4(b) shows a cross-section SEM image of the gratings, which con-
firm rectangular-shaped concave trenches and the 3-D view of the gratings (fig-
ure4.4(d)) confirms rectangular-shaped concave trenches and the surface quality
of the gratings. The line profile of the SEM image (figure 4.4(a)) is shown in fig-
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ure 4.4(c). Here we probe a lateral periodicity of the grooves P nearly ≈ 300 nm
which is in a perfect agreement with the nominal value from the company. SEM
does not provide any information about the silicon oxide layer which covered
the silicon motifs.

Figure 4.4.: (a) SEM image of the grating lines on Si substrate. (b) A cross-section
SEM image of the grating lines. (c) Line profile of the pattern, where the
distance between the two red dotted lines represents the gratings period.
(d) 3D-SEM image of the pattern.
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Layer Thickness (nm) Roughness
(nm)

SLD(10−6 Å−2)

Grooves 100.2 ±6.3 3(1) 10.9
SiO2 14.8 ±10.2 1.3(2) 10.5
substrate (Si) - 0.5(2) 20

Table 4.1.: Parameters obtained from fitting of the XRR data.

4.4.3. Determination the capping layer thickness and the line height by
XRR

XRR measurement was carried out at GALAXI (Sec. 3.4.1) for the characteriza-
tion of the sample layers structure and to probe the depth profile of the gratings.
Furthermore, via XRR, information about the depth profile of the electron den-
sity of the material can be obtained. In our study, XRR measurement was
performed in order to obtain the depth of the grooves and the thickness of the
silicon oxide layer covering the lines. Figure 4.5(a) shows the X-ray reflectivity
profile (red symbols) of the grating lines patterned on a silicon substrate with
a simulation of the data (black solid line). The measurement performed around
the specular spot as the incoming beam perpendicular to the lines. The XRR
curve shows Kiessig fringes with a period length that corresponds to a real space
correlation length ≈100 nm, which can be identified as the line-height. Referring
to the origin of the Kiessig fringes, in case of the grating, the top surface of it
has an average electron density lower than the substrate density due to the lack
of material inside the grooves. The contrast of electron density gives the Kiessig
fringes related to the depth of the grooves.

The XRR data were fitted to a model structure shown in figure 4.5(c) by
Genx software. In order to fit the data, a thin silicon dioxide layer covering the
lines was assumed with an SLD value smaller than the bulk value. The SLD
profile obtained from the gratings shown in figure 4.5. A grooves depth ≈ 100
nm and SiO2 layer thickness ≈ 15 nm is determined, the other fit parameters
are shown in table 4.1.

4.4.4. GISAXS

GISAXS measurements were performed in two different geometries, as the in-
coming beam perpendicular to the grating lines (Sec. 4.4.4.1) and parallel to
it (Sec. 4.4.4.2). The scattered GISAXS patterns measured when the incident
beam almost parallel to the grating lines are very sensitive to any change in
the azimuthal angle φ as shown in Sec. 4.4.4.3. The grating lines can be easily
aligned to better than φ = 0.01○ just by looking at the changes of the GISAXS
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Figure 4.5.: (a) X-ray reflectivity as a function of momentum transfer (Q) of grating
lines. Data shown as red symbols and fits shown as the black solid line.
Parameters of the fit are displayed in table 4.1. (b) Modeled scattering
length density (SLD) as a function of distance from air interface. (c)
Sketch of the model used for fitting XRR data with the relevant param-
eters that are used to describe it.

patterns on the detector. If the grating lines are not well aligned with respect to
the incident beam, the resulting scattering GISAXS pattern will be asymmetric,
i.e. the semi-circle Bragg spots only appear on one side. Fourier transforma-
tion was performed for the scattering GISAXS patterns in parallel orientation
(Sec.4.4.4.2). The measured scattered GISAXS data has been validated by
simulation using BornAgain software in the framework of DWBA (Sec.4.4.5).
Furthermore, the grating periodicity as calculated from the GISAXS pattern
will be shown.
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4.4.4.1. Perpendicular orientation

The geometry of the GISAXS measurement as the direct beam perpendicular
to the grating lines shown in figure 4.2(b) with an azimuthal angle φ = 90○
between the direct beam and the lines. Figure 4.6 (a) shows the GISAXS pattern
recorded at an incident angle αi = 0.06○ with respect to the substrate surface.
Intense maxima are observed along the specular axis at Qy = 0nm−1. Figure
4.6(b) shows the vertical intensity profile obtained at Qy = 0 nm−1. From figure
4.6 (b), peaks at Qz = 0.1 nm−1 and Qz = 0.148 nm−1 were observed, which
corresponds to αf = 0.06○ and αf = 0.09○, respectively. The peak observed at
Qz = 0.1 nm−1 represents the specular peak and the other peak observed at
Qz=0.148 nm−1 represents the grating diffraction order.

Figure 4.6.: (a) GISAXS scattering image of grating lines at αi = 0.06○ as the in-
coming beam perpendicular to the lines. (b) Intensity profile along the
vertical specular axis as a function of Qz. The peak position at 0.1 nm−1

represents the specular peak.
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4.4.4.2. Parallel orientation, Fourier Transform analysis

The scattering pattern as the incoming beam parallel to the lines (φ = 0○, fig-
ure 4.2 (a)) has a different appearance than other geometries. Figure 4.8(a)
shows the GISAXS pattern of grating lines in the parallel orientation where the
GISAXS measurement is carried out at an incident angle αi = 0.38○, photon
energy Eph=9243 eV and sample to detector distance SDD = 3528 mm. In
this geometry different features were observed in the GISAXS pattern. The
main prominent feature observed is the intersection of the GTRs and the Ewald
sphere along Qz with a periodicity of ∆Qy = 2π

P as shown in figure 4.2 (c). A
series of diffraction orders on a semicircle is observed as a result of the inter-
section between GTRs and Ewald sphere, which is very sensitive to the perfect
alignment between the incident beam and the lines. The positions of the diffrac-
tion spots in Qz,Qy coordinates are calculated by using equations 4.6 and 4.7
and compared with the experimentally observed spots as shown in figure 4.7.
A slight difference is observed between the calculated peak positions and the
measured ones. This difference might be due to the refraction effects, which
were not properly accounted for in equations 4.6 and 4.7.
The obtained semicircle contains the specular reflection in the uppermost posi-
tion and it has a radius of SDD × tanαi with center around the intersection of
the sample horizon and the specular axis.

Figure 4.8(a) shows other additional features in the GISAXS pattern, such as
the satellite rings, which indicate a high periodicity of the structure, and diffuse
Bragg sheet. These features arise most probably as explained in [84–87] from
different structure features such as roughness and imperfections of the grating,
the shape of the gratings, and sidewall angle or due to the stitching pattern of
the electron beam lithography machine. But these additional features have no
effect on the calculation of the groove width as well as on the gratings periodic-
ity. The grating GISAXS pattern shows a constant diffraction efficiency for all
orders observed means the gratings are with low roughness.

Figure 4.8(b) shows the averaging extracted intensity profile I(Qy) from Qz

= 0.3 nm−1 - 0.7 nm−1. A Fourier transform is applied to the intensity profile
I(Qy) in order to determine the PSD from the absolute square of the Fourier
amplitude (equation 4.9).
The resulted PSD profile is shown in figure 4.8 (c) as a function of the correlation
length dcorr. PSD profile is expressed in terms of the signal frequency ζ in
reciprocal space, which is related to the real space correlation length via the
following relation:

dcorr = 2πζ (4.10)
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Figure 4.7.: Comparison between calculated and measured peak positions in the
GISAXS scattering pattern of grating lines. The red and black circles
represent the calculated and the measured positions, respectively. The
calculated peak positions match the measured one, quite well.

Prominent peak are observed in the PSD spectrum in figure 4.8 (c), this peak
corresponds to the grating periodicity and it is fitted by a Gaussian function in
order to determine the center position and the peak width. The peak is located
at a center position of dcorr=299.6(3) nm with a width of σ=5(1) nm . The
value of the mean peak position obtained from PSD are in a good agreement
with the nominal value of the gratings period which represented by the dashed
vertical lines in figure 4.8 (c).
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Figure 4.8.: (a) GISAXS pattern of grating lines at αi = 0.38○ as the incoming beam
parallel to the lines. (b) Intensity profile I(Qy) along the intersection of
the Ewald sphere and GTRs in (a) as a function ofQy. The peak positions
along the semicircle correspond to the diffraction orders of the gratings.
(c) PSD of the I(Qy) profile in (b), the dotted vertical line indicates the
nominal values of grating period P and the red solid line represent the fit
of the peak using Gaussian function.
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4.4.4.3. Rotation around the surface normal vector

The grating must be rotated carefully in the sample plane by the angle φ around
the normal to the surface plane, in order to get a perfect alignment of the
gratings with respect to the incident beam (i.e. the direct beam exactly parallel
to the grating lines) as shown in figure 4.2(a). Otherwise, if the grating is not
perfectly aligned with respect to the direct beam (figure 4.2(d)), the diffraction
order spots no longer appear in the semicircle pattern as shown in figure 4.8(a).
In case the grating lines are no longer parallel to X-axis, the GTRs in figure
4.1(c) are rotated around the Z-axis by φ, therefore the scattering GISAXS
pattern from grating lines becomes asymmetric as shown in figure 4.9(a). Even
for a small deviation in φ (i.e. small deviation from parallel alignment), large
changes in the scattering GISAXS pattern of the grating are observed, because
at a small incident angle αi, the curvature of the Ewald sphere is very steep at
the intersection with the GTRs [74].

Figure 4.9(a) shows the GISAXS pattern of grating lines obtained by the ro-
tation of the gratings around the normal to the surface (Z-axis). The rotation
of the gratings performed in both directions, right and left directions as shown
schematically in figure 4.2(d). The scattered GISAXS pattern obtained by ro-
tating the grating in the right direction is shown in the right side of the figure
4.9(a), where the grating in this case rotated by φ = 6.3○ to the right direction,
while the left side of the figure 4.9(a) shows the GISAXS pattern obtained by
rotating the grating to the left direction by φ = 9.5○. The misalignment be-
tween the direct beam and the grating lines leads to geometric distortion, and
due to this geometric distortion, the diffraction order spots are aligned along a
hyperbola. The positions of these orders can be calculated in a similar way as
for perfect parallel alignment by using these relations (equations 4.6 and 4.7)
[75]. The distance between the diffraction orders represents the grating period
P. The averaged and extracted I(Qy) profile in both orientation directions are
displayed in figure 4.9(b), where the violate solid line represents the right ori-
entation and the pink solid line represents the left orientation. The intensity
profile along Qy is averaged horizontally from Qz = 0.015 - 0.15 Å−1.
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Figure 4.9.: (a) GISAXS pattern of grating lines for different azimuthal rotation close
to the parallel orientation φ = 0○ recorded at αi = 0.085○. GISAXS
pattern at right recorded at φ = 6.3○ while at left recorded at φ = 9.5○.
(b) The extracted average intensity profile I(Qy) as a function of Qy,
where the violate line represents the right curvature and the pink line
represents the left curvature.

111



4. Structural characterization of line gratings by grazing incidence small angle x-ray
scattering (GISAXS)

4.4.5. Validation by simulation using BornAgain

Simulation of the scattering GISAXS pattern of the grating structure was per-
formed for the validation of the analysis process as described in section 4.4.4.2.
The BornAgain software is a well-known tool for the simulation of the GISAXS
patterns, interference functions, and form factors of structure models to solve
equation 4.1 using distorted-wave Born approximation (DWBA). The software
provides a comprehensive framework for modeling correlated and uncorrelated
particles on a substrate and for modeling monolayer or multilayer samples with
a smooth or rough surface and interfaces.
Using BornAgain software, only the main feature in the GISAXS pattern (i.e.
semicircular spots) in parallel geometry has been simulated. By BornAgain the
higher orders semicircles and the diffuse scattering can’t be simulated at this
stage, because at present, the DWBA is not adapted to describe diffuse scat-
tering from surface gratings because their structures can’t be treated as a small
perturbation of a smooth surface [88].
The construction of the semicircular diffraction spots of the grating lines struc-
ture by BornAgain has been performed by considering a long-box-Lorentz-
shaped particles silicon on a silicon substrate (9.243 kev, refractive index com-
ponents δ = 5.78164736e × 10−6, β = 1.02294578 × 10−7, values from the x-ray
database [89]), by assuming the width of the box W = 120 nm, a height of H =
106 nm, and a length of 48.2 µm. Furthermore, certain degrees of disorder in the
gratings periods were introduced, because as shown in figure 4.10, when the line
profile of the grating lines (black solid line) fitted with a square wave function
with different periods (green and yellow dotted lines), each period value fits a
certain set of grooves, but not all grooves, such as the green dotted line repre-
sents a grating with a period of 319 nm, while the yellow dotted line represents
335 nm as a grating period. Therefore, four degrees of disorder were considered
in order to obtain the simulated pattern in figure 4.11(b).

Figure 4.11 (b) is showing the simulated pattern of the experimental GISAXS
pattern in figure 4.11(a). The simulation was carried out only for the main
feature observed in the GISAXS pattern (figure 4.8 (a)), the semicircular spots.
Horizontal slice at Qz = 0.617nm−1 for the experimental and the simulated data
are shown in figure 4.11 (c). The simulated intensity as a function of y and z
shows a good agreement with the experimental data. The grating parameters
obtained from the simulation are in good agreement with the nominal values
and the values obtained by Fourier transform and PSD in section 4.4.4.2.
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Figure 4.10.: Line profile of the gratings (black solid line) fitted with a square wave,
where the green and the yellow dotted lines represent 319 nm, 335 nm
as a gratings periods, respectively.
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Figure 4.11.: (a) GISAXS pattern of grating lines at αi = 0.377○ as the incoming beam
parallel to the lines. (b) Simulation of GISAXS scattering pattern from
grating using BornAgain software with a long Lorentz box model. (c)
Intensity profile at a constant Qz = 0.617nm−1 of experimental (black
solid line) and the simulation (green solid line) data as a function of Qy.
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4.5. Small pitches below 300 nm

In the previous section 4.4, large structure sizes with ≈ 300 nm as a grating pe-
riod were characterized, while the focus in this section is on the characterization
of nanostructures with groove width below 100 nm. The gratings presented in
this section have been created by the electron beam lithography (EBL) method
as explained later in 4.5.1.

In this section, different etching processes (potassium hydroxide (KOH) and
tetramethyl ammonium hydroxide (TMAH) with different etching time (30s,
60s, 90s) were used for fabrication the gratings. Therefore, three different groups
of gratings will be explained in this section. The first group (S1) consists of two
samples (S1_01, S1_02) were fabricated without silicon dioxide layer above
the gratings, second group S2 (S2_01, S2_02) consists of samples similar to
S1 samples but with a silicon dioxide layer above the gratings. Last group S3
(S3_01, S3_02, S3_03) were fabricated only by using TMAH etching but with
different etching time. More details about these samples will be given later.

The main goal of the work presented in this section is the determination
of the structural grating parameters such as D, P and W in figure 4.1 (a) by
microscopic and x-ray methods for all different gratings. Furthermore, direct
GISAXS data analysis will be presented.

The differences between the GISAXS patterns for the gratings presented in
this section and the one presented in section 4.4 will be obvious because as the
structure size decrease, the number of the GTRs that intersect the Ewald sphere
will decrease. Therefore, the GISAXS pattern of the gratings will be affected.

4.5.1. Sample preparation

The samples are 10 × 10 × 0.5 mm3 silicon substrate with periodic grooves over
the whole surface area. The nanostructure parameters are different for different
samples depending on the etching types and time. The structure was produced
by the electron beam lithography method (EBL). The samples were prepared
at the Institute Helmholtz nanoelectronic facility (HNF) at Forschungszentrum
Jülich.

The EBL equipment installed at HNF-FZJ Jülich is electron-beam writer Vistec
EBPG 5000plus. It is a high-resolution electron-beam lithography system, which
is capable to write structures below 20 nm size reproducibly. It is equipped with
a thermionic field-emitter cathode which delivers beam currents between 100pA
and 150nA at 50kV. Smaller sample, 5-inch masks and wafers up to 150 mm
can be handled by this system. The system consists of a high-precision laser-
interferometric x-y table and a height measurement device for dynamic write-
field and focuses correction. In addition, the system consists of two deflection
systems, a slower one with a resolution of 16 bits and a fast one with a resolution
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of 14 bits due to the deflection of the electron beam within a write field to the
individual figures and only the area has to be written is filled. The maximum
write field at a resolution of 12.5 nm is 800× 800µm, while at higher resolution,
the writing field becomes smaller. The minimum feature size achievable by this
system is smaller than 30 nm.

The standard process for the fabrication of the grating lines investigated in
this section by the EBL method is sketched in figure 4.12. Usually, the sub-
strate made of silicon and covered with a 20-50 nm silicon dioxide layer (see
figure 4.12(I)), on top of which a protective resist layer is coated (see figure 4.12
(II)) for protection during dicing into smaller pieces. After dicing, the protec-
tive resist is removed (see figure 4.12 (III)) by different solvents (Ac+IPA+DI).
Then, an e-beam resist layer is coated by spin coating (see figure 4.12 (IV)). The
structure geometry is transferred to the e-beam resist layer by electron beam
exposure and successive development of the exposed areas (see Figure 4.12(V)).
In the next step, the structured e-beam resist layer is used as a mask to transfer
the pattern into the silicon dioxide layer by means of reactive ion etching (RIE)
process (see figure 4.12(VI)). After removing the e-beam resist layer by using
the same solvents (Ac+IPA+DI) used to remove the protective resist in step
(VII), the silicon dioxide layer serves as a hard mask for the final deep etching
into the substrate (see figure 4.12(VIII)). The details of the parameters used in
the fabrication of the grating lines presented in this section are attached in App.
C, where all of these parameters taken from the sample preparation report of
the HNF institute.

For the final step (step VIII) in the EBL method, wet chemical etching was
used to transfer the structure geometry to the silicon substrate. The idea behind
wet etching is to use different chemical solutions such as potassium hydroxide
(KOH) or tetramethyl ammonium hydroxide (TMAH). The etching rate for N-
Si (110) by using KOH faster than TMAH, where the KOH etching rate is 1.292
m/min while the TMAH etching rate is 1.114 m/min.

First gratings group S1 was fabricated without silicon dioxide layer above the
gratings, where S1_01 produced by using KOH etching while S1_02 produced
by TMAHA etching. For the second group S2 samples, KOH etching was used
to produce S2_01 and TMAH etching for S2_02. Third group S3 was produced
with a silicon dioxide layer above the gratings and only TMAH etching was used
to transfer the structures to the silicon substrate. Samples in S3 produced with
different etching time, 30s, 60s and 90s, were used to produce S3_01, S3_02,
S3_03, respectively.

In next sections, structural characterization by SEM (Sec.4.5.2), GISAXS
(Sec.4.5.3) and XRR (Sec.4.5.4) with a direct data analysis for gratings produced
by KOH and TMAH etching will be presented.
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Figure 4.12.: Grating lines fabrication by e-beam lithography (EBL) method.

4.5.2. Scanning Electron Microscopy (SEM)

In this section, SEM images for each grating group (S1, S2, S3) will be shown.
From SEM, real space information about the substrate surface, the uniformity
of the gratings pattern, sidewall geometry, and quantitative characterization of
the grating parameters (groove width and gratings period) can be obtained.

Figure 4.13 shows SEM images with the line profiles for the first gratings
group S1, where figure 4.13(a) represents S1_01 and figure 4.13(b) represents
S1_02. SEM images for S1_01 and S1_02 confirms a very smooth and regular
pattern of parallel stripes. Furthermore, as can be seen from the SEM image
for S1_02 (figure 4.13(b)) there are some areas in the grooves where the etching
doesn’t work, particularly when the grooves get wider. Maybe by increasing
the exposure during e-beam writing helps to solve this problem, but then the
lateral dimensions become too large. Line profiles of the SEM images shown in
figure 4.13(a) and (b) are shown in figure 4.13 (c) and (d), respectively, which
confirms a periodic pattern for both samples. The grating parameters of S1
samples as obtained from SEM images are summarized in table 4.2. The grat-
ings periodicity P was calculated by measuring the distance between two peaks
(i.e. dotted red lines) in figure 4.13 (c) and (d), which gives ≈ 200 nm and ≈ 230
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Parameter S1_01 S1_02
Gratings periodicity (P) [nm] 230.4(2) 212.1(1)
Groove width (W) [nm] 93.5(1) 67.5(6)
Mesa width (D) [nm] 140.5(1) 143.3(3)

Table 4.2.: Grating parameters of S1 samples obtained from SEM.

Parameter S2_01 S2_02
Gratings periodicity (P) [nm] 239.5(7) 239.8(5)
Groove width (W) [nm] 101.01(3) 74.7(4)
Mesa width (D) [nm] 157.2(2) 161.6(3)

Table 4.3.: Grating parameters of S2 samples obtained from SEM.

nm for S1_01 and S1_02, respectively.

Figure 4.14 shows the SEM images with the line profile of S2 samples, where
figure 4.14 (a) and (b) represents SEM images of S2_01 and S2_02, respec-
tively and figure 4.14 (c) and (d) shows the line profile of S2_01 and S2_02,
respectively. KOH etching was used to produce S2_01 sample, while TMAH
etching was used to produce S2_02 sample. Furthermore, there’s a silicon diox-
ide layer covered the gratings of both samples, which can’t be seen by the SEM
technique. SEM images for both samples confirm a regular and periodic pat-
tern. The S2_01 shows only one depth profile as shown in figure 4.14(a) and
4.14(c), while S2_02 sample shows two different depth profile as shown in figure
4.14 (b) 4.14(d). The grating parameters of S2 samples as obtained from SEM
images are summarized in table 4.3. The gratings periodicity P was calculated
by measuring the distance between two peaks (i.e. dotted red lines) in figure
4.14 (c) and (d), which gives ≈ 230 nm and ≈ 250 nm for S2_01 and S2_02,
respectively.

SEM images and line profiles of the last samples group S3 presented in this
section are depicted in figure 4.15. Where figure 4.15 (a)-(c) shows the SEM
images of S3_01, S3_02 and S3_03 respectively, while figure 4.15 (d)-(f) shows
the line profiles of S3_01, S3_02 and S3_03 respectively. TMAH etching was
used to produce all S3 samples with a silicon dioxide layer above the gratings.
The only difference between all S3 samples just in the time used to transfer the
structure to the silicon substrate (i.e. etching time). The time for etching used
to produce S3_01 is 30s, 60s for S3_02 and 90s for S3_03. SEM images were
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Figure 4.13.: (a) SEM image for S1_01, (b) SEM image for S1_02, (c) Line profile
for S1_01 and (d) Line profile for S1_02.

Parameter S3_01 S3_02 S3_03
Gratings periodicity (P) [nm] 248.6(3) 235.1(7) 81.1(3)
Groove width (W) [nm] 50.5(1) 50.4(7) 19.1(1)
Mesa width (D) [nm] 194.2(9) 183.5(7) 65.8(2)

Table 4.4.: Grating parameters of S3 samples obtained from SEM.

shown in figure 4.15(a)-(c) confirms periodic and regular gratings. Furthermore,
as can be seen from the SEM images that the gratings show some roughness,
where it can be reduced by increasing the etching time. As can be seen in the
SEM images ( figure 4.15(a)), the gratings produced with short etching time are
highly rough, while the gratings produced with longer etching (figure 4.15(b)
and (c)) time are less rough . The gratings parameters of all S3 samples as
obtained from SEM images are summarized in table 4.4. These sample group
shows only one depth profile as shown in SEM images (figure 4.15 (a)-(c)) and in
the line profiles (figure 4.15 (d)-(f)). The gratings periodicity P obtained from
the line profiles were calculated by measuring the distance between two peaks
(i.e. dotted red lines) in figure 4.15 (d)-(f), which gives ≈ 200 nm, ≈ 150 nm and
≈ 170 nm for S3_01, S3_02 and S3_03, respectively. The gratings periodicity
and the groove width are inversely dependant on the etching time, i.e. P and
W values decrease as the etching time increase.
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Figure 4.14.: (a) SEM image for S2_01, (b) SEM image for S2_02, (c) Line profile
for S2_01 and (d) Line profile for S2_02.
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Figure 4.15.: (a) SEM image for S3_01, (b) SEM image for S3_02, (c) SEM image
for S3_03, (d) Line profile for S3_01, (e) Line profile for S3_02 and (f)
Line profile for S3_03 .
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4.5.3. GISAXS

GISAXS measurements were carried out in order to obtain information about
uniformity, regularity, roughness, periodicity and line shape. Furthermore, to
get information about the full three-dimensional characteristic features of the
sample probed. The measurements were performed into two different orienta-
tions, as the incoming beam perpendicular to the grating lines (Sec. 4.4.4.1) and
parallel to it (Sec. 4.4.4.2), but only the GISAXS results of parallel geometry
will be shown in this section. The scattered GISAXS pattern of the samples pre-
sented in this section shows a few differences compared to the pattern obtained
from the sample with large pitches presented in Sec. 4.4, due to the different
parameters of the grating. Generally, as the structure size change, the number
of GTRs that intersect the EWALD sphere will be changed, and this will affect
the GISAXS scattering pattern.

In this section, the GISAXS scattering pattern of all samples group (S1, S2,
S3) will be shown and the intensity profile as a function of Qy will be shown for
each sample in section 4.5.3.1. Furthermore, Fourier transforms analysis and
power spectral density (PSD) of extracted and pre-processed GISAXS intensity
profile will be shown in section 4.5.3.2, in order to determine gratings parameters
and compare it with its nominal values.

4.5.3.1. Parallel orientation, grating parameters determination

The scattered GISAXS patterns in the parallel orientation of incident beam and
grating lines for all samples group S1, S2 and S3 in addition to the intensity
profile I(Qy) for each sample are displayed in figures 4.18, 4.19, and 4.20, respec-
tively. Several features have been reported previously in Sec. 4.4 for gratings
with large groove width are observed also for the gratings with smaller groove
width, in addition to other observed features which will be explained in detail
for each sample.
The main features that are directly observable on the detector image for all
samples: first, a series of high intensity spots, are periodically placed on a semi-
circle (dotted black semi-circle in figure 4.16), due to the intersection of the
EWALD sphere with the reciprocal space representation of the gratings (i.e.
GTR) as explained earlier, and it has it’s highest point at αi = αf . Moreover,
the intensity of the Bragg spots along the semi-circle depends on the beam and
the grating structure as will be shown later for different grating with different
dimensions and structures. The grating periodicity can be calculated from the
distance between the Bragg spots by using equation 4.7.

The high-intensity periodic spots on the semi-circle originate due to the reg-
ular, periodic structure of the grating lines with a lateral regular repeated dis-
placement at every pitch distance P. Therefore, a Bragg peak (i.e. high-intensity
spots/orders) was produced every Qy = 2πn

P . Where n is an integer, represents
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the order number and P is the periodicity of the line.
A second main features is observed, the low-intensity diffuse scattering (i.e.the

white extended dotted tilted lines in the GISAXS image in figure 4.16) which
is a highly complex feature. In addition to the main features, extinction of
some Bragg spots is observed for some gratings, which will be shown later.
The origin of the diffuse scattering features mainly comes from the gratings
morphology, such as, sidewall angle, capping layer, grating dimensions, bottom
corner rounding, line shape, etc. Analysis of the diffuse scattering features
is not an easy process and can’t be done by direct simple Fourier analysis or
via DWBA as explained earlier for grating with a large pitch (Sec. 4.4). Tt
requires to find a specific two dimensional model using a qualitative form factor
for the line cross-section, as explained briefly in the outlook (Sec. 4.6) of this
chapter. The diffuse scattering features observed are independent of change in
the momentum transfer (i.e. change of the incident angle). The broad extended
tilted lines in the GISAXS images are a signal of a sloped sidewall with respect
to the substrate normal direction [90] which can be calculated in an easy way
for each grating structure.

Figure 4.16.: GISAXS image of gratings. The arc drawn in black indicates the high-
intensity Bragg spots (i.e. first main features). The tilted lines drawn
in white indicate the diffuse scattering (i.e. second mean features).

Furthermore, for all line gratings investigated in this section, there are some
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issues that can’t be observed by SEM, but are confirmed by GISAXS scattering
data. The bottom of the etched grooves is not plane (i.e. not defined), it is
rather curved with a certain sidewall angle, but the top corners of the lines are
much better defined as shown schematically in figure 4.17. This is can be under-
stood easily by the fabrication process. The top area of the lines covered by the
e-beam resists acting as the etch mask, which protects and leads to more defined
top corners of the lines. After etching, the resist removed by an oxygen plasma
treatment, which leads to oxidizing the surface and causes an oxide layer. The
oxide layer formed is not a stoichiometric SiO2 and perhaps not homogeneous
from the silicon interface to the surface. The thickness of the formed oxide layer
on top of each grating (S1, S2, S3) will be determined by X-ray reflectometry
in Sec. 4.5.4.

Figure 4.17.: A sketch of the grating model which explains and confirms the GISAXS
data.

