Monte-Carlo Simulation Studies on the Superspin

Structure of 3D Nanoparticle Supercrystals

Mauricio Cattaneo

Masterarbeit in Physik

vorgelegt der
Fakultat fiir Mathematik, Informatik und
Naturwissenschaften der RWTH Aachen

im Juli 2018
angefertigt am
Forschungszentrum Jiilich GmbH, Peter Griunberg Institut
bei

Prof. Dr. David DiVincenzo
Prof. Dr. Thomas Bruckel

Acknowledgements

I would like to give my sincere thanks to Prof. Dr. Thomas Briickel and PD Dr.
Oleg Petracic for providing me the opportunity to work on this thesis in the institute
JCNS-2/PGI-4 at Forschungszentrum Jiilich GmbH.

I want to thank Prof. Dr. David DiVincenzo who agreed to be the first referee of
my thesis. I would like to thank him for his interest in my research and his concise
and valuable input.

I owe special thanks to Oleg Petracic, Michael Smik and Xiao Sun for being my
supervisors. This thesis would not have been done without their encouragement,
guidance and patient support from the beginning till the end.

I found great motivation from discussions with the entire staff at JCNS, special
mention to the JCNS Nanoparticle Club. The exchange with excellent researchers
and different scientific background than my own has been very inspiring and has
shaped this thesis.

Finally, T must offer my heartfelt thanks to my family and my friends who have
supported me during this project. I would like to thank them for their support, love

and understanding.

Abstract

Nanoparticle (NP) supercrystals constitute a fascinating novel type of material with
tunable magnetic, electronic and optical properties [3,8,12]. By choosing differ-
ent NP materials, e.g. ferromagnetic or antiferromagnetic, a variety of magnetic
and eventually multifunctional properties might be achieved. Hereby, one major
challenge is the deliberate control of the supercrystal structure and of the resulting
physical properties. In simulations we are able to model the collective magnetic
ground states from microscopic assumptions [3-5]. This thesis aims to develop a
proper simulation methodology to deal with lattices of interacting magnetic NP
moments. Such a study is a crucial step towards predicting magnetic ground states
and energy landscapes as function of the supercrystal lattice type and as function
of the individual NP properties. Immediate goals include the study of the influ-
ence of dipole-dipole interactions on superparamagnetism and the spin structure of

supercrystals at low temperatures.

Contents

1 Introduction 1
2 Theory of Magnetism 2
2.1 Origin of Magnetism in Solid State Matter 2
2.1.1 Bohr-van Leeuwen theorem 2

2.2 Magnetic Interactionso 4
2.2.1 Dipole-Dipole Interaction)

2.2.2 Exchange Interaction)

2.2.3 Anisotropic Exchange or Dzyaloshinky-Moriya Interaction . . 6

2.3 Types of Magnetic Behavior 7
2.3.1 Diamagnetism 7

2.3.2 Paramagnetismo Lo 8

2.3.3 Collective Magnetism 8

2.3.3.1 Ferromagnetism 9

2.3.3.2 Ferrimagnetism 9

2.3.3.3 Antiferromagnetism 9

2.3.4 Geometrically Frustrated Systems and Spin Glasses 10

3 Methods 12
3.1 Why Do Simulations in Physics 12
3.2 Categories of Monte-Carlo Simulations 12
3.2.1 Monte Carlo in Statistical Physics 13

3.2.2 Markov Chain methods 13

3.3 The Metropolis Algorithm 15
3.4 Quality of Pseudo-random Numbers Picked on a 2-Sphere 18
3.4.1 Uniformly Distributed Unit Vectors on a (d — 1)-Sphere 20

3.4.2 Examples of Vector Distribution 21

3.4.3 MC simulations and Ergodicity 24

4 Ferromagnetic Nanoparticles and Supercrystals in the Non-interacting

Limit 26
4.1 Theory I 26
4.1.1 Stoner-Wohlfarth Model 26
4.1.2 Isotropic Paramagnet 27
4.1.3 Potential Landscape with Non-vanishing Anisotropy 29
414 ZFC-FCcurves i 31
4.1.5 ac-Susceptibility 32
4.2 Simulation results L 34
4.2.1 Isotropic Superparamagnetism 34

v

4.2.2 ZFC-FC Curves o i, 35

4.2.2.1 High-Temperature Behavior 35
4.2.3 Influences on the Blocking Temperature 36
4.2.3.1 Particle Number 36
4.2.3.2 Test Vector, 37
4.2.3.3 Number of Monte-Carlo Steps per Measurement . . . 38
4.2.3.4 Applied Magnetic Field 39
4.2.4 Hysteresis Plots L 40
4.2.5 ac-Susceptibility and Cole-Cole Plot 41
4.3 Summary and Discussion of Results 43
5 Ferromagnetic Nanoparticles with Dipole-Dipole Interaction 44
5.1 Theory II o 44
5.1.1 Computational Aspects L. 44
5.1.2 Mermin-Wagner Theorem 44
5.1.3 Antiferromagnetic Part of the Dipole-Dipole Interaction 45
5.1.4 Finite and Infinite Systems 46
5.1.5 Possible Approximations 47
5.1.6 Onsager Reaction Field Method 47
5.1.6.1 Motivation and Model 48
5.1.6.2 Solution of the Magnetostatic Problem 49
5.1.6.3 Modelling parameters 54
5.1.6.4 Cut-off Radius 55
5.1.6.5 Determination of the relative permeability 56
5.1.6.6 Consistency with non-interacting limit 57
5.2 Simulation Results 59
5.2.1 Groundstates in Periodic, Dipolar 3D Systems 59
5.2.1.1 Results in the Limit of Vanishing Magnetocrystalline
Anisotropy 59
5.2.1.2 Series of ’Groundstates’ Depending on Different Pa-
rameters in the Onsager Approximation 61
5.2.1.3 Reconsidering Non-Vanishing Anisotropy 68
6 Summary and Outlook 70
A Detailed Calculations 71
A.1 Magnetostatic Derivation of the Onsager Reaction Field 71
A.1.1 Laplace Equation in Azimuthal Symmetry 71
A.1.2 Solution to Our Boundary Value Problem 73

B Programming 75

B.1 C++ implementation of Metropolis algorithm 75
B.1.1 main.cpp. 75

B.1.2 parameter.ho 80

B.1.3 input-iniho 81

B.14 str.h o000 85

B.1.5 perAux.h 96

B.1.6 rmd250.c 102

B.1.7 random-spdb.h 102

B.2 domainFinder.cpp 104

C References 113

vi

1. INTRODUCTION 1

1 Introduction

NP supercrystals are regular arrangements of NPs in complete analogy to crystals

in condensed matter. An example is given in figure 1.

Figure 1: TEM micrographs and sketches of AB, superlattices (isostructural with
intermetallic phase AlBy, SG 191) of 11-nm 7-FeyO3 and 6-nm PbSe NCs. [17]

The research on supercrystals started already several decades ago in the context
of colloidal crystals on micron sized silica or polystyrene spheres [11]. In recent
years, groups have succeeded in fabricating one, two or three dimensional arrange-
ments of e.g. magnetic or semiconducting NPs using various self-organization tech-
niques [3,4,8,12]. The properties of these systems are determined both by the
individual NPs and the interactions among them. Provided the composition and in-
teraction of different NPs can be tuned, interesting behavior and novel applications
may emerge [18].

But also from a fundamental point of view, such supercrystals of interacting mag-
netic nanoparticles are a fascinating subject. In particular NPs which consist of one
magnetic single-domain per NP represent an interesting model system. The ques-
tion whether systems with long-range interaction such as dipole-dipole interactions
can exhibit long-range ordered ground states is not comprehensively answered in
more than two dimensions. In fact, even the Mermin-Wagner theorem, answering
the question for systems of up to two dimensions with a general ‘no’, has been chal-
lenged by e.g. Kosterlitz-Thouless transitions, via a divergence of the correlation
length [9]. Albeit NP supercrystals have much larger length scales than usually
considered in many-body theory, mesoscopic systems do provide very similar ques-
tions. The different length-scale and the dominance of the dipole-dipole interaction
between the NP macromoments potentially leads to new possibilities of magnetic
ordering within physical systems. In any case, the NP magnetic dipole-moments are

subject to frustrated interactions.

2. THEORY OF MAGNETISM 2

2 Theory of Magnetism

Theoretical expectations of magnetic measurements will be the cornerstone of this

chapter.

One can classify the magnetic phenomena into three main groups:
e Diamagnetism
e Paramagnetism

— Localized Moments

— Itinerant Moments
e Collective Magnetism

— Ferromagnetism
— Ferrimagnetism

— Antiferromagnetism

2.1 Origin of Magnetism in Solid State Matter
2.1.1 Bohr-van Leeuwen theorem

Often, para- and diamagnetism are explained as an induction effect. It implies a
theory of moving charges which can be treated within a classical atom model, and
vector analysis as the significant mathematical language to understand magnetism.
The general idea might be the following: The Larmor precession of the orbital
angular momentum around the direction of the magnetic field induces an extra
moment which according to Lenz’s law is directed oppositely to the orientation of
the applied field. Trying to rigorously calculate any atomic magnetic moment in
this setting will inevitably lead to a contradiction as we will see now:

Let a solid consist of identical ions and let it possess translational symmetry. We

can then write the magnetization as

N
M = 7<m>

where m is the magnetic moment of the individual ion. N is the number of ions in
the volume V. If magnetism is a classical phenomenon, then each ion in our solid
must offer a classical Hamiltonian function H and we have the following relations

from statistical mechanics:

2. THEORY OF MAGNETISM 3

=—-Vg,H (2.1)
/d?’NE /d?’Nepme (2.2)
Z = I thNe /d3N€x/d3Nep e PH (2.3)

where

e 7 is the classical partition function
e N, is the number of electrons per ion
e 3= (kgT)™ ! is the inverse temperature

. m [d3Nex [d3Nep = [[dv is the normalized integration over the complete
r

phase space spanned by N, electrons (3 dimensions for both position and

momentum variables).

(m) (B)%//dwmm - __//dve 1, H

:—fVBOe BH

6 ~V / / dyePH & VBO (2.4)

We therefore need to investigate the field dependence of the classical partition func-

We arrive at

tion. Noting that any magnetic field By can be written as By = V x A, we rewrite

our Hamilton function as

1 3 Ne
%ZZ o+ €eA,) —I—Hint(rl)"' ,TN,)

a=1 i=1
where Hj, is the term representing the electron interactions. Thereby, we separated

the position- and momentum dependent parts of the total Hamilton function which

2. THEORY OF MAGNETISM 4

lets the partition function take the form

1

7= Now.