Figure 4.18 presents the GISAXS patterns with the average intensity profile
as a function of Qy for S1 samples, where figure 4.18 (a) and (b) shows the
GISAXS maps for S1_01 and S1_02, respectively. While, figure 4.18 (c) and
(d) shows the average intensity profile for S1_01 and S1_02, respectively. The
GISAXS measurement was carried out at an incident angle of αi ≈ 0.4○. The
main features (semi-circle spots, diffuse scattering lines) that have been reported
previously are directly observed for both S1 samples. The sidewall angle of the
lines as determined easily from the tilted diffuse lines ≈ 10○, using the protrac-
tor. Furthermore, the intensity of the Bragg spots along the semicircle drops
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sharply with departing from Qy=0 as shown in the average intensity profile in
figure 4.18 (c) and (d). The sharp drop of the Bragg spots intensity might
come due to the line roughness or due to the smaller structure depth. Features
symmetric around Qy = 0 are indicative of a good alignment of the lines with
respect to the beam. The grating periodicity as defined from the Bragg spots P≈
243 nm for S1_01 and P≈ 241 nm for S1_02, which is in a good agreement with
the value obtained from SEM. The diffuse scattering lines for S1_02 sample
(figure 4.18 (b)) which produced by TMAH etching less than the S1_01 sample
which produced by KOH etching (figure 4.18 (a)), which means that the S1_02
grooves more plane than S1_01 (i.e. smaller sidewall angle).

Figure 4.18.: GISAXS patterns at an incident angle αi=0.4○ for (a) S1_01 and (b)
S1_02. The bottom right and left-hand images display the intensity as
a function of Qy along the semicircle for (d) S1_01 and (e) S1_02.

The GISAXS patterns together with the average intensity profile as a function
of Qy for S2 samples are shown in figure 4.19. GISAXS maps for S2_01 and
S2_02 are shown in figure 4.19 (a) and (b) respectively. While, figure 4.19 (c)
and (d) shows the average intensity profile for S2_01 and S2_02, respectively.
The GISAXS measurement was carried out at an incident angle of αi ≈ 0.3○.
The main features (semi-circle spots, diffuse scattering lines) that have been
reported previously are directly observed again for S2 samples. The distance
between these two semi-circles is ≈ 104 nm for S1_01 and ≈ 85 nm for S1_02.
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Moreover, in sample S2_02, a higher-order satellite ring is observed, indicating
a high periodicity of the structure. Furthermore, a second semi-circle below
the main semi-circle was observed for S2_02 sample as shown in the GISAXS
image (figure 4.19 (b)), which can be explained as the grating fabricated with
two different depth profiles as shown previously in the SEM and in the line
profile (figure 4.3 (b) and (d)) and will be confirmed by XRR later in Sec. 4.5.4.
The distance between these two semi-circles defines the periodicity between the
two depth profiles, which is ≈ 100 nm, which is in good agreement with the
value obtained from the SEM-line profile. The sidewall angle of the lines as
determined easily from the tilted diffuse lines ≈ 15○. The grating periodicity as
defined from the Bragg spots P≈ 241 nm for S2_01 and P≈ 240 nm for S2_02,
which is in a good agreement with the value obtained from SEM.

The average intensity as a function of Qy (I(Qy)) along the semi-circle is
extracted for each GISAXS image as shown in figure 4.19 (c) and (d). Features
symmetric around Qy=0 are indicative of a good alignment of the lines with
respect to the beam.

Figure 4.19.: GISAXS data at an incident angle αi=0.3○ for (a) S2_01 and (b) S2_02.
The bottom right and left-hand images display the intensity as a function
of Qy along the semicircle for (d) S2_01 and (e) S2_02.

The GISAXS patterns together with the average intensity profile as a function
of Qy for S3 samples are shown in figure 4.20, where figure 4.20 (a), (b) and (c)
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shows the GISAXS maps for S3_01, S3_02, and S3_03, respectively. While the
average intensity profile for S3_01, S3_02, and S3_03 as a function of Qy are
shown in figure 4.20 (d), (e) and (f), respectively. The GISAXS measurement
was carried out for all three samples at an incident angle αi ≈ 0.35○. The
main features (semi-circle spots, diffuse scattering lines) that have been reported
previously are directly observed again for all S3 samples. Moreover, a high order
satellite ring is observed in all GISAXS images, indicating a high periodicity of
the structure. Furthermore, a second semi-circle below the main semi-circle was
observed for all S3 samples. The distance between these two semi-circles is found
≈ 270 nm, ≈ 200 nm and ≈ 220 nm for S3_01, S3_02, and S3_03 respectively.
The sidewall angle of the lines as determined easily from the tilted diffuse lines
≈ 20○ for all samples. The grating periodicity as defined from the Bragg spots
P≈ 268 nm, P≈ 249 nm and P≈ 230 nm for S301, S3_02, and S3_03, which is
in a good agreement with the value obtained from the SEM.

The average intensity as a function of Qy (I(Qy)) along the semi-circle is
extracted for each GISAXS image as shown in figure 4.20 (d)-(f). Features
symmetric around Qy = 0 are indicative of a good alignment of the lines with
respect to the beam.

So far, we presented the GISAXS results for different gratings fabricated by
using different etching type (i.e. KOH and TMAH) and with different etch-
ing time. All samples have shown the main features that can be obtain in the
GISAXS patterns of grating lines, in addition to other minor features observed
for a certain grating as explained before. By GISAXS, information on structure
roughness and long-range periodic perturbation can be achievable. Further-
more, gratings periodicity calculated from GISAXS is in a good agreement with
the values obtained from the SEM.
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Figure 4.20.: GISAXS data at an incident angle αi=0.35○ for (a) S3_01, (b) S3_02
and (c) S3_03. The bottom images displays the intensity as a function
of Qy along the semicircle for (d) S3_01, (e) S3_02 and (f) S3_03.
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4.5.3.2. Fourier Transform analysis of GISAXS in parallel orientation

The main aim of this section is to determine gratings periodicity by direct
GISAXS data analysis by performing a Fourier transform analysis of the ex-
tracted intensity profiles I(Qy) shown in figure 4.18 (a) and (b), figure 4.19 (a)
and (b) and figure 4.20 (a), (b) and (c) along the semi-circle and then find
the PSD profile from the absolute square of the Fourier amplitude (equation
4.9) and later on, compare the periodicity obtained from PSD profile with the
periodicity value obtained from GISAXS maps and SEM.

The direct data analysis of the I(Qy) profile of some gratings (S1_01 and
S1_02) investigated in this section becomes unstable and not accurate because
as the structural dimensions decrease, the number of the gratings truncation
rods that intersect the Ewald sphere also decreased. This leads to increase in
the spacing between the diffraction orders (i.e. the high-intensity Bragg spots
along the semi-circle), therefore, the detector images detected contains signal
with fewer periods, which leads to less obvious peaks in the Fourier transform
profile and in the PSD as shown later in the resulted PSD profile for S1 gratings
(figure 4.21). Otherwise, the PSD profile for S2 gratings (figure 4.22) and S3
gratings (figure 4.23) shows a pronounced peak that corresponds to the grating
periodicity P.

The resulted PSD profiles is expressed in terms of the signal frequency ζ
in reciprocal space, which is related to the real space correlation length via
equation 4.10. Figure 4.21 (a) and (b) shows the PSD profiles as a function
of the correlation length for S1_01 and S1_02, respectively. The sharp peak
observed for the two samples corresponds to the grating periodicity. For S2_01
and S2_02 samples, the PSD profile, figure 4.22 (a) and (b) shows only one sharp
peak which corresponds to the grating periodicity. While, PSD profile, figure
4.23 (a)-(c) for S3_01, S3_02, and S3_03 shows a sharp peak corresponding
to the grating periodicity in addition to other peaks observed around it. A
Gaussian fit (red line) was carried out for the main peak observed for each
sample in order to determine the center position dcorr (i.e. grating periodicity
P) and the width of each peak σ. The resulted dcorr and σ for each sample are
summarized in table 4.5.

The larger peak width obtained for S1 gratings due to the smaller periodicity
≈ 227 nm, which leads to increasing the spacing between the diffraction orders,
therefore, the signal obtained by the detector contains few periods. As a result,
a wide peak will be observed. Therefore, the different Fourier analysis method
is required because direct Fourier analysis not accurate in this case.
The grating periodicity obtained from the PSD profile for all samples almost
matches the value obtained from SEM and GISAXS maps.
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sample name dcorr[nm] peak width (σ)
[nm]

S1_01 226.76(7) 86(5)
S1_02 227.38(8) 79(7)
S2_01 247.68(9) 20(2)
S2_02 247.8(1) 19(3)
S3_01 249.37(3) 14(1)
S3_02 249.4(3) 12(1)
S3_03 248.99(6) 13(1)

Table 4.5.: Gratings parameters obtained from PSD.

Figure 4.21.: PSD of the I(Qy) profiles shown in figure 4.18 (d) and (e), where (a) for
S1_01 and (b) for S1_02.

4.5.4. XRR results of line height and capping layer thickness

XRR measurements were carried out at GALAXI ( Sec. 3.4.1) for the char-
acterization of all gratings structure investigated in this section (Sec. 4.5) to
probe the height of the grating lines H. Furthermore, it is carried out in order
to determine the composition of the structural layers and the thickness of the
oxide layer which is not stoichiometrically formed on top of the gratings.

XRR results of S1_01 and S1_02 samples with the SLD profile are displayed
in figure 4.24 (a) and (b), respectively. Both curves show no Kissing fringe,
which can be understood that the grooves fabricated with a large depth (>300
nm), which is higher than the resolution of the GALAXI instrument to observe
it. Furthermore, no oscillations observed corresponds to an oxide layer above the
gratings. Therefore, both reflectance curves (red points) were simultaneously
fitted by assuming a very thick homogeneous groove layer (silicon material) with
density smaller than the silicon density, which is calculated from the following
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Figure 4.22.: PSD of the I(Qy) profiles shown in figure 4.19 (d) and (e), where (a) for
S2_01 and (b) for S2_02.

Figure 4.23.: PSD of the I(Qy) profiles shown in figure 4.20 (d), (e) and (f), where (a)
for S3_01, (b) for S3_02and (c) for S3_03.

relation:

Density(groove) =Density(silicon)(1 − D

W
) (4.11)

Where, silicon density ≈ 2.32 g/cm3, D is the mesa width and W is the groove
width. In addition to the groove layer, we assumed a very thin oxide layer on top
of it. Both layers (the groove layer and the oxide layer) are formed on top of a
silicon substrate with the silicon density used in equation 4.11. The oxide layer
formed in this case, it is the natural oxidation layer on top of a silicon substrate
which is usually has a thickness of ≈ 1nm. The oxide layer observed thicker
than the natural one, due to the removal of the resist by oxygen plasma etching
as explained before, which causes increased oxidation of the silicon because of
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the large surface area of the lines. The SLD profiles obtained by assuming the
two-layer model for both samples are shown as an inset in figure 4.24. XRR
data fitting gives that the lines height of S1_02 gratings which produced by
TMAH etching larger than S1_01 which produced by KOH etching.

Figure 4.24.: X-ray reflectivity as a function of momentum transfer (Qz) of (a) S1_01
and (b) S1_02 grating lines. Data shown as red symbols and fits shown
as black solid line. Inset shows the scattering length density (SLD)
profile as a function of distance from air interface.

The XRR results of S2_01 and S2_02 grating lines with the SLD profiles
are shown in figure 4.25 (a) and (b), respectively. The reflectance curve of the
S2_01 sample produced by KOH etching shows an oscillation with only one
length scale. The period length of ∆Qz = 0.44 nm−1 corresponds to a real
space correlation length 2π/∆Qz = 14.3 nm, which can be identified to the
oxide layer thickness. The oscillation is due to the constructive and destructive
interference of the reflections from the top and the bottom of the oxide layer
on top of the gratings. The XRR data for S2_01 sample (red points in figure
4.25 (a)) were fitted by assuming a two-layer model (silicon oxide layer-groove
layer-silicon substrate). The best-fit gives the thickness of the silicon oxide layer
≈ 13.4(2) nm and height of the lines ≈ 596.8(1) nm. The SLD profile of S2_01
grating structure is shown as inset in figure 4.25 (a).

The reflectance curve of S2_02 sample shows oscillations with two different
length scales, smaller one corresponds in real space to the large layer thickness,
while the larger one corresponds to the small layer thickness in real space. The
period length of the large oscillation ∆Qz = 0.38 nm−1 corresponds to a real
space correlation length 2π/∆Qz = 16.5 nm, while the period length of the
small oscillation ∆Qz= 0.132 nm−1 corresponds to a real space correlation length
2π/∆Qz = 47.6 nm. The S2_02 was fabricated by TMAH etching, where during
the fabrication process two different depth profiles were formed as shown before
in the SEM image and in the line profile (figure 4.14 (b) and (d)). Therefore, the
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two different oscillations observed in the XRR curve corresponds to two oxide
layers formed on top of the gratings with two different thicknesses. The XRR
data were fitted by assuming a three-layer model (oxide layer_2, oxide layer_1,
groove layer, a silicon substrate). The best-fit values obtained, the first silicon
oxide layer thickness is 15.7(1) nm, the second silicon oxide layer thickness is
32.9(3) nm and the height of the lines ≈ 374.2(1) nm. The SLD profile of the
S2_02 grating structure that explains the model used for fitting is shown as an
inset in figure 4.25 (b).

Figure 4.25.: X-ray reflectivity as a function of momentum transfer (Qz) of (a) S2_01
and (b) S2_02 grating lines. Data shown as red symbols and fits shown
as the black solid line. Inset shows the scattering length density (SLD)
profile as a function of distance from air interface.

The reflectivity curves with the SLD profiles of S3 grating lines are shown in
figure 4.26. The XRR curves of all S3 samples were produced by TMAH etching
with different etching time show an oscillation with only one length scale, which
can be identified as the oxide layer thickness. The S3_01 shows and oscillation
with a period length of ∆Qz= 0.1 nm−1 corresponds to a real space correlation
length 2π/∆Qz = 62.8 nm, the S3_02 shows an oscillation corresponds to a real
space correlation length ≈ 62.8 nm and S3_03 shows an oscillation corresponds
to ≈ 67 nm as a real space correlation length. The oscillation observed in
the XRR curves is due to the constructive and destructive interference of the
reflections from the top and the bottom of the oxide layer on top of the gratings.
The XRR data in figure 4.26 left side image are shown as symbols, while the fit
for each curve is shown as a black solid line. The XRR data for all S3 samples
were fitted by assuming a simple three-layer model (silicon oxide layer, groove
layer, a silicon substrate). The best-fit values obtained a silicon oxide layer
thickness of ≈ 45.36(6) nm and the height of the lines > 300 nm. The SLD
profiles of S3 grating lines are shown in the right image in figure 4.26.
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Figure 4.26.: Left side image : X-ray reflectivity as a function of momentum transfer
(Qz) of S3 grating lines. The data are shown as symbols and fits shown
as a black solid line; red points correspond to S3_03, blue points for
S3_02 and green points for S3_01 points. The XRR curves for S3_03
were multiplied by 10 and S3_01 multiplied by 100. Right side image:
SLD profiles as a function of distance from the air interface obtained by
fitting XRR data in left side image.

Even though all S3 samples were fabricated using different etching time, they
are shown almost the same behavior. From the XRR curves, no features corre-
spond to the depth of the groove because the depth of the groove higher than
the resolution of the instrument to observe it.
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4.6. Summary and Outlook

In this chapter, for dimensional investigation of grating structures with two
different grooves width, ranging from large width close to 150 nm down to
small width close to 54 nm, XRR and GISAXS measurement have been ap-
plied. In general, the main goal was to evaluate the structural parameter values
by GISAXS and XRR, to serve it as a starting point to validate a model-based
data analysis. GISAXS technique shows that it is a suitable nanometrological
tool for measuring dimensional parameters on nanostructured surfaces and it
could be extended as a tool to yield further insight into recent nanotechnolog-
ical applications such as nanostructured polymer thin films or into industrial
applications.

The fundamental principle for the presented PSD analysis method is the same
for all gratings investigated in this chapter, but this method is less accurate
when the groove size decrease as explained before. The direct analysis of the
Bragg spots positional periodicities directly from the GISAXS data, without
invert modeling of a form factor and a structure factor helps to avoid the need
to assess the correctness of the chosen form factor model and structure factor
for numerical simulation and, therefore, makes the data analysis traceability
possible. The direct data analysis method limits the analysis mainly to de-
termine the structure factor and thus defines the positions of the scattering
features, therefore, only limited dimensional parameters such as grating period,
groove width and line-height can be acquired. But it helps in the traceability
of GISAXS measurements without requiring chosen models for the form factor
and the structure factor.

Standard Fourier transform of GISAXS intensity (I (Qy)) profiles from the
gratings with large groove width close to 150 nm proved to be a suitable method
to determine the gratings periodicity and the groove width. The results were
obtained from PSD are in a good agreement with the nominal values obtained
from GISAXS and SEM.

For the smaller groove width, the number of GTRs that intersect the Ewald
sphere reduces, therefore, the diffraction orders separated with long distances
and, discontinuities observed in the extracted data. For this reason, the standard
Fourier transform is not sufficient in this case. A different approach to that of
standard Fourier transform that is able to overcome the spaced data, is required.

The direct Fourier analysis of the intensity profiles extracted from the GISAXS
data has an advantage in providing information about the structure factor pa-
rameters, without requiring to introduce a complex form factor of the grating
lines. But for a larger set of grating parameters and for further understanding of
the features observed on the GISAXS patterns of gratings (i.e. diffuse scattering
lines), a modeling of the 2D scattering GISAXS pattern is required.

Therefore, as an outlook for future activities on this work, full modeling of
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the scattering intensities observed in the GISAXS data using the semi-kinematic
and dynamic theories could be investigated, mostly by using distorted wave
Born approximation (DWBA) and Maxwell equations. Full modeling yields a
larger set of the structure parameters such as the sidewall angle, the corner-
rounding at bottom of the lines, moreover, the shape of the line cross-section.
Furthermore, the form factor and the structure factor parameters can be varied
in a suitable way up to evaluate the sensitivities of the scattering features in
the GISAXS image. Full modeling of the 2D GISAXS pattern should provide
additional details on the origin of the diffuse line scattering.

The semi-kinematic DWBA is the most known approach in GISAXS modeling
which takes into account multiple scattering effects. But, DWBA is limited to
certain form factors such as a sphere, rectangle, boxes, trapezoids, etc. There-
fore, in the case of arbitrary shapes, modeling of the 2D GISAXS data of the
gratings has to be done by solving Maxwell’s equations and by using the finite
element method. The Maxwell solver allows arbitrary form factor of the grat-
ings as shown in figure 4.17, which accounts for line-height, sidewall angle, top
radius, bottom radius, rounded bottom edges and thickness of an oxide layer.
After modeling the grating lines with suitable form factors, implementation of it
into BornAgain software can be done for the comparisons of different methods
of analysis and for the validation of the analysis results of the models against
the nominal values of direct analysis.
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The primary goal of this chapter is the successful preparation of highly ordered
nanostructures. A simple NPs arrangements that have been discussed exten-
sively in theory, is the hexagonal lattice in a plane. In this part of the thesis, a
procedure to fabricate such long-range order nanostructures from nanospheres
has been developed. The preparation of such self-assembled lattices with long-
range order is presented in detail on the case of the hexagonal lattice from
silica nanospheres with ≈50 nm in diameter, where it self-assembled on flat
silicon substrates as a monolayer and multilayers, respectively. Therefore, for
this goal, this chapter separates into various parts. First, general introduction
about silica NP and why particularly used in this study will be presented. After
that, the synthesis and characterization of silica nanoparticles are described in
Sec. 5.3.2. This is followed by a quantitative evaluation of self-assembled SiO2
NP monolayer and multilayers on flat Si substrate. Thereafter, the structural
characterization results of the template-assisted self-assembly of SiO2 NP are
presented. Part of this work were published in Qdemat, Asma, et al. [91].

5.1. Current state of research on nanoparticles monolayer
self-assembly

The fabrication of such systems these days is usually performed by a top-down
process such as lithography, molecular beam epitaxy, which requires advanced
and expensive machines [21]. An alternative method of building materials is
a bottom-up process, where nanomaterials sized building blocks are produced
from the atomic or molecular level by chemical processes and higher-order nanos-
tructures can be obtained by self-assembly methods [24, 92]. Furthermore, the
bottom-up process has the ability to produce structures with low cost than
those fabricated by the top-down process. In addition, the origin of the prop-
erties of the self-organized systems originates from the properties of their small
components and can show collective properties from the long-range order and
interacting forces. The self-assembly process is a complicated process that re-
quires a deep understanding of the underlying driving forces and it is still an
active field of research.
NP serves as building blocks and once they are self-assembled into a super-
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lattice or into an ordered structure, which may possess novel properties and
might be considered as an ideal model to study the interparticle interaction
on the length scales defined by the nanostructure. Self-organized NPs into an
ordered structure has been studied extensively since decades, due to their poten-
tial applications in various fields, such as functional materials and biomedicine.
The self-assembly of NPs over large areas is determined by various factors. The
main factor that plays an important role in the NP self-assembly process is the
monodispersity of particles, i.e. NP size distribution. Colloidal particles such
as silica NP are easily prepared with a very high degree of monodispersity in
large quantities. For this reason, they are often used for self-assembly stud-
ies. Monodispersed colloidal particles are usually stabilized by stearyl alcohol
or polydimethylsiloxane (PDMS) to avoid agglomeration and to be dispersed in
apolar solvents like cyclohexane, chloroform or toluene.
Several methods are known in the literature to prepare large areas of monolayers
on substrate starting from NP dispersion. The most notable techniques are the
Langmuir-Blodgett/Schaefer method [93–95], spin-coating [45], capillary forces
[96], Liquid-air interface [97], doctor blade casting [98], dip coating [99], drop-
casting [100], evaporation-driven processes (i.e. slow evaporation of the solvent)
and electrophoretic deposition [101], where a dispersion of colloidal spheres is
confined between two parallel solid electrodes. Moreover, patterned substrate
was also used to improve the ordering between the particles. The resulting order
of the NPs usually depends on the preparation techniques used. Some of the
preparation techniques are quick to perform with low costs such as drop-casting,
dip-coating and spin-coating techniques comparable to other techniques.

The Langmuir-Blodgett/Schaefer technique is a method usually designed for
the preparation of organic molecules monolayers, but later on, it has been trans-
ferred to the formation of nanoparticle monolayers [102, 103]. The idea behind
this technique is that the dispersion is slowly evaporated from an organic sol-
vent on a water surface, where it then is compressed by movable barriers on the
surface to monolayer density. By this technique, a high degree in-plane order
for 10 nm NPs on the surface is possible as obtained from in-situ XRR and
GISAXS results [103]. The main challenge in this technique is to transfer the
ordered particles from the surface to the wafer without destroying the order.
The study done by Wen et al. [104] shows that micrometer-sized ordered arrays
can be obtained by the Langmuir-Schaefer method if the solvent evaporation is
well controlled.

Using a liquid-air interface method like the study performed by Kondo et al.
[105], colloidal nanospheres tend to organize into 2D ordered structure. In this
method, after spreading the nanospheres on the liquid-air interface, it floats
on the surface of the liquid. They spontaneously form a 2D hexagonal array
due to the attractive interactions between them. After that, the ordered film
is transferred to a substrate. The morphology of the ordered structure can

138



5.1. Current state of research on nanoparticles monolayer self-assembly

be controlled by various parameters, such as the size of the nanospheres, the
concentration and the surface hydrophobicity. From this study, one requirement
to achieve ordered colloidal monolayer is that the interparticle interaction should
be sufficiently weak.

Furthermore, for 2D NPs self-organization, the capillary forces method was
used. The idea behind this method is that, when the NPs are hanging in a thin
liquid layer with a thickness smaller or equal to the NP diameter, they tend to
order into 2D hexagonal arrays due to attractive capillary force between them
[106]. The speed of the particle transport can be controlled by controlling the
evaporation rate [106].

Another technique is the drop-casting method, which is a cheap, fast method
and does not require advanced instruments. The idea behind this method is,
that the NPs transferred to the substrate by spreading a drop of NPs dispersion
on a flat surface and then allowing the solvent to evaporate slowly. During the
evaporation, the NPs self assemble randomly or into an ordered structure [107].
By using this method, the exact amount of NPs needed for monolayers formation
is set. Furthermore, the drop-casting method is a well-known method to pre-
pare multilayered samples. The main challenges of the drop-casting method are:
control the self-assembly process by tcontrol the environmental conditions dur-
ing the evaporating of the solvents and choosing the correct solvent for the NPs.
Furthermore, choosing the correct NPs concentration and the correct volume of
the NPs droplet that spread on the substrate surface. A common phenomenon
that is always observed from the drop-casting method is known as the ‘coffee-
ring’ effect, where the NPs distribution is inhomogeneous and the particles tend
to agglomerate at the edge of the drying droplet [108–110]. The reason for
this effect is the evaporation-driven capillary flow of the particles induced by
the inhomogeneous evaporation profile of a pinned drop with a finite contact
angle [108]. The addition of the surfactants in the NPs dispersion might alter
the drying pattern, as they influence the particle-particle, particle-substrate, or
particle-free interface interaction [109].

In the drop-casting method, if the solvent to get planed NP distribution on the
substrate is recognized, then the only challenge in this method is how to control
the self-assembly process toward long-range order. There are some methods
reported on how to get long-range NP order, one of these methods is the study
carried out by Bigioni et al. [100]. In this study, they showed that by using a
mixture of solvent/co-solvent, a large long-range order on the micrometer scale
can be possible. Also, they used a combination of toluene as a solvent and
dodecanethiol as a co-solvent and they found that the monolayer formation at
the liquid-air interface is affected by the evaporation kinetics and the amount
of the excess dodecanethiol ligand molecules in the dispersion. Two important
parameters are required in the drop-casting method in order to get long-range
ordered monolayers and to capture the kinetics and the essential physics of
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the drying during the self-assembly process: (i) The flux of the NP to the
droplet surface, and (ii) the diffusion length in the liquid-air interface which
can be tuned by the particle size, surface tension or osmotic pressure. The NP
diffusion to the droplet surface is controlled by the solvent evaporation rate,
where the shrinking droplet height catches particles from the dispersion. In
order to increase the interfacial diffusion length, the particles have to pins on
the interface, therefore, a mechanism is required to be present to control the
droplet evaporation.

Figure 5.1 shows a schematic diagram of the self-assembly process during the
early stages of the drying. In terms of monolayers of stearyl alcohol grafted NP
prepared by drop-casting, no study is found in current literature as to which
solvent and conditions have to be used to obtain a single uniform, homogeneous
monolayer.

Figure 5.1.: Schematic diagram of the self-assembly process during the first drying
stage according to [100]. First, the NP stabilize on top of the droplet
surface as the droplet volume shrinks, where they can still move in two
dimensions to obtain long-range order. Second, with the remaining slow
evaporation rate, the ordered structure remains.

In particular, related to silica NP, there are also several methods that were
reported on fabrication of highly ordered monolayer of silica NP on a solid
substrate. Such as electron beam lithography [111], dip coating [112], spin coat-
ing [113, 114] Langmuir–Blodgett (LB) technique [115] and capillary immersion
force [116]. Y. Wang demonstrates highly ordered and closely packed self- as-
sembled monolayers of microsized SiO2 spheres on a silicon substrate and on
a glass substrate by dip-coating method [112]and Ogi et al.[117] reported the
fabrication of a monolayer of SiO2 nanoparticles of size 550 and 300 nm on sap-
phire substrates by using the spin coating method.
The above methods typically result in small monolayer area and non-uniformity
of the resulting monolayer. Due to these disadvantages, these methods are not
suitable in the industry. Drop-casting is a simple, cheap method and permits
the formation of a monolayer over a large area in a short period. Due to these
advantages, the drop-casting method has the potential for industrial application
since it fulfills the industry requirements.

In this study, a drop-casting method to prepare a monolayer from stearyl
alcohol grafted silica NPs is presented. To obtain a uniform, homogeneous dis-

140



5.2. Introduction to silica nanoparticles

tribution of the NPs on a silicon substrate and to achieve long-range order, the
influence of the concentration of NPs and the stearyl alcohol, the volume of
the drop on the formation of large-area monolayers were investigated. Infor-
mation about the particle size, shape and size distribution were obtained from
SAXS measurements. To deduce information about the structural order of self-
organized particles, SEM, X-ray reflectivity (XRR) and GISAXS measurements
have been used. SEM images give a direct view of the particles ordering within
a small area in real space. While XRR and GISAXS provide information about
the out of the plane and in-plane ordering of the particles in reciprocal space.

5.2. Introduction to silica nanoparticles

Silica particles have received in recent years much interest and have been widely
used in various applications for centuries due to their extensive existence in na-
ture. Moreover, silica can be purchased at a low cost, which makes the appli-
cation of silica more communal. Particularly, the silica NPs used in this study
have two main important advantages. First of all, they can be prepared with a
narrow size distribution which is essential for the self-assembly process. Second,
the surface of the particles can be chemically modified resulting in particles,
which, if dried carefully, do not immediately aggregate irreversibly, which might
increase the time for self-assembly. In addition, also the relatively low Hamaker
constant of silica as compared to other inorganic materials might limit the Van
der Waals attraction between the cores of the particles, making them more free
to move, thereby favoring self-assembly to high-quality monolayers. Generally,
the possibilities for chemical modification of the surface of silica particles as well
as within the particles lead to use it in various fields such as medicine, biology,
engineering and the development of customized materials [118].