/ dgNEJI 6_6Hint(r17"' 7rN€) X

e

x /d?’Nep exp (—% > i((pi)a + eAa)2>

a=1 i=1

Since the I'p integration lets every momentum coordinate run from —oo to oo, the
canonical momentum

pi :=Ppi +eA

can be transformed linearly with arbitrary but constant A, without changing the
integration limits. Since any applied magnetic field By would hence not alter the

p-integration, we have

VaZ=Vp,Z=0 (2.5)

24)

= (m) =0 (2.6)

for any magnetic field.

We have therefore shown rigorously that, classically, there is no magnetism.

There cannot be any discussion whether magnetism does exit, therefore we have
shown that it must be an effect only understandable quantum mechanically. This

is the famous Bohr-van Leeuwen theorem:

Bohr-van Leeuwen Theorem

Magnetism is a quantum mechanical effect. Strictly classically, there cannot

be either dia-, para- or collective magnetism

For the purposes of this thesis however, this does not mean that we will proceed
to argue strictly quantum mechanically.

We can continue using classical or semiclassical models and calculations.

2.2 Magnetic Interactions

Different types of magnetic interactions are discussed in this section. We focus on
interactions that are present in systems composed of magnetic moments of constant

length.

2. THEORY OF MAGNETISM)

2.2.1 Dipole-Dipole Interaction

The first interaction which might be expected to play a role is the magnetic dipolar
interaction. Two magnetic dipoles m; and my separated by r have an energy equal
to

3
Egip = gy m; - msy — 7"_2<m1 -r)(my - r)
- 4?;3 m; - my — 3(m; - #)(m, -)]
with r= r
”

which therefore depends on their separation and their degree of mutual alignment.
If the magnetic moments in question are single electrons and we take distances at
atomic length scales, the energies were equivalent to roughly 1K in temperature.
Therefore, properties of condensed matter are conventionally not overly dependent
on the dipole-dipole interaction except for those ordering at mK temperatures. On
the other hand, this is a long-range interaction where the complete sample needs to
be taken into account. For example, it is conceivable that the specific length scale of
this interaction influences the emergence of magnetic domains or other phenomena

of magnetic ordering.

2.2.2 Exchange Interaction

In atomic crystals or any conventional magnetic system, exchange interactions are
usually responsible for long-range magnetic order. They are purely quantum me-
chanical in nature, but the underlying principle is electrostatics.
Consider a simple model with just two electrons which have spatial coordinates r;
and ry respectively. The wave function for the joint state can be written as a prod-
uct of single electron states, so that if the first electron is in state 1,(r;) and the
second electron is in state ,(rz2), then the joint wave function is in 9, (1) (rs2).
Since electrons are fermions, the true wave function must be antisymmetric with
respect to particle exchange. So the spin part of the wave function must either be
an antisymmetric singlet state xs (S = 0) in the case of a symmetric spatial state or
a symmetric triplet state yr (S = 1) in the case of an antisymmetric spatial state.
Therefore we can write the wave function for the singlet case Wg and the triplet case

Ut as

W = = [Vl a(r) + Va2l xs
Ty = 12 Wa(r1)un(ra) — da(ra)s(r1)] X

2. THEORY OF MAGNETISM 6

where both the spatial and spin parts of the wave function are included. If we

assume the spin parts to be normalized, the energies of the two possible states are
Ey = /\DgH\I/S drid3ry
Er = /‘Ili}'H‘IJT &Erid®ry
= FEs — Ep = 2/1/)2(1‘1)%‘(rg)Hwa(rg)wb(rl) (2.7)
We can construct a new effective Hamiltonian by using

S = 0 singlet

[02]
i
0]
]
I
L LN [V

S =1 triplet
The new Hamiltonian becomes
, 1
H = Z(ES +3E7) — (Es — Et) S; - Sq

The interesting part is the non-constant spin dependent term. Defining the ezchange

constant J by

J = @ Y /¢:(r1)¢;(r2)H¢a(r2)¢b(rl)

we define a new effective Hamiltonian
HPm— _2TS, - S, (2.8)

If J >0, Es > Et and the triplet state S = 1 is favoured. If J < 0, Er > Eg and
the singlet state S = 0 is favoured.

The above derivation only holds for exactly 2 electrons and the generalization to
many-body systems is not trivial. Nevertheless, the Hamiltonian (2.8) motivates

the Heisenberg model
ij

with the factor 2 omitted to prevent counting pairs twice.

2.2.3 Anisotropic Exchange or Dzyaloshinky-Moriya Interaction

This interaction originates from spin-orbit interactions within one magnetic ion. It

can be understood as the exchange interaction between the excited state of one ion

2. THEORY OF MAGNETISM 7

and the ground state of the other.
HDM =D (Sl X SQ) (210)

The vector D vanishes when the crystal field has an inversion symmetry with respect
to the centre between the two magnetic ions. However, in general D may not vanish
and then will lie parallel or perpendicular to the line connecting the two spins,
depending on the symmetry. The form of the interaction is such that it tries to force
S; and S, to be at right angles in a plane perpendicular to the vector D in such
an orientation as to ensure that the energy is negative. Its effect is therefore very
often to cant the spins by a small angle. It commonly occurs in antiferromagnetics
and results in a small ferromagnetic component of the moments which is produced
perpendicular to the spin axis of the antiferromagnet. The effect is known as weak

ferromagnetism. It is found in, for example, a-FesOs.

2.3 Types of Magnetic Behavior

We discuss magnetic behavior via the classification of magnetic materials. Specif-
ically, we utilize the characteristic dependence of the magnetic susceptibility y on

temperature, applied magnetic field and history:

2.3.1 Diamagnetism

Diamagnetism is defined by

Y3 <0 3 = const.
The classical picture of diamagnetism being an induction effect has already been
discussed in 2.1.1. Without discussing proper quantum mechanical treatments like
Landau-Diamagnetism in crystals, we focus on phenomenology:
Diamagnetism is a property displayed by all materials. However, we only speak
of diamagnetism if no other form of magnetism (para- or collective magnetism) is
present since it will in general be the weaker effect.

Examples include
e Organic molecules
e Few metals like bismut, zinc, mercury
e Nonmetals like sulfur, iodine, silicon

o Meissner-Ochsenfeld effect: Superconductors at T' < T, are perfect diamag-

nets: Y4t = —1

2. THEORY OF MAGNETISM 8

As noted, in the presence of e.g. permanent magnetic dipoles, diamagnetism will be

a negligible effect and it will not feature throughout this thesis.

2.3.2 Paramagnetism

Typically, one has
Xpara >0 Xpara — Xpara(T)

Essentially, paramagnetism is connected to the existence of permanent magnetic
dipoles which try to, more or less, orient themselves along an applied auxiliary field

H. This competes with thermal motion, hence the temperature dependence of yP*.

In materials, there are two possible origins of such permanent dipoles:
e Localized moments — Langevin paramagnetism
e Itinerant moments (~ quasi-free conduction electrons) — Pauli paramagnetism

Generally, one has

XLangevm > XPaull ~ const.

and " temperature independent to a first order approximation.
Therefore, only Langevin paramagnetism will feature in this thesis, this however

extensively.

2.3.3 Collective Magnetism

The susceptibility in this case is in general a complicated function of the applied

field, temperature and the magnetic history of the sample:
coll. __ . coll. :
X = x"(T, H, history)

Collective magnetism arises due to interactions between the permanent magnetic
dipoles. Again, these permanent magnetic dipoles can be either localized or itiner-
ant

In the context of more standard solid state physics, the interaction in question is
the quantum mechanical exchange interaction which does not have a classical anal-
ogy. As we will discuss later, this view is not sufficient in case of supercrystals
comprised of magnetic nanoparticles. Instead, the origin for collective magnetism in
our systems, will be the magnetic dipole-dipole interaction between the permanent
magnetic moments of the nanoparticles.

Nevertheless, we recall other characteristic features of standard systems with col-
lective magnetism: The exchange interaction leads to a critical temperature T

below which there exists a spontaneous magnetization, i.e. a spontaneous ordering

2. THEORY OF MAGNETISM 9

of dipoles that is not forced externally.
Collective magnetism due to exchange interaction is conventionally divided into

three sub-classes:
e Ferromagnetism
e Ferrimagnetism

e Antiferromagnetism

Above the critical temperature T, collective magnetic transitions into paramag-
netism with the characteristic temperature dependence of the inverse susceptibility
sketched in figure 2

Figure 2: Temperature dependence of the inverse magnetic susceptibility accord-
ing to the Curie-Weiss law. Left: Paramagnetism, middle: Ferromagnetism, right:
Antiferromagnetism

2.3.3.1 Ferromagnetism

In this case the critical temperature is called the Curie temperature:
T =1T¢

For temperatures 0 < T' < T the permanent moments have a preferential orienta-

tion. At T' = 0, all moments are oriented parallel to each other although poHex = 0.

2.3.3.2 Ferrimagnetism
In this case the lattice of the system is divided into at least two sublattices A, B

with different absolute values of sublattice magnetizations M 4, Mg such that
M, # Mg and My+Mpg#0 for T <T¢

2.3.3.3 Antiferromagnetism

Here, the criticial temperature is called Néel temperature:

" =TN

2. THEORY OF MAGNETISM 10

It is a special case of ferrimagnetism:
|MA|:|MB|7AO and MA+MB:0 for T<TC

The total magnetization M = M 4 + Mp is therefore always zero in the absence of

externally applied fields.

2.3.4 Geometrically Frustrated Systems and Spin Glasses

In realistic systems, more than one interaction or energy contribution determines
the total energy of the system. The subsequent competition between interactions
can lead to complex magnetic behavior that is not trivially following from the con-
stituent interactions.

Even before considering the competition between independent interactions, 2-particle
interactions in realistic (super)crystal structures will induce geometric frustration:
In many lattices it is not possible to satisfy all the interactions in the system to find
the ground state. Often this leads to the absence of a single unique ground state
but a variety of low energy states.

We refer to this property that the system has no good way to choose which low
energy configuration it must adopt as frustration. It is important to note that this
phenomenon emerges with pretty much any magnetic interaction, including nearest-

neighbour interactions such as the antiferromagnetic interaction:

Figure 3: Kagome lattice as an example for a 2D geometry which leads to a frustrated
system.