5.3. Experimental methods

5.3.1. Synthesis of stearyl silica nanoparticles

The method used to synthesize silica nanospheres used in this study is known
as ’The microemulsion’ and in the following is further elaborated about this
method.
The silica NPs used in this study come from a collaboration with Dr. Jo-
han Buitenhuis of the institute of Biomacromolecular Systems and Processes
(IBI-4) at Forschungszentrum Jülich. Here, monodisperse silica particles were
prepared in two steps. First monodisperse core silica particles were synthesized
in a reverse microemulsion system [119–121]. After purification from the mi-
croemulsion, the particles were grafted with stearyl alcohol (figure 5.2) following
van Helden [122]. In this procedure, the stearyl alcohol forms covalent bonds
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to the silica surface, resulting in a stearyl layer of about 2 nm thickness. This
gives sterically stabilized colloidal silica nanoparticles, which can be dispersed
in nonpolar solvents like cyclohexane, chloroform, or toluene. Here particles
with a diameter of about 50 nm were obtained, using toluene as a solvent. Con-
centrations are expressed as volume fractions, which are calculated using the
densities of solvent, silica and stearyl alcohol and assuming additivity of vol-
umes. For the stearyl silica particles, an average density of 1.8 g/mL was used,
which is also in agreement with a density measurement on former stearyl silica
colloids of similar size. According to the synthesis process described, a colloidal
dispersion with 5.4 vol% stearyl silica nanoparticles was prepared as stock and
a colloidal dispersion with 0.11 vol% stearyl silica nanoparticles was prepared
as dilute dispersion. The particles were stored in a sealed bottle and had a
shelf-life time of more than two years after which they start degrading.

Figure 5.2.: Chemical structure of stearyl alcohol molecule.

5.3.2. Nanoparticles characterization

In this section, the experimental methods, conditions and data treatment that
were applied to characterize the nanoparticles will be presented.

Scanning Electron Microscopy
Scanning electron microscopy is used to provide a direct view of the particles,

to study the surface and to obtain information about the particle shape, size and
size distribution. For the sample measured by SEM, a 5µL drop of dispersion
with a concentration of 5.4vol% is transferred to a silicon substrate. The SEM
used in our measurement is Hitachi SU8000 (Sec.3.2.1). To evaluate the particle
size and size distribution, the diameter of over 100 nanospheres is measured
manually and the size distribution is evaluated by a simple function, a log-
normal distribution function is fitted to the histogram

f(d, d0, σ) =
1

dσ
√

2π
⋅ exp

⎛
⎝
−(ln (D/D0))2

2σ2

⎞
⎠

(5.1)

Where the parameters D0 is the mean particle diameter and σ is the Log-normal
slandered deviation.
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Figure 5.3.: SEM image (left) and evaluated size distribution (right) of the silica
nanoparticle

The ideal SEM micrograph in figure 5.3 shows nanoparticles with a spherical
shape. Their average diameter is estimated to 48.8 ± 1.5 nm and size distribu-
tion (σ) with 3% by the log-normal distribution fit obtained from a statistical
analysis of 100 particles as shown in figure 5.3. SEM clearly revealed that the
particles are regular spherical particles and once deposited over a silicon wafer,
tend to self-organize in a regular hexagonal layer without agglomeration. Fur-
thermore, the nanospheres tend to be more close to each other. Moreover, they
are qualitatively homogeneous in shape.

Small-Angle Scattering
For the SAXS measurement, the silica nanoparticles dispersions are filled in

quartz glass capillaries (Hilgenberg GmbH) with 1.5 mm outside diameter and
0.01 mm wall thickness, which is closed by a silicone ball was added by using
a silicone gun to allow the measurement of the dispersions in a vacuum. Two
different concentrations, 5.4vol% and 0.11vol% were measured and toluene used
as a solvent.
The samples are measured at two sample-to-detector distances of 3.53m and
0.83m using GALAXI instrument (Sec.3.4.1). The capillaries filled with the
toluene solvent and the nanoparticle dispersions as well as an empty capillary is
measured under the same conditions as a reference sample for the subtraction of
the background. The typical exposure time was approximately 3h per sample.
The absolute unit calibration of SAXS measurements at GALAXI is performed
according to the procedure described in App. D.

Only the SAXS data of the dispersion with a concentration of 0.11 vol% is
shown in this section. The data was evaluated using "SasView" software. For a
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quantitative evaluation of the data, a shape model was assumed to produce the
data. In our case, the spherical model (App.E.1) was used. By using SAXS,
information about the average size and shape of the nanoparticles over a large
volume of the sample can be accessible.

Shape model
In figure 5.4 the SAXS data of the silica nanoparticles dispersion with a con-

centration of 0.11vol% is shown. The data shows the first form factor minimum
at a smaller scattering vector (Q), which can tell that the average particle size
is large. Furthermore, the data shows the minima are qualitatively sharp due
to the smaller size distribution of the particles.
To obtain a quantitative evaluation of the SAXS data, the SAXS curve was
fitted to the form factor of spherical shape (App.E.1). The obtained parameters
from the fit of the data are tabulated in table 5.1.

Figure 5.4.: SAXS data of SiO2 NPs together with the fit (black line) to the data (red
points) assuming a spherical form factor.

Comparison of SAXS and SEM
The size and the size distribution obtained by the best spherical fit of the SAXS
data and the values determined from SEM are listed in table 5.2. Within the
e.s.d. the values are identical.
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Sample name R[nm] σR % SLDsolvent

[10−6 Å−2]
SLDcore

[10−6 Å−2]
SiO2 - 0.11vol% 24.5(1) 2.8(1) 8.5 15.5

Table 5.1.: Parameters obtained from fitted SAXS data with the spherical form factor
shown in figure 5.4. The size of the sphere is given in terms of radius R.
The respective log-normal size distribution is given as σR. The SLDsolvent,
SLDcore are the scattering length density of the core and the solvent, re-
spectively.

Parameter name SAXS SEM
R [nm] 24.5 (1) 24.4 (1)
σR % 2.8 (1) 2.9 (1)

Table 5.2.: Comparison of nanoparticle length scale as viewed by SAXS and SEM.

5.3.3. Deposition process of nanoparticles on wafer surface

In this chapter, the preparation steps for all samples presented are explained.
Furthermore, the drop-casting measurement steps used for monolayer formation
and the factors that have an influence on the monolayer formation are explained
in detail. The general procedure for a drop-casting experiment is easy, simple
and well known, but there are multiple crucial points that need to be taken into
account before starting the drop-casting experiment, i.e. deposit the nanoparti-
cles on the substrate: first, the nanoparticle dispersions and the substrate need
to be prepared. Second, a suitable nanoparticle concentration has to be chosen
for the dispersion, as well as a suitable solvent that has to be chosen which
influences the evaporation driven self-assembly. Furthermore, the environmen-
tal conditions such as the temperature and the kind of the container where the
sample put in and dried in during the solvent evaporation, play an important
role to control the drop-casting experiment.
Each point mentioned in the previous paragraph is described in detail in the
following besides the characterization methods used to show its effects on the
samples.

Preparation of the Silicon Substrate
The substrates used in our study are single-crystalline N-type silicon sub-

strates with (100) orientation that were purchased from Crystec GmbH with a
thickness of 0.5 mm and cut into 10*10 mm2 pieces. The wafers are polished on
one side, where this side used for nanoparticle deposition using the drop-casting
method. To remove dust particles and contamination from the substrate surface,
the substrates are cleaned using an Elmasonic P60 ultrasonic bath, where the
substrates first are alternately ultra-sonicated in acetone, ethanol, and deion-
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ized (DI) water for 5 min, respectively. After that, the wafers were stored in
ethanol until use it. N2 gas was used to dry the silicon substrates directly after
taking it out from the ethanol just before nanoparticle deposition. After the
above treatment of the substrate, the drop-casting method was used to deposit
nanoparticles on the substrates.

Determination the concentration of the solution used for monolayer
formation
In order to improve the NPs ordering over the whole sample area, stearyl alcohol
was used as an assistant, more details will be explained in section 5.9. There-
fore, in the beginning, a solution that contains the silica nanoparticles and the
stearyl alcohol was prepared as explained later in this section.
At the beginning, before the preparation of the monolayer solution, the nanopar-
ticles’ concentration in the dispersion for a monolayer formation on a substrate
surface has to be determined, which can be estimated geometrically from the
particle-to-particle distance a2

p−p on the hexagonal lattice with a lattice constant
a. But for densely packed spheres in two dimensions, one has to take into ac-
count the reduced average by including the packing density η in the plane and
a2
p−p has to be replaced by the average maximum cross-section that the particle

is taking in the lattice. The packing density for densely packed spheres in two
dimensions is η = π

√
3/6 ≈ 2.2 and the cross-section is given by πr2.

The number of nanospheresNnanospheres expanding over the substrate areaAsubstrate
by assuming a perfect hexagonal lattice of nanospheres is given by:

Nnanospheres =
Asubstrate
πR2 (5.2)

Where R is the particle radius which is in our case ≈25 nm as determined from
SAXS and SEM in Sec. 5.3.2.
The number of the nanoparticles in the dispersion with volume Vdisp can be
estimated from particle volume concentration cV and the volume of a single
nanosphere Vp, Vp = 4/3πr3.

Nnanospheres =
cV Vdisp
Vp

(5.3)

The particle volume concentration cV can be determined from:

cV = cm
ηρ

(5.4)
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Where cm is the particle mass concentration and ρ is the density of the particle
that can be determined from the literature value.
By combining the above equations together, then the particle mass concentra-
tion becomes:

cm = ηρAsubstrate
πR2

Vp
Vdisp

(5.5)

Typically, for silica nanospheres with a diameter in the order of 25 nm and
with stearyl alcohol molecule grafted the nanoparticle in the order of 2 nm,
the optimal mass concentration for a drop of volume in the order of 5µL used
for a monolayer preparation on 10*10 mm2 silicon wafer is in the order of 2.9
mg/mL as obtained from equation 5.5 by considering η ≈ 2.2, ρ for amorphous
silica ≈1.8 g/mL, the radius of the particle R≈ 25 nm and the Vdisp=5µL. Using
the calculated cmvalue , the optimal particle volume concentration cV can be
determined from equation 5.4 which is in order of 7.323×10−4. Therefore, the
number of the nanospheres in the dispersion of 5muL can be calculated from
equation 5.3 which is in order of 4.5×1015 nanospheres, while the number of
the nanospheres that self-assemble in the silicon wafer is in order of 4.5×1010

nanospheres, which can be explained that some particles are lost during the
drop-casting process.
The nanoparticle dispersion used in the preparation of the solution used in the
monolayer formation is the stock solution with volume fraction 5.4%, which is
equivalent to a mass concentration cm=97.2 mg/mL. The mass concentration
estimated from the volume fraction as follows:

cm = νρ (5.6)

Where ν is the volume fraction and ρ is the density of the amorphous silica ≈1.8
g/mL which is lower than the pure silica due to the stearyl alcohol reduces the
effective density.
The solution with 0.1 vol% stearyl silica and 0.1 vol% stearyl alcohol where used
in the monolayer formation was prepared, by adding 20 µL of 5.4 vol% stearyl
silica and 20 µL of 5.4 vol% stearyl alcohol to 0.96 mL of toluene. After that,
only 5 µL of this solution was taken by a micropipette and dropped onto the
silicon substrate to form the monolayer.

Evaporation and drying process during drop-casting
The cleaned silicon substrates used for the drop-casting experiments are com-
monly placed in a clean Petri plate. The drop-casting procedure is varied for
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the optimization of the long-range order in the monolayer. The following vari-
ations have been performed using silica dispersion with a concentration of 5.4
vol%: In the first stage of the monolayer preparation in Sec. 5.8, to study the
influence of the speed of the evaporation process for the primary solvent, 5 µL
of stearyl silica dispersion was taken by a micropipette and dropped onto the
silicon wafer, the primary solvent, toluene in our case is evaporated at ambient
conditions of 22 C○ in an open clear Polystyrene box within few minutes. After
the evaporation of the primary solvent, an addition of 5 µL toluene added to the
already self-assemble film then directly the Polystyrene box where the sample
placed is covered. By covering the Polystyrene box after additive of the toluene,
the evaporation rate will reduce and the particles get more time to order.
In the second stage of the monolayer formation in Sec. 5.9, to study the in-
fluence of the speed of the evaporation process for the primary and the minor
solvents, 5 µL of the solution contains the stearyl silica and stearyl alcohol was
taken by a micropipette and dropped onto the silicon wafer, the primary solvent,
toluene in our case is evaporated at ambient conditions of 22 C○ in an open clear
Polystyrene box within few minutes. While the minor solvent, stearyl alcohol
that was added to the silica dispersion is evaporated after toluene because it
is evaporation rate lower than toluene. After 30 minutes, the clear Polystyrene
box where the sample is placed is closed. Toluene has a boiling point ≈111 C○,
while the stearyl alcohol has a boiling point ≈210 C○ at 15 mmHg.
In the third stage of the monolayer formation in Sec. 5.12, furthermore, we
tested the possibility to improve the monolayer quality by adding an additional
annealing step. The sample obtained in the second stage of the monolayer for-
mation and after it is placed in the closed clear Polystyrene box, it was placed
for various periods in an oven at a temperature above the melting point of the
stearyl alcohol without moving the sample. During the heat treatment, the
stearyl alcohol is melted and particles become free to move which leads to fur-
ther self-assemble.

Variation of the nanoparticle and stearyl alcohol concentration and
local characterization by SEM

To study the influence of the concentration of the nanoparticle and the stearyl
alcohol on the monolayer formation. First, the nanoparticle concentration with-
out stearyl alcohol was varied, to obtain the suitable nanoparticles concentration
for mixing with stearyl alcohol. Mainly the concentration of the nanoparticles
in the toluene decides the number of the nanoparticle layers formed (monolayer
or multilayer). Second, the concentration of the nanoparticle and stearyl alco-
hol was varied together, to get the optimal concentration value for the solution
used to form the monolayer. By using SEM and GISAXS, information about
the samples’ quality and the lateral order of the samples are quantified.
Figure 5.5 shows SEM images taken at different positions in the wafer sur-
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face with the same magnification for two samples that were prepared by the
drop-casting method under the same conditions with two different nanoparti-
cle concentrations. In both concentrations, the nanoparticles form close-packed
structures with hexagonal arrangements. For the nanoparticles with a low con-
centration (0.11vol%), left side SEM images in figure 5.5, many structural de-
fects could be observed. Some regions are almost empty with few particles.
Some regions also have big holes, which form due to less nanoparticle concen-
tration in the solution (figure 5.5 (a) and (c)). There are some regions where a
second complete layer forms on top of the first layer (figure 5.5(b)) with some
structural defects especially cracks, which form because of the fast drying of
the toluene during the drop-casting process. For the nanoparticles with higher
concentration (5.4vo%), figure 5.5 (d-f), a non-continuous multilayer of nanopar-
ticles was formed over some regions in the wafer surface as shown in figure 5.5
(d), while some regions over the entire substrate are covered with large areas
of almost perfectly multilayers as shown in figure 5.5 (e) and (f). In addition,
the hexagonal ordering is quite long ranged with fewer structural defects. In
the case of the multilayer, the close packing is better, because the ordering is
taking place in three dimensions, where there is an extra degree of freedom of
the ordering.
Summarizing the different concentrations of nanoparticles dispersions discussed
above, the largest areas of almost perfectly ordered nanoparticles are obtained
from the nanoparticles dispersion with a concentration of 5.4vol%. If the nanopar-
ticles concentration is reduced, such a not homogeneous nice ordering or non-
uniform monolayers may be observed over small regions in the substrate surface.
The morphology over the substrate surface is more homogeneous observed by
using a higher concentration of nanoparticles.
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Figure 5.5.: SEM images of SiO2 NPs with 0.11 vol% concentration (left) and SiO2
NPs with 5.4vol% concentration (right). Different region of the same
samples are shown in (a-c) and (d-f), respectively. For both concentra-
tions, simple drop-casting method was used to deposit the nanoparticles
in the wafer surface.
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Figure 5.6 shows the SEM images for different samples prepared by the drop-
casting method using a solution consisting of stearyl silica and stearyl alcohol
with different concentrations. The SEM images for all samples were taken at the
same positions in the wafer surface and with the same magnifications. Figure
5.6 (a) shows SEM image of stearyl silica and stearyl alcohol solution with
a final concentration of 0.0022 vol%, by dilute particles dispersion and stearyl
alcohol together. It is visible that almost there are no nanoparticles in the wafer
surface, just a few individual particles or small clusters distributed almost over
the whole surface area. In the following two cases (SEM images in figure 5.6 (b)
and (c)), in one case, we dilute the nanoparticle dispersion and kept the stearyl
alcohol as a stock and in the other case we kept the nanoparticles as a stock
and we dilute the stearyl alcohol. Figure 5.6(b) shows SEM image for stearyl
silica with a concentration of 0.0022 vol% and stearyl alcohol of a concentration
of 0.1 vol%. It is obvious that a self-assembled network structure was formed
almost across all the substrate area. The nanoparticles tend to arrange into a
two-dimensional short range hexagonal ordering. Furthermore, small areas of
monolayer were observed over some regions in the wafer surface. Figure 5.6 (c)
shows SEM image for stearyl silica with a concentration of 0.1 vol% and stearyl
alcohol of a concentration of 0.0022 vol%. By increasing the concentration
of the stearyl silica particles and reducing the stearyl alcohol concentration,
inverse to the case of the previous SEM image, a combination of multilayers
and monolayers can be observed almost over the whole surface area. Again,
the nanoparticles tend to arrange into two-dimensional hexagonal ordering with
quite long-range order with some structural defects were observed especially
cracks formed during drying in due to the fast evaporation of the toluene. In
the last case, we kept both the particle dispersions and the stearyl alcohol as a
stock solution with the final concentration of 0.1 vol% where the SEM results
are shown in figure 5.6 (d). From this figure, one can observe that there are
a good coverage uniformity and a nice homogeneous ordering over the entire
substrate. Furthermore, the nanoparticles arrange into two-dimensional long-
range hexagonal order with some structural defects (i.e.cracks) formed during
drying in process.
Summarizing the above results obtained from the different concentrations of
the nanoparticles dispersions and of the stearyl alcohol discussed above, the
influence of the silica particles and the stearyl alcohol on the surface coverage
and the uniformity of the monolayer on the wafer is obvious as seen from the
SEM images. Here, the optimal values of the concentration of silica and stearyl
alcohol to improve the monolayer quality and to obtain the largest area of
monolayers are in order of 0.1vol %. Whilst, using a solution consisting of
different concentrations of silica and nanoparticles, such a nice ordering and
small not homogeneous monolayer areas obtained.
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Figure 5.6.: SEM images were taken at different position in the substrate surface of
self- assembled nanoparticles using stearyl alcohol as assistance, simple
drop-casting method was used to deposit the nanoparticles in the sub-
strate surface. Different nanoparticles and stearyl alcohol concentration
were used: (a) The concentration values for NPs and stearyl alcohol,
0.0022 vol% and 0.0022 vol%, respectively, (b) 0.0022 vol% silica and 0.1
vol% stearyl alcohol , (c) 0.1 vol% silica and 0.0022 vol% stearyl alcohol
and (d) 0.1 vol% silica and 0.1 vol% stearyl alcohol.
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Variation of nanoparticles deposition methods and local character-
ization by SEM
In addition to the concentration of the nanoparticles as well as the stearyl al-
cohol, the method used in depositing the nanoparticles in the wafer surface has
an influence on the monolayer formation and its quality. In this part of this
section, results obtained from different methods used to deposit the nanoparti-
cle in the substrate surface are presented briefly. Figure 5.7 (a) shows the SEM
image of self-assembled nanoparticles by the spin-coating method. As can be
seen, the substrate surface is partially covered with distributed nanoparticles
which form together small chains or grains separated from each other. By using
the drop-casting method as can be seen in figure 5.7 (b), perfect multilayers of
hexagonally ordered silica nanoparticles can be observed. Figure 5.7 (c) shows
the SEM image of self-assembled silica nanoparticles by the dip-coating method.
As can be seen, hexagonally ordered nanoparticles with relatively large correla-
tion lengths can be obtained. Even though a second layer forms on top of the
first layer. The second layer is not a complete layer but forms islands forming
effective layers. Since perfect multilayers produced by the drop-casting method
and almost the morphology is homogeneous over the entire sample, one more
chance can be given to the nanoparticles to improve their ordering by adding
extra toluene to the already self-assembled film. Figure 5.7 (d) shows the SEM
image of the nanoparticle monolayers formed by the drop-casting method, fol-
lowed after one minute by an addition of extra toluene to the film and reducing
its evaporation rate by covering the sample container. As can be seen, the
substrate surface is covered by a monolayer of well-ordered nanoparticles but
the monolayer fabricated by this method is not homogeneous over large sample
areas.
Summerizing the methods discussed above, the largest area monolayers can be
produced using the drop-casting method by reducing the evaporating rate. How-
ever, such a nice monolayer is not homogeneous over the whole substrate surface.

The samples produced by the drop-casting method with an addition of stearyl
alcohol shown in figure 5.6(d) and the drop-casting method with an addition of
toluene shown in figure 5.7 (d) have been the main focus on our study for fur-
ther improvements of nanoparticle monolayers and for scattering experiments
because in these samples the long-range order and the large monolayer areas
obtained is of interest.
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Figure 5.7.: SEM images of self assemble nanoparticles with the same concentra-
tion (5.4 vol%) using various preparation methods. (a) spin-coating, (b)
drop-casting, (c) dip-coating and (d) slow evaporation method. (without
stearyl alcohol)
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5.4. Formation of nanoparticle monolayers and local
characterization by SEM

A colloidal dispersion with 5.4 vol% stearyl silica nanoparticles was prepared as
stock. In addition, a stock solution of 5.4 vol% stearyl alcohol in toluene was
made. These two stock solutions were used to fabricate a large monolayer area
of ordered nanoparticles on a silicon substrate by the drop-casting technique
with and without the assistance of stearyl alcohol. The monolayer preparation
methods were carried out as follows. In the beginning, prior to the use of stearyl
alcohol to assist monolayer formation, ≈ 5 µL of 5.4 vol% NPs stock dispersion
was dropped onto a cleaned silicon substrate, followed after one minute by ad-
dition of an extra ≈ 3 µL toluene to the film. While doing so, the sample was
kept unmoved and the sample container was covered to reduce the evaporation
rate. In the next method, in order to improve the NPs ordering over the whole
sample area, stearyl alcohol was used as an assistant. Firstly, in this method, a
solution with 0.1 vol% stearyl silica and 0.1 vol% stearyl alcohol was prepared,
by adding 20 µL of 5.4 vol% stearyl silica and 20 µL of 5.4 vol% stearyl alcohol
to 0.96 mL of toluene. After that, 5 µL of this solution was taken by a micro-
pipette and dropped onto the silicon substrate. Then the droplet quickly spread
over the substrate surface and the sample was left open for one day to let it dry.
A last optional step added in the monolayer fabrication is the heat treatment,
which was used in order to reduce the number of cracks in the monolayer still
obtained in method two.
Characterization of SiO2 NP monolayer has been done by scanning electron mi-
croscope (SEM, Hitachi SU8000) to characterize the ordering of the NPs locally
in real space. In addition, XRR measurements were performed at the diffrac-
tometer Gallium Anode Low-Angle X-ray instrument GALAXI (Sec. 3.4.1)
using a monochromatic x-ray beam with a wavelength of λ = 0.134 nm and a
beam size at the sample of 0.7 × 0.7 mm2 in order to obtain depth resolved pro-
file and to investigate the out of plane ordering of the NPs in reciprocal space.
Furthermore, GISAXS measurements were carried out at GALAXI to obtain
information about the in-plane ordering of the NPs. In GISAXS, the incident
X-ray was irradiated on the sample at a grazing angle of αi, and the scattering
pattern was recorded by a Pilatus 1M 2D position-sensitive detector with 169
× 179 mm2 active area at a sample-detector distance of 3528 mm.

First stage: ordered nanoparticles monolayer by simple drop cast-
ing method
Figure 5.8 shows SEM images at a different locations and under various magnifi-
cations of the SiO2 NP monolayers obtained by simple drop casting with adding
additional toluene and reducing its evaporation rate by covering the sample as
described in section 5.4; the first method of monolayer formation. From the
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images, it is seen that the particles do not cover the whole surface area of the
substrate. There are some areas covered with only a few NPs and some areas,
where particles can be found above the first layer. Also, over some areas, the
particles are randomly and irregularly distributed. The monolayer produced by
this method is usually not homogeneous over large sample areas, which might
be due to the surface tension leading to a contraction of the particles during
drying of the sample. Nevertheless, with the present monodisperse particles
with a small size distribution of < 4% as used, some areas with a reasonable
degree of ordering are observed.

Figure 5.8.: Series of SEM images (a)-(d) with various magnifications, taken at dif-
ferent positions of a monolayer of SiO2 NPs, assembled on a silicon wafer
with extra toluene added after drop casting (without stearyl alcohol).

Second stage: Improve monolayer quality by stearyl alcohol assis-
tance

The quality of the monolayers obtained by the simple drop-casting method
still show several artifacts. The ordered domains are small and separated by
cracks and in addition some tendency to multilayer formation is observed. Re-
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ferring to the origin of the cracks, we considered the following explanation.
After drop-casting, a thin film of colloidal dispersion of NPs is formed, which
(partially) might self-assemble and at the same time starts to dry. During this
process it might be that monolayers of better quality could form by self-assembly,
when the particles are still free to move. Then, on further drying, the coherent
contraction of the monolayer dimensions is opposed by pinning of domain edges
to substrate surfaces at the late stages of drying, i.e. the NPs become less free
to move, which then eventually might lead to cracks. Therefore, it was consid-
ered that adding stearyl alcohol might fill the gaps between the particles in the
monolayer and thereby might reduce crack formation.

In the experiments as shown before in Sec.5.3.3, the influence of the volume
of the droplet, the concentration of silica particles and the stearyl alcohol on
the surface coverage and the uniformity of the monolayer on the wafer were
investigated. Here, we considered a 5 µL droplet with 0.1 vol. % NPs and
0.1 vol.% stearyl alcohol to be the suitable parameters to improve monolayer
quality. If an excessively high concentration and large droplet volume is used,
multilayers of silica particles are formed. While, with low concentration and
small droplet volume, only separated islands are formed. More details about
the preparation of the colloidal dispersion and its mixture with stearyl alcohol
is explained before in Section 5.4.
Figure 5.9 shows a series of SEM images at a different location and under vari-
ous magnifications of the NP monolayer obtained after using stearyl alcohol as
assistance. As can be seen from the SEM images, less particles are observed in a
second (or third) layer, i.e. less multi-layer formation is observed. However, still
a lot of cracks are observed in the resulting monolayers. So unfortunately, our
idea to reduce crack formation by the addition of stearyl alcohol does not seem
to work. However, the monolayers formed seem to be more long range ordered,
i.e. many hexagonal domains which are separated by cracks, still have the same
orientation. So the monolayers obtained by the addition of stearyl alcohol are
significantly better compared to the monolayers obtained by the simple drop-
casting method.
The reason for the resulted large monolayer is not clear as the effect of the
stearyl alcohol is complicated. For instance, the precipitation of the stearyl
alcohol on evaporation of the toluene, might first take place on the particles
and/or on the surface of the wafer. Moreover, the continuous evaporation of the
toluene and possible drying from the edge of the droplet, might also play a key
role on the monolayer formation. However, this is very speculative and work on
the mechanism of this monolayer formation is not easy and outside the scope of
the present study.
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Figure 5.9.: Series of SEM images (a)-(d) with various magnifications, taken at dif-
ferent positions of a monolayer of SiO2 NPs, assembled on a silicon wafer
after using stearyl alcohol as assistant.
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Third stage: Improve nanoparticles ordering via annealing process
In order to avoid the cracks and other defects in the monolayers with stearyl

alcohol from the previous section, the monolayers were heat treated in an oven.
The idea was to melt the stearyl alcohol in the monolayer obtained by the pre-
vious method, thereby obtaining free mobile particles again, which are free to
move and self-assemble further, to obtain a layer with improved order. The
special possibility after further self-assembly is that we can solidify the ordered
layer with only a minor change in volume by simply cooling to room tempera-
ture. The essential aspect of solidifying the monolayer by freezing the stearyl
alcohol as compared to simple evaporation of a solvent, was thought to be the
advantage of the annealing step leading to the minor volume change. This might
especially reduced the number of cracks, which are thought to originate from
the volume change during monolayer formation by evaporation. This process
might be comparable to crack formation sometimes observed in dry soil.

Figure 5.10.: SEM images of stearyl silica monolayer with stearyl alcohol as assistant
on silicon substrate heated-treated at 70 C○ for various period of time:
(a) 15min, (b) 2 hours, (c) 29 hours, (d) 10 days.

In order to test the idea from the previous paragraph, the monolayer obtained
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in the previous section was treated at a temperature of about 70 C○, which is
about 10 degrees above the melting point of stearyl alcohol. The time of the
heat treatment was varied in a broad time range from 15 minutes up to 10 days.
To prevent the slow evaporation of the small amount of stearyl alcohol in the
monolayer, we put the sample in a small closed polystyrene box together with a
small stearyl alcohol grain, to obtain a stearyl alcohol atmosphere. The optimal
heat-treatment time was found to be the longest time used of 10 days as shown
in figure 5.11 which shows a horizontal line cuts along Qy at Qz= 0.34 nm−1

taken from GISAXS data of the same sample after different periods in the oven.
It is observable from the figure 5.11 that more lateral peaks along Qy after 10
days in oven can be observed and it become more intense and sharp along Qz.
Which is a signal of long-range periodic order of the nanoparticles.

Figure 5.11.: A line-cut along Qy at Qz= 0.34 nm−1 taken from GISAXS data of the
same sample after different period in the oven.

SEM images taken after different duration in the oven at 70 C○ are shown
in figure 5.10. As can be seen from the SEM images, the degree of ordering
improves with longer time in the oven. Especially for the sample after 10 days
a large, uniform, homogeneous monolayer of SiO2 NPs with relatively large cor-
relation lengths is obtained, also with a relatively good hexagonal order. The
ordering between NPs over the whole sample area is evidently improved and
the number of the cracks reduced, compared to the first simple drop-casting
method without stearyl alcohol and also compared to the second method us-
ing stearyl alcohol, but without heat treatment. This can be illustrated by

160



5.4. Formation of nanoparticle monolayers and local characterization by SEM

a two-dimensional fast Fourier transformation (FFT) shown as inset in figure
5.12. Sharp peaks in the FFT confirm the presence of long range self-assembled
monolayer order.

Figure 5.12.: SEM image of self-assembled spherical stearyl silica nanoparticles after
drop-casted on a silicon substrate and after 10 days in the oven (with
stearyl alcohol). The inset shows the two dimensional Fourier transform
pattern of the SEM image.

5.4.1. Global and depth-resolved characterization by XRR and GISAXS

SEM is a local probe, it provides qualitative information about only a few micron
size areas and does not provide any information about short and long-range cor-
relations between nanoparticles. Therefore, to confirm the SEM results obtained
in the previous section 5.4, GISAXS and XRR measurements were performed
to understand the nanoparticle ordering at a large length scale. By XRR exper-
iments, information about out of plane nanoparticle ordering can be obtained
and GISAXS measurements probe information about in-plane nanoparticle or-
dering which can be immediately seen in the in-plane Bragg spots.

The XRR and GISAXS measurements were carried out at GALAXI (Sec.3.4.1)
for the three samples produced in the previous section 5.4, in the three stages
of monolayer formation. The first sample produced in the first stage, the sec-
ond sample produced in the second stage and the third sample produced in the
third stage after 10 days in the oven (figure 5.10). The GISAXS measurements
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were performed for all samples under incident angle αi ≈ 0.25○. The sample-to-
detector distance is set to the largest distance of 3.528 m for all measurements,
which is determined by a calibration measurement of silver behenate (AgBH).
Furthermore, the beam center is determined by the calibration measurement
of AgBH to transfer the detector image from pixel coordinates to momentum
transfer coordinates (Qy,Qz).

The GISXAS data provides information about the lattice structure, a di-
rect measure of the lattice constant and the coherence length. For the studied
nanospheres, a two-dimensional hexagonal structure is obtained as long-range
ordered structure. To confirm the long-range hexagonal order, the peak posi-
tions are determined. For the two dimensional hexagonal lattices, the expected
peak positions are given by the equation that relates the lattice constant a with
the interplanar distance d [123]:

dhk =
a

√
4
3(h2 + hk + k2)

= 2π
Qhk
y

(5.7)

Where h and k are the Miller indices and Qhk
y is the Bragg peak position. The

GISAXS peak broadening is described by a Lorentzian function, while the peak
broadening due to the instrument resolution is described by a Gaussian function.
Therefore, to account for the instrument resolution, the GISAXS peak is fitted
by a Voigt function, which is a convolution of a Gaussian G and Lorentzian L
functions. From the peak fitting, the structural coherence length is determined.
The Voigt function V is given as:

V (x;σ, γ) =
+∞

∫
−∞

G(x′;σ)L(x − x′;γ)dx′ (5.8)

Where G(x; σ) and L(x; γ) are given by the following relations:

G(x;σ) = 1
σ
√

2π
e(−

x2
σ2 )

L(x;γ) = γπ

x2 + γ2

Where γ is the half width at half-maximum (HWHM)of the Lorentzian profile
and σ is the standard deviation of the Gaussian profile related to the HWHM
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(β), by β = σ
√

2 ln 2.
The Gaussian contribution to the Voigt function (instrument resolution) can be
determined from the beamwidth of the direct beam measurement of GALAXI
shown in figure 5.13. The direct beamwidth in this case is determined by a
Gaussian fit to σ = 0.01239 nm−1, which corresponds to a FWHM of β = 0.01459
nm−1. By fitting the Qhk peak in the Yoneda band to the Voigt function, γhk
are determined for each sample. From the HWHM of the Lorentzian (γhk), the
coherence length can be calculated using the following equation:

ζ = 2π
γhk

(5.9)

.

Figure 5.13.: Direct beam width for GALAXI measured with the detector set to a
distance of LSDD = 3.528 m.

X-ray Reflectometry
X-ray reflectometry experiments were performed to provide statistical infor-

mation on the average electron density distribution with respect to the verti-
cal axis and to determine the layers thicknesses and the interface roughness
of the prepared sample. Furthermore, to revel the out-of-plane ordering of the
nanoparticles. Figure 5.14 (a), (b) and (c) show the XRR data of the as-prepared
monolayers in the first, second and third stages. The x-ray reflectivity has been
measured on GALAXI (Sec.3.4.1). The critical angle (αc) for total reflections
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Table 5.3.: The parameters obtained from the fitting of the XRR data shown in figure
4 (c) according to the model in Figure 4 (d).

Layer Thickness
(Å)

Roughness
(Å)

ρ(10−6Å−2
)

Silica layer 478(2) 5.2(5) see text
Substrate - 2.1(5) 21.6(1)

at Qz = 0.3nm−1 does not change for all XRR curves shown in figure 5.14. This
value corresponds to the one for the silicon substrate. The critical angle of the
silicon substrate is quite sharp confirming a flat substrate. After the critical
edges, the Kiessig fringes appear in figure 5.14 (b) and (c) due to the inter-
ference of reflected waves from the air-nanoparticle and nanoparticle-substrate
interface, respectively. Qualitative differences between the XRR curves are ob-
vious. The reflectivity curve in figure 5.14 (c) shows Kiessig fringes up to high
values of the scattering vector magnitude Q which proves that a highly ordered,
homogeneous and uniform monolayer of NPs over a large surface area that can
be achieved using the drop-casting method with a compatible additive. In figure
5.14 (b) the Kiessig fringes observed are much less intense than in Figure 5.14
(c), while the Kiessig fringes in figure 5.14 (a) almost vanishes.
Figure 5.14 (c) shows the XRR data (red points) of as-prepared nanoparticles
monolayer after 10 days of heat treatment along with the fit (black solid line).
The measured reflectivity curve of the monolayers obtained after 10 days of heat
treatment is well reproduced by assuming a parabolic scattering length density
profile of the NP layer.
To fit the measured XRR curve of the monolayers obtained after 10 days of heat
treatment, we assumed the layer model drawn in figure 5.14(d) consisting of the
particle layer on top of the silicon substrate (dark gray). The left side shows the
cross section of the model and the right side shows the scattering length density
(SLD) variation along the perpendicular direction to the film as extracted from
the fit.

The average SLD within the nanoparticles layer given as
ρ(Z) = ρ1 − ρ2(Z−RR )2 has a parabolic line shape with the maximum value ρ1
= 16.7(1)×10−6Å−2 in the center of the nanoparticle layer set at Z = R. The
average SLD value at Z = 0 and Z = 2R is ρ1 −ρ2 = 16.7 - 12.7 = 4(1)×10−6Å−2

where R is the spherical radius and 2R = D is the thickness of the nanoparticles
layer.
The fitting parameters obtained from the fitting of the x-ray reflectivity data
of the monolayer film of nanoparticles after 10 days of heat treatment shown in
figure 5.14 (c) are tabulated in table 5.3.
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Figure 5.14.: X-ray reflectivity from a monolayer of SiO2 NPs (a) without stearyl al-
cohol. (b) with stearyl alcohol before heat treatment. ((c) with stearyl
alcohol after 10 days of heat treatment (red points) along with the fit
(black solid line). (d) The model layers structure assumed for fitting the
data shown in (c), displaying an ideal in-plane close-packed arrangement
of spherical nanoparticles with a parabolic SLD profile of the nanopar-
ticles layer.
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Grazing incidence small angle x-ray scattering
SEM provides qualitative information about only a few micron-sized areas and
does not provide any information about short and long-range correlations be-
tween NPs. Therefore, GISAXS measurements were carried out to investigate
a much larger area of the substrate and to obtain additional information about
the range of the in-plane ordering of the NPs in the monolayer.

Figure 5.15.: GISAXS pattern of a monolayer of SiO2 NPs deposited on silicon sub-
strates (a) before using stearyl alcohol (b) after using stearyl alcohol,
before heat treatment and (c) after 10 days heat treatment. (d) Line-
cuts from (a), (b) and (c) along Qy at a constant Qz = 0.34nm−1. The
Bragg peaks are indexed by assuming a 2-D hexagonal lattice with a
lattice constant a = 51.6 ± 0.4 nm.
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Figure 5.15(a), (b) and (c) show GISAXS scattering patterns of stearyl silica
monolayers on silicon substrates. The GISAXS measurements were carried out
at an incident angle of αi ≈ 0.25○. Distinct vertical Bragg rods visible in all
GISAXS patterns along the Qy direction indicate the long-range periodic order
of the NPs. Furthermore, the rods are sharper in Qz direction, due to the
monolayer nature of the NPs. Moreover, rings of diffuse scattering can also be
observed in the GISAXS patterns, which are related to the square of the Fourier
transform of the particle shape, i.e. the form factor of the individual NPs.
Differences between the GISAXS patterns are obvious. After 10 days of heat
treatment (figure 5.15(c)), the Bragg rods become more intense and sharper.
Also, more reflections along Qy are visible. The appearance of these reflections
is due to extended order. Furthermore, after 10 days of heat treatment (figure
5.15(c)) the diffuse rings nearly vanish compared to figure 5.15(a) and (b).
This means that nearly all particles are taking part in the long range order
as scattering from individual defects is largely suppressed. The intensity ratio
in each GISAXS maps in figure 5.15 is quantified by comparing the integrated
intensity of the Bragg rods to the integrated intensity of the diffuse rings. The
intensity of the Bragg rods is integrated from Qz = 0.17 nm−1 - 1.4 nm−1, i.e. the
area defined by the dotted orange rectangle in figure 5.16, while the intensity of
the diffuse rings is performed from Qz = -0.38 nm−1 - 0.15 nm −1, i.e. the area
defined by the dashed white rectangle in figure 5.16. The higher intensity ratio
is found for the monolayer with stearyl alcohol after 10 days of heat treatment
(methods 3).

The integrated intensity values of the Bragg rods and the diffuse rings of
all GISAXS maps shown in figure 5.15 are listed in table 5.4. The integrated
intensity as a function of Qy of the Bragg rods and the diffuse rings of all
GISAXS maps shown in figure 5.15 (a-c) is shown in figure 5.17 (a) and (b),
respectively. The Bragg rods intensity of the sample after 10 days of heat
treatment becomes higher (dark gray in figure 5.17 (b)), while its diffuse rings
intensity becomes less (dark gray in figure 5.17 (a)). The high intensity ratio
obtained for the sample after 10 days of heat treatment is an indication that most
particles are taking part in the long-range order and scattering from individual
defects is largely suppressed.

The Bragg peaks observed in the GISAXS pattern are indexed by considering
a 2-D hexagonal lattice with a lattice constant a = 51.5 ± 0.4 nm (value for
method 3), which is larger than the particle diameter due to the stearyl alcohol
molecule around the nanoparticles. The lattice constant was calculated from
the (10) peak position by using the equation linking the interplanar distance
d and the lattice constant a [124]. The comparison between the intraplaner
distances dhk calculated from the GISAXS scattering pattern for different peaks
and the dhk values calculated by assuming a two-dimensional hexagonal lattice
with lattice constant a = 51.5 ± 0.4 tabulated in table 5.5. The calculated
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Figure 5.16.: The 2D GISAXS map of the silica monolayer with stearyl alcohol after 10
days of heat treatment. The integrated intensity area of the Bragg rods
is presented by a dotted orange rectangle and the integrated intensity
area of the diffuse rings is presented by the white dished rectangle.

values are in good agreement with the observed values, confirming the two
dimensional hexagonal arrangement of the nanoparticles. The lattice constant
approximately kept the same in all samples produced from the three methods as
tabulated in table 5.6, second column. The line cuts from the GISAXS patterns
(figure 5.15(a)-(c)) along Qy at constant Qz = 0.34 nm−1 are shown in figure
5.15 (d). It is obvious that the Bragg peaks become more intense and sharper
after 10 days of heat treatment (violet line, figure 5.15 (d)). This is indicative
for a larger coherence length of the crystalline structure and well-ordered NPs
monolayer. After taking the instrument resolution into account, a Lorentzian
profile is used to fit the first-order peak in each GISAXS pattern, which yields
a structural coherence length ζ of 266 ± 2 nm, 314 ± 4 nm and > 480 nm 1

for monolayers without stearyl alcohol, monolayers with stearyl alcohol before
heat treatment and for monolayers with stearyl alcohol after 10 days of heat
treatment, respectively.

Finally, the GISAXS pattern in figure 5.15(c) is simulated using the BornA-
gain software [60] and compared with the obtained experimental result. As one
can see, the simulated pattern shown in figure 5.19 (b) closely reproduces the
experimental data shown in figure 5.19 (a). The GISAXS data has been simu-
lated assuming a two-layers model, consists of a silicon substrate followed by the
particle layer. Nanoparticles have a form factor of a full sphere with SiO2 core

1About 500 nm is the resolution limit of the instrument. With the present setup only this value can
be given as lower bound of the coherence length for method 3
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of 23.5 nm radius and a stearyl alcohol shell of 1.7 nm thickness. The 3-D visu-
alization of the model produced by the BornAgain software is shown in figure
5.18. Since nanoparticles are densely packed, the ambient layer, where the NPs
are situated, has been described as a graded interface. The Z dependence of
SLD for an ideal spherical nanoparticle resulted from the GISAXS simulation.
A finite 2D hexagonal lattices of randomly selected sizes have been simulated
because the sample is not uniforms is shown in figure 5.20. A finite 2D hexago-
nal lattices of randomly selected sizes have been simulated because the sample is
not uniformly covered with the NPs but consists of ordered domains of variable
size rotated with respect to each other. To consider the polycrystallinity of the
film, an orientational distribution has been applied to the simulated domains.
Positions and relative intensities of the Bragg rods (figure 5.19(a)) indicate the
absence of preferred domain orientations. Therefore, a uniform orientational
distribution, i.e. 120 lattice rotation angles in the range between 0○ and 60○
with equal weights, has been simulated. To account for the nanoparticles size
distribution which contributes to diffuse scattering in the GISAXS pattern and
broadens the structural peaks, a Gaussian size distribution with FWHM of 3
nm has been applied in the GISAXS model. The comparison of simulated and
measured GISAXS patterns is presented in figure 5.19:

(a): shows the region of interest of the measured pattern

(b): shows the simulated pattern in the same Q range. Poisson noise has been
applied to the scattering intensity.

(c): slice along Qz at Qy = 0.14 nm−1 (position of the first Bragg rod, shown
with the vertical gray dashed line in the figures (a) and (b))

(d): slice along Qy at Qz = 0.32 nm−1 (position of the Yoneda line, shown with
the horizontal gray dashed line in the figures (a) and (b))

As one can see, the model reproduces the scattering from long-range order and
even some disorder like particle size distribution or orientational distributions
of the domains very well: the peak widths, relative intensities and positions are
the same for both, simulated and experimental GISAXS patterns. However,
the simulated pattern has a valley in the region of small Qz which is not seen
in the experimental data. Moreover, simulated intensity decays with increasing
Qz noticeably faster than the measured one. These observations are signs of
additional sample features that are not considered by the present model and
require further investigation in the future. Nevertheless, the present model
provides a plausible characterization of SiO2 NPs arrangements and allows for
a determination of the film morphology, as is evident from the good match of
experiment and simulation shown in figure.5.19 (d).
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Sample name IBR [arb.units] IDR[arb.units] IBR
IDR

Without stearyl alcohol 7.2 × 10−3 3 × 10−3 2.4
With stearyl alcohol before
heat treatment

1.4 × 10−2 2 × 10−3 7.5

With stearyl alcohol after 10
days of heat treatment

3.4 × 10−2 6.8 × 10−6 5130

Table 5.4.: The integrated intensity of the Bragg rods and the diffuse ring as calculated
by integration over the areas defined by the dotted orange and white angle
drawn in the GISAXS map in figure 5.16. The integrated intensity ratio
between the GISAXS peaks and the diffuse rings from single defects are
listed in column four.

Miller indices (hk) dhk= 2π
Qhky

[nm] dhk= a√
4
3 (h2+hk+k2)

[nm]

(10) 43.9(±0.1 ) 43.7
(11) 25.1 (±0.1) 25.3
(20) 22.4 (±0.1) 22.2
(21) 16.8 (±0.25) 16.3
(30) 14.6 (±0.01) 14.4
(22) 12.7 (±0.05) 12.6
(31) 12.2 (±0.1) 12
(32) 10.1 (±0.05) 10
(41) 9.7 (±0.1) 9.5
(33) 8.8 (±0.25) 8.5

Table 5.5.: Comparison of intraplanar distances measured from GISAXS scattered
pattern (2nd) column and calculated values by assuming a hexagonal lat-
tice with a=50.5 nm (3rd) column .

170



5.4. Formation of nanoparticle monolayers and local characterization by SEM

Figure 5.17.: Integrated intensity of the (a) diffuse rings and (b) Bragg rods as a
function of Qy determined from the GISAXS maps shown in figure 5.15
(a-c). The Bragg rods intensity is integrated from Qz = 0.17 nm−1 - 1.4
nm−1 and the diffuse rings intensity is integrated from Qz = -0.38 nm−1

- 0.15 nm−1.

Method
number

a (nm) ζ (nm) Intensity
ratio

Method 1 49±1 266±2 2.4
Method 2 50.3±0.7 314±4 7.5
Method 3 51.6±0.4 > 480 5130

Table 5.6.: Lattice constant (a), coherence length (ζ) of each GISAXS map and the
integrated intensity ratio between the GISAXS peaks and the diffuse rings
from single defects.
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5. Self assembly of silica nanoparticles on flat and patterned silicon substrates

Figure 5.18.: Three dimensional vision of the simulated pattern shown in figure 5.19
(b).

Figure 5.19.: (a) GISAXS pattern of SiO2 monolayer drop-casted onto silicon sub-
strate with stearyl alcohol after 10 days of heat treatment. (b) Simula-
tion of the GISAXS data using Born Again software assuming paracrys-
talline hexagonal lattice interference function with a lattice constant a
= 52 nm and a spherical particle with radius of 25.5 nm. (c) A verti-
cal slice as a function of Qz at Qy=0.14 nm−1.(d) A horizontal slice as
a function of Qy at Qz=0.32 nm−1. The experimental data shown as
black dots and the simulated data are shown as a green solid line.
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Figure 5.20.: The resulted SLD profile from the simulation of the GISAXS pattern.
The particle layer is sliced into 60 slices.
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5.5. Self-assembly of nanoparticles on two-dimensional
nanometer-scale patterned surfaces

The main aim of this section is to show that it is possible to produce highly
ordered arrays of particles by using the template assisted self-assembly method.
The templates used in our study are trench-patterned silicon substrates that
were presented and characterized previously in Sec.4.4. In this section, sample
preparation and structural characterization results are discussed.

Sample preparation and local characterization by SEM
The trench-patterned substrates used in this study are in the shape of nearly

a rectangle with sidewall angle at the bottom (i.e. trapezoid), the top width is
quite smaller than the bottom width. The line periodicity is of around 300 nm
with groove width 150 nm. The nanoparticles placed are in the trench-patterned
substrates (i.e. grating lines) using different methods. First, the same method
used to produce highly ordered monolayers on the flat silicon substrate (Sec.5.4),
i.e. the drop-casting method with stearyl alcohol assistant used to place the par-
ticles inside the trenches under the same conditions and the same experimental
set-up as explained previously in Sec. 5.4. The first sample (S1) was prepared
by the simple drop-casting method with extra addition (Sec. 5.8, first stage),
5 µL of the stock dispersion with concentration 5.4 vol% drop-casted on the
substrate surface. The second sample (S2) was prepared by drop-casted 5 µL
of a solution with a concentration 0.1 vol% which contains the silica particles
and the stearyl alcohol (Sec. 5.4, second stage), then the sample is placed in
the oven for 10 days at ≈ 70○.
At the initial stages of directed self-assembly using drop-casting, the silica par-
ticle dispersion spreads across the wafer surface without much impact from the
patterning. At later stages, the toluene evaporation and the physical confine-
ment at the pattern edge lead to the directed-self assembly of stearyl silica
particles into the confined space.
Furthermore, the third sample (S3) was prepared by the dip-coating method.
The substrate was immersed in the stock dispersion (5.4 vol%) for 30 seconds
and taken out from the dispersion slowly. Eventually, the sample was prepared
after 10 cycles of immersing in the dispersion and taken it out of the dispersion.
From an experimental perspective, the important factors influencing the parti-
cle deposition on structured substrates are: particles concentration, shape, size,
stearyl alcohol concentration, groove width, groove profile, roughness, confine-
ment geometry and the preparation method.

The morphology of the samples was checked locally by SEM (figure 5.21). The
SEM image for S1 shows a thick deposit of silica particles that fully covers the
wafer surface and are formed without any impact of the lithographic patterning,
which might be due to the high nanoparticle concentration. This case is almost
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similar to the case of drop-casting of nanoparticles over a flat surface. For S2
sample after using stearyl alcohol as an assistant and after heat treatment, as
can be seen from figure 5.21 that the nanoparticles are well located at each
trench with very few particles on the top of the mesa. Around three columns
of particles are observed in each trench. Furthermore, in some trenches, the
nanoparticles show a discontinuous column of particles and in some trenches,
the particles show a continuous column of particles. Moreover, structural defects
are observed i.e. cracks formed during drying. For the S3 sample, it is observed
that almost all trenches are filled with nanoparticles with approximately three
columns of particles in each trench. As seen from the magnified SEM image that
the particles tend to order into a hexagonal lattice. The nanoparticles inside
the trenches form multilayers.

Figure 5.21.: SEM images of self-assembled silica nanoparticles of ≈ 50 nm diameter
on the trench-patterned silicon substrate. (a) S1-sample, (b) S2-sample
and (c) S3-sample, the inset is a magnified SEM image of a close-packed
pattern indicated as the black rectangle in (c).

From SEM observations, the dip-coating method is found to be the best ap-
proach to place nanoparticles in trench-patterned substrates. Moreover, the
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drop-casting method can be used as a method to place the nanoparticles inside
trenches if the nanoparticles dispersion is mixed with a suitable chemical assis-
tant, the stearyl alcohol in our case.

Global characterization by GISAXS
To answer our question, if template-assisted self assembly leads to further

improvement in nanoparticle ordering, GISAXS measurements were carried out
of the samples shown in figure 5.21 to probe information about large size area
not only few micron-size area like SEM, to obtain information about the in-plane
ordering of the nanoparticles and furthermore, to probe information about the
structural coherence length of the nanoparticles inside the trenches. Then, the
GISAXS results for the S2 sample shown in figure 5.21 are compared with the
GISAXS results of the sample shown in figure 5.10.

GISAXS patterns for the samples are shown in figure 5.22 and 5.23. The
GISAXS experiments for all samples were performed in two geometry, as the
incoming beam parallel (right side image) and perpendicular (left side image)
to the lines. The direction of the X-ray beam with respect to the trenches is
illustrated on the top-right corner of each figure. The GISAXS measurements
were performed for all samples almost under the same incident angle αi ≈ 0.18○.
For the parallel case, the lines are tilted with a very small azimuthal angle (Φ)
with respect to the normal to the surface plane, to prevent the strong scat-
tering background from the grating lines overwhelming the intensity from the
nanoparticles. For S1 and S2 the lines are tilted to the left direction with az-
imuthal angle Φ = 3○ for S1 and Φ = 90○ for S2. For S3 the lines are tilted
to the right direction with azimuthal angle Φ = 1.25○. The visible semicircle
(bent tail) can be observed from the GISAXS pattern in the parallel case for
all samples, which comes from the structure factor of the grooves. The pow-
der rings around the beam center are observed, due to the form factor of the
nanoparticles. As seen from GISAXS images, 2-D Bragg lines extended along
Qy are due to the laterally correlated nanoparticles arrangement. The S1 sam-
ple shows more intense Bragg peaks along Qy than S2 sample, at least eight
Bragg peaks can be seen, which might be due to the nanoparticles multilayers
covering the whole pattern i.e. scattering from multilayers on a flat surface,
in this case, the intensity of the particle is high enough to observe, while for
S2 sample six Bragg peaks can be seen, because as seen in the SEM image
(figure 5.21) that only few nanoparticles are above the mesa and most of the
nanoparticles are placed inside the grooves. Therefore in this case the parti-
cles intensity is not high enough and overwhelmed by the scattering from the
grating lines. Furthermore, the absence of Bragg peaks along y-direction as the
incoming beam is parallel to the direction of the grooves can be explained in
this way. The nanoparticles arrangements along that direction can be described
by the product of periodic nanoparticles arrangement and periodically stepped
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function with a period given by the groove width of the patterned substrates.
From the mathematics view, it is known that the Fourier transform of the prod-
uct of two functions equals the convolution product of the Fourier transform
of the individual functions. The Qy dependency of the total scattering ampli-
tude is therefore the convolution product of the scattering amplitude due to
the non-disrupted periodic nanoparticles arrangement and the scattering am-
plitude of the lithographic pattern, oscillating around 0. As the groove of the
patterned substrates is much bigger than the nanoparticles periodicity along the
y-direction, the total scattering amplitude is 0. So, even if there’s a coherent
arrangement of the nanoparticles, one can’t observe any Bragg peaks.

The GISAXS results of S1 and S2 samples as the incoming beam perpendic-
ular to the lines are shown in Figure 5.22 ( left images). For S1, the intensity
is distributed in a ring like pattern due to the particles form factor (although
not continuous). At least six such rings can be seen. On top of the rings,
high-intensity peaks can be observed, which modulate the ring intensity. The
two-dimensional Bragg peaks along Qy are due to the laterally correlated struc-
tures, while the Bragg peaks along Qz provide the information on out-of-plane
correlations and it is indicative of multilayers nature. For S2, less powder ring
are observed, which might be due to the improved ordering between the nanopar-
ticles in the grooves. Like the S1 sample, two-dimensional Bragg peaks along
Qy are observed, but these peaks are sharper along Qz direction, which might
be due to the monolayer nature, i.e. the particles assembled inside the groove
only in one layer, they didn’t form multilayers. Furthermore, less intense Bragg
peaks along Qy observed for S2 compared to S1, might be due to less particle
density. The less appearance of the intense Bragg peaks along Qy for S2 sample
can be explained as follows: for S1 sample, 5 µL of 5.4 vol% particle dispersion
were drop-casted in the substrate surface, while for S2 sample, 5µL of 0.1vol%
solution contains the stearyl silica and the stearyl alcohol, the density of the
particle in the solution used to prepare S2 sample is less than the particles den-
sity in the dispersion used to prepare the S1 sample.
To translate the GISAXS observations, a line cut (red solid line) along Qy at
Qz=0.3 nm−1 was taken for S1 and S2 samples on both GISAXS patterns (semi-
parallel and perpendicular). In all cases, the lateral peaks are indexed assuming
a two-dimensional hexagonal lattice with a lattice constant a = 51.7 nm.
Summerizing the GISAXS observations of S1 and S2 samples, the S2 sample
shows better nanoparticle ordering than the S1 sample due to the stearyl al-
cohol assistant which plays a role in nanoparticles order. Stearyl alcohol has
the same influence in improve ordering between nanoparticles in the patterned
surface as in the flat surface as discussed in Sec.5.4.

Figure 5.23 shows the GISAXS patterns of the S3 sample. The GISAXS mea-
surement was performed with the incident beam almost parallel (right image)
and perpendicular (left) to the lines. For parallel case, the lines are tilted to the
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right direction with azimuthal angle Φ = 1.25○ to prevent the strong scatter-
ing background from the lines. From the GISAXS map, no Bragg peaks along
Qy are seen, only foggy rings around the beam center are observed due to the
nanoparticles form factor. The result indicates that the nanoparticles have non-
observable coherence in the direction perpendicular to the long axis of the lines.
The absence of the lateral Bragg peaks can be explained in the same way as
explained previously for the S2 sample. For the perpendicular case, Bragg peaks
along Qy and Qz are observed. The Bragg peaks along Qy provide information
about in-plane correlation and the Bragg peaks along Qz provide information
on out of plane correlation. The Bragg peaks along Qy are observed due to
the laterally correlated structures, while along Qz they are due to the particle
multilayers inside the groove with a layer thickness of ≈ 49 nm.
A line cut along Qy at Qz=0.3 nm −1 was taken in both GISAXS patterns.
There are no-observable Bragg peaks when the beam is almost parallel to the
lines. While, when the beam is perpendicular to the lines, Bragg peaks at Qy

= 0.12 nm−1, Qy = 0.24 nm−1, Qy = 0.36 nm−1 and Qy = 0.48 nm−1 can be
observed.
The lateral Bragg peaks are indexed assuming a two-dimensional hexagonal lat-
tice with a lattice constant a = 52 nm. While the particles ordered vertically
into a hexagonal close-packed (HCP) lattice with c = 49 nm.