On a square lattice it is easily possible to satisfy the requirement that nearest-
neighbour spins must be antiparallel. However on a triangular lattice, things differ:

If two adjacent spins are placed antiparallel, the third spin has no good choice

2. THEORY OF MAGNETISM 11

Figure 4: The face-centered-cubic (fec) crystal structure also accounts for geometric
frustration and will be heavily featured in future chapters. [7]

between aligning with one or the other spin. Locally, there exists no unique lowest-
energy state, but only two low-energy states that are equally unsatisfied.

This minimal frustrated system already shows metastability, hysteresis effects and
time-dependent relaxation towards equilibrium, all of which are phenomena absent
from the square lattice.

This example relies heavily on the fact that we considered models with low dimen-
sionality, i.e. dim < 3. In three dimensions, frustration would not emerge from
a triangular of e.g. Kagome lattice, but from a pyrochlore structure in which the
magnetic ions occupy a lattice of corner sharing tetrahedra. Here, there is no spin
order observable for any temperature, only a classical groundstate with macroscopic

degeneracy, sometimes described as cooperative paramagnetism.

We can define a spin glass as a random, magnetic system with mixed interactions
characterized by a random yet cooperative freezing of spins at a well defined freezing
temperature Ty below which a metastable frozen state appears without the usual
magnetic long-range ordering.

The decisive term in this definition is random. Different types of randomness can

be imagined to transform a non-spin glass into a spin glass:
e Site-randomness
e Bond-randomness

Equally important is the presence of competing interactions as previously described.
Contributing features include magnetic anisotropy e.g. in amorphous magnets where

a random distribution of the easy-axes implies random anisotropy.

3. METHODS 12

3 Methods

3.1 Why Do Simulations in Physics

In many cases, models of ideal systems can be explored by theoretical methods,
but they do not offer any physical realization so that no comparison to experiment
is available. In many other cases, experimental realizations are too complex to be
modelled by theoretical methods. In this situation the only possible test for an ap-
proximate theoretical solution is to compare with ’data’ generated from a computer
simulation.

Nuclear reactor meltdowns are a dramatic example: Although we want to know
what the results of such events would be, we do not want to carry out experiments.
There are also real physical systems which are sufficiently complex that they are not
presently amenable to theoretical treatment. An example is the problem of under-
standing the specific behaviour of a system with many competing interactions and
which is undergoing a phase transition. A model Hamiltonian/Hamilton function
which is believed to contain all the essential features of the physics may be proposed,
and its properties may then be determined from simulations. If the simulation dis-
agrees with experiment, then a new Hamiltonian must be found. An important
advantage of simulations is that different physical effects which are simultaneously
present in real systems may be isolated and, through separate consideration by sim-
ulation, may provide a much better understanding.

The Monte Carlo method has had a considerable history in physics. As far back
as 1949 a review of the use of Monte-Carlo simulations using 'modern computing
machines’ was presented by Metropolis and Ulam [15]. In addition to giving exam-
ples they also emphasized the advantages of the method. Of course, in the following
decades the kinds of problems they discussed could be treated with far greater so-
phistication that was possible in the first half of the twentieth century. Nowadays,
Monte-Carlo simulation methods have spread into different disciplines that have

barely any connection to physics.

3.2 Categories of Monte-Carlo Simulations

A brief overview about Monte-Carlo methods is given. I present additional details
about Markov-Chain methods because the research which is presented in this thesis
was exclusively done via the Metropolis-Algorithm, the most famous representative
of Markov-Chain Monte-Carlo methods.

3. METHODS 13

3.2.1 Monte Carlo in Statistical Physics

Monte-Carlo methods are used throughout many physical and non-physical science
branches. In physics, especially statistical mechanics, the following branches are of

special interest:

e Monte-Carlo integration
e Importance sampling techniques, specifically Markov Chain methods

— Local algorithms

— Non-local algorithms

3.2.2 Markov Chain methods

The concept of Markov chains is central to those Monte-Carlo methods that are the
most prominent in physics, especially solid state physics [10].

We define a stochastic process at discrete times labeled consecutively 1,9, 3. ..
for a system with a finite set of possible states 5,553,553, ..., and we denote by X;
the state the system is in a time t. We consider the conditional probability that
X, =5

n n’

n—1

P (th - Sin|th71 - Sinfﬂ Xt - Sin72, . e XtQ - SZ1)

given that at the preceding time the system state X; , was in state 5; etc.

n—17

Such a process is called a Markov process if this conditional probability is in fact

independent of all states but the immediate predecessor, i.e.
P (th = Sin|th—l = Sin—l)

The corresponding sequence of states {X;} is called a Markov chain, and the above
conditional probability can be interpreted as the transition probability to move from

the state i to state j,
Wij = W(Sz — SJ) = P(th — Sj|th,1 — S@)

We further require that
Wy>0 > Wi=1
J

as usual for transition probabilities. We may then construct the total probability
P(X;, = S;) that at time t,, the system is in state S; as

P(Xy, = 5;) = P(Xy, = 51X, , = 5) - P(X, ., = 5))
= WijP(th—l = Sl)

3. METHODS 14

The master equation conserves the change of this probability with time ¢ (treating
time as a continuous rather than discrete variable and writing then P(X,, = S;) =:

P(5;,1)) aP(5, 1)

= Y WRP(S;. 1) + Y WiP (S 1) (31

Equation (3.1) can be considered as a ’continuity equation’: The total probability

is conserved at all times because

Y P(S;t)=1 VteR
J

Furthermore, all probability of a state ¢ that is "lost’ by transition to state j is gained
in the probability of that state, and vice versa.
The Master equation therefore describes the balance of gain and loss processes:

The processes

Sj — Si1
Sj — Siz
Sj — SZ'?)

are mutually exclusive. Hence the total probability for a move away from the state
j is simply the sum), W;; P(S;,1).
We stress that equation (3.1) brings out the basic property of Markov processes:

Basic Property of Markov Processes

The knowledge of the state at time ¢ completely determines the future time

evolution.

The main significance is that the importance sampling Monte Carlo process that
will feature throughout this thesis via the Metropolis algorithm, can be interpreted
as a Markov process if the following is true about the transition probabilities W;;:

From now on we require that the transition probabilities satisfy the principle of

detailed balance with the equilibrium probability P, (.S;):
WjiPeq(S;) = WijFeq(S:) (3.2)

which will be fundamental for the Metropolis algorithm presented in section 3.3.
We already note that (3.2) implies

dPe(S;,t)

teR
7 0 Vit €

3. METHODS 15

when put into (3.1) because all gain and loss terms cancel exactly. This is elementary
for what one would understand by the term ’equilibrium’ in context of a system

transitioning between states [10].

3.3 The Metropolis Algorithm

From now on, we are only concerned with Monte-Carlo techniques as applied in
statistical physics, specifically on-lattice models of systems offering permanent mag-
netic dipoles that display collective magnetism due to interactions.

In order to illustrate our discussion, we consider the Ising model.

The simple Ising model in zero applied field consists of spins which are confined to
the sites of a lattice and which may have only the values +1 or —1. These spins
interact with their nearest neighbors on the lattice with interaction constant .J; the

Hamiltonian for this model is given by

i,J

The Ising model has been solved exactly in one and two dimensions so that Monte-
Carlo results in these cases can be directly compared to theoretical expectations.
Next I present the classic Metropolis method.

Configurations are generated from a previous state using a transition probability
which depends on the energy difference between the initial and final states. The
sequence of states produced follows a time-ordered path, but the time in this case
is referred to as 'Monte Carlo time’. For relaxation models, such as we will assume
are viable models for magnetization curves of nanoparticle supercrystals, the time-

dependent behavior is described by a master equation like (3.1):

OP,(t)
ot

= — Z [Pn(t)Wn—nn - Pm(t)Wm—m] (33)

n#m
where P,(t) is the probability of the system being in state n at time ¢, and W,,_,,,
is the transition rate for the process n — m. We again identify the detailed balance
from (3.2)
P,(t) Wy = P (t)Wion

as a simple constraint that guarantees an equilibrium being realized as

8Pn (t) equil.

0
ot

The probability of the nth state occurring in a classical system is given by

Pu(t) = %exp <_ ki”T) (3.4)

3. METHODS 16

where 7 is the partition function. Outside of very simple cases like the Ising model
discussed here, this expression is very difficult to evaluate, mostly because the par-
tition function, i.e. knowledge about every possible state and its energy, is rarely
ever known. However, one can avoid this difficulty by generating a Markov chain of
states, i.e. generate each new state directly from the preceding state. If we produce
the nth state from the mth state, the relative probability is the ratio of the individ-
ual probabilities and the denominator, the largely unknown Z cancels. As a result,

only the energy difference between the two states is needed, e.g.
AFE =F, - E,,

The previous idea is possibly the most significant reason why Markov-Chain methods
have been so successful in statistical physics because one can circumvent the arduous
and ultimately not as interesting task of evaluating the partition function of a large,
interacting system.

For the transition rates, any choice that satisfies detailed balance (3.2) is acceptable’.

The first choice of rate which was used in statistical physics is the Metropolis form
[15]

—1
T, exp(—AE/kgT) AFE >0
W _ |t es-anm .
. AE <0
where 7y is the time required to attempt a spin-flip. The way the Metropolis al-
gorithm is implemented can be described by a simple recipe, illustrated in figure

5

Metropolis importance sampling Monte-Carlo scheme (3.6)

1. Choose an initial state
2. Choose a site i

3. Calculate the energy change AFE which results if the spin at site i is
flipped

4. Generate a random number 7 such that 0 <r < 1
5. If r < exp(—AFE/kgT), flip the spin

6. Go to the next site and go to 3.

From the derivation from the Master equation (3.1), detailed balance is sufficient but not
necessary. It turns out however, that in practice only transition rates that do satisfy detailed
balance are regularly used.

3. METHODS 17

Figure 5: Metropolis Algorithm recipe. The red part is done once in the beginning
of a simulation. the yellow part is done in loops, the number of which linearly
determines the computation effort and time. The green part is done once after the
yellow part has been iterated sufficiently, meaning that one assumes an equilibrium
has been reached.

After a certain number of spins have been considered, the properties of the system
are determined and added to the statistical average which is being kept. Note that
the random number r must be chosen uniformly in the interval [0, 1], and successive
random numbers should be uncorrelated.

Obviously, this algorithm can be easily modified for use on different on-site models
where the total energy of any given configuration can be calculated. Both the re-
quired high quality of random numbers and the precise nature of ’flipping’ in the
context of the more involved model we consider in the actual research part of this
thesis will be thoroughly discussed in section 3.4.

"Monte-Carlo time’ is usually measured in terms of Monte Carlo steps per site (MC-
S/site) which corresponds to the consideration of every spin in the system once.
With the algorithm from figure 5 states are generated with a probability propor-
tional to (3.4) once the number of states is sufficiently large such that any initial
transients from the early stages of the iterative loop are negligible. Then the desired

averages

(A) =) PA,

of variables or observables A simply become arithmetic averages over the entire sam-

3. METHODS 18

ple of states which is kept. Note that if an attempted spin-flip is rejected, the old
state is counted again for the averaging.

We reiterate that the hallmark of the Metropolis algorithm is the specific choice of
transition rates given in (3.5). Additional transitions can be imagined like Parallel
Tempering which are used in order to accelerate convergence speeds of equilibrium
averages for observables or the spin-configuration itself. Also, the choice how to
flip spins or, more generally, choose a new configuration for consideration during a
subsequent MCS, can be heavily altered compared to figure 5 where one just picks
a site randomly.

Both types of modifications lead to algorithms that are not strictly Metropolis algo-
rithms, but are still Markov-chain methods if they offer constraints ensuring possible

equilibrium, most frequently via enforcing detailed balance [10].

3.4 Quality of Pseudo-random Numbers Picked on a 2-Sphere

The Metropolis algorithm as described in section 3.3 has been used extensively
for Ising models where spins are restricted to exactly two states, up and down.
In particular, this implies that it is clear how a local update to achieve a new
configuration has to be carried out: Flipping one site to the other state.

In a Heisenberg-like model where each site carries a (super)spin that can assume
every position on the 2 dimensional surface of a 3D unit sphere, it is far less clear
how an update should be performed. Broadly speaking, 2 types of local updates in

a Heisenberg-like on-lattice spin model are possible:

e The possible new states are uniformly distributed on the entire sphere without

any bias from position of the original state.

e There is a probabilistic bias which part of the sphere is reachable within one

Monte Carlo update.

In this thesis, we will exclusively utilize the second type of spin update. The imple-

mentation is depicted in figure 6:

3. METHODS 19

Figure 6: How spins are transformed or 'flipped’ during one Monte Carlo step. A
random vector dr (red) is obtained via the Marsaglia method and added to the
original r (black). The result is normalized, yielding r’ (blue). In the end, one has
both r and r’ within a spherical shell with radius 1 (green).

Incremental Transformation

1. Generate an unbiased, random vector dr that is uniformly distributed
on a 3D unit sphere and stretch it if necessary with a scalar d,, such
that dr = d,,, dr

2. Add this random shift vector to the original r

3. Normalize the result so that r’ is a unit vector.

The generation of a uniform distribution of random vectors on a spherical shell is
discussed in section 3.4.1, we can assume for now that we have access to such random
vectors of sufficient quality.

This construction ensures that as long as d,, is not too large, r’ is biased towards

not deviating too much from r. For example:
dn<2 = 1 #-r Vdr

which means that not every orientation is obtainable within one MCS. The d,,

2 we choose

dependence of the r’ distribution is discussed in 3.4.2. In most cases
d,, = 1 which means that within 1 MCS there is a heavy bias for new orientations
towards the original position. Figuratively, if the original position r represents the
north pole, then r’ is mathematically confined in the northern hemisphere while the

equator is only asymptotically obtainable.

2 Justification and exemptions are given when needed

3. METHODS 20

3.4.1 Uniformly Distributed Unit Vectors on a (d — 1)-Sphere

For arbitrary dimensions d > 1 one can generate uniformly distributed vectors on

the surface of the corresponding (d — 1)-sphere:
e for d =1: set {—1,1} as boundary of the interval [—1,1]

e for d = 2: full circle (as boundary, not area) with radius 1 and origin (0,0) in

cartesian coordinates

e for d = 3: spherical shell of the conventional 3-sphere with radius 1 and origin

(0,0,0) in cartesian coordinates

We can always do this with d random variables which have a Gaussian distribution

in an arbitrary interval:

Iy
. 1 1.2
Gaussian (1,22, ...,2q) = 2 2 2
Vat+ag+ o+
Zq

This d-vector will be uniformly distributed on the surface of a d-sphere.

For the special case d = 3 that we are interested in however, there is a more el-

egant method by Marsaglia [13] which requires only 2 instead of 3 random numbers:

7

Marsaglia Method

1. Pick a and b from independent uniform distributions on (—1,1)
2. Reject points for which a? 4+ 6% > 1

3. From the remaining points

o r=2av1—a?— b?
o y=2bV1—a?—b?

o 2=1-—2(a®+b%)

x
The vectors | y | then have a uniform distribution on the surface of a unit sphere

z
as needed in our spin-update scheme.

3. METHODS 21

3.4.2 Examples of Vector Distribution

Next we demonstrate the influence of the length of the test vector d,,, onto the vector

distribution of a modified vector after a certain number of steps according to our

recipe in figure 6.

The following graphs correspond to this scenario:

1.

2.

10® unit vectors are initialized identically with orientation (1,0, 0)
Choose d,, = 2.
With independent Marsaglia random vectors, perform the transformation.

e once — graphs in figures 7, 8, 9.

e 1000 times — graphs in figures 10, 11, 12.

. Record the component distribution of the resulting vectors after all transfor-

mations are done.

. Fill histograms with bins of width 0.002.

component distribution
7000

6000 -
5000 -
4000 +
s
3000 -
2000 -
1000 -

-1 —0.6 -0.2 0.2 0.6 1
X

Figure 7: Distribution of x-components after 1 loop

3. METHODS 22

component distribution

3500
3000 -

2500 +

2000 +
=

1500 -

1000 -

200 -

-1 —0.6 —0.2 0.2 0.6 1
y

Figure 8: Distribution of y-components after 1 loop

component distribution

3500
3000 -

2500 -

2000 -
=

1500 -

1000 -

200 -

-1 —0.6 —0.2 0.2 0.6 1
z

Figure 9: Distribution of z-components after 1 loop

We observe that the x-component covers the complete interval (—1,1), but the
distribution is skewed in favor of the original orientation x — 1. The y- and z-
components follow identical distributions, centered around 0. Note that the inte-
grated y- and z-components are less than the x-component because one 'flip’ cannot

undo the non-uniform start distribution around (1,0,0).

3. METHODS 23

component distribution

3500
3000 -
2500 +
2000 +
=
1500 -
1000 -
200 -

-1 —0.6 —0.2 0.2 0.6 1

X

Figure 10: Distribution of x-components after 1000 loops

component distribution
3500

3000 -

2500 -

2000 -
=

1500 -

1000 -

200 -

-1 —0.6 —0.2 0.2 0.6 1
y

Figure 11: Distribution of y-components after 1000 loops

3. METHODS 24

component distribution
3500

3000 -

2500 +

2000 +
=

1500 -

1000 -

200 -

-1 —0.6 —0.2 0.2 0.6 1

Z

Figure 12: Distribution of z-components after 1000 loops

In this second set of graphs, we see that a sufficient number of transformation
steps produces a distribution that is indistinguishable from a uniform distribution.
3.4.3 MC simulations and Ergodicity

We give a definition of ergodicity in the language of Monte-Carlo simulations on

realistic machines with finite precision:

Definition: Ergodicity
In the context of a MC simulation, ergodicity means that the implementation

of the algorithm ensures that all points in the simulated phase space of the

system are eventually visited after a finite number of simulation steps.

Because of the finite nature of the precision of the machine, the phase space is also
finite, albeit quite large. This is a subtle difference to the original definition of er-
godicity in an uncountable phase space where each point merely is arbitrarily closely
matched after sufficient, but also finite time.

In this thesis, we are interested in measurements taken at thermal equilibrium and
therefore ergodicity is generally assumed on the level of microstates. This assump-

tion is also referred to as ergodic hypothesis

Ergodic Hypothesis
Thermodynamic systems evolve in a way that all energetically allowed regions
in phase space are covered. The time that the trajectory stays in a particular

region of phase space is proportional to the phase-space volume of this region.

3. METHODS 25

The consequence of the above is that a necessary condition for our implementations
is that one must choose a combination of d,, and number of MCS that allows any
microstate evolving to any other microstate. Additionally, on average there must
not be any bias left in favor of phase space regions ’closer’ to the original region.
The last point implies that a distribution like in figure 10 is fine while a distribution
like figure 7 is in violation of the ergodic hypothesis and thus cannot correspond to

a system at thermal equilibrium.

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 26

4 Ferromagnetic Nanoparticles and Supercrystals

in the Non-interacting Limit

The main goal of this thesis is to further the knowledge of dipolar magnetic sys-
tems. Because the interactions are long-range, a theoretical treatment is presently
impossible. Comparing the simulation results with experiments will at least provide
answers to questions like 'Do we know which energies are important’ and ’Is the

single-domain approximation valid’?

4.1 Theory I

Throughout section 4 we will not need to consider any interactions between the
magnetic moments of the nanoparticles. The physical properties we simulate here
are therefore comparatively easy to treat rigorously. This will be discussed next.

4.1.1 Stoner-Wohlfarth Model

Two energies will be considered in this chapter.

e The magnetostatic energy of one nanoparticle magnetic moment (’superspin’)
m in an external magnetic field
E,=—m-B=—-mDB cos(f)

e The magnetocrystalline anisotropy energy E, = K V sin®(9)

which is quantified according to the Stoner-Wohlfarth model for uniaxial anisotropy

constants.

Figure 13: Geometry of the uniaxial Stoner-Wohlfarth model

E = E(0,6) = —mB cos(0) + KV sin?(6)

or, in order to use the experimentally more common applied field strength H:

E = —pgHmcos(#) + KV sin®(6)

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 27

4.1.2 TIsotropic Paramagnet

First, we will ignore the second energy and try to recover the both analytically and
experimentally well-known result for the magnetization curve of such a paramagnet
in an external field. In nature, the vanishing of any magnetocrystalline anisotropy is
not usual. The best analogy would be a material where the saturation magnetization
is rather high compared to the anisotropy constant.