Trench-patterned silicon substrates were used as a template to guide nanopar-
ticles self-assembly for further improvements in nanoparticles order. But the
GISAXS results of nanoparticles on flat surface and on trench-patterned sub-
strate indicate that the ordering between the particle on flat surface is better
than on trench patterned substrate. To confirm this indication, the GISAXS re-
sult of the sample produced in the third stage of the monolayer formation (Sec.
5.4) is compared with the GISAXS result of the the S2 sample (Sec. 5.5). Both
samples are prepared using the same method and under the same conditions.
For a better comparison, the GISAXS data for both sample are normalized.
Figure 5.24 (a) and (b) show the GISAXS patterned at αi = 0.18○ for particles
on flat surface and patterned surface as the incoming beam perpendicular to
the lines, respectively. Clear differences between the two GISAXS images are
observable. More intense and sharper reflections along Qy are visible in case
of nanoparticles in flat surface, which is an indication to the extended order
of nanoparticles over a larger area. In this study, the trench-patterned Silicon
substrates did not lead to further improve in the nanoparticles ordering. Figure
5.24 (c) shows a line cut along Qy taken from GISAXS images shown in (a) and
(b) at the same value of Qz = 0.3355 nm−1.
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Figure 5.22.: GISAXS patterns of S1 and S2 samples with the direct beam almost
parallel to the lines (right side images) and perpendicular to the lines
(left side image). The incident angle in both cases for both samples
αi ≈0.18○. The direction of the X-ray beam with respect to the trenches
is illustrated on the top-right corner of each figure. A line cut (red solid
line) from each image along Qy at constant Qz = 0.3 nm−1. The Bragg
peaks were indexed according to a hexagonal lattice with a = 51.7 nm.
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Figure 5.23.: GISAXS patterns of S3 sample with the direct beam almost parallel to
the lines (right side images) and perpendicular to the lines (left side
image). The incident angle in both cases αi ≈0.18○. The direction of the
X-ray beam with respect to the trenches is illustrated on the top-right
corner of each figure. A line cut (red solid line) from each image along
Qy at constant Qz = 0.3 nm−1. The Bragg peaks were indexed according
to a hexagonal lattice with a = 52 nm.
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5.5. Self-assembly of nanoparticles on two-dimensional nanometer-scale patterned
surfaces

Figure 5.24.: Comparison between self-assembled particles in flat and trench-
patterned substrate. (a) GISAXS pattern of self-assembled stearyl silica
particles monolayer on flat surface after 10 days in the oven with stearyl
alcohol assistant. (b) GISAXS pattern of directed self-assembled stearyl
silica particles on trench-patterned silicon substrate after 10 days in the
oven with stearyl alcohol assistant. (c) Line-cut from (a) and (b) along
Qy at a fixed Qz = 0.3355 nm−1.
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5.6. Summary

In this chapter, spherical Stearyl grafted silica nanoparticles with a diameter of
≈ 50 nm have been investigated. Information about the size as well as the size
distribution of the nanoparticle has been obtained using SEM and SAXS tech-
niques. Furthermore, in this chapter the self-assembly of stearyl silica particles
on a flat and trench-patterned substrate was of interest, to produce large-area
nanoparticles monolayer. The self-assembly of the nanoparticles is significantly
influenced by the monodispersity of the nanoparticles and many other factors.
Therefore, a full analysis of the preparation and characterization of nanopar-
ticles monolayer with long-range order has been presented. Various methods,
such as spin-coating, dip-coating and template-assisted self-assembly, have been
used to produce large-areas nanoparticles monolayer. The monolayers with a
largest areas were produced using the drop-casting method with a stearyl al-
cohol assistant. However, the quality of the monolayers obtained still shows
several defects. The ordered domains are separated by cracks. Using an addi-
tional heat treatment step, the ordering between nanoparticles over the whole
sample area is evidently improved and the number of the cracks reduced.
The formation of the monolayer presented in this chapter is significantly influ-
enced by the nanoparticles concentration, the stearyl alcohol concentration, the
amount of the droplet, and the annealing time. A special idea behind the for-
mation of the stearyl silica monolayer presented in this chapter is the addition
of stearyl alcohol to the nanoparticles dispersion from where the monolayers are
formed. The stearyl alcohol results in monolayers with improved order, as con-
firmed with SEM for the local order and GISAXS for the long-range hexagonal
order. A heat treatment melting the stearyl alcohol in the monolayers leads
to further improved monolayers. This improved ordering is probably a result
of giving the nanoparticles more time to further self-assemble, which is then
followed by solidifying the monolayer by simple cooling to room temperature,
preventing the large volume change as obtained after evaporation of a solvent.
The heat treatment in combination with a compatible additive with a melting
point significantly below that of the particles might be a general method to
improve the ordering between particles in monolayers as well as multilayers.
Spherical stearyl silica nanoparticle tends to order into a two-dimensional hexag-
onal lattice. This was confirmed by SEM and GISAXS. The obtained in-plane
reflections (Bragg peaks) in the GISAXS patterns can be indexed with a hexag-
onal structure. Furthermore, the experimental GISAXS data are successfully re-
produced/simulated using the Born Again software, assuming a polycrystalline
hexagonal lattice of spherical nanoparticle with a size of 50 nm and with a lat-
tice constant a =52 nm.
The structural characterization of the monolayer by GISAXS is proof that the
monolayer is formed not only on small areas of the sample as shown by SEM
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5.6. Summary

but over a macroscopic area of the substrate. Furthermore, it is confirmed by
XRR that the sample has a monolayer nature. The stearyl silica nanoparticles
were also self-assembled on trench-patterned silicon substrates, which were used
as a template to guide/assist nanoparticle self-assembly. GISAXS measurement
revels that the coherent structure of the nanoparticles along and perpendicular
to the trench direction can be observed. However, in our study we deduced that
the self-assembly on patterned substrates did not improve the ordering of the
nanoparticles.
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6. Investigation of spin structure of Cobalt
ferrite nanodots on Silicon substrate

Over the past decades, self-assembly of magnetic nanoparticles on a solid sub-
strate has attracted much interest due to their potential applications in various
areas i.e. high-density magnetic storage media [125], nano-scale electronic de-
vices [126–128]. One of the most promising candidates for these applications
is the cobalt ferrite [129]. The cobalt ferrite (CoFe2O4) nanoparticles have at-
tracted much interest due to its nanoscale dimensions (i.e. small dimensions)
which leads to novel properties as compared to bulk material like superparam-
agnetism [130]. Moreover, CoFe2O4 nanoparticles show a novel chemical and
physical properties like high coercivity (Hc), moderate saturation magnetiza-
tion (Ms), exceptional chemical stability, large magnetocrystalline anisotropy,
large magnetostriction and high mechanical hardness. These properties make
it a promising material for many other applications i.e. magneto-optical de-
vices [131], contrast agent for MRI [132], drug delivery systems[133], spintronics
[134], and magnetohyperthermia [135]. One of the main important factors that
play an influence in these applications is the interactions between the magnetic
dipoles of the nanoparticles. For this purpose, several studies were reported
about the magnetization pattern of an assembly of magnetic nanoparticles,
such as the study performed for two-dimensional islands of spherical 21 nm
magnetite nanoparticles [136] and also for two-dimensional islands of spherical
21 nm cobalt-ferrite nanoparticles [137].

It is known, when the magnetic nanoparticles assemble into two-dimensional
structures, they are generally separated by a few nanometers due to the sur-
factant layer around the particle. This means that the exchange interaction
between the particles is almost negligible and the only interaction dominates in
this case, is the long-range dipole-dipole interaction. Thereby, when they order
into a regular lattice, they are an interesting system for the study of collec-
tive magnetism. A hexagonal lattice of an array of primarily dipolar interacting
nanoparticles macrospins is expected to have a super ferromagnetic ground state
[137, 138]. The super ferromagnetic ground state is characterized by an equal
orientation along one direction for neighboring macrospins in one domain.

In this chapter, the magnetization pattern of an assembly of two-dimensional
arrays of hemispherical ≈ 20 nm cobalt ferrite nanoparticles will be presented.
The magnetocrystalline anisotropy energy, i.e., the energy originating in a mis-
alignment of the magnetic dipole moment with respect to the easy axes of
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magnetization of cobalt-ferrite is considerable and introduces energy barriers
in the individual nanoparticles, unlike magnetite, where its magnetocrystalline
anisotropy energy is known to be low. Therefore, the magnetization pattern
of two-dimensional assembly of cobalt ferrite nanoparticles is determined by a
competition between dipole-dipole interactions and alignment of the moments
along the easy axes of magnetization, unlike magnetite where its magnetization
pattern is only determined by collective dipole-dipole interactions [137].

The main goal of this study is the structural and magnetic characterization of
2D arrays of CoFe2O4 nanoparticles grown on top of a silicon substrate with a
hemispherical shape. The closest packing of these nanoparticles is a hexagonal
lattice. Moreover, the study of magnetic dipolar interactions between nanopar-
ticles is one of the main focuses of this chapter. For this purpose this chapter
split into various parts, a general introduction about cobalt ferrite is given first,
then the magnetic properties of cobalt iron nanopowder have been studied to
have a better understanding of the magnetic properties of the 2D CoFe2O4 nan-
odots monolayer. After that, the quantitative evaluation of the structure of the
2D CoFe2O4 nanodots monolayer is shown, as well as the characterization of
the magnetic properties of the hexagonal arrays of magnetic CoFe2O4 nanodots
are then studied using (MPMS) and polarized neutron reflectometry (PNR)to
determine the ground state magnetic behavior of the system.

6.1. Introduction to Cobalt Ferrite

Bulk cobalt ferrite (CoFe2O4) is a well-known hard magnetic material with
high coercivity and moderate saturation magnetization. Moreover, CoFe2O4 is
a ferrimagnetic material with a high cubic magnetocrystalline anisotropy and
high Curie temperature (Tc=860K). These properties, along with their high
thermal/chemical stability, its magnetic properties, and its cheap production
costs make CoFe2O4 of much interest for practical use i.e. in magnetic recording
applications such as audio and high-density digital recording disks [139, 140],
magneto-optics [141] or spintronics [142].
CoFe2O4 crystallizes in inverse spinel structure with space group Fd3m similar
to magnetite. Here, the divalent cobalt ions Co2+ occupy half of the octahedral
sites, while the trivalent iron ions Fe3+ are situated at the tetrahedral sites and
the other half at the other half of the octahedral sites. The formula unit of the
cobalt ferrite can be written as (Fe3+)[Co2+Fe3+]O4. A schematic representation
of the unit cell of the cobalt ferrite spinal structure is shown in figure 6.1 which
contains eight formula units. The lattice constant for cobalt ferrite is in the
order of a = 8.38 Å [143]. The anisotropy constant for bulk cobalt ferrite in
order of 1.8 - 3.0 × 106 ergs/cm3 [144], which has a room temperature coercivity
of 750 - 980 Oe [145]. Bulk cobalt ferrite has a saturation magnetization of
order 80.8 emu/gm. The magnetic moment per cobalt ion in cobalt ferrite is
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6. Investigation of spin structure of Cobalt ferrite nanodots on Silicon substrate

derived to be approximate µCo = 3.5 µB, where reported experimental values
are found in the range from 3.3 µB – 3.9 µB [146]. The calculated magnetic
moment corresponds to a saturation magnetization of

Ms =
8µCo
a3 = 450KA/m

Figure 6.1.: Crystal structure of CoFe2O4. The Co atoms sit within the yellow tetra-
hedral and the Fe atoms sit within the blue octahedral. The red points
represents the oxygen ions.

Cobalt ferrite exhibits ferrimagnetism at room temperature. The origin of
this ferrimagnetic ordering in cobalt ferrite is due to superexchange (A-O-B, i.e.
Co-O-Fe) interaction between tetrahedral (A) and octahedral (B) sublattices
which is stronger than both A-O-A and B-O-B intra-sublattice interactions. The
tetrahedral-sites have magnetic moments opposite to the magnetic moments of
the octahedral-sites. The net magnetic moment of the lattice µtotal is given by
the algebraic sum of the spin magnetic moment as follows

µtotal = (µB − µA)

where µB and µA are the magnetic moment of the octahedral (B) and the
tetrahedral (A) sublattices, respectively.
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There are studies of the iron atom occupation that were performed using
Mossbauer spectroscopy in a magnetic field. They show that in actual bulk
cobalt ferrite crystals, the structure is a mixed inverse spinel. The iron ion oc-
cupations in the tetrahedral and the octahedral positions are not equal. More
iron atoms can shift to the octahedral positions and thus cobalt atoms also
occupy the tetrahedral interstices [147, 148], depending on the sample prepara-
tion. In the case of nanoparticular cobalt ferrite, depending on the preparation
process and the particle size [149–151], relative content of cobalt and iron in the
spinel structure, as well as the relative occupation of the sites varies widely.

6.2. Cobalt Iron Oxide nanopowder

The cobalt iron oxide nanopowder CoFe2O4 used in this study are commercially
available (Sigma-Aldrich, 99%) with 30 nm particle size. In order to understand
the magnetic properties of CoFe2O4 Nanodots arrays grown on top of Si sub-
strate, the magnetic properties of the CoFe2O4 nanopowder have been studied
using SQUID (Sec. 3.3.1) (Quantum Design MPMS) magnetometer with 7 T
maximum field. The hysteresis loops were measured at 300 K and at 5 K. The
magnetization versus temperature measurements were performed in zero-field-
cooled (ZFC) and field-cooled (FC) conditions with a 50 Oe and 100 Oe probe
field. The resulted magnetic properties of the nanopowder will be described in
the following subsection 6.2.

Nanopowder magnetism

The magnetic proprties of the cobalt ferrite nanopowder (CFO) has been studied
using SQUID magnetometry. The results are compared with the one obtained
for the 2D arrys of CoFe2O4 nanodots on silicon substrate. Figure 6.2 shows
the field dependent magnetization curves at 300 K (left) and at 5 K (right),
the inset shows the details of hysteresis curve at small field values. While, the
temperature dependent magnetization (ZFC-FC) curves at 50 Oe (left) and 100
Oe (right) is shown in figure 6.3. It is obvious that no loop is observed and the
value of Coercivity (Hc) measured from the hysteresis curves at 300 K are very
small which approach zero. The zero coercivity is the characteristic feature of
the superparamagnetic behavior of the magnetic nanoparticles [152]. While, at
5K the sample showed ferromagnetic behavior with a small coercivity (HC) of
300 Oe. Furthermore, in the hysteresis curve at 5 K, an opening is observed
at high and low field values. This phenomenon can be described due to the
existence of two sublattices of the spinal ferrimagnetic cobalt ferrite. The mag-
netic moments of the two sublattices are aligned anti-parallel to each other and
not equal, thereby result in a net magnetic moment which leads to this opening
before reaching the saturation.
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The saturation magnetization value of the cobalt iron oxide nanopowder is found
Ms=0.06 emu/g to be much lower than the corresponding bulk value of 80.8
emu/g [153]. The reduced saturation magnetization of the nanopowder com-
pared with the bulk value can be explained due to the finite size effects which
lead to canting or non-collinearity of spins on their surface, thereby reducing
magnetization [154]. Moreover, several crossing are observed around 0 T that
indicates other phases present. Moreover, the finite magnetic remanence (Mr)
indicates that the blocking temperature likely lies above room temperature for
the cobalt iron nanopowder.

Figure 6.2.: Magnetization hysteresis curves for cobalt iron nanopowder at 300 K (left)
and 5K (right).

Zero Field Cooled (ZFC)and Field Cooled (FC) magnetization measurements
of the nanopowder at two different magnetic fields are shown in figure 6.3. Dur-
ing the ZFC process, the nanopowder is cooled from 400K down to 5K in the
absence of a magnetic field. Then, a magnetic field of 50 Oe and 100 Oe were
applied and the magnetization was recorded during the warming cycle. In the
FC process, the nanopowder is cooled in the presence of 50 Oe and 100 Oe
magnetic field from 400K down to 5K and the magnetization was recorded as a
function of rising temperature.
It is obvious from ZFC/FC under two different applied magnetic fields (50 Oe
and 100 Oe) shown in figure 6.3 that both, the ZFC and FC magnetization,
decrease by decreasing the temperature. Furthermore, a bifurcation between
the ZFC and FC is observed, which is a sign of the magnetic relaxation nature
of the nanoparticles and confirms their superparamagnetic behavior.
The temperature where the bifurcation between the ZFC and FC curve occurred
is known as bifurcation temperature (Tb). It is obvious that Tb remains the same
with increasing the applied magnetic field.
By comparing the ZFC-FC data with the hysteresis curves at 300 K and 5K
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in figure 6.2 it is clear that below Tb at T=5K the nanopowder shows a small
hysteresis and hence acts as a ferromagnetic material. While, above Tb, no
hysteresis is observed and the nanopowder behaves as a superparamagnetic ma-
terial.

Figure 6.3.: Magnetization-temperature curves recorded in FC and ZFC modes for
cobalt ferrite nanopowder in an external magnetic field of 50 Oe (left)
and 100 Oe (right).

6.3. Experimental methods

This section will focus on the experimental methods used for the structural and
the magnetic characterization of the single layer of CoFe2O4 nanodots grown
on top of a silicon substrate. The particle size and their long-range order were
studied with scanning electron microscopy (SEM) and grazing incident small-
angle X-ray scattering (GISAXS) at GALAXI (Sec. 3.4.1). While the particle’s
magnetic properties were studied with MPMS at SQUID magnetometry (Sec.
3.3.1) and with PNR at MARIA reflectometer (Sec. 3.5.1).

6.3.1. Sample preparation

Arrays of CoFe2O4 nanodots with ≈ 24 nm in diameter grown on top of a silicon
substrate with ≈ 50 nm SiOx surface layer were prepared by Jin Xu with the
collaboration group of Dr. Giuseppe Portale at the Macromolecular Chemistry
and New Polymeric Materials of the University of Groningen. The thickness
of the particles layer is ≈ 10 nm. The sample was fabricated by a chemical
solution deposition method, where a thin film of self-assembled block copoly-
mers was used as templates. The fabrication method of two-dimensional arrays
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of CFO nanodots includes thin-film patterning, nanoparticle self-assembly and
templated deposition. Further details about the preparation method can be
found in Xu. et al. [155].

6.3.2. Monolayer structural characterization

Atomic Force Microscopy (AFM)
The surface quality and the topography of the sample with a size of 10×15 mm2

were probed by an Atomic Force Microscope (AFM, Agilent Technologies 5400).
Hereby, the noncontact mode was used. Here, the tip is close enough to detect
the sample surface for short-range forces (distance < 10 nm). Moreover, the tip
avoids touching the sample surface. From the topography image, it is possible
to estimate both the lateral (XY) and height (z) information from this image;
hence, the surface quality can be probed in terms of surface roughness.

Scanning Electron Microscopy (SEM)
The two-dimensional monolayer of CFO nanodots grown on 10.5× 15 mm2 sil-
icon substrate was characterized in top view with SEM micrographs at varied
magnifications measured with Hitachi SU8000 (Sec.3.2.1). The micrographs are
measured at 5 kV and the shown micrographs in Figure 6.6 are measured by
the backscattering electron detector. The sample was characterized first using
the SEM to obtain direct information about the particle shape, size and size
distribution.

X-Ray Reflectometry (XRR)
The sample has been measured with XRR using GALAXI at Forschungszentrum
Jülich (Sec. 3.4.1). A Q-range of 0 - 3.5 nm−1 in 0.002 steps has been measured
by using the equipped Ga-Kα source (λ = 0.13414 nm). For footprint correc-
tion, the beam width is estimated by the size of the collimation slits, which is
0.5 mm, and the sample width of 10.5 mm.
The obtained XRR data of the sample will be evaluated by fitting the reflectiv-
ity curve within the framework of BornAgain software, assuming a model that
takes into account the particle shape, which is a hemispherical particle with
height ≈ 10 nm. Our model will consist of a substrate layer followed by a thick
oxide layer and then a thin nanoparticle layer.

Grazing-Incidence Small-Angle X-ray Scattering (GISAXS)
GISAXS measurement is performed of the sample at GALAXI instrument

(Sec.3.4.1) with a wavelength of λ = 0.13414 nm. The measurement was carried
out at different incident angles at a sample-to-detector distance of 3532 mm.
The first evaluation or estimation of the GISAXS results is the discussion of the
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Layer name SLD(10−6 Å−2)
Si 20.984 - 0.4562i
SiO2 22.724 - 0.294i
CoFe2O4 40.3 - 3.83i

Table 6.1.: Scattering length density values used in the simulation of the GISAXS
data.

GISAXS detector images obtained for the sample. To get information about
coherence length ζ, the first order peak along Qy in the Yoneda band fitted by
a Voigt function. Additionally, the lattice constant a is determined by using
equation 5.7.
The BornAgain software package is used to simulate the two-dimensional de-
tector image on the framework of DWBA for a more precise investigation of the
GISAXS data. The data is simulated by assuming a model of hemispherical
particles shown in figure 6.4 with a random orientation of a hexagonal lattice
interference function. It is assumed that the sample is a multilayer structure
with a silicon substrate, silicon dioxide layer and the particles layer. Further-
more, the particle layer sliced into 10 slices with varying SLD. The SLD values
of the layers are calculated for each material from literature using the GALAXI
wavelength λ = 0.13414 nm shown in table 6.1. Moreover, the Gaussian broad-
ening is included to simulate the instrumental resolution of GALAXI. In the
simulation, it is assumed that the orientation of the hexagonal lattice is on av-
erage random with respect to the beam.
A three-dimensional visualization of the simulated structure obtained using the
BornAgain software is shown in figure 6.4.

Figure 6.4.: Three dimensional visualization of the simulated structure shown in the
right plot of Figure 6.9. The visualization was generated using the Bor-
nAgain software package.
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6.3.3. Monolayer magnetism

Macroscopic Magnetization (MPMS)

Using SQUID magnetometry (Sec.3.3.1), the magnetization of the sample as
field and temperature-dependent are measured. An approximately 3×3 mm2

piece is cut out of the 10.5×15 mm2 sample for the measurement using a dia-
mond cutter. The magnetization field-dependence is measured in a range of ±7
T at 300 K and 5 K for in-plan and out-of-plan geometry. Furthermore, the
sample magnetization temperature-dependent is measured at 5, 15, 50, 100, 500
mT from 5 K to 400 K for in-plan and out-of-plan geometry.

Polarized Neutron Reflectometry (PNR)

Figure 6.5.: A schematic drawing of the model assumed to fit the neutron reflectiv-
ity data. The sample can be modeled by a layered system of a sili-
con substrate (dark gray), silicon dioxide (light gray) and cobalt ferrite
layer(brown). The hexagonal array layer of COF NP is modeled by a
single slab of trapezoids.

Polarized neutron reflectivity (PNR) measurements were performed for the 2D
CoFe2O4 nanodots at MARIA instruments (Sec.3.5.1) to probe the depth de-
pendence of the in-plane magnetization profile. Moreover, PNR provides the
magnetic ordering of the nanoparticles in the monolayer and it highlights the
strength of the dipolar coupling amongst the nanoparticles.
All measurements were carried out at room temperature, in-plane and out-of-
plane directions by applying different magnetic fields. The in-plane NR mea-
surements were performed at a remnant field with a full (non spin flip channels
R++, R−− and spin flip channels R+− and R−+) and half polarization analyses
(spin up R+ and spin down R− neutrons), while at 500 Oe and at saturation
were performed with half polarization analyses. In the out-of-plane direction,
the measurements were performed with full and half polarization analysies at
700 Oe, remnant and saturation fields as shown in figure F.5.
For analyzing the PNR data, a magnetic profile which mainly represented by
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magnetic scattering length density (mSLD) needs to be added besides the struc-
tural model i.e. nuclear scattering length density (nSLD). The obtained reflec-
tivities are evaluated assuming the model schematically depicted in figure 6.5.
The substrate is set to be silicon with a thick layer of silicon dioxide on top,
followed by the CoFe2O4 particle layer and an ambient environment. The hexag-
onal array layer is sliced into 50 slices to account for the SLD gradient. For each
interface, an interfacial roughness is included.
The particle shape assumed to fit the PNR data is slightly different than particle
shape assumed to fit the GISAXS data. Here, particles with a trapezoidal shape
where the lateral size at the top is smaller than the lateral size at the bottom
as shown in figure 6.5 is assumed. The average lateral density of a hexagonal
array layer is modeled by a single slab of trapezoids.

6.4. Results and discussion

6.4.1. Structural characterization

6.4.1.1. Morphological characterization

Figure 6.6.: SEM image (left) and the particle size distribution histogram (right) along
with a lognormal (black solid line) fit. It yields a size distribution of 8.7%.

The morphology of the sample was investigated using SEM and AFM tech-
niques. Figure 6.6 (left) shows SEM images of the as-prepared monolayer of
CFO NPs films at different locations and under various magnifications. SEM
clearly reveales that the particles tend to order into two-dimensional hexagonal
close-packed ordering, which contains, however, some defects such as vacancies
and disclinations. Furthermore, it is qualitatively clear that most of the parti-
cles are homogeneous in shape. Figure 6.6 (right) shows the size distribution of
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the particles with a lognormal fit. The fitting yields a mean diameter of 24 nm
with a size distribution of 8.7%.
The SEM did not reveal the correct shape of the particles, as seen from the im-
ages, the particles almost have a spherical shape. The dots arrangement appears
regular and distributed uniformly with some dots missing and small bright spots
on top of the ordered nanoparticles. These spots might be organic remnants or
dust.

Figure 6.7.: The (a) 3D (b) 2D AFM Topographical images of CoFe2O4 nanodots and
(c) line profile obtained of a selected set of dots.

194



6.4. Results and discussion

The topographic atomic force microscopy (AFM) image of the monolayer of
CoFe2O4 grown on oxidized silicon substrate is shown in figure 6.7(a) which is
analyzed using the "Gwyddion" software. AFM image is illustrating the unifor-
mity of the dots grown under high-temperature treatment on a silicon substrate
with some impurities and imperfections. Line profile (figure 6.7(C)) was em-
ployed to estimate the interparticle distance of the NPs. The line profiles confirm
that all the dots belonging to an array have almost identical height and width.
The interparticle distance as obtained from the line profile (distance between
the two dotted red lines) is d ≈ 34 nm.

6.4.1.2. Vertical structure

Figure 6.8.: X-ray reflectometry of the CoFe2O4 monolayer prepared by a high tem-
perature treatment.

X-ray reflectometry measurement is performed to obtain information on the
average electron density distribution with respect to the vertical axis and to re-
veal the out-of-plane ordering of the nanoparticles, whereas neutron reflectome-
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try is carried out to access magnetic structure information and to investigate the
spin density of the monolayer by polarized neutrons. Figure 6.8 shows the re-
sulted XRR data measured at ambient conditions on GALAXI (Sec. 3.4.1).The
reflectivity curve shows two different lengths scales corresponding to two differ-
ent layer thicknesses. The big oscillation corresponding to a thickness of ≈ 10
nm, refers to the thin particle layer grown on top of a thicker SiO2 layer, which
is represented with the kiessig fringes observed in the reflectivity curve with a
thickness of ≈ 50 nm.

6.4.1.3. Lateral structure

In this section, the overall morphologies and the superstructure of the self-
assembled CFO nanoparticles grown on Si substrate have been characterized
using GISAXS shown in figure 6.9. The measurement was performed at an inci-
dent angle αi = 0.17○. In the GISAXS map, there is a distinct feature observed,
which is a vertical sharp line (i.e. Bragg rod) along Qy. These lines are broad
in the Qz direction due to the monolayer nature of the nanoparticles film. The
lines extended symmetrically on both sides of the Qy = 0 which is an indication
of a good 2D order of the nanoparticles. The 2D-Bragg rods were successfully
indexed assuming a 2-dimensional hexagonal lattice of a lattice constant a≈
34 nm as calculated from the first Bragg rods position (10). The interplanar
distances calculated from Bragg rods positions are tabulated in table 6.2 and
compared with the calculated values by assuming a two-dimensional hexagonal
lattice using equation 5.7. The calculated interplanar distances from the Bragg
rods positions match very well the calculated positions based on a hexagonal lat-
tice, which confirms that the particles arranged in a two-dimensional hexagonal
lattice.

In order to reveal more information about the crystalline order of the NP,
a line cut at fixed Qz = 0.29 nm−1 was taken as shown in figure 6.9 (b). The
1-dimensional cuts show the in-plane Bragg peaks along Qy axis. After taking
the instrument resolution into account, a Lorentzian profile is used to fit the
first-order peak (10) which yields a structural coherence length of ≈ 161 nm,
which corresponds to 7 to 8 closed-packed nanoparticles and an indication to a
relatively good supercrystalline nanoparticles ordering. Figure 6.9 (c) shows a
vertical cut at fixed Qy = 0.21 nm−1. It is obvious that only one broad peak
observed along Qz which confirms the 2D nature of the sample. The width of
this peak corresponds to the particle height.

Moreover, the GISAXS map has been simulated using the BornAgain software
and compared with the obtained experimental results. It is obvious that the
simulated pattern (figure 6.10 (b)) closely reproduces the experimental data
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Miller indices (hk) dhk= 2π
Qhky

[nm] dhk= a√
4
3 (h2+hk+k2)

[nm]

(10) 29.9(±0.15 ) 29.4
(11) 17.1 (±0.05) 17
(20) 14.7 (±0.1) 14.7
(21) 11.3 (±0.1) 11.34

Table 6.2.: Comparison of intraplanar distances measured from GISAXS scattered
pattern (2nd) column and calculated values by assuming a hexagonal lat-
tice with a=34 nm (3rd) column.