We define the total energy of the system being given as
EFE=-m-B

where the modulus |m|=m is constant and B = Be,. When calculating the
expectation value of

m, = mcosf

in the canonical ensemble, we therefore have to consider all possible orientations of

m on S?%, the surface of the 3-sphere, according to:

1 m-B 9
(mz>—2/mz exp(kBT) dr
82

-B
with 7 = /exp <IZBT) d*r

52

k5T

L;frexp <M> sin 6 cos 6 df

p-Symmetry = (m,) =m

[exp (%) sin 6 d
0

where we used standard spherical coordinates (r, 6, ¢) and z = r cos§. Defining:

mB 0
xi=— v = COos
kgT
we get the easily solvable
(m.) fjl ve™dv (4.1)
mz = m ——-—- .
f_ll e dv

The magnetic moments are indistinguishable. We therefore get for the total mag-
netization M if n is the number density of magnetic moments, i.e. the number of

magnetic moments, each with modulus m, per Volume

M(T, B) = n{m=) = Mo I (Z—?) (42)

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 28

with the solution of (4.1), the Langevin function L

1 1

Liw) = tanh(z) « 3 +0@)

and the saturation magnetization, read maximum achievable magnetization
Mpax =nm

For small fields B, the magnetic susceptibility can be written as

M oM npgm?

XTH ™ B T 3ksT

(4.3)

In particular, we get y o< 1/T" which is known as Curie’s law and is an important
hallmark of paramagnetic systems or their analogies. We can rewrite the Curie law

- C
= —_ 4.4
X T ()

with the Curie constant C' which we here expect to be

npom?

3kp

C= (4.5)

or, in case that we have particles of finite volume V},,,+ and saturation magnetization

per particle volume My :

Mmax =n Ms ‘/part.

_ n,LLO(Mszart.)2
3kp

C (4.6)

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 29

1 -
.

.

.

M/Mmax

4 2 0 9 4
x=mB/kgT

Figure 14: Langevin function and small-field approximation

4.1.3 Potential Landscape with Non-vanishing Anisotropy

We will now also include the magnetocrystalline anisotropy energy. It is important
to note that we thereby have introduced at least two additional parameters: The
magnitude of the anisotropy constant K and the distribution of the easy axes k

where FE, is minimal if +m || k.

poH =0 "
3.0
-

0 T

g

)

O, N WHER OO 1 0 © =

Figure 15: Potential landscape in spherical coordinates without external field. En-
ergy in arbitrary units, following the given parameter set.

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 30

wH#0 "
%) 0
—T

0 T

6

Figure 16: Potential landscape in spherical coordinates with external field

Figures 15 and 16 show the potential landscape for one superspin orientation in

one setting of parameters in spherical coordinates (6 ¢):

e KV =5 mB =15 (arbitrary, non-physical units)

e B=

= o O
=
Il
|H
[an)

e E=E(0, p) = KV {1 —cos?[6(0,¢)]} —m B cosb)

e cos[0(0,)] = %(sin 6 cos p — cos)
Figures 17 and 18 show profiles for specific choices of ¢. Note that any external field

breaks the m-periodicity in 6 into a 2m-periodicity.

0
HOH#Oiﬂonoi

Figure 17: Profile of potential in figures 15, 16 for ¢ = 0

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE

NON-INTERACTING LIMIT 31
[/// \\\ // \\\7
\ / \
I / \ / / |
—T 0 s
0
poH #0 poH =0 ——

Figure 18: Profile of potential in figures 15, 16 for ¢ = 37/4

4.1.4 ZFC-FC curves

A very common experimental procedure is recording the Zero-field-cooled (ZFC)
and Field-cooling (FC) curves. The sample undergoes (at least partly) the following
path and typically shows a magnetization curve depending on T as given in figure
19.

Figure 19: Idealized M (T) curve with arbitrary units. Path 2, 3 are the ZFC, FC
branches

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 32

Standard Temperature-Sweep Magnetometric Experiment

1. The system is randomly generated at a sufficiently large starting tem-

perature with pyH = 0 and cooled down
2. System is heated with a constant poH applied (ZFC curve)
3. without change in the applied field, system is cooled again (FC curve)

4. at H =0, is now heated again

The fourth branch is most often omitted whereas the first may not have a name but
is still essential for branches 2 and 3.

One of the characteristic quantities of these magnetization curves is the Blocking
temperature Tp which can (roughly) be defined as the temperature where during
the ZFC-curve the magnetization reaches its maximum. The term blocking refers to
the fact that above T'g, the system is expected to behave like a paramagnet. Since
the involved magnetic moments are the nanoparticle superspins, this behavior is

refered to as Superparamagnetism.

4.1.5 ac-Susceptibility

In case of ideal monodisperse nanoparticles as we mostly consider them, the relax-

ation time of particles obeys the Néel formula

~ 9y 0 _ KV
TToexp | T =

with volume V' and uniaxial anisotropy constant K

we furthermore recall the static susceptibility (Langevin susceptibility) xo

(M.V)?
3kpT

Xo =
with saturation magnetization M. Then, for an applied ac field, one finds
M(t) = Hp (X' coswt + x" sinwt)

This implies that the magnetization will try to follow the applied field but would do
so with a phase lag.

We present two cases of an ac-susceptibility experiment:

1. Apply a saturating field onto the system and have it relax before applying the

sinusoidal H,,

—7 XSAT

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 33

2. Have the sample cooled in zero-field and then switch on H,.

— XZFC

In the first case, one assumes that after switching off the saturating field, any single

particle will undergo the following exponential decay (Néel relaxation)
M(t) = Moe "

This leads to the following real and imaginary part of the susceptibility in the model

of Néel relaxation after saturation [1]:

Xsar (W) = X L
SAT 0 1+ (w7’)2
” B wT

Xsar(w) = Xo 1+ (wr)?

The second case also exhibits Néel relaxation as basis for the magnetization dy-
namics. However, an important difference is that as soon as any field is applied to the
zero-field cooled sample, a net magnetization occurs instantaneously (as described
in 4.1.4) which then leads to a temperature-independent nonzero contribution to

XZFC-
The real-time result for the ZFC susceptibility x becomes [1]

M? KV
t)=—2 |14+ — (1—e¥/"
vare(t) = gp0 { Frpr 17)}
and a Fourier transformation yields
M? KV 1
’ =— 1 4.7

XZFC(W) 3K |: + kBT 1+ (WT)2:| ()

M2V wT

Tec(w) = 4.8
Only simulation results for the ZFC-ac susceptibility and the first setup will be
presented. In future research however, the alternative setup may be of particular
interest if samples with non-vanishing interactions are considered. Via eliminating

wt we obtain the following relationship between x/, x”:

(o-22) = () =

Vv

B

where

S
=

o
Il
Q
If

wo
=
o
~

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 34

14 +]
12 +
10 +

X/l

S N = O
T

Figure 20: Theoretical result for non-interacting Cole-Cole plot with ¢ = 16, r = 12

we obtain the formula of a semi-circle.
This means that the so-called Cole-Cole plot of real vs. imaginary part of y,. is a

perfect semi-circle in the first quadrant with its center coordinates
(¢, 0) =(a(2+0)/2, 0)

and radius

r=ao/2

Furthermore, both the anisotropy constant and saturation magnetization can be

extracted from such a circle plot

KV = 2%kpT —
cC—7T

kT
M, = 6%%

4.2 Simulation results

Throughout the following chapters, we will almost exclusively consider maghemite
(7-Fex03) [2] nanoparticles with uniformly distributed easy axes distribution and

realistic parameters as they are given in nature.

4.2.1 Isotropic Superparamagnetism

We study the limit of vanishing magnetocrystalline anisotropy for magnetic nanopar-
ticles and aim to recover the behavior of an isotropic paramagnet.
To this end, at constant temperatures several magnetic fields are applied to the

nanoparticles and the magnetization is recorded. Results are given in figure 21.

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 35

Data +
Langevin fit ——

Figure 21: Simulation results for the isotropic paramagnet and the fit of the Langevin
expectation

Fitting the theoretically expected Langevin function lets us recover the satura-
tion magnetization that we implemented perfectly. We have therefore shown that

our Monte-Carlo approach is in accordance with both theory and experiment.

4.2.2 ZFC-FC Curves

Several magnetometric simulations were carried out where appropriate temperature

intervals were sweeped in the presence of static magnetic fields.

4.2.2.1 High-Temperature Behavior
We are interested in the behavior of the ZFC curve well above Tz where theory
predicts the sample to behave like an isotropic paramagnet.

In particular, one expects the magnetization to follow a Curie-Weiss law

C

M(T) = Moo + 77—

with both M, = 0 and T¢x = 0 because anything other would indicate a non-
vanishing permanent magnetization after the zero-field cooling or (anti-)ferromagnetic
behavior. Also, the Curie constant C' can be compared to equation (4.6)

There is nothing in our model allowing for either. Specifically, any T # 0 would
indicate interactions among our superspins that would have to originate from errors

in the implementation or a poor quality in the utilized pseudo-RNG.

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 36

0.45
0.4
0.35
0.3
%
£ 0.25
= 0.2
=
0.15
0.1
0.05 }

0 I I I I I I
200 400 600 800 1000 1200 1400 1600
T[K]

Figure 22: Fitting Curie-Weiss law onto the high-temperature tail of the ZFC-curve
at poH = 2mT

We find that our computer experiment is in accordance with the expectation.

4.2.3 Influences on the Blocking Temperature

When doing a simulation, we still have to specify the following parameters:
e number of particles
e modulus of the test vector (see figure 6)

e number of Monte-Carlo steps (distributed among relaxation- and averaging-

loops) per measurement point
e magnitude and direction of the applied magnetic field poH
e distribution and magnitude of uniaxial anisotropy constants

Each of these parameters may influence the observed blocking temperature in our
computer experiment. (As it turns out, all of the above do so, at least in the case

of interacting, periodic systems which are discussed later).

4.2.3.1 Particle Number
Figure 23 shows simulations of the ZFC-curve for a different number of superspins

in the sample but otherwise same parameters:
e Test vector modulus |d,,| =1

e Monte-Carlo steps per point: 2000(elaxation) |]((averaging)

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 37

e applied field poH = 15 mT

0.7
0.6 -
0.5
0.4 -
0.3
0.2
0.1
0L
—0.1 ‘

0 50 100 150 200 250 300 350 400
TlK]

M/Mmax

+
L
%ﬁfﬁ#ﬁwwﬁﬁw ﬂﬁ#ﬂ + T
/ / 5% // / tﬂ’ + + +
W 000600000 e00N 0.0'o'o'mu.m L.? >

Figure 23: ZFC curves with varying number of particles

We see that for low N, the statistical quality of the simulation is poor since for
example no Tz can be extracted well. Other than that, we do not observe different
dynamics for greater N, but less noisy data. This is to be expected because we do

not consider any interaction between particles in this chapter.

4.2.3.2 Test Vector
Figure 24 shows simulations of the ZFC-curve for different test vectors moduli in

the sample but otherwise same parameters:
e number of magnetic moments: 1000
e Monte-Carlo steps per point: 2000 (elaxation) |] ()(averaging)

e applied field pyoH = 15 mT

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 38

0.7
0.6

T

|dom|

0.5 -
0.4 -
0.3 -

X+

M/Mmax

0.2 -

4> >O@O

0.1

T

OO0

—
OO0~ TTH=LONOH

0L

\ W]%_‘» R
RIS s ~,§ﬁ;‘\ . ﬁ
—0.1 : !

0 50 100 150 200 250 300 350 400
TlK]

Figure 24: ZFC curves with varying modulus of test vector |d,,|

This is probably the most involved parameter study in 4.2.2. The analysis of the
component distribution for the transformed vectors as demonstrated in 3.4.2 shows
for all d,, that were considered here, that after 2000 MCS the vectors would be
uniformly distributed in the absence of any potential. Yet we see dramatically dif-
ferent behaviour in terms of observed Tg. We see an increase of T for decreasing
d,,, which is intuitive because a smaller d,, corresponds to a slower dynamic of
any individual nanoparticle whereas the speed of temperature change is constant
in all 11 plots shown. Especially the non-linear behaviour around d,, = 1 however
is only plausible if we recall this geometric insight: For this test-vector length, a
jump ’from one pole to the equator’ is barely possible. This is precisely the distance
between the minima of the Stoner-Wohlfarth model. This means that for d,, > 1, a
jump from the energetically unfavourable equilibrium state to the favourable one is
possible (though still not very likely) within one Monte-Carlo update, which seems
counterintuitive for systems at low temperature. For smaller d,, where this quick
channel is completely forbidden, which leads to significantly slower dynamics.

The geometric significance of the test-vector length must thus be taken into account
when designing simulation parameters for other energy landscapes. A balance must
be found between the economy of wasting too much computation time in uneventful
parts of phase space (<> d,, chosen too low) and the phenomenon of spins leap-

frogging potential landscapes at low temperatures (< d,, chosen too big).

4.2.3.3 Number of Monte-Carlo Steps per Measurement
Figure 25 shows simulations of the ZFC-curve for different numbers of relaxation-
Monte-Carlo steps per measurement point but otherwise same parameters, including

averaging Monte-Carlo steps:

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 39

e number of magnetic moments: 1000
e Test vector modulus |d,,| =1
e Monte-Carlo averaging steps per point: 10

e applied field poH = 15 mT

0.7
0.6 -
0.5 -
0.4 -
0.3 -
0.2
01l ™™
0 ™
—0.1 \

0 50 100 150 200 250 300 350 400
TK]

M/Mmax

Figure 25: ZFC curves with varying number of Monte-Carlo steps (MCS)

In contrast to the previous case, the number of MCS at fixed test-vector length
is a well-behaving parameter. An increase of MCS yields lower Tz which is the
expected behaviour because any magnetic moment is allowed more time per tem-
perature step to find its equilibrium. However, an increase of MCS leads to a
convergent series of possible observations, precisely because our algorithm is based
on Markov-Chains.

In contrast to the previous example, the parameter change here does not constitute a
different physical system being studied. For higher MCS, we enhance the statistical

quality of our simulation.

4.2.3.4 Applied Magnetic Field
Figure 26 shows simulations of the ZFC-curve for different applied magnetic fields

after cooling in zero-field, but otherwise same parameters.
e number of magnetic moments: 1000
e Test vector modulus |d,,| =1

e Monte-Carlo steps per point: 2000(elaxation) 4 1((averaging)

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 40

0.7
0.6
0.5
, 04
= 0.3
~
= 02
0.1
0L
—0.1 w

0 50 100 150 200 250 300 350 400
TlK]

T T T

m

T

T

a

Figure 26: ZFC curves with varying applied field poH.

The resulting series of ZFC curves shows, as expected, that Tz decreases when the

applied field is increased.

4.2.4 Hysteresis Plots

Alternatively to cooling and heating the sample at discrete applied magnetic fields,
it is insightful to apply varying external fields at constant temperature on the sample
after it has been cooled down at zero external field.

In the limit of vanishing anisotropy constants, this procedure will reproduce our
previous results for the isotropic paramagnet. For the more realistic case of finite

KV, we will encounter the well-known phenomenon of open hystereses.

M/Mmax
QU QIO DND = —
[@n]6) (an]6) (an]6) (an]) {(anl)
OO O
PPN PPy
K X +

4> >@O

—-0.04 -0.02 O 0.02 0.04
MOHC[T]

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 41

Comparing hysteresis loops at different temperatures will give a relationship
between coercivity and temperature. The coercive field is defined as the strength of
the applied magnetic field required to reduce the magnetization of the sample after

it had been driven to saturation.

0.025

I I
Hc|H>O >

H};
e —
0.02 I m*ﬂﬂ He|n<o

=t

=}

—_

(S
T

[T
(@]
=

e ST
0+ i

—0.005 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

TlK]

Figure 27: Temperature dependence of observed coercivity. The hysteresis is sym-
metric as shown by the overlapping of the curves

This behavior is also in accordance with experimental results. However, a theory
of the precise analytical nature of the function H. = H.(T') would have to involve
the nature of modeled /implemented relaxation times 7 as discussed in the context
of Neél-Brown theory.

Another (technical) aspect is that the presented simulation results were achievable
with far lesser computation time that comparable T-sweep simulations but with
same statistical quality. Quite often it is observed that Metropolis-algorithm simu-
lations at constant temperature yield much faster convergence.

Unfortunately, in the context of systems that feature frustration, such as most real-
istic magnetic systems do, experiments where the temperature is not held constant

offer more insight.

4.2.5 ac-Susceptibility and Cole-Cole Plot

Finally, before moving on to interacting systems, we cover a third kind of sweep
through parameter space. We want to investigate the AC-, or complex susceptibility

Xae 10 the environment of a sinusoidal applied field at frequency w

Xace(w) = X'(w) —ix"(w) X', X" €R

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 42

Studying an explicitly time-dependent quantity is interesting from a technical point
of view because we will directly make use of the interpretation of 1 Monte-Carlo

step’ as representative of a finite if extremely small period of time.
Hext = H(tye) = Hosin(wt o)

is the physical field we want to simulate. We introduced a "Monte-Carlo time’ ¢y,¢
which we can implement in a straightforward fashion in a computer experiment by

a certain number of Monte-Carlo steps. For y/, x” we then have

Lyt
! .
X (w)Hy = M (tpc) sin(wt o)
NMC tpe=1
1 Nye
X" (w)Hy = Voo Z M (tpe) cos(wine)
tpo=1

Throughout this thesis we always consider magnetic samples that are considered
linear and isotropic media. Thus, we can omit the vectors and x is scalar instead of
a tensor of degree > 2.

As one can plainly see from the definition above, high frequencies are implemented
via a larger number of MC steps. This approach works fine if the computational
effort behind one MCS is small, but it will be a great obstacle when treating inter-

acting systems.

Figure 28 shows the results for the temperature dependence of the real and imagi-

nary part of x at fixed frequency.

70 \
60 5
L 1 _
y XX
+
o0 - .
+
>%<><
40 + XX .
+ % -
=~ 30 |- X]
X
20 - XX 8
X
+
10 Wbty X
5 X
O W \\\."‘000:000so030:0000:0:000:0:00000:0:0000:0:0000:0:0000:0:0000:0:0000:0:00000:0:000:0:0#
J— | | | | |

0 | | | |
0 100 200 300 400 500 600 700 800 900 1000
T[K]

Figure 28: Real and imaginary part of the ac-susceptibility at Nycg = 10°

4. FERROMAGNETIC NANOPARTICLES AND SUPERCRYSTALS IN THE
NON-INTERACTING LIMIT 43

A frequency sweep at fixed temperature, conversely yields the Cole-Cole plot in
Fig. 29

].6 T T T T
14 - Ci]?aﬁ% i
- \ e 4+, Circle —
19 | W P, |
10 + " |
S 8- / N |
6 |- AR
41 T
+
2 - + A
0 | | | | | | | -
0 5 10 15 20 25 30 35 40

Figure 29: Cole-Cole plot and with fitting of a circle function from (4.9)

We find that our result confirms the expectation of a non-interacting system
because a perfect semi-circle is observed. In contrast, an interacting system would

show a strongly flattened circle.

4.3 Summary and Discussion of Results

Non-interacting systems have been comprehensively studied and we have collected
sufficient evidence that our simulation approach is correctly implemented. We have
found that simulation parameters such as the number of MCS per measurement

have significant influence on any quantifyable observation.

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 44

5 Ferromagnetic Nanoparticles with Dipole-Dipole

Interaction

From now on, we will consider nanoparticles forming supercrystals at realistic length
scales (107® to 1077 m). Here, it is no longer a realistic assumption to consider the
nanoparticles as non-interacting. Instead, our model of supercrystals will include
magnetic dipole-dipole interactions as additional energy contribution.

Theoretical aspects of this model are discussed first, especially computational chal-
lenges arising from any 2-particle interaction and the comparatively sparse theoret-
ical knowledge regarding 3D models with a rather complicated interaction like the
dipole-dipole interaction.

Motivated by this, we discuss widely used approximative approaches towards these
models and re-introduce a method originally used in molecular physics in order to

apply a customized version for our models.

5.1 Theory II

As noted, the only difference compared to the previous section is the introduction of
realistic 2-particle interactions in our models. However, this small change has major
implications for code efficiency and other aspects which were rather simple in the

case of non-interacting nanoparticles.

5.1.1 Computational Aspects

Recalling the Metropolis-Hastings algorithm from (3.6) we see that an obvious bot-
tleneck for code efficiency is the estimation of the total energy change of the system.
This effect is far larger in case of 2-particle interactions because it will imply a
O (N?)-scaling with particle number, or correspondingly O (L°)-scaling with edge
length L.

On the other hand, we note that this energy estimation is entirely deterministic.
This is important because we can then at least utilize multi-threaded computations
to speed this step up. This will be done and discussed in the sections which do
not employ different approximative theories. We note however that, purely from a
computer efficiency point of view, it will always pay off to reduce the amount of

2-particle interaction computations.

5.1.2 Mermin-Wagner Theorem

Another challenge in this thesis is the absence of comprehensive theoretical knowl-
edge what a dipolar 3D system is expected to behave like.