(figure 6.10 (a)). The incident angle had to be readjusted to αi = 0.165 ○ for
the Yoneda line to be at the same height as the detector. In order to obtain the
simulated pattern in figure 6.10 (b), a three-layer model has been used. The
model consists of a silicon substrate, SiO2 layer and the particle layer. The 3-D
visualization of the model used is shown in figure 6.4. Furthermore, the particle
layer has been sliced into 10 slices to account for the SLD gradient as shown in
the SLD profile (figure 6.11). Moreover, a two-dimensional hexagonal order of
hemispherical particles with height (h) ≈10 nm and radius (r)≈ 8.5 nm have been
found to give the best result. Additionally, various lattice orientations have been
taken into account. The lattice parameter of the hexagonal lattice used for the
simulated pattern is 34 nm. Slight differences are observable in the intensity, in
particular at Qy = 0 nm−1, where the intensity in the simulated pattern is higher
than the experimental pattern. Furthermore, more Bragg peaks are observed in
the simulated pattern in the high Qy-range, where the experimental intensity
drops quicker than simulated, same for the Bragg peaks in the higher Qz-range.

The vertical and the horizontal slices of the experimental data and its fitting
are shown in figure 6.10 (c) and (d), respectively. The vertical slice was per-
formed at Qy = 0.21 nm−1 and the horizontal slice at Qz = 0.28 nm−1. The
fitted intensity shows a good agreement with the experimental data. The ex-
cellent agreement between the experimental and simulated data along the Qz

direction and the good prediction of the peak positions along the Qy direction
indicate a reasonable selection of the modeling parameters. The good quality
of the GISAXS vertical cut along Qz direction gives an accurate derivation of
the particle height. The difference between the experimental and the simulated
intensity in the regions between Bragg peaks attributed to the orientation of
the nonhomogeneous domains. The resulted SLD profile from the simulation is
shown in figure 6.11. It is obvious from the SLD profile that the thickness of the
silicon dioxide layer ≈ 60 nm on top of the silicon substrate. The silicon dioxide
formed is amorphous, not quartz as observed from the density. The particles
layer thickness ≈ 10 nm on top of the oxide layer where it is sliced into 10 slices
with different SLD values.
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Figure 6.9.: (a) GISAXS pattern of CoFe2O4 NPs grown on top of Si substrate at αi
= 0.17○. The indexing of the Bragg rods according to a 2D hexagonal
lattice with a = 34 nm is also shown. (b) A horizontal line cut of the
GISAXS pattern at a fixed Qz = 0.29 nm−1 along with Voigt fit (light
green line) to (10) Bragg peak. (c) A vertical line cut of the GISAXS
pattern at a fixed Qy = 0.21 nm−1.
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Figure 6.10.: (a) GISAXS pattern of CoFe2O4 NP monolayer on Si substrate. (b) The
simulation of the experimental GISAXS pattern using the BornAgain
software assuming hemispherical particles with 10 nm height and 8.5
nm radius. The lattice constant of the hexagonal lattice is 34 nm. (c)
A vertical slice as a function of Qz at Qy=0.21 nm−1.(d) A horizontal
slice as a function of Qy at Qz=0.28 nm−1. The experimental data are
shown as black dots and the simulated data are shown as a green solid
line.
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Figure 6.11.: The resulted SLD profile from the simulation of the GISAXS pattern.
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6.4.2. Magnetism

6.4.2.1. Macroscopic magnetization

The field-dependent magnetization of the cobalt ferrite monolayer at room tem-
perature and at 5 K in both directions is shown in figure 6.12. The room
temperature measurement at 300 K in both directions exhibit nearly super-
paramagnetic behavior and additionally includes the Langevin behavior that
has been observed for the respective nanopowder for direct comparison (figure
6.2). The magnetic moment with respect to the applied field of the monolayer
is smaller in comparison to the particles in the powder. Under the same tem-
perature, the magnetic moment of the particles in the monolayer is larger, if
the magnetic field is applied parallel to the sample plane than if the field is
applied perpendicular to the sample plane. This is might due to the high shape
anisotropy. The nanodots reach saturation faster, when the the magnetic field
is applied parallel to the sample plane. This is because the spin alignment is
more energetically favorable parallel to the applied field (i.e. in-plane easy axis).
In addition to the nearly superparamagnetic behavior in out of the plane direc-
tion, a small hysteresis with a coercive field in the order of 7 mT is visible on
close inspection as can be seen in the inset. This connects to the temperature-
dependent magnetization measurements in figure 6.13, which indicate that the
particles are close below the blocking temperature at ≈ 380K and the system
is in a blocked SPM. Furthermore, the center of the loops is slightly shifted
towards the negative field direction. This indicates an EB effect.

At a low temperature of 5 K, the NP super spins are in a blocked SPM. In
the in-plane direction, no hysteresis is observed and the particles exhibit a su-
perparamagnetic behavior with zero coercivity. While in the out of the plane
direction, the particles also show nearly superparamagnetic behavior with a
small coercivity of 28 mT. Furthermore, an extra opening is observed at a low
and high field in both directions, which is more pronounced in the out of the
plane direction. This opening starts to appear around 150 K (see figure F.3).
This might come due to the existence of two sublattices of the spinal ferrimag-
netic cobalt ferrite. The magnetic moments of the two sublattices are aligned
anti-parallel to each other and not equal, therapy, result in a net magnetic
moment leading to this opining before reaching saturation.

To study the temperature-dependent magnetization of the cobalt ferrite mono-
layer, the sample was measured at various fields in both directions under the
Fc and ZFC conditions. The ZFC magnetization curves are obtained in two
steps. First, in the absence of an external magnetic field, we cool down the
sample from 400 K (most particles show paramagnetic or superparamagnetic
behavior) down to 5 K. In the second stage we apply a magnetic field of 5 mT,
while we increase the temperature from 5 K to 400 K in a stepwise manner.
On the other hand, the FC magnetization curves are obtained by measuring the
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Figure 6.12.: In-plane and out-of-plane magnetization curves of CoFe2O4 naodots on
Si substrate at 300 K (left) and at 5 K (right).

magnetization (M) while decreasing the temperature from 400 K down to 5 K in
the presence of a magnetic field. The ZFC/FC magnetization of the monolayer
of cobalt ferrite measured at 5 mT in both directions is shown in figure 6.13.
The blocking temperature of the monolayer at which maximum magnetization
is achieved is found above room temperature in the plane direction while in out-
of-plane direction TB ≈ 382 K. Below this temperature (T < TB) the particles
are in the blocked state, while they are in the superparamagnetic state above it
(T > TB). Another interesting feature is the splitting or irreversibility temper-
ature, Tirr, which is qualitatively defined as that temperature where the ZFC
and FC curves visibly diverge. The irreversibility temperature will occur near
the blocking temperature Tirr ≈ TB for a perfect superparamagnetic system
(SPM) with a monodisperse particle size distribution. However, the irreversibil-
ity temperature occurs at temperature larger than the blocking temperatures
for a superparamagnetic system with a finite size distribution [156], which is
an indication for the presence of a maximal turning point on ZFC curve for
magnetic spinal ferrites to the blocking of the magnetic moment of individual
particles and the mutual magnetic interactions between particles.

As seen in the ZFC curve in the in-plane direction, the magnetization increases
rapidly with increasing temperature, while the FC magnetization decreases with
decreasing temperature. It decreases rapidly below 200 K. This decreasing might
be due to the interparticle interaction. Below the blocking temperature, the ZFC
and FC curves split. This is often observed in the SPM system.

The ZFC magnetization in the out-of-plane direction reaches a maximum at
about 330 K. Beyond TB, the ZFC magnetization decreases and shows a typical
paramagnetic behavior. Also, above TB the FC magnetization curves follow the
same path as ZFC curves, while below TB, the FC magnetization increases with
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decreasing temperature. Furthermore, the rapid fall off of the ZFC curve peak
and the closeness of TB and Tirr values illustrate the narrow size distribution for
the particles [156]. The splitting of ZFC and FC curves at a certain irreversibility
temperature is one of the characteristic features of superparamagnetic state
(i.e. above Tirr, the ferromagnetic domain are fully unblocked). The maxima
observed at T = 330 K is a normal feature in the ferrite material due to the
addition of the two sublattice at a certain temperature known as compensation
temperature [157].

On comparing the FC–ZFC data and hysteresis curves data of our sample,
we found that below blocking temperature (i.e. T = 5 K), the field-dependent
magnetization in the out-of-plane direction shows the formation of small hys-
teresis loops and hence behaves as ferromagnetic material. Above the blocking
temperature, the hysteresis becomes infinitesimal, and the material behaves as
a superparamagnetic material.

Figure 6.13.: Temperature dependence of the in-plane (left) and out-of-plane (right)
magnetization of CoFe2O4 nanodots on Si substrate at 50 mT. The blue
and green curves are the field-cooling and zero-field-cooling curves, re-
spectively.

6.4.2.2. Depth-resolved magnetization

The half-polarized neutron reflectivity data measured at saturation with an
applied in-plane field is shown in figure 6.14 (left). A small splitting between
the spin-up and the spin-down channels is clearly visible. Also, it is visible
that R+ > R−, which corresponds to a small in-plane magnetization component
parallel to the applied magnetic field.
Figure 6.14 (right) shows all four reflectivities along with fits to the data points
(solid lines) were recorded at remanence with an applied in-plane field: two non
spin-flip R++ ,R−− (NSF) and two spin-flip R+−, R−+(SF). No SF scattering was
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Figure 6.14.: Neutron reflectivity of cobalt ferrite monolayer deposited directly onto
a silicon wafer measured at 300 K. The NR measured first at saturation
field (left) with half polarization analysis and at remnant field (right)
with full polarization analysis. At saturation, R+ and R− are displayed,
together with the fits shown by solid lines. The R+ and R− are corre-
spond to the states of the RF flipper turned off and on, respectively.
At saturation, All four reflectivities: two NSF (R++,R−−) and two SF
(R+−,R−+) are displayed, together with the fits shown by solid lines.

observed. From this we conclude that the mean magnetization averaged over
the coherence volume is either parallel to the field, or equal to zero. Moreover,
no splitting between the two NSF curves, indicating that the sample at remnant
approaches a demagnetized state. The difference between the SF and the NSF
channels is due to the efficiency of the polarizer and the analyzer.

More details about the microscopic arrangements of the magnetic state be-
come more clear after fitting the data assuming the model shown schematically
in figure 6.5. All four reflectivities, SF and NSF (figure 6.14 (right)) were fit-
ted simultaneously by varying the nuclear scattering length density (nSLD), the
magnetic scattering length density (mSLD), the layer thickness and the inter-
facial roughnesses. Here, from PNR one can get the structural, as well as the
magnetic depth profile. The NP layer is sliced into 50 slices during the fitting
and we consider a variation of the mSLD, which provides information about
the magnetic correlation in a monolayer system at the microscopic level. The
magnetic moment per formula unit as calculated from the resulted fitting pa-
rameters is µ = 1.4 µB/formula unit. It is more than a factor of two smaller than
the value of the bulk cobalt ferrite µ = 3.7 µB/formula unit. This is because of
the volume fraction of the NP in the monolayer. This can be described due to
the frustration effect caused by competing dipole interaction between different
pairs of NP in the two-dimensional lattice [124]. The zero mSLD at remanence
is not surprising because the hysteresis curve at room temperature (figure 6.12)
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does not show a remnant magnetization at zero fields. The zero value of mSLD
at remanence might beb due to complete randomness in directions of the NP
magnetic moments or due to the superspins being aligned parallel to the field in
each domain, but are random over the coherence volume. In both cases the net
magnetization will be zero and the NSF reflectivities will be unsplit, i.e. R++ =
R−−. In fact, as is clear in figure 6.14 (right) there is no splitting of reflectivities
for up and down polarizations at remanence, clearly showing a demagnetized
state over the macroscopic area.
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6.5. Summary

The preceding chapter provides a full characterization of structural and mag-
netic properties of a magnetic nanoparticles monolayer. The structural charac-
terization started from local characterization by SEM and AFM, towards the
global characterization using x-ray scattering techniques (XRR and GISAXS).
The magnetic structure of the monolayer is resolved macroscopically using a
SQUID magnetometer and microscopically using reflectometry with polarized
neutrons. From the SEM, the nanoparticles were ordered in hexagonal close
packed-structures. From GISAXS, a lateral hexagonal ordering of the NP is
observed over a macroscopic area of the substrate.

It is confirimed by X-ray and neutron reflectometry that the sample has a
monolayer structure. By GISAXS the hexagonal array structure that is observed
by SEM is resolved and successfully reproduced using the BornAgain software
based in DWBA. Assuming a hemispherical particle with a height of 10 nm,
radius of 8.5 nm and a hexagonal arrangement with a lattice constant of 34 nm,
the measured GISAXS data match well with the simulated pattern.

Using the knowledge of the structural properties of the sample, the monolayer
magnetism is studied using magnetometry and polarized neutron reflectometry.
Temperature and field dependent magnetization curves in both directions (in-
plane and out-of-plane) have been compared. From the hysteresis, it is confirmed
that the easy direction of the magnetization is in the plane. From the ZFC/FC
magnetization curves, the blocking temperature of the nanoparticles is found
above the room temperature.

The PNR reveals the depth dependence of the magnetization profile. The
PNR curves measured for up and down neutrons at saturation show a small
magnetization state, while at remanence show a demagnetized state with zero
net magnetization.
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7. Directed self-assembly of iron oxides
nanoparticles on patterned substrates

Magnetic nanoparticles especially iron oxide nanoparticles (Maghemite γ-Fe2O3)
have attracted extensive interest due to their superparamagnetic properties,
their ferrimagnetic behavior at room temperature and due to their higher Curie
temperature (≈ 970 K). They have been the focus of many types of research be-
cause they exhibit attractive properties for potential use in different fields such
as high-density magnetic memory systems, or for spintronic devices [158, 159].
In particular, highly ordered arrangements of these nanoparticles are required
for these applications [160].
There are various methods for fabricating long-range ordered magnetic nanopar-
ticle arrangements in two and three-dimensions. These include assisted self-
assembly using trench-patterned substrates with a feature size of the same order
of magnitude as the diameter of the nanoparticles. Then the particles go into
the trenches using a suitable deposition method.

Therefore, the main aim of this chapter is to direct or assist the self-assembly of
cubic iron oxide nanoparticles within desired structures to produce ordered ar-
rays of these particles over large areas and as a trying to get a single crystalline
arrangement of these nanoparticles. Trench-patterned silicon substrate created
by E-beam lithography presented in Sec. 4.5 was used as a template to direct
the self-assembly of the nanoparticles inside the trenches. In this chapter, a
general introduction about iron oxide as well as the current state of research on
directed self-assembly of magnetic nanoparticles will be introduced. Then the
method used for sample preparation will be presented. After that, the struc-
tural characterization and the magnetometry results of nanoparticles inside the
trenches will be discussed.

7.1. Introduction to Iron Oxides

Iron is the fourth most common element in the Earth’s crust and ferromagnetic
in its elemental state at room temperature. Iron oxide forms naturally through
the reaction of the iron with the water and with the most common element in the
Earth’s crust, oxygen. Due to the great presence of iron oxides in nature, they
have been widely used for centuries. Furthermore, iron oxides can be produced
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at low cost, which makes the application from it more popular. In the iron
oxides, oxygen anions O2− form a close-packed lattice with the tetrahedral and
octahedral interstices. Iron oxides existing in various crystalline phases. Iron
oxide can be ferrimagnetic or antiferrimagnetic depending on the crystalline or-
der. The iron oxide phase and it’s structural and magnetic properties depend
on the oxidation state and abundance of the iron cation in the interstices. In
nature and laboratory, there are in total sixteen different iron oxides existing.
Despite a wide range of existence of all oxides, there are only four oxides widely
used, which are Magnetite, Maghemite, Hematite and Wüstite. They will be
introduced briefly in this section.

Magnetite (Fe3O4)
Magnetite is the most abundant mineral of all iron oxides with the chemical

formula Fe3O4 or sometimes represented as FeO.Fe2O3. It is a black ferrimag-
netic mineral known as a loadstone or natural magnet [161, 162]. Magnetite has
an inverse spinel structure in the space group Fd3m containing both divalent
Fe2+ and trivalent Fe3+ iron ions. The unit cell with lattice constant a = 0.839
nm consists of 32 O2− ions.
The spinel structure has the formula A [B2] O4, where A represents the tetra-
hedral sites with the divalent ion and B represents the octahedral sites with
the trivalent ions. But in case of the inverse spinel structure, the divalent ions
sit on the octahedral sites (B) and the trivalent ions are distributed equally
between the octahedral (B) and the tetrahedral site (A) (B[AB]O4). For mag-
netite, the tetrahedral and the octahedral interstices are filled with trivalent iron
ions (Fe3+) and half of the octahedral sites are filled with the divalent iron ion
(Fe2+). That means in total there are eight Fe2+ at octahedral sites, eight Fe3+

at tetrahedral sites and eight Fe3+ at octahedral sites. The formula unit of the
magnetite can be written according to the normal spinel structure formula as
Fe3+

8 [Fe2+
8 Fe

3+
8 ]O2−

32 . Figure 7.1 (a) shows the crystal structure of the magnetite
with a unit cell consisting of 32 O2−, 16Fe3+ and 8 Fe2+.

Magnetite bellow the Curie temperature Tc ≈ 850 K is ferrimagnetic. In
magnetite, the magnetic lattice consists of two sublattices, the first one due
to the trivalent iron ions at the tetrahedral sites and the other one due to the
trivalent and the divalent iron ions at the octahedral sites. The spins of the
two sublattices below Tc are oriented antiparallel to each other with different
magnitude. Only the spins of Fe2+ in the octahedral sites contribute to the
total magnetic moment because the spins of Fe3+ cancel out on tetrahedral and
octahedral sites. The total spin due to Fe2+ is S=2, which gives a magnetic
moment of 4µB.

The Fe2+ and Fe3+ ions on the octahedral sites interact ferromagnetically
via double exchange interaction. While Fe3+ ions interact antiferromagnetically
via superexchange interaction between the tetrahedral and the octahedral sites
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where the strength of the interaction depends on the bond angles. The sat-
uration magnetization of bulk magnetite is in the order of 475 – 517 kA/m
[161, 163]. Bulk magnetite at room temperature has a cubic magnetocrystalline
anisotropy with [111] and [100] being the easy and hard axis respectively, with a
first-order magnetocrystalline constant of K1 = 1.35×104J/m3 [164]. Magnetite
has a conductivity in the order of 102 − 103Ω−1m−1, which is very close to the
metal. Furthermore, the Verwey transition (metal to insulator phase transition)
at Tv=120 K [165] has been observed for magnetite. Moreover, at a temperature
below Tv, the cubic structure transitions to a triclinic structure, which yields a
change to uniaxial anisotropy with near [001] as easy axis [166].

Figure 7.1.: Representation of iron oxide structure of (a) magnetite, (b) hematite and
(c) wüstite. The red spheres represent the close-packed O2− ion and
the brown spheres indicate the position of the iron cations occupy either
the tetrahedral or octahedral interstices. The visualization was produced
using VESTA software [167] where the data used here are obtained from
the Inorganic Crystal Structure Database (ICSD).

Maghemite (γ − Fe2O3)
When magnetite is oxidized at low temperatures, maghemite (γ − Fe2O3)

forms. Maghemite is a reddish-brown mineral at room temperature. It has a
defective inverse spinel structure only composed of Fe3+ ions and additional va-
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cancies in the octahedral sites to ensure charge neutrality. The unit cell consists
of 32 O2− ions similar to the magnetite structure, the eight tetrahedral sites are
occupied by Fe3+ ions and only twelve sites of the sixteen octahedral sites are
occupied by Fe3+, the rest four sites consist of 22

3 vacancy and 11
3 Fe3+. The

unit cell formula can be given as Fe3+
8 [Fe3+

12 ⊗3+
2 2

3
Fe+3

1 1
3
]O2−

32 , where ⊗ represents
a vacancy. The lattice constant of bulk maghemite is found in the literature to
be a = 0.834 nm [161].
Maghemite is ferrimagnetic below Tc ≈ 948 K, but it is difficult to observe the
transition because it is converted to hematite (α − Fe2O3) above 700 K. The
ferrimagnetism arises due to Fe3+ ions at the octahedral sites. The magnetic
structure of Maghemite consists of two sublattices similar to magnetite. The
magnetic moments are oriented antiparallel to each other in the two sublattices
but it oriented parallel to each other in the same sublattice. That means the
spins of 8 Fe+3 ions at the octahedral sites are canceled out by 8 of Fe3+ ions
at the tetrahedral sites due to the antiparallel alignment of the spins in both
sites. As a result, the excess of Fe3+ ions at the octahedral sites leads to a net
magnetic moment of the order of 2.5µB, which is quite close to the experimental
value of 2.36µB. The bulk saturation magnetization at 300 K is found in the
literature to be in the range of 290 – 390 kA/m which is smaller than magnetite
and the cubic magnetocrystalline anisotropy constant is reported in the litera-
ture in the range of K1 = –(1.7. . . .10) ×104 J/m3 [161]. Moreover, maghemite
is an insulator.

Hematite (α − Fe2O3)
Hematite (α − Fe2O3) is the most abundant mineral in rocks. It has a red

color and it shows antiferromagnetism behavior. Hematite has a hexagonal unit
cell with a lattice constant a=0.5034 nm and c=1.375 nm [161]. The model
of the unit cell is shown in figure 7.1 (b). It can be assumed as a hexagonal
close-packed (HCP) arrays of O2− ions stacked along [100] direction while the
two-thirds of the sites are filled with Fe3+ ions.
At room temperature hematite is a weakly ferromagnetic and it is paramag-
netic above 956 K. Below T=260 K, hematite becomes antiferromagnetic [161].
Hematite is an insulator.

Wüstite (FexO)
Wüstite (FexO) is a black, antiferromagnetic material and metastable at room

temperature in the bulk form. It contains only divalent ions Fe2+. Stoichiomet-
ric FeO does not exist at atmospheric pressure, only non-stoichiometric FexO,
where x =0.83 - 0.95 is stable above 567○ at atmospheric pressure. When wüstite
is cooled down to room temperature, FexO disproportionates to Fe and Fe3O4.
FexO can be quenched to room temperature, leading to a metastable phase
[161].
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Wüstite has a crystal structure similar to rock salt structure It consists of two
face-centered cubics (FCC) lattice of Fe2+ and O2−. The cations and anions
are arranged in a cubic close-packed (CCP) structure along the [111] direction.
The oxygen ions occupy the main face-centered cubic (FCC) sites and the Fe2+

cations fill the octahedral interstitial sites. The unit cell of wüstite is shown in
figure 7.1 (c). The lattice constant varies from 0.428 nm to 0.431 nm, depending
on the stoichiometry [161].
Wüstite at room temperature is paramagnetic and antiferromagnetic below Ne′el
temperature TN which ranges from 190 K to 211 K, depending on the stoichiom-
etry [161].

From the above-mentioned oxides, only maghemite will be discussed in this
chapter.

7.2. Nanoparticles characterization

The nanoparticles studied in this chapter are Iron oxide nanocubes with size in
the order of ≈ 13 - 14.6 nm. They were obtained through collaboration with
the group of Dr. Sabrina Dish from the physical chemistry department of the
University of Köln. They prepared the particles using an iron oleate route [168]
where at the beginning iron oleate is prepared, and the nanoparticles are sub-
sequently obtained by controlling the thermal decomposition of the oleate in
high-boiling solvents. The nanoparticles are dispersed in toluene and coated
with oleic acid shell in order of ≈1.5 - 1.8 nm as obtained from small-angle
neutron scattering SANS measurements performed by the group of Dr. Sab-
rina Dish. The main composition of the particles is ferromagnetic maghemite
(γ − Fe2O3) as determined from x-ray diffraction measurements that were per-
formed also by the group of Dr. Sabrina Dish.
In the following, the experimental methods used for the characterization of the
nanoparticles dispersion are presented.

Scanning Electron Microscope (SEM)
The micrographs of the drop-casting iron oxide nanocubes on silicon substrate
are qualitatively viewed by SEM Hitachi SU8000 ( Sec.3.2.1). The micrographs
are measured at 5 kV and only the image taken from the backscattering elec-
trons are shown in figure 7.2 (a) to obtain a strong contrast. As seen, the SEM
image of the particles is not so clear due to the resolution limit of the SEM,
which is not sufficient to observe particles with small size. SEM revealed that
the particles are close to the cubic shape and once deposited on a silicon sub-
strate, tend to self-organize into a square lattice. Furthermore, the particles
tend to be more close to each other due to the monodispersity of the particles.
The collaboration provided transmission electron microscopy TEM image shown
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in figure 7.2 (b). The TEM micrographs of individual nanoparticles were ob-
tained using a Zeiss Leo 902 microscope operating at 120 kV with a LaB6 cath-
ode in bright field mode to obtain high-magnification micrographs of individual
nanoparticles. The particle size and size distribution of over 100 nanoparticles
were measured manually using the GIMP 2 software and evaluated by fitting
the size distribution histogram shown in figure 7.2 (c) by a log-normal distribu-
tion function (black solid line) as described in Sec. 5.3.2. The particles have a
cube edge of 14.2 ± 0.1 nm and a size distribution of 6.6% as obtained from the
log-normal fit.

Figure 7.2.: (a) SEM image of cubic iron oxide nanoparticles drop-casted on the silicon
substrate. (b) TEM micrographs of the same particles. (c) The particle
size distribution histogram.
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Small Angle X-ray Scattering (SAXS)
SAXS measurements of the nanoparticle dispersion were carried out at GALAXI
(Sec. 3.4.1) to determine the average size and the shape of the nanoparticles.
The nanoparticles are filled in quartz glass capillaries (Hilgenberg GmbH) with
1.5 mm outside diameter and 0.01 mm wall thickness, which is closed by a sil-
icone ball, which was added by using a silicone gun to allow the measurement
of the dispersions in a vacuum. The particle mass concentration in the order of
0.0039 is dispersed in toluene for the measurement. The SAXS measurements
were performed for the samples at two different detector distances, the longest
detector distance (3.53 m) and the shortest detector distance (0.83 m). In ad-
dition to the dispersion of the particles, a capillary filled with toluene as well
as an empty capillary are measured under the same conditions as a reference
sample for the subtraction of the background. The typical exposure time was
approximately 2:30 h per sample. The SAXS data is calibrated to absolute
units according to the procedure described in appendix D. The evaluation of
the SAXS data was done using the "SasView" software.
In figure 7.3 the SAXS data of the iron oxide nanoparticles is shown. The data
shows the first form factor minimum at a smaller scattering vector (Q) and the
maxima are qualitatively sharp due to the smaller size distribution of the par-
ticles.
The SAXS data of the nanoparticles are evaluated quantitatively using various
shape models, i.e. various form factors: spherical (Appen.E.1), cubic (Ap-
pen.E.3) and spherical core-shell (Appen.E.2) form factors. Moreover, for a
further detailed evaluation of the nanoparticle’s structure, the SAXS data fitted
using a superball form factor (i.e. cubic shape with rounded edges). The fitting
is done by Dr. Dominique Dresen from the group of Sabrina Dish. The superball
form factor is used to fit the SAXS data of cubic particles to account for the de-
viation from a perfect cube shape. More details about the superball form factor
and it’s derivatives are described in Dresen’s doctoral thesis [169]. The spheri-
cal form factors neglect the actual morphology of the nanoparticles and assumes
that the particles have a perfect sphere shape. The cubic form factor assumes
a perfect cubic shape with defined edges corners. The spherical core-shell form
factor assumes a perfectly spherical particle with a core-shell structure, where
the shell thickness obtained ≈ 1.7(1) nm . While Dresen’s assumed in his su-
perball model that the particles have a cubic shape with a rounded corner (i.e.
between a perfect sphere and perfect cube) defined by the shape parameter p.
The obtained shape parameter (p) for the superball model is equal p = 2.2(1),
which means that the particles shape more close to a cube. From figure 7.3 it
is clear that the superball form factor gives the best description of the data.
The spherical form factor underestimatese the first form factor maxima, while
the spherical core-shell form factor overestimates the second form factor max-
ima. The cubic form factor overestimates the first and the second form factor
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maxima.

Figure 7.3.: The SAXS data of the iron oxide nanoparticles dispersed in toluene.
Spherical (red), core-shell (yellow), cubic (violate) and superball (light
blue) form factors were used to fit the data.

The particle size obtained from the four fits are tabulated in table 7.1. The
scattering length density of the core and the solvent are fixed (SLDcore=38.5
×10−6Å−2 and SLDsolvent=8 × 10−6Å−2). The size of the sphere and core-shell
and the superball are given in terms of the radius R while the size of the cube
is given in terms of the edge length a.

Macroscopic magnetization
In this chapter, the macroscopic magnetization of the iron oxide dispersion is

measured with respect to the magnetic field using a Quantum Design MPMS
XL SQUID magnetometer described in Sec. 3.3.1. For measurements of liquid
nanoparticle dispersions, evacuated glass tubes shown in figure 7.4 were used.
In the beginning, 60 µL of the nanoparticle dispersion with a concentration of
0.39 vol% was put in a glass tube that was sealed using a hydrogen burner.
Then the tube is fixed in a colorless drinking straw with an additional straw
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Model shape R, a (nm) σR,a % r (nm) p
Sphere 6.33(1) 9(2) - 1
Core-shell 6.3(3) 9.2(1) 1.7(1) -
Cube 10.22(1) 11(1) - ∞

Superball 5.4(1) 12.3(1) - 2.2(1)

Table 7.1.: Particle size and size distribution of iron oxide nanocubes as obtained from
the spherical, the core-shell, the cubic and the superball form factors. σR,L
is the log-normal size distribution.

to prevent moving of the tube during the measurement. The magnetization of
the sample is then measured while sweeping the magnetic field between ±7 T.
The magnetic moment µ measured from SQUID has a unit [emu], to convert it
to magnetization M [A/m], it is divided by the liquid volume according to this
relation

M[A/m] = µ[Am
2]

V [m3]
= µ[emu] × 10−3

V [m3]
(7.1)

To get the magnetic moment per single particle, the magnetic moment in
[emu] is divided by the approximate number of the nanoparticles inside the dis-
persion of the particle measured (i.e inside 60 µ L). The number of particles N
was calculated using equation 5.3 by considering the particle volume concentra-
tion cV ≈ 0.00382 and the particle mass concentration cm ≈ 0.02 g cm−3. The
approximate number of the particles inside 60 µ L nanoparticle dispersion N ≈
8.4 ×1013. Therefore, the magnetic moment/single-particle ≈ 3.8 ×104 µB.

Figure 7.4.: The glass tube inside drinking straw used for measurements of liquid
nanoparticles using MPMS.

The measured magnetization of the nanoparticle dispersion at 300 K and 5
K are shown in figure 7.5. The particles were found to be predominately super-
paramagnetic at room temperature (300 K) (left figure). The sample rapidly
magnetizes in relatively small fields so it achieves the saturation magnetization
in a field of 2 T, while at 5 K (right figure), it shows a ferromagnetic hysteretic
behavior with a coercivity of 300 Oe as shown in the inset.
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Figure 7.5.: Field dependent magnetization of cubic iron oxide dispersion measured
at 300 K (left) and at 5 K (right).

7.3. Nanoparticles / pre-structured Silicon substrate

As mentioned before, to improve nanoparticle ordering and to achieve a regular
nanoparticle pattern over larger areas, structured silicon substrates of the size
of 10 × 10 × 0.5 mm3 with rectangular grooves were used as a template to guide
the assembly of the nanoparticles. More details about the trench patterned
substrates used in this study were presented in Sec. 4.5. In particular, sample
S2_02 shown in figure 4.14 (b) is used to deposit the particle above it. The
grooves have a width of ≈ 86 nm and a period of ≈ 247 nm. Furthermore, the
samples show two different depth profile as seen in the SEM-line profile (figure
4.14 (d)), in the GISAXS pattern (4.19 (b)) and from the x-ray reflectivity curve
(figure 4.25 (b)) which shows oscillations with two different length scales. The
particles deposited in these trenches are explained in Sec. 7.2 having size of ≈
14.2 nm and with a superball shape.

With this groove width (≈ 86 nm) and this particle size (≈ 14.2 nm), one expects
to get six particles per trench as shown schematically in figure 7.6. The actual
results obtained from this study are presented in detail in the following sec-
tions after explaining the method used for sample preparation (Sec. 7.3.1). The
prepared sample is characterized by scanning electron microscopy (SEM). But,
SEM is restricted to the image of the surface and does not provide sufficient
depth sensitivity to record short and long-range correlations in three- dimen-
sions, particularly, if the particles form layered or crystal-like three-dimensional
structure. Therefore, grazing-incidence small-angle x-ray scattering (GISAXS)
is performed for structural analyses of nanoparticle arrays and to get insight
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into the in-plane and out-of-plane ordering of magnetic nanoparticles on pre-
structured silicon substrates (Sec. 7.3.2). Moreover, the magnetic moment as
a function of magnetic field and temperature is measured used SQUID magne-
tometry (Sec. 7.3.3).

Figure 7.6.: Schematic drawing of the cubic nanoparticles inside trenches.

7.3.1. Sample preparation

For the sample preparation, at the beginning, the stock nanoparticles dispersion
used to prepare the sample in toluene have an initial concentration of 20 mg/mL
were diluted with toluene with a volume ratio of 1:10. Then, the dispersion was
put into an ultra-sonic bath for 15 minutes to get a homogeneous dispersion
of nanoparticles. Afterward, the naked substrate was immersed in the diluted
dispersion for 30 seconds and take it out from the dispersion slowly. Eventually,
the sample was prepared after three cycles of immersing in the dispersion and
take it out of the dispersion. The last step, after 30 minutes from the last time
take out the sample from the solution, an additional 5 µL of the diluted solvent
was drop-casted on the sample surface and a plastic ruler was used to remove the
excess of the dispersion directly after drop-casting the particles. Furthermore,
after each time of sample immersion and take it out, the sample was shaken by
hand for a few seconds to force the nanoparticles to move inside the trenches.
The SEM image of the self-assembled cubic iron oxide nanoparticles on the
trench-patterned silicon substrate obtained as explained earlier in the previous
paragraph is shown in figure 7.7. As seen from the images, only a few particles
above the mesa are observed. The SEM could not resolve the particles inside
the trenches due to its resolution limit which is not sufficient to observe small
particles in very deep trenches (i.e. the depth of the trenches > 300 nm).
Furthermore, the SEM images revel two mesas where the particles distributed
above it with different width and with two different depths. Furthermore, it is
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obvious that the trenches so rough.

Figure 7.7.: SEM images from high to low magnification of self-assembled cubic iron
oxide nanoparticles on the trench-patterned silicon substrate.

7.3.2. Structural characterization

In order to characterize the nanoparticle arrangement in the 3D multilayer and
to get access to the in-plane ordering, we have monitored the multilayer in-
terfaces by the grazing-incidence small-angle x-ray scattering (GISAXS). Fur-
thermore, X-ray reflectivity (XRR) was carried out to reveal information about
layers thickness, roughness and the out-of-plane ordering of the nanoparticles.

7.3.2.1. Vertical Structure from X-Ray Reflectometry

Using GALAXI (Sec. 3.4.1), XRR measurement of the sample produced in
Sec.7.3.1 is measured. The XRR data from nanoparticle multilayers formed in-
side the trenches is shown in figure 7.9. Most probably, the nanoparticle are
arranged in the trenches as shown schematically in figure 7.8. As seen from the
schematic drawing of the sample, the trench-patterned silicon substrate consists
of two different depths with two different mesas. There are two oxide layers,
one above the first mesa and the others above the second one. The XRR data
obtained from the sample shows three kinks at Qz=0.32 nm−1, 0.38 nm−1 and
0.48 nm−1 corresponding to the critical angle of silicon, silicon dioxide and iron
oxide respectively. The critical angle of the substrate is not sharp confirming
non-flat substrate, i.e. pre-structured surface. There is almost one oscillation
after the critical angle of the iron oxide, which arises from the oxide layer that
covered the structure. Furthermore, Kiessig fringes appear after the oxide os-
cillation up to Qz=3.5 nm−1, which corresponds to the nanoparticle layers and
confirm the existence of out-of-plane nanoparticle multilayers. The broad oscil-
lation at Qz=0.5 nm−1, might be a Bragg peak due to nanoparticle multilayer.
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The Bragg peaks sit on the maximum of Kiessig fringes and appear due to
constructive interference of the reflected x-ray from a periodic electron density
variation. The appearance of the Kiessig fringes up to high Qz value indicating
a good nanoparticle layers with almost identical thickness. The oscillations pe-
riodicity corresponds to the layer thickness of D ≈14.5 nm which is calculated
using the following relation

D = 2π
∆Qz

(7.2)

Where ∆Qz is the difference between two maxima or two minima.

These observations from XRR led us to conclude that the growth of nanoparti-
cle multilayers via template-assisted self-assembly is a feasible process to obtain
highly ordered nanoparticle films.

Figure 7.8.: Schematic drawing of the expected arrangement of the cubic nanoparticles
inside the trenches.

7.3.2.2. GISAXS

To detect the depth-resolved lateral coherent structure of the nanoparticles,
GISAXS measurements at GALAXI 3.4.1 were carried out. The measurements
were performed in different geometries (i.e. different azimuthal angle Φ between
the incident beam and the lines). It performed as the incoming beam almost
parallel (figure 4.2 (d)), perpendicular (figure 4.2 (b)) and 45○ to the trenches,
as shown in figure 7.10 (a), (b) and (c) respectively. For the beam almost par-
allel to the lines, the azimuthal angle Φ between the incident beam and the
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Figure 7.9.: X-ray reflectivity data from nanoparticle multilayers inside trenches.

lines is ≈ 1.7○ while for the perpendicular geometry the sample was rotated with
an azimuthal angle of Φ=90○ from the perfect parallel geometry. The lines are
tilted from the perfect parallel alignment with a very small angle with respect
to the film normal direction to prevent the strong scattering background from
the trenches which overwhelms the intensity from the nanoparticles [170]. The
measurement was performed with three different geometries to check if the par-
ticles form a single crystalline arrangement from the lateral positions of the
Bragg peaks. The GISAXS measurements in all cases were performed almost
under the same incident angle αi=0.2○. As the incoming beam almost paral-
lel to the trenches, a bent tail is observed in the GISAXS pattern (figure 7.10
(a)), which originated from the structure factor of the trenches. The GISAXS
intensity maps show strong modulations in both Qy and Qz directions, which
is an indication of long coherence in both of the in-plane and out of plane ar-
rangement of the nanoparticles. The two-dimensional Bragg peaks along Qy are
due to the arrangement of the laterally correlated nanoparticles while the Bragg
peaks observed along Qz revels information about the out of plane coherence
structure. The in-plane distance between the nanoparticles is d≈ 14.4 nm.

The GISAXS maps show the same peak positions as the incoming beam per-
pendicular and 45○ to the trenches. Therefore, no correlation between the struc-
tural arrangement of nanoparticles and the geometry of the trench-patterned
substrates.

A horizontal line cuts along Qy at Qz = 0.2071 nm−1 (figure 7.10 (d)) and
vertical line cuts along Qz at Qy=0.4996 nm−1 (figure 7.10 (e)) were taken for all
GISAXS maps. It is obvious from the line cuts that the lateral and the vertical
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Bragg peaks are observed in all cases. Three lateral Bragg peaks at Qy = 0.5
nm−1, 0.97 nm−1 and 1.5 nm−1 and three vertical Bragg peaks at Qz=0.9 nm−1,
1.5 nm−1 and 2.1nm−1 are observed.

The lateral Bragg peaks are indexed assuming a hexagonal lattice with a lat-
tice parameter a ≈ 14.4 nm. If the particles in-plane are arranged into a hexag-
onal structure, then in 3-D it forms an FCC structure of stacking of hexagonal
layers, i.e. face-centered cubic arrangement oriented in its (111) direction. The
inter-layer distance c ≈ 9.5 nm corresponds to the third of the space diagonal
of a face-centered cubic arrangement of nanocubes. Only (10), (20) and (30)
reflections observed, the (11) and the (21) peaks might be hidden as a shoulder
of the (20) and the (30) reflections, respectively. After taking the instrument
resolution into account, a Lorentzian profile is used to fit the first lateral Bragg
peak at Qy=0.5 nm −1 which yields a structural coherence length of ζ ≈ 188 ±
0.05 nm.
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Figure 7.10.: The GISAXS patterns of the cubic iron oxide nanoparticle were de-
posited on a trench-patterned silicon substrate with different directions
of the beam with respect to the lines. (a) as the beam almost parallel to
the lines, (b) The azimuthal angle between the direct beam and the line
is Φ=45○ and (c) as the incoming beam perpendicular to the lines where
the azimuthal angle Φ=90○. In the parallel case, the azimuthal angle Φ
of the sample was tilted by 1.7○ to reduce the scattering intensity from
the lines. The angle of the incident beam in all cases αi ≈ 0.2○. (d) A line
cut from (a), (b) and (c) along Qy at Qz=0.2071 nm−1. (e) A line cut
from (a), (b) and (c) along Qz at Qy=0.4998 nm−1. The lateral Bragg
peaks were indexed according to a hexagonal lattice with a = 11.2 nm
while the vertical peaks were indexed according to FCC structure with
c = 9.2 nm.
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7.3.3. Magnetic characterization

The atomic crystalline structure of magnetic materials defines its magnetic prop-
erties. But in nanoparticles case, the situation is different due to the finite sizes
of the nanoparticles, its properties differ from the bulk. The nanoparticle be-
comes a single domain with reducing its size. The bulk form of iron oxides
shows different phases with different crystal structures and different magnetic
behavior as presented earlier in Sec. 7.1.
Iron oxide nanoparticles expected to be superparamagnetic (SPM) at room tem-
perature, and might show other magnetic behavior if it forms a dense assembly
of nanoparticles or long-range order arrays extending over large areas depend-
ing on the strength of magnetic dipolar interaction between the nanoparticles.
Therefore, the template-assisted self-assembly of iron oxide nanoparticles was
characterized by a superconducting quantum interference device (SQUID) mag-
netometry (3.3.1) to study the influence of the confinement in the magnetic
properties of the nanoparticles.

7.3.3.1. Macroscopic magnetization

The sample produced in Sec. 7.3.1 are cut into 3 ×3 mm2 pieces using a diamond
cutter, then it is fixed on a colorless drinking straw with an addition of another
straw to prevent the sample moving during the measurement. The magnetic
behavior of the sample i.e. the nanoparticle arrays inside the trenches studied
from the temperature dependence magnetization curves under zero-field cool-
ing (ZFC) and field cooling (FC) protocols. The ZFC-FC measurements were
performed as the applied field parallel and perpendicular to the long axis of the
trenches. Moreover, the measurements were performed at different magnetic
fields (50 Oe and 100 Oe). During ZFC measurements the sample is cooled from
T = 400 K in a zero field to T = 5 K. Then a small field of the order of ≈ 50 Oe
and ≈ 100 Oe is applied and the magnetization of the sample is measured while
sweeping the temperature to T = 400 K. While during the FC measurements the
magnetization is measured by sweeping the temperature from T = 400 K to T
= 5 K in the same applied field. The magnetic behaviors of nanoparticle arrays
inside the trenches obtained from the ZFC and FC curves with different field
magnitudes and directions are shown in figure 7.11. Furthermore, the magnetic
behavior of the iron oxide nanoparticles self-assembled in trenches studied from
the field dependence magnetization curves (hysteresis curves (M-H)) at various
temperatures. The hysteresis measurements were performed with an external
magnetic field applied parallel as well as perpendicular to the long axis of the
trenches. The results compared for different field directions at T = 300 K and
T = 5 K are shown in figure 7.12.

Figure 7.11 shows the ZFC and FC curves measured at 50 Oe (left figures)
and at 100 Oe (right figures) along and perpendicular to the trenches. The ZFC
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curves are shown in green color while the FC curves shown in blue colors. In all
cases under the same applied field, the magnetization value as the field parallel
to the lines larger than the perpendicular case. This is because the alignment of
the spins is more energetically favorable along the trenches than perpendicular.
In all figures, the peak temperature(TP ) determined by an arrow in the figures.
Moreover, we observed that a larger magnetic field will increase the splitting
temperature TS, where the ZFC and FC curves splitting in both parallel and
perpendicular measurements. While at the same magnetic field strength, the TB

is slightly smaller when field direction is perpendicular to the trenches compare
to the situation when the direction is parallel to the trenches. This might be
due to the fact that in the easy axis direction the effective relaxation time is
smaller due to the favored superspin alignment.

Figure 7.11(a) shows M vs. T curves after ZFC and FC measured at 50
Oe where the magnetic field was applied perpendicular to the long axis of the
trenches. The maximum of the ZFC magnetization curve at about TP = 142 K
and the splitting between the ZFC and FC curves occurs at this temperature.
The distinct bifurcation of the ZFC and FC plot around TP= 142 K clearly in-
dicates that the TP is the blocking temperature (TB). The ZFC magnetization
increases as a function of temperature for a temperature range 5 K < T < 142 K,
indicating that there are blocked moments which start to contribute to the mag-
netization when the temperature is increased, while the FC magnetization in the
same temperature region decreases as the temperature increases since the filed
induced aligned moments to start randomizing due to thermal energy. Beyond
the blocking temperature, both the ZFC and FC curve coincide and the mag-
netization decreases as the temperature increases due to temperature-induced
randomization of the moments. This behavior is typical of superparamagnetic
nanoparticles.

Figure 7.11 (b) shows M vs. T curves after ZFC and FC measured at 100
Oe where the magnetic field was applied perpendicular to the long axis of the
trenches. The maximum of the ZFC magnetization curve at about TP = 145
K and the splitting between the ZFC and FC curves occurs approximately at
T = 185 higher than the ZFC maximum temperature, which is a typical of the
blocking process of an assembly of superparamagnetic nanoparticles and due to
a broad distribution of peak temperatures for different sizes of nanoparticles.
It is obvious that for the same field direction the ZFC and FC magnetization
increased with increasing field. Almost the same features observed in figure
7.11 (a) are also seen here with an additional features in the FC curve. An
obvious feature (black circle) at T ≈ 122 K can be found indicating the Verwey
transition of the magnetite which is very close to the characteristic Tv of 120 K
for magnetite as reported extensively [171, 172]. This is an indication that the
sample contains a small amount of magnetite in addition to the ferrimagnetic
maghemite.
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Figure 7.11 (c) and (d) show M vs. T curves measured as the magnetic
field was applied parallel to the long axis of the trenches at 50 Oe and at 100
Oe respectively. The maximum of the ZFC magnetization curves at about TP

= 151 K. The splitting between the ZFC and FC curves occurs at T = 151
K and at T = 285 K for (c) and (d) respectively. The distinct bifurcation
of the ZFC and FC plot in (c) around TP= 151 K clearly indicates that the
TP is the blocking temperature (TB). In both figures the ZFC magnetization
increases as a function of temperature for a temperature range 5 K < T < 151
K, while the FC magnetization in the same temperature region decreases as the
temperature increases. Beyond the blocking temperature, both the ZFC and FC
curve coincide and the magnetization decreases as the temperature increases due
to temperature-induced randomization of the moments. This behavior is typical
of superparamagnetic nanoparticles. Below T = 140 K, the magnetization of
the FC curve decreases which is possibly due to the dipolar interaction between
nanoparticles.

Figure 7.12 shows the hysteresis curves measured as the field parallel and per-
pendicular to the long axis of the tranches at 300 K (left figure) and 5 K (right
figure). We observed “no hysteresis” at 300 K for both directions and the M-H
curve shows S-shaped behavior with saturation similar to a superparamagnetic
behavior. Whereas at 5 K, an open loop can be observed for both orientation.
This can be explained as the nanoparticle superspins are in a blocked super-
paramagnetic state. It is clear that the easy axis of magnetization is along
the trenches as the saturation occurs at around 0.14 T for parallel orientation,
whereas for perpendicular case the saturation observed around 0.35 T. Further-
more, the loops center at 5 K for both orientations is slightly shifted towards
the negative field direction as shown in figure 7.12 (right), which is an indication
of an exchange bias (EB) effect, which can be expected at the interface between
antiferromagnetic wüstite and ferrimagnetic magnetite or maghemite. More-
over, the EB effect might occurs due to the antiferromagnetic wüstite inside the
nanoparticles below its Ne′el temperature at 198 K [173].

In the perpendicular case, the magnetization is slower to reach saturation than
in the parallel case. The difference in magnetization can be calculated from the
magnetic squareness, which is defined as the ratio of the remanent magnetization
(Mr) to the saturation magnetization (Ms). The magnetic squareness widely
used for the evaluation of the magnetization reversal mode and of the magnetic
anisotropy [174]. The magnetic squareness value will give only information
about the change of anisotropy if we consider here no change in the reversal
mode inside the nanoparticles.
At both temperatures, the remanent magnetization is significantly higher in the
parallel direction than perpendicular direction. The saturation magnetization
almost the same for both directions. The magnetic squareness value in the
parallel case is larger than perpendicular case due to the nanoparticles chain

225



7. Directed self-assembly of iron oxides nanoparticles on patterned substrates

Figure 7.11.: M vs. T curves of the magnetic moment of nanoparticles self-assembled
in trench-patterned silicon substrates after ZFC (green) and FC (blue)
at two applied fields, i.e. 50 Oe (left) and 100 Oe (right). The magnetic
field was applied perpendicular (a), (b) and parallel (c), (d) to the long
axis of the trenches. The arrows indicate the peak temperature TP ,
which was defined as the first zero value of the derivative of the ZFC
curve.

induced shape anisotropy [170]. The shape anisotropy leads to an energy barrier
in the spin reversal process as shown in figure 7.12 (top and bottom figures), a
larger coercive field is needed to reverse the spins in the measurement when the
magnetic field is parallel to the trenches.
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Figure 7.12.: Hysteresis loops for the cubic iron oxide nanoparticles on trench-
patterned silicon substrate measured at 300 K (left) and at 5 K (right).
The brown hysteresis loops in both figures were measured as the filed
parallel to the long axis of the trenches, the green ones were measured
with the field perpendicular to the trenches.
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7.4. Summary and outlook

The preceding chapter provides a full analysis of the preparation and character-
ization of self-assembled superball/cubic iron oxide nanoparticles with a size of
≈14 nm on trench-patterned silicon substrates, starting from single nanoparticle
properties in dispersion, over the study on how to obtain long-range order using
assisted self-assembly method.
Using TEM and SAXS, information about the size as well as the size distri-
bution of the nanoparticles have been obtained. Furthermore, using SQUID
magnetometry, the magnetic properties of the nanoparticles dispersion in addi-
tion to the magnetic moment per single-particle have been studied.

Moreover in this chapter, the iron oxide nanoparticles were also self-assembled
on trench patterned silicon substrates, which is used as a template to guide or
assists nanoparticle self-assembly. GISAXS measurements on cubic maghemite
nanoparticles in grooves show a long coherence in both of the in-plane and out of
the plane arrangement of the nanoparticles. Further, we observed from GISAXS
there is no correlation between the structural arrangement of nanoparticles and
the geometry of trench-patterned substrates. However, we find anisotropy in
magnetic properties. Hysteresis loops on this system were measured with an
external magnetic field applied parallel and perpendicular to the direction of the
trenches. They show a large magnetic preferential direction along the trench,
which is induced by magnetic shape anisotropy. Moreover, an EB effect is
observed in the hysteresis loops at low temperatures. The magnetization of the
FC curves at various fields decreases slightly at low temperatures possibly due
to the existence of a small amount of wüstite or dipolar interaction between
nanoparticles.

We have demonstrated that spatial confinement can be employed to induce
nanoparticle assembly in the trenches. We have further shown that the cubic
nanoparticles arrange on FCC structure oriented in its (111) direction. The
confinement-induced assembly of anisotropic nanoparticles as shown in this
chapter, might provide a promising route toward nanoscale devices with tunable
anisotropic properties.

The nanoparticles did not form a single crystalline arrangement due to the
structured silicon substrates geometry. The trench patterned substrates show
two different depth profiles as shown in figure 4.14 (b). Furthermore, we note
that the groove width W becomes wider with a sidewall angle in the bottom
part of the confining channels.

Future improvements of this work: First, it could thus be to manufacture
such grooves of sufficient depth and with a groove separation of W≈ 86 nm and
with a flat bottom. Second, we have focused on only one type of nanoparticles
and patterned substrates, and it is probable that the degree of nanoparticle
order could be improved by modifying the particlewall interactions. Addition-
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ally, understanding how particleparticle and particlewall attractions affect the
nanoparticle order. Furthermore, the main focus will be on producing a single
crystalline arrangement of cubic iron oxide nanoparticles using directed self-
assembly method. Then the magnetic correlations between the superspins in
the 3D order can be studied using grazing-incidence small-angle neutron scatter-
ing (GISANS). Followed by BornAgain simulation of the GISAXS and GISANS
data of nanoparticle assembly in confinement.
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8.1. Summary

In summary, the thesis provides a complete determination of the structural and
magnetic ordering of various nanostructures formed using different nanoparti-
cles.
Several controlled self-assembly methods were developed to fabricate various
nanoparticle-assembled structures with desired morphology and geometry. In
each case, the individual nanoparticle structural and magnetic properties are
determined from measurements of the particles in dispersion by means of small-
angle scattering. It is then proceeded to study nanostructures where the dis-
cussed nanoparticles are used as building blocks to form nanostructures. Con-
cretely studied are surface grating structures with different structure sizes,
which were used as a template for assisted self-assembly of magnetic nanopar-
ticles, long-range ordered monolayers of spherical silica nanoparticles in a two-
dimensional hexagonal lattice, two-dimensional ordered arrays of cobalt ferrite
nanodots and three-dimensional ordered layers of iron oxide nanocubes. The
method for the preparation of the second and the fourth structures has been
developed within the scope of this thesis.

The structure of the assembled nanoparticles is determined in each case us-
ing grazing-incidence scattering and reflectometry to quantify the in-plane and
out-of-plane ordering of nanoparticle films, as well as by scanning electron mi-
croscopy. In the case of magnetic systems, the magnetic properties of the nanos-
tructures from iron oxide and cobalt ferrite nanoparticles are studied by macro-
scopic magnetization measurements. Also, PNR measurements along with the
fitting are successfully implemented to understand and highlight the magnetic
depth profile of the two-dimensional arrays of cobalt ferrite nanoparticles.

The pre-patterned silicon substrates were investigated using GISAXS and an-
alyzed by the direct analysis method. Using this method, the structural param-
eters can be obtained directly from the measurement data, without the selection
of suitable form factors and structure factors for numerical simulations. How-
ever, this method restricts the analysis mainly to an evaluation of the structure
factor and thus of the positions of scattering features. Therefore, only a lim-
ited set of dimensional parameters, namely, the grating periodicity, the groove
width, the capping layer thickness, and the line-height can be accessed. The
implementations of the direct analysis are based on the evaluation of scattering
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features that are present in GISAXS intensity patterns along the semi-circular
intersection of the Ewald sphere and the grating truncation rods (GTRs) of the
grating. For large pitches, this is achieved by computing the discrete Fourier
transform (DFT) of the profile and evaluating the power spectral density (PSD).
But the non-uniformly spaced data and the reduced number of GTRs along the
intersection required a different approach to that of DFT.

The second nanostructure system is produced using silica nanoparticles of
mean diameter ≈ 50 nm and dispersed in toluene were self-assembled on silicon
substrates. Here, we fabricate a simple, inexpensive approach to obtain highly
ordered self- assembled monolayers of stearyl alcohol grafted silica over a large
area on a Si substrate using an improved variant of the drop-casting method.
The novelty behind our idea is the addition of stearyl alcohol to the NP dis-
persion from where the monolayers are formed. The stearyl alcohol results in
monolayers with improved order, as confirmed with SEM for the local order and
GISAXS for the long-range hexagonal order, where the data was reproduced by
simulation within the Distorted Wave Born Approximation (DWBA). Addition-
ally, a heat treatment step is added, to melt the stearyl alcohol in the monolayer.
This leads to nearly perfectly ordered monolayers. This improved ordering is
a result of giving the NPs more time to further self-assemble, which is then
followed by solidifying the monolayer by simple cooling to room temperature,
preventing the large volume change as obtained after evaporation of a solvent.
The formation of the monolayer is significantly influenced by the concentration
of the NPs and the stearyl alcohol, the volume of the drop as well as the time of
the heat treatment. The optimal heat-treatment temperature to achieve large
area SiO2 monolayer was found to be 70 C○ for 10 days.
The stearyl silica nanoparticles were also self-assembled on trench-patterned
silicon substrates. GISAXS measurement revels that the coherent structure of
the nanoparticles along and perpendicular to the trench direction can be ob-
served. However, in our study we deduced that the self-assembly on patterned
substrates did not improve the ordering of the nanoparticles.

Characterization of two-dimensional arrays of ferromagnetic cobalt ferrite
(COF) nanodots was also of interest in this thesis. The dot sizes and their
local arrangement were studied with scanning electron microscopy (SEM) and
atomic force microscopy (AFM). The long-range in-plane and out-of-plane order-
ing are revealed by x-ray reflectometry (XRR) and grazing incident small-angle
X-ray scattering (GISAXS). The nanodots order into a hexagonal structure as
proven by the previous techniques. The GISAXS image shows Bragg rods along
Qy which correspond to the in-plane hexagonal ordering. The peak positions
match with a two-dimensional hexagonal lattice. Moreover, the measured pat-
tern matches well with the simulated pattern using a hemispherical particle
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with a height of ≈ 10 nm arranged in a two-dimensional hexagonal lattice with
a lattice constant of 34 nm.
Macroscopic magnetic properties of cobalt ferrite nanoparticles have been stud-
ied using magnetometry. In-plane and out-of-plane field-dependent magnetiza-
tion measuerments confirm that the easy direction of the magnetization is in
the plane. According to the behavior of ZFC/FC magnetization curves, in-plane
direction, a blocking temperature higher than 400 K is observed, possibly due
to the higher magnetocrystalline anisotropy energy. Also, a slight decrease in
the FC magnetization at low temperatures obvious which is an indication of the
magnetic interaction between nanoparticles.
The microscopic magnetic properties have been studied by polarized neutron
reflectivity (PNR) to reveal the depth dependence of the magnetization profile.
The in-plane PNR curves measured for up and down neutrons at saturation
show a state with small magnetization, while at remanence they show a demag-
netized state with zero net magnetization.