Although it is not the focus of this research, we recall an important result for sys-

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 45

tems of lower dimensionality, the Mermin-Wagner theorem [14]:

Mermin-Wagner Theorem
In 1D and 2D systems with sufficiently short-range interactions, no contin-
uous symmetry can be broken spontaneously. This means that any thermal

fluctuation offers sufficient perturbation destroying a possible ordering.

This result rigorously only applies to an isotropic Heisenberg ferromagnet, but gen-
eralizations towards various many-body systems exist [6]. This possesses rotational
symmetry so that all the spin directions can be globally rotated without any addi-
tional energy cost. This means that long wavelength excitations, in which the spin
state may deviate from its ground state value over a considerable distance, cost very
little energy. Thus a fluctuation of the spins can be excited with very little energy
cost. In one and two dimensions, they destroy the long range order. If, however,
there is significant anisotropy there will be an energy cost associated with rotating
the spins from their ground state value.

It turns out that the anisotropy energy penalty incurred by allowing these fluctu-
ations increases with the square of R, the radius of the excitation, and hence the
anisotropy energy will suppress all but the smallest of these non-linear fluctuations.
It is the presence of such symmetry breaking fields which can stabilize long range
order in two-dimensional systems. There is also a dipolar interaction between spins
in real systems which, although much weaker than the exchange interaction, is

anisotropic and can act in a similiar way to suppress the growth of fluctuations.

5.1.3 Antiferromagnetic Part of the Dipole-Dipole Interaction

When writing down the full dipole-dipole energy between two magnetic moments

m;,Imny;
Eap = ﬁ m; - my — 3(m; - #)(m, - #)]
Ho 3o . .
= I (my - m2):47rr3 (my -) (mj - r)z (5.1)
::Eafm :ngip

we can identify two contributions which we call the antiferromagnetic part E,q, and
residual
Edip = Edip - Eafm

We can now imagine a hypothetical lattice model where the Hamilton function or

Hamiltonian is completely defined by the 2-particle interaction given by F,q, =

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 46

ﬁ% (m; - my). We observe that this resembles the conventional Heisenberg model

Hamiltonian

Hueis = — Y _ JijS1 - Sa (5.2)
i,

where J;; is the exchange integral between two spins Sy, S,. The analogy we propose

is therefore

Eafm <~ HHeiS

Ho
43

e _Jij

Most importantly, we see that our ’exchange integral’

Mo
473

= J;; <0 Vpairs (i,)

which implies that antiferromagnetism is the expected type of collective magnetism

if the system has the appropriate translational symmetry.

5.1.4 Finite and Infinite Systems

It is possible to study finite systems non-approximatively. By this we mean that
one can in principal evaluate the complete energy of any interacting system as long
as the number of considered magnetic moments is finite. Computational constraints
will however restrict such simulations in terms of maximum number of moments in
the system:

As discussed in section 5.1.1, the computational effort necessary to exactly calculate
the necessary energy terms for each MCS scales with O(N?). The simulation of one
measurement (i.e. one instance of the parameters T and ,uOHeXt) for a system of
N ~ 103 particles may take as long as 1 hour on machines that are available to me.
Realistically, any obtainable sample of self-assembled nanoparticles in a superlattice
will consist of no fewer than N ~ 10° contributing superspins which will already
imply an estimated computation time factor of 10'2. Therefore, what took 1 h
before, would require several orders of magnitude longer.

This estimate ignores the fact that in the implementation used in this thesis (see
appendix B.1.4) invariant parameters like site distances d and displacement vectors
t are calculated once and kept in working storage. For N ~ 103, this requires ~ 100
MB of RAM in the implementation given in the appendix. This could of course be
cut down drastically if one sacrifices the flexibility of our code in terms of which
superlattices can be put in, but it will still require ~ 10% KB of RAM and the same
multiplication factor as before yields ~ 10° GB of required RAM. One could of

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 47

course perform simulations without putting these recurring parameters into storage,
but this will in turn slow down the performance even further.
Because of these harsh limitations, we will focus on ensembles of N < 10° superspins.

These are either considered

1. finite systems where surface effects will prohibit any meaningful insight into
bulk behavior

2. supercells that are continued indefinitely with periodic boundary conditions

in order to simulate bulk behavior

This thesis puts more emphasis on the second branch. Additional assumptions and
approximations are required to effectively study interacting systems to a similar de-

gree as was done for non-interacting systems in section 4.2.

5.1.5 Possible Approximations

We present a selection of possible approaches to simulate interacting lattice models
effectively. We focus on methods that are still within the Metropolis scheme (3.6).
This means that we focus on approximations that only affect the calculation of en-

ergies.

e Approximations for finite systems
— Cut-off
e Approximations for infinite systems with PBC

— Ewald method
— Cut-off
— Cut-off + Mean Field (Onsager)
The idea of introducing a cut-off length beyond which interactions are neglected is

that the loss in precision of the calculated energy is far outweighed by the gain in

computation efficiency.

5.1.6 Onsager Reaction Field Method

We will now cover in detail the adaptation of a mean-field theory applied mostly in
molecular physics, for the purpose of getting reasonable energy estimations. It will
offer a vast reduction of the needed computation time. A derivation from a general

idea which implies a classical magnetostatic problem will be presented.

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 48

The mathematical problem itself is exactly solvable and will thus be presented thor-
oughly. Emerging parameters and their physical significance will be discussed.
Finally, both the achieved accuracy in simulations and the performance from an

efficiency standpoint will be discussed.

5.1.6.1 Motivation and Model

In molecular physics, research on electric dipolar particles in fluids is an important
topic with a long history. With electric dipolar fluids it is important to develop
approximate methods to estimate energies stemming from two-particle interaction
such as the electric dipole energy, similar to our simulation studies.

The dipole-dipole interaction has the same form whether one talks about the energy
of electric permanent dipoles p within an external electric field E or magnetic dipoles
m in an applied poH. Therefore, it appears reasonable to take previous work on
approximative methods there as motivation for our work on magnetostatics.
Starting from the complete model with long-range interactions, the first step in the
Onsager-Reaction-field method [16] is to introduce a cutoff radius R which limits

the spatial extension of any electric field E; produced by an electric dipole

1 1

Eq(r) = 47T€0ﬁ

B -B)F-p) = EF(r)=06(R-r) Eq(r) (5.3)

with the Heaviside function ©

0 <0
1 z>1

O(z) =

In the context of computer simulations, this is already the most important step of
the entire approximation because it implies that only a fraction of interaction terms
have to be computed with EQ® instead of E,.

On the other hand, taking this new model-interaction on its own is obviously too
naive because one would quickly come to the conclusion that there were no quali-
tative difference between bulk behavior or the behavior of a tiny set of interacting
dipoles.

The 2nd part of the ORF-method therefore provides an idea how to model the effect
of the environment outside the cut-off sphere on the dipole in the center. The idea
is to model these magnetic moments as a continuous, linear, isotropic, polarized
medium and imagine it reacting towards a superdipole which sits at the exact cen-
ter of the sphere which otherwise is comprised of vacuum. This medium will have
a relative permittivity® €, > 1 which is a real scalar and is a quantity which can

also be calculated when measuring the total polarization of the entire set of electric

3More generally, ¢, # 1 would suffice, but metamaterials with negative susceptibility x. = €, —1
are rarely considered

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 49

/N

~ \ /l&
N/ 7N
— N\ NN
/NN /@//

N NG S
VNNV SN
N /SN =N\

Figure 30: First step of the ORF method: Introduce cut-off R beyond which dipole-
dipole interactions are not considered

dipoles in an external electric field.
From there, classical electrostatics will give an expectation for the reaction field
ERr, an additional electric field which is the response of the surrounding medium
towards the presence of the dipole.
As stated, the magnetic field B, of a magnetic dipole has the same form as in the

ORF
Bd

electric case, which is why we can just propose the following providing a cut-off

for the magnetic field analogously to (5.3)

By(r) = Z—;% Bm-#)f —m) — B (r)=0(R—r) Byr) (5.4)
As in the original case of electric dipolar molecules, we now have to make an estimate
for any environment of the magnetic dipole beyond the cut-off radius R: We imagine
a continuous, linear, isotropic, magnetized medium with the relative permeability
> 1 surrounding the cut-off sphere which is comprised of vacuum (u, = 1) and
a magnetic super-dipole at its center. This super-dipole again is the direct sum of
all magnetic moments contained in the cut-off sphere. The model is illustrated in
figures 30 and 31.

5.1.6.2 Solution of the Magnetostatic Problem

Vector calculus states that any curl-free vector field is the gradient of a scalar field*.

4Provided that mathematical conditions like continuity, differentiability and correct asymptotic
behavior for r — oo are met.

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE

INTERACTION 50
B ext w, >1
y < \
M=1

Figure 31: Second step of the ORF method: Onsager Reaction Field model as a
problem in classical magnetostatics

This means
VxE=0 = d¢(r):-Vo=E (5.5)

Therefore, the solution of boundary problems for any stationary electric field E and

its potential ¢ correspond to a given charge density p. = p.(r) via

Vo= —E
divE ="
€o

= Ap=-Lx (5.6)
€0

which is the well-known Poisson equation. Any ¢(r) that solves the Poisson equation
and also satisfies boundary conditions given by materials etc. is the unique solution
to such a problem.

Finding a solution to (5.6) is relatively easy if the problem has any symmetries.
Because of the Maxwell equation V - B = 0 there is no analogous scalar potential
for magnetic fields. Instead, one has a not easily found wvector potential A such that
B =V x A. This is given via the Biot-Savart law

o [jdv xr
B - 4o [1T

but cannot be evaluated easily since we first would have to find the correct static

current density j which represents our permanent magnetic dipole m.

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 51

It is therefore not immediately obvious that the derivation of an appropriate reac-
tion field Brpr will be as easy as in the dielectric case.
However, we realize that there is no free current density in our problem, only bound
currents which induce magnetization, i.e. a dipole-moment density. This will facili-
tate the mathematics immensely in the following way:
We use the auxiliary field H and a decomposition of the total charge current j into

bound and free part:

1
H=—B-M (5.7)
Ho
j = jfroc +jbound (58)
jbound =V xM (59)
We study the derivatives of H:
1
V-H=-V.B-V.-M=-V-M (5.10)
Ho
1
VxH= M—V xB -V x M:.] _jbound :jfree
0

Since there is no free current, we have found analogously to (5.5)

VxH=0 = 3IW{E):-VW=H (5.11)

Combining (5.11) and (5.10) we have found the

Poisson equation of the magnetic potential

AW =V -M (5.12)

just like (5.6) for electric fields. Now we can also make explicit use of our assumption

that the outside medium is linear and isotropic:

3
M, =S TV IHG + 0 (H2)
j=1
(m) isotg)pic

17 Xm(sz]

= M=y, H

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 52

Most importantly for our calculations below, this implies that B and H are related

to each other simply by
B = po(H+M) = poH + poxnH = pH (5.13)

where

= pio(1 + Xm) = o (5.14)

If we assume that the surrounding medium with magnetization M is 'roughly para-
magnetic’
1 <p, S100

this assumption seems reasonable.
Very importantly, we hereby have a H,,; which is not constant throughout R? like

B..: but piecewise defined as

L r<R
o

1
MO Hr

He:pt — Bezt (515)

r>R

In this very special case of magnetostatic problems, the boundary conditions given

by the Maxwell equations look completely analogous to the electrostatic case via

W < ¢
H+< E

My < €

Finally, we arrive at the following set of differential equations and boundary condi-

tions.

Boundary conditions for the magnetic Poisson equation (5.16)

m-r
43

W(r —o00) > —Hey - 1

W(r —0)—

W (r = R) = continuous
H: = p,H:

out

Hlln = HLIut

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 53

Again, note that m now represents the total sum of dipole moments within V_:

m = Zmi (5.17)
Ve

With (5.16), the problem is unfortunately very unsymmetric because the angle be-
tween m and H.,; will take arbitrary values.

In order to be able to use techniques for problems with azimuthal boundary con-
ditions, we split the problem in two parts where either the cumulated magnetic

moment m or the external field B.,; = uH.,; are a symmetry axis:

m-r
473

Whr — o0) — 0

Whir —0) —

W'(r = R) = continuous
HYL =, HY

out

HL” — HL”

in out

WH(r —0)—=0

WH(r — 00) = —Hey -1
W"(r = R) = continuous
HIL = H

1, 11,
L gt

m out

The explicit derivation makes use of techniques to solve the homogenuous Laplace
equation

VW =0

and is given in the appendix A.1.

The coordinate-free representation for the solution of the two problems is:

Wi = 5 (5 + e

Ar \r3 ' R31+ 24y
m-r 3
w! =
out (¥) drr3 14 2pu,
3y

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 54

and direct summation yields the solution of the original problem:

p (111w) L 3w
mr4ﬂ(T3+R31+2m> H.. L . r<R

13 R
m-r 1+2MT+H€“ 1°<T3 o 1) r>R

W(r) = (5.18)

We can now identify the so-called reaction field that has a finite value at r = 0:

1 1—p, Sy
Hyrr = — — T _H,, —— 5.19
Rr <m 2nR3 1+ 24, g 2M,,> (5.19)
Introducing p,-depending constants
1— Hr 3NT
m L= == 5.20
TmT o, T T, (5:20)

our estimate for the energy of one superspin s due to the external field and the

dipolar environment is therefore:

Erp = —s-Brr = —pos-Hgrp

Erp=s- (m /;(;r]z:; + Hegt Mo%)
fo 1 — iy 3t
Erp=s- — Byt ——— 5.21
RE =8 (m 2R3 1+ 201, ! 1+2MT) (5:21)

Both the m- and B.,; term have properties that should be discussed further.

We calculate p, via

M MoM
c=14ym=1 =1
a +X +He:):t * Be:vt

(5.22)

where M = |M] is the magnetization, i.e. the total magnetic dipole density which

is assumed to be linearly dependent of B, = |Bes| throughout our approximation.

5.1.6.3 Modelling parameters
As a general rule, the reaction field encourages configurations within the cut-off

sphere with large cumulative magnetic moment via a parallel auxiliary field because

1 —
14+ 2u,

-1/2 < <0 pp>1 (5.23)
This term therefore indeed deserves the name ’reaction field” because this auxiliary
field is the response of the imagined medium towards any net magnetic moment in
the sphere.

The second term means that applied magnetic field acting on any single magnetic

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 95

moment is amplified because of the surrounding medium since

—3u,
1+ 2u,

-3/2 < < -1 > 1 (5.24)
At first look, this seems like the Onsager approach leads to inconsistencies in the

limit of non-interacting systems. This is ultimately not the case, as shown in 5.1.6.6.

5.1.6.4 Cut-off Radius

The radius R largely determines the computational effort that an energy estimate
with this approximation still requires. Intuitively one would expect that a smaller
cutoff radius implies an increase of the necessary correction, which is indeed the
case. The fact that the correction is inversly proportional to the volume of the cut-
off sphere means that it is also inversely proportional to the number of superspins
that are treated exactly within our energy-estimation scheme which seems reason-
able.

Because we are always dealing with a discrete dipole distribution, we must however
specify how R is implemented. There will always be an interval of possible R values
whose corresponding cut-off spheres would contain the same magnetic moments.
Without additional criteria, R could thus be chosen arbitrary which would however
limit comparability between simulations.

We found that a consistent and reasonable estimate would be choosing the greatest
possible R that does not span additional sites outside the cut-off sphere. This implies
that no internal site touches the boundary of the sphere as seen in figure 32, and

the reaction field takes on the lowest possible absolute value In any case, R has to

L . T T T S
L . T T T S
T i S T
P N
+ o+ o+ o+ o+ o+ + o+ o+ o+
+ o+ o+ + o+ o+ 0+ + o+ o+
/
e o+ / + o+ o+ 4+ o+ o+ +
/
+ o+ + ‘J' + o+ o+ o+ o+ | & + o+
[| \
[|
P I + o+
||
\
+ 0+ +l\+ + + + o+ + o+
\\
+ o+ o+ \\ + o+ o+ o+ + o+
o e R\ o+ o+ o+ + o+
o+ *\\ + o+ + o+
~— R
L T e + o+
o+ o+ o+ o+ o+ + o+
L I T + o+

Figure 32: Choice of R for reaction field estimation. Blue crosses signify magnetic
sites. Both the cyan and salmon colored circles contain the exact same sites. They
represent the smallest and biggest possible choices for R

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION o6

be chosen consistently in order to have comparable simulation results since e.g. a
10% increase of R already means that the m-factor is cut in half.

Simulations were mostly done on fcc-super lattices which have a very high degree
of spatial symmetry so that the computation of the best choice for R needs to be

carried out only once for any choice of 'modelling’ cut-off.

5.1.6.5 Determination of the relative permeability

The recipe (5.22) given above has the advantage of being a self-consistent procedure
because each magnetic moment will be updated regularly during the simulation of
one measurement point and all under the same conditions. This means that the
chosen i, indeed becomes the best choice self-fulfillingly.

This however holds only true if the global susceptibility remains roughly constant
throughout these measurements. This is obviously not true e.g. during the process
of a ZFC-FC curve where the applied magnetic field has only one value, yet the
magnetization is dependent on the recent history and temperature of the sample.
The hitherto implemented scheme thus suffers at least from temporal retardation,
which becomes an issue if the goal of the simulation is to pin down an exact value
for the blocking temperature.

Even worse, in the absence of applied fields the recipe (5.22) becomes ill-defined
and one has to either retroactively impose values from e.g. high-temperature values
in the ZFC-curve or impose a theoretical expectation like the Langevin value for

paramagnets

(M.V)?
3kpT

which we only used as a very first guess. In subsequent simulations, the value was

M%angevin =1+ XLangevin =1+ nlo

indeed changed to be the value found for the tail-end of ZFC curves which let our

- converge towards g, ~ 15 in zero-field.

The exact value of u, would of course be an interesting property/result in itself,
however its influence of our reaction field is limited. The two prefactors in (5.20)

are shown in figure 33.

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 57

0.5

l‘ ’ym ——

' Th
1

“_ |
T

0k

1
[
1
1
]
1
1
1
1
1
1

—0.5 -

)
[}
1}
)

1L

—1.5 ¢

—92 L
0

10 15 20
fhr

Figure 33: Dependence of correction factors on relative permeability. Only p, > 1
(solid) applies in our simulations

The prefactors vary only very slightly for u,. 2 10, and the applied-field correction
term does not even apply in zero-field. Therefore, we can at least have confidence
that the precise value of our assumed p, is of less importance than e.g. the validity

of the assumptions regarding the material in (5.13)

5.1.6.6 Consistency with non-interacting limit

It is expected that the influence of the dipole-dipole interaction on the sample di-
minishes quickly with an increase of the lattice constant of the supercrystal ag.
This will be reflected automatically for the interactions that are considered in an
exact matter within V.. The m-factor in the reaction-field term also reflects an
increase of the lattice constant automatically because R per design scales automat-
ically with any change of the lattice constant.

The B, ;-factor does not scale directly with the spatial dimensions of the sample.
The scale of the system is instead only influential via pu, because the magnetiza-
tion M in (5.22) is the dipole moment density which means that if only the lattice

constant increases without adding further magnetic dipoles, we have for (i, Ym, Vn

Loy —1
_ 1—p,

Ym = Tra,. — 0 for ag— o0
_ 3pr

Th = 142y - 1

This means that the m-term vanishes even faster than oc 1/R3.
Yn — 1 means that there is no amplification via the magnetic medium anymore,

which is also to be expected.

In total, we arrive for large lattice constants at a vanishing reaction field so that

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION o8

only the superspins within V, will interact via dipole-dipole interaction and the un-
altered externally applied field. As shown in figure 34, we get a smooth transition
of the ZFC/FC curves towards the non-interacting case as soon as ;= ~ 5 where ag
is chosen such that for a < ag the behavior is significantly different due to 2-particle
interactions: ag ~ 25 nm.

This means that the behavior of our approximative theory is largely correct in the

non-interacting limit.

To understand what happens at a = ag, we calculate the dipole-dipole energy of
one spin in the environment of > 100 randomly oriented neighbouring spins. This

component of the total potential that is independent from all anisotroy axes is given

in figure 35.
0.6 ‘ ‘ \
VXXXXXXXXXXXXXXXXXXXXXxXX ¢
05 L . ' SRS 0%
N +
04 - ></ Q + ++++++++ ,
% Xe +++ +
ﬁ 0.3 F >/}{ WSS]
S
S 020 e .
0.1 i
0 o0 ¢
—0.1 ! ! ! !
100 200 300 T[K] 400 500 600
1xag + X @ non-interacting e
2% Qag X Hx agp
3x Qg 6 x apg O

Figure 34: Convergence of ORF simulations of the ZFC curve towards the non-
interacting limit

The relevant information of this is that there is always exactly one global mini-
mum produced by the dipole fields. Even local minima are only rarely observed. If
one adds this potential