Part of this thesis focus on iron oxide nanocubes, self-assembled on pre-
structured silicon substrate in order to reach high coherence of the lateral order.
GISAXS measurements show a two-dimensional in-plane ordering of nanopar-
ticles. Further, we observe from GISAXS there is no correlation between the
structural arrangement of nanoparticles and the geometry of trench-patterned
substrates. XRR measuerment shows an oscillation which possibly comes from
nanoparticle layers inside the grooves. The in-plane Bragg reflections can be
indexd to a two-dimensional hexagonal lattice while the out-of-plane reflections
are indexed to FCC structure oriented in its (111) direction.
An anisotropy in magnetic properties is observed. Hysteresis loops as the
grooves are aligned along and perpendicular to the field direction show a large
magnetic preferential direction along the trench, which is induced by magnetic
shape anisotropy. Moreover, an EB effect is observed in the hysteresis loops
at low temperatures. The magnetization of the FC curves at various fields
decreases slightly at low temperatures possibly due to the dipolar interaction
between nanoparticles.
Work on this project will be continued in the near future to get a three-
dimensional single-crystalline arrangement of nanoparticle and then study the
magnetostatic interaction between nanoparticles using polarized grazing inci-
dence small angle neutron scattering (PGISANS).

8.2. Conclusion

Based on the results of nanoparticle assemblies presented in this thesis, several,
general and specific concluding remarks are drawn:
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8.2. Conclusion

General Remarks

First, the nanoparticle self-assembly strategy shows its importance and impact,
as it allows the fabrication of novel magnetic nanostructures using functional
magnetic nanoparticles in a cost-effective and bottom-up manner.

Second, a variety of nanoparticle self-assembly methods can be developed ei-
ther by applying external stimuli, by using guiding templates, or by combining
with other advanced nanofabrication techniques. Therefore, the controllability
of nanoparticle self-assembly can be greatly improved.

Third, nanoparticle-assembled structures with different geometry and morphol-
ogy, ranging from monolayer to multilayer can be produced using self-assembly
methods. Also, the nanoparticle arrangements can be further adjusted by chang-
ing a variety of parameters such as the nanoparticle shape, size, interparticle
interaction, the topography of the substrate, or the external directing field.

Fourth, by fabricating highly ordered superstructures magnetic nanoparticles
with well-defined configurations, high-density magnetic data storage media can
be produced.

Specific remarks

First, the dimensional parameters determined for the gratings by direct GISAXS
data analysis can serve as reference values that must be reproduced by any other
analysis methods such as numerical modeling. Thereby, the direct analysis pro-
vides a means to validate and compare other analysis methods in a general
context, not just for grating structures.

Second, heat treatment in combination with a compatible additive with a melt-
ing point significantly below that of the particles can be a general method to
improve the ordering between particles in monolayers as well as multilayers.

Third, by increasing the cobalt ferrite nanodots hight, the magnetocrystalline
anisotropy energy (KV) will be increased. This leads to a higher blocking tem-
perature, which makes them a prominent candidate for memory storage appli-
cations. This might be general for other ferrimagnetic material.

Fourth, Spatial confinement (template-assisted self-assembly) is an appealing
and promising approach for controlling the assembly of nanoparticles and for
approaching highly ordered three-dimensional nanoparticles single-crystalline
arrangments. The resulting structure can be controlled by the template (con-
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8. Conclusion and Outlook

finement) geometry, nanoparticles shape and size; better ordering is expected
when the confining wall separation is commensurate with the particle size.

8.3. Future prospects

Grating lines

Full modeling of the scattering intensities observed in the GISAXS data using
the semi-kinematic and dynamic theories, mostly by using distorted wave Born
approximation (DWBA) and Maxwell equations. This model will yield a larger
set of structural parameters such as the sidewall angle, the corner-rounding at
bottom of the lines, as well as the shape of the line cross-section. Furthermore,
the modeling of the 2D GISAXS pattern might provide additional details on the
origin of the diffuse line scattering.

After modeling the grating lines with suitable form factors, implementation
of it into BornAgain software should be done for the comparisons of different
methods of analysis and for the validation of the analysis results of the models
against the nominal values of direct analysis.

Long range order monolayer of silica nanoparticles

The development of the monolayer preparation method for silica nanoparti-
cles by the drop-casting method can be considered as a starting point. In the
future, our developed method will be employed for various types of magnetic
nanoparticles then the magnetic properties of the monolayers will be studied.
Also, in the future, the obtained particle monolayer can be used as a tem-
plate or a two-dimensional deposition mask for nanostructure fabrication as
shown schematically in figure 8.1. In this case, the monolayer itself acts as a
topographic pattern. Mainly, magnetic multilayers will be sputtered on these
nanospheres then magnetic properties of the new system will be studied macro-
scopically using SQUID and microscopically using neutrons.

Directed self-assembly of Iron Oxides nanoparticles on patterned
substrates

Produce three-dimensional single-crystalline arrangements of magnetic nanopar-
ticles using a template-assisted self-assembly method. Then, the obtained struc-
ture will be characterized locally by atomic force and scanning electron mi-
croscopies and within the depth by small-angle x-ray scattering under grazing
incidence. GISAXS measurements will be performed for structural analysis of
nanoparticle arrays and to get insight into the in-plane and out-of-plane order-
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8.3. Future prospects

Figure 8.1.: Schematic picture of the film deposited onto nanospheres monolayer.

ing of magnetic nanoparticles on pre-structured silicon substrates. Macroscopic
magnetization measurements on a SQUID magnetometer will be performed in
order to get first insights on the collective magnetic behavior. The laterally-
and depth-resolved investigation of the magnetic behavior will be performed by
small-angle scattering of polarized neutrons under grazing incidence. Further-
more, simulation of GISAXS and POLGISANS data using Born Again software
will be done.
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A. Derivations

A.1. Green’s function of free Schrödinger equation

let’s assume the Green’s operator of the full Hamiltonian (H) is defined as

G = (E ± iε −H)−1 (A.1)

Now, the Green’s function of the free Hamiltonian (H0) is given as

G0 = (E ± iε −H0)−1 (A.2)

The above Green’s function operator fulfill the following equation in the position
space

( h̵
2

2m∆ +E)G0(r⃗, r⃗′∣E) = δ(r⃗ − r⃗′) (A.3)

Equ.A.3 can be represented straightforward in position space as in the following
equation

G0(r⃗, r⃗′∣E) =< r⃗∣ 1
E ± iε −H0

∣r⃗′ > (A.4)

The green function G0(r⃗, r⃗′∣E) describes the stationary radiation of a particle
with energy E, that is generated at r⃗′, by a spherical wave outgoing from the
target, i.e. G0(r⃗, r⃗′∣E) gives the amplitude of this wave at location r due to its
generation by the source at r⃗′ , under the condition that the wave is not further
scattered during its propagation from r⃗′ to r.

In the following derivation, the origin of the received spherical wave, either
radiating from a source (retarded) or irradiating towards a source (advanced)
will be shown, which depends on the sign of the small imaginary factor (ε)
assumed in Eq.A.1.
The eigenfunctions of the momentum operator in position space will be used in
order to obtain the representation of the Green function in Eq.A.3 in position
space
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A. Derivations

< r⃗∣k⃗ >= 1
√

2π3 e
i ⃗k.r⃗ (A.5)

also, the free Hamiltonian is diagonal in momentum space. Inserting both
into the matrix element (Equ.A.4) one obtains

G0(r⃗, r⃗′∣E) = ∫ dk⃗∫ dk⃗′ < r⃗∣k⃗ >< k⃗∣ 1
E ± iε −H0

∣k⃗′ >< k⃗′∣r⃗′ >

(A.6)

G0(r⃗, r⃗′∣E) = 1
2π3 ∫ dk⃗eik⃗.r⃗

1
E ± iε − h̵2k2

2m
e−ik⃗.r⃗′ (A.7)

Now, set x⃗ = r⃗ − r⃗′. The best way to solve above integral is using spherical
coordinates where θ is set to be the angle between k⃗ and x⃗. Then one need only
to solve

G0(x⃗∣E) = 1
(2π)2

∞

∫
0

dkk2
π

∫
0

dθ sin (θ)eikx cos (θ) 1
E ± iε − h̵2k2

2m
(A.8)

The integral over θ can be solved by substitution u = cos (θ) and one observes
at this point already that the solution only depends on the magnitude of x⃗

G0(x∣E) = −i 2m
xh̵2

1
(2π)2

∞

∫
0

dk
k

2mE
h̵2 − k2 ± iε

(eikx − e−ikx) (A.9)

The above integral can be simplified by substituting k → –k in e−ikx

G0(x∣E) = −i 2m
xh̵2

1
(2π)2

∞

∫
−∞

dk
k

2mE
h̵2 − k2 ± iε

eikx (A.10)
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A.2. Scattering theory for electromagnetic waves

The above integral vanishes for k → ±∞ and the integral can be written as a
complex contour integral that is closed in the upper complex half plane, where
it is further exponentially suppressed for positive complex numbers. Rewriting
the denominator, using that ε is an arbitrary small number

G0(x∣E) = i 2m
xh̵2

1
(2π)2 ∮ dz

z

(z −
√

2mE
h̵ ± iε)(z +

√
2mE
h̵ ± iε)

eizx (A.11)

The above integral contains two poles at z1 =
√

2mE
h̵ ± iε and z2 = −(

√
2mE
h̵ ± iε).

From this point it becomes clear t that the sign of ε determines which pole has
to be taken. As the integral is closed in the upper complex plane, only the pole
with a positive complex part has to be considered. In the case of the retarded
Green’s function that is z1 and for the advanced Green’s function z2.
Finally, applying the residue theorem, replacing x = ∣r⃗ − r⃗′∣ and use the dis-

persion relation of the free Hamiltonian k =
√

2mE/h̵, the two solutions for
Eq.(A.3) are

G0(r⃗, r⃗′∣k) = −
m

2πh̵2
eik∣r⃗−r⃗′∣

∣r⃗ − r⃗′∣
(A.12)

G0(r⃗, r⃗′∣k) = −
m

2πh̵2
e−ik∣r⃗−r⃗′∣

∣r⃗ − r⃗′∣
(A.13)

In scattering theory one is interested in waves that are radiating away from
the target, therefore the retarded Green’s function is the one that needs to be
considered.

A.2. Scattering theory for electromagnetic waves

The scattering theory valid for non-interacting and non-relativistic particles
such as neutron is derived in the frame work of quantum mechanics as shown
in Sec.2.3.1, but this work also focus heavily on X-ray scattering to study the
structure of nanoparticles and their assemblies. Quantum electrodynamics gives
the correct description of scattering for photons. However, the propagation of
X-ray photons is well described by classical electrodynamics for all cases that
are relevant in this work. In this appendix will be shown that classical electrody-
namics leads to the same type of differential equation for the description of the
propagation of X-ray photons, as the Schrödinger equation used for neutrons.
In order to describe the general propagation of photons, the starting point is
Maxwell’s macroscopic equations [175].
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A. Derivations

▽⃗ × E⃗ + ∂tB⃗ = 0 (A.14)

▽⃗ ⋅ B⃗ = 0 (A.15)

▽⃗ ⋅ D⃗ = ρ (A.16)

▽⃗ × H⃗ − ∂tD⃗ = j⃗ (A.17)

Where ρ and j⃗ are the free charge and the current densities, respectively. E⃗
and B⃗ are the electric and the magnetic field induction, respectively. D⃗ is the
electric displacement field and H⃗ is the magnetisation field.
The material equations are given as

D⃗ = ε0E⃗ + P⃗ (A.18)

B⃗ = µ0(H⃗ + M⃗) (A.19)

Where µ0 = 4π ⋅10−7NA−2, P⃗ is the polarization and M⃗ is the magnetization
describes macroscopically all the microscopic dipoles and ring currents within a
material.
ε0 and µ0 related to the light speed via the following relation

c = 1
√
µ0ε0

(A.20)

Generally, P⃗ and H⃗ are expressed in relation to E⃗ and H⃗

P⃗ = ε0χeE⃗ (A.21)

M⃗ = χmH⃗ (A.22)
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A.2. Scattering theory for electromagnetic waves

where χe and χm are the electric and magnetic susceptibilities tensors, re-
spectively. Both are in general tensors of 2nd-order. Here, we assume that
polarization and magnetization of the materials respond linearly and isotropic
to the field. With

εr = 1 + χe (A.23)

µr = 1 + χm (A.24)

The material refractive index is defined as

n = √
εrµr (A.25)

The phase velocity of light inside a material is given by

cp =
1

√
ε0µ0εrµr

= c

n
(A.26)

substitute the previous definitions into Maxwell’s equation

▽⃗ × E⃗ + ∂tB⃗ = 0 (A.27)

▽⃗ ⋅ B⃗ = 0 (A.28)

ε0εr▽⃗ ⋅ E⃗ = ρ (A.29)

▽⃗ × B⃗ − 1
c2
p

∂tE⃗ = µ0µr j⃗ (A.30)

taking the curl on both sides of the first Maxwell’s equation, and inserting the
other equations
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A. Derivations

▽⃗ × ▽⃗ × E⃗ + 1
c2
p

∂2
t E⃗ = −µ0µr∂tj⃗ (A.31)

which finally transform with the general vector identity

▽⃗ × ▽⃗ × A⃗ = ▽⃗(▽⃗ ⋅ A⃗) −∆A⃗ (A.32)

The general wave equation for E⃗ is given as

∆E⃗ − 1
c2
p

∂2
t E⃗ = µ0µr∂tj⃗ +

1
ε0εr

▽⃗ρ (A.33)

The above differential equation, which is derived from Maxwell’s equation de-
scribes, in general, the propagation of electromagnetic waves inside the material.

The time dependence of E⃗ can be given as

E⃗(r⃗, t) = E⃗(r⃗)e−iωt (A.34)

and the dispersion relation

ω = ck (A.35)

then the wave equation (Eq.A.33) can be rewritten as

(∆ + n2k2)E⃗ = 1
ε0εr

⎛
⎝
n2

c2 ∂tj⃗ + ▽⃗ρ
⎞
⎠

(A.36)

As can be seen from the above equation which is known as inhomogeneous
Helmholtz-equation, that the definition of the phase velocity was used on the
right-hand side and it’s interesting to mention here the closeness of this equation
to the time-independent Schrödinger equation, which given with k2 = 2mE

h̵2 in
positional space as

(∆ + k2)ψ = 2m
h̵2 V ψ (A.37)
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A.2. Scattering theory for electromagnetic waves

At this point it is nicely clear how the classical electrodynamics and quantum
mechanics result in a similar description of different problems.

For a further explanation about the X-ray scattering process and how the
X-ray photons interacts with matter, it is necessary to discuss the electric field
generated by a single electron cloud oscillating in phase with an incoming field,
which is given as

E⃗i(r⃗, t) = êiE0ei(k⃗⋅r⃗−ωt) (A.38)

Where êi is the unit vector defines the polarization direction of the electric
field perpendicular to k⃗.
In this model, no free static charge is assumed, only a single moving cloud with
density distribution of ρe(r⃗) that oscillates with v(t)

ρ(r⃗, t) = 0 (A.39)

j⃗(r⃗, t) = −eρe(r⃗)v⃗(t) (A.40)

Now, use Newton’s law F⃗ =ma⃗ for a simplified model of an accelerated electron
due to the electric filed F⃗ = qE⃗ to write ∂tj⃗ in the wave equation (Eq.A.33) with

∂tv⃗ = a⃗ = −
e

m
êiE

0ei(k⃗⋅r⃗−ωt) (A.41)

Where a⃗ is the acceleration, e and m are charge and the mass of the electron,
respectively.
Then the Helmholtz equation for the electric field (Eq.A.36) can be written as

(∆ + n2k2)E⃗ = n2e2

ε0εrc2ρeêiE
0eik⃗⋅r⃗ (A.42)

As for x-rays n is close to 1, n2 can be approximated to 1.
In order to solve the above deferential equation, the Green’s function like in
Sec.A.1 will be considered, which fulfils the relation

(∆ + k2)G(r⃗, r⃗′) = δ(r⃗ − r⃗′) (A.43)
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A. Derivations

The Green’s function G(r⃗, r⃗′) is given by [175]

G±(r⃗, r⃗′) = − 1
4π

e±ik∣r⃗ − r⃗′∣
∣r⃗ − r⃗′∣

(A.44)

Where G+(r⃗, r⃗′) for the outgoing spherical wave and G−(r⃗, r⃗′) for the inward
going wave. It is necessary to mention again that in scattering only the outgo-
ing solution is interesting to describe the radiation.
With the above Green’s function the inhomogeneous Helmholtz equation (Eq.A.36)
can be solved straight forward as a superposition of the homogeneous solution
and the outgoing solution

E⃗(r⃗, t) = E⃗i(r⃗, t) + êi
e2

4πε0mc2E
0∫ dV ′ eik∣r⃗−r⃗

′∣

∣r⃗ − r⃗′∣
ρe(r⃗′)eik⃗⋅r⃗ (A.45)

Approximate ∣r⃗ − r⃗′∣ and ∣r⃗ − r⃗′∣−1 as has been done in Sec. 2.3.1 and use the
definition of the classical electron radius

re =
e2

4πε0mc2 ≈ 2.8fm (A.46)

Then the electric field can be written as

E⃗(r⃗, t) = E⃗i(r⃗, t) + êiE0 e
ikr

r
re∫ dV ′e−iq⃗⋅r⃗′ρe(r⃗′) (A.47)

where the Fourier transform of the electron density (integrated part) is iden-
tified as the atomic form factor (fa(q⃗)).Here, the scattering solution is identified
as an integral of spherical waves generated at every point in space proportional
to the electron density and proportional to the incoming wave which is equiva-
lent to the case of the neutron scattering.
The differential cross-section is defined as

dσ

dΩ = ∣êi.êf ∣2r2
e ∣fa(q⃗)∣2 (A.48)

The above equation is known as Thomson scattering and it includes an addi-
tional polarization factor ∣êi.êf ∣2, where êf is the detection direction, where the
experiment geometry and the source determine the polarization factor.
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B. Preparation parameters of grating lines
by Eulitha company

Lithographie oxidmaske:
-resist coation (WB 5) UV6
-in Dehydriren at 413K for 90s
-cool down 60s
-UV6-06: 4000rpm (Prg4)
-relax resist for 60s
-soft bake at 413K for 60s
-Exposure Mask Aligner 3 (SUSS MA6)
-Mask Wash 5 in 0.2mJ/cm2

Development:
-Post exposure bake: 413K for 90s
-immerse MF 24A for 60s

RIE oxide hard mask:
-RIE 4: Ar/CHF3 Oxid etch, endpoint by interferometer
-Resist stripping: DMSO/syslopentanone 15 min, Acetone 15 min, IPA 60s and
DI 30s.

Dicing:
-Protection resist: in dehydrieren 413K for 90s
-cool down 60s -AZ5214: 4000rpm (Prg 4)
-relax resist 60s
-soft bake at 384K for 60s
-peel of foil, remove resist: Ac+IPA+DI
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C. The EBL protocol and the preparation
parameters of grating lines by HNF

Thermal oxidation 20-50nm SiO2

Spin-coating (4000rpm (prg 4)) of protection resist (AZ5214) on N-Si
(110) silicon substrate:
- 90s 140°C Dehydration
- 60s cool down
- 60s relaxing
- 60s 110°C Soft bake

Dicing:
-20mm*20mm pieces

Remove protective resist: Ac + IPA + DI

Spin-coating (2000rpm) of E-beam resist (CSAR) on 20mm*20mm
silicon substrate (=> 140 nm):
-90s 140°C Dehydration
- 60s cool down
- 60s relax resist
- 60s 110°C Soft Bake

Exposure VISTEC EBPG 5000+
-Dose test: 50µC to 250µC; 100µm*100µm fields with lines and spaces (30nm,
50nm, 70nm).

Development:
-AR 600-546 developer for 60 s and in Isopropyl alcohol (IPA) for 30 s and in
Deionized water (DI) for 30 s.

RIE Oxid hard mask:
-etching by Ar/CHF3 oxide
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D. Absolute calibration of SAXS
measurements at GALAXI

The main aim of the absolute calibration of SAXS data:

(i) To merge data obtained from two different detector distances to a single
data set.
(ii) To obtain the nanoparticles concentration in the solvent.

Transmitted intensity at one detector channel at a given Q is:

I(Q) = I0∆ΩADT dΣ
dΩ(Q) (D.1)

Where I0 is the incoming flux, ∆Ω is the solid angle covered by the detector
channel, A is the irradiated area, D is the thickness, T is the transmission and
dΣ
DΩ(Q) is the differential scattering cross section.
The solid angle can be found from the following relation:

∆Ω = V

L2
SDD

(D.2)

Where V is the size of the detecting channel and LSDD is the sample-to-
detector distance.
Sample transmitted intensity:

Isample(Q) = Isample+EC(Q) − TsampleIEC(Q) (D.3)

Where Isample+EC(Q) is the measured intensity, Tsample is the sample transmis-
sion and IEC(Q) is the empty cell transmission.
The sample transmission Tsample can be calculated from the following relation:

Tsample =
Tsample+EC

TEC
(D.4)
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D. Absolute calibration of SAXS measurements at GALAXI

In order to get the nanoparticles concentration in the solvent, the nanoparticle
in the solvent and the solvent alone have to be measured and calibrated following
the previous procedure. Therefore, the differential scattering cross section of the
nanoparticle is given as:

⎛
⎝
dΣ
dΩ

⎞
⎠
NP

=
⎛
⎝
dΣ
dΩ

⎞
⎠
NP+solvent

− (1 −Cvol)
⎛
⎝
dΣ
dΩ

⎞
⎠
solvent

(D.5)

Where Cvol is the volume concentration of the particles in the solvent.
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E. Form Factors

E.1. Spherical form factor

Typically spherical nanoparticles have a uniform scattering length density. For
spherical NP with a core radius R the 1D scattering intensity is calculated in
the following way:

I = scale

Vsphere
.

⎡⎢⎢⎢⎢⎣
3Vsphere(∆ρ).

sin (qR) − qR cos (qR)
(qR)3

⎤⎥⎥⎥⎥⎦

2

+ background (E.1)

where scale is a volume fraction, Vsphere is the volume of the scatterer, NP
volume , R is the radius of the sphere, background is the background level
and ∆ρ is the difference between the scattering length densities (SLDs) of the
scatterer and the solvent.
Then the spherical form factor is given as:

Fsphere(q) =
⎧⎪⎪⎨⎪⎪⎩

3∆ρVsphere sin (qR)−qR cos (qR)
(qR)3 , q ≠ 0

∆ρVsphere, q = 0
(E.2)

E.2. Spherical Core-Shell form factor

Usually, the nanoparticles are surrounded by surfactants like oleic acid. There-
fore, the particles, in this case, can be assumed as two parts, the inner part
known as "core" and the outer part known as "shell". For a spherical particle
with radius R surrounded with an oleic acid with thickness a shown in Figure
E.1, the best model explains the particles known as the "spherical core-shell"
model which combines the contribution from both the sphere and the shell.

The scattering length density of core-shell particles can be given in spherical
coordinates as:

ρ(r⃗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρcore,0 < r < R,
ρshell,R < r < R + a,
ρs, r > R + a

(E.3)
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E. Form Factors

Figure E.1.: Schematic representation of core shell particles.

The form factor of a monodisperse spherical particle with a core-shell struc-
ture is described in the following equation.

F (q⃗) = 3
Vs

⎡⎢⎢⎢⎢⎣
Vc(ρc − ρs)

sin (q⃗R) − q⃗R cos (q⃗R)
(q⃗R)3 +

Vs(ρs − ρsolv)
sin (q⃗rRs) − q⃗rRs cos (q⃗rRs)

(qrRs)3

⎤⎥⎥⎥⎥⎦
(E.4)

Where Vs is the volume of the whole particles (core with shell), Vc is the core
volume, rRs= core radius (R)+ shell thickness (a), R is the core radius, ρc, ρs
and ρsolvent are the scattering length density of the core, shell and the solvent
respectively.

The core shell form factor can be assumed as a summation of two spheres form
factors

F (q) = Fsphere(q⃗;R,ρc, ρs) + Fsphere(q⃗;R + a, ρs, ρRs) (E.5)

Where ρRs=ρc-ρs, the difference between scattering length density of the core
and the shell known as "contrast".

E.3. Cubic form factor

Iron oxide nanocubes were used to study the influence of a regular structure in
the assembly of the nanoparticles. For a cube of edge-length 2R, the volume is

250



E.3. Cubic form factor

V = (2R)3

The form factor amplitude of oriented cubes in Cartesian coordinates given as:

Fcube(q⃗) = ∫
V

eiq⃗.r⃗dr (E.6)

Where q⃗ in Cartesian coordinates given as (qx, qy, qz), r⃗=(x, y, z) and q⃗.r⃗=qxx+qyy+qzz,
therefore, the form factor amplitude becomes

Fcube(q⃗) =
R

∫
−R

eiqxxdx
R

∫
−R

eiqyydy
R

∫
−R

eiqzzdz (E.7)

= Vcubesinc(qxR)sinc(qyR)sinc(qzR) (E.8)
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F. 2D Ordered Arrays of Ferrimagnetic
Cobalt Ferrite Nanodots

F.1. Magnetic moment per nanoparticle in Bohr magnetion
(µB / NP)

Here, full description of how to calculate the magnetic moment / nanoparticles
is given. The calculation has been performed for the two-dimensional arrays of
COF nanodots in Ch. 6.

Our system consists of hemispherical nanoparticles with a diameter of 23 nm
and a height of 10 nm. These nanoparticles arranged into a hexagonal lattice
with lattice constant 34 nm.

First we find the area of a regular hexagon by splitting it into six equilateral
triangles,

Ahexagon =
3
√

3
2 a2 (F.1)

Where a is the lattice constant.

Each hexagon as shown in figure F.1 contains two full particles (i.e. 6 particles
with a third of each inside the hexagon) and one full particle at the middle,
then, the area of the hexagon corresponds to three particles,

6 × 1
3(π(d2)

2
) + π(d2)

2
= 3

4πd
2 (F.2)

Where d is the particle diameter.
Second, the number of particles on the substrate,

NNP = Asubstrate
A3−particles

= 3 × 3mm2

3
4πd

2 = 7.2243 × 109 (F.3)

Third, divide the magnetic moment (emu) value by the number of the particles.
Fourth, to convert from emu / NP to µB / NP,
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F.2. Magnetization curves

1emu/NP = 1.0783 × 1011µB/NP (F.4)

Figure F.1.: Schematic representation of a hexagon.

F.2. Magnetization curves
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Figure F.2.: In-plane and out-of-plane temperature-dependent magnetization of the
ordered CoFe2O4 NP monolayers measured at various magnetic fields.
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F.2. Magnetization curves

Figure F.3.: In-plane and out-of-plane hysteresis loops of the ordered CoFe2O4 NP
monolayers measured at various temperature. The downright insets is
an expanded low-field curve.
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F.3. Neutron reflectometry

Figure F.4.: PNR measurements from COF nanodots onto a silicon substrate mea-
sured at 300 K with an applied In-plane field, (upper left) half polarized
NR at 50 mT, (upper right) half polarized NR at remnant field.
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F.3. Neutron reflectometry

Figure F.5.: PNR measurements from COF nanodots onto a silicon substrate mea-
sured at 300 K with an applied Out-of-plane field. The upper plots show
a full polarized NR measured at 70 mT, remnant and saturation, respec-
tively. The bottom plots show a half polarized NR measured at 70 mT,
remnant and saturation, respectively.
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Glossary

Abbreviations

DWBA distorted wave Born
FC field cooled
ZFC zero-field cooled
fcc face-centered cubic
hcp hexagonal close-packed
1D One dimensional
2D Two dimensional
3D Three dimensional
AF AntiFerromagnetic
EB Exchange Bais
FiM Ferrimagnetic
mSLD magnetic Scattering Length Density
nSLD nuclear Scattering Length Density
NP Nanoparticle
RSO Reciprocating Sample Option

Experimental Methods

GISANS Grazing-Incidence Small-Angle Neutron Scattering
GISAXS Grazing-Incidence Small-Angle X-ray Scattering
NR Neutron Reflectometry
PNR Polarized Neutron Reflectometry
SAXS Small-Angle X-ray Scattering
SEM Scanning Electron Microscopy
TEM Transmission Electron Microscopy
AFM Atomic Force Microscopy
MPMS Magnetic Property Measurement System
XRR X-ray Reflectometry

Instruments

GALAXI Gallium anode low-angle x-ray instrument ((GI)SAXS/XRR
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F.3. Neutron reflectometry

instrument at the Forschungszentrum Jülich)

MARIA Magnetic reflectometer with high incident angle (neutron
reflectometer at MLZ)

SQUID Superconducting Quantum Interference Device

Magnetic Units Conversion to SI

emu for magnetic moments in the cgs system, 1emu = 10−3 Am2

emu
mL magnetization scaled to material volume, 1 emumL = kA

m

Scientific Facilities

MLZ Heinz Maier-Leibnitz Zentrum facility for neutron research in
Garching, Germany

Symbols

a lattice constant
ap−p interparticle distance
A area
αi incidant angle
B⃗, µ0H⃗ magnetic field, B⃗ = µ0(H⃗ + M⃗)
d sample thickness
E energy
k⃗ wavevector
kB Boltzman constant
K magnetocrystalline anisotropy density
LSDD sample-to-detector distance
λ wavelength
M⃗ Magnetization of a material
µ⃗ magnetic moment
N number of particles
n number density
θ scattering angle
p(Q) form factor
q⃗ scattering vector
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r, R reflection magnitude, reflectivity
ρ scattering length density
S structure factor
T temperature
V volume
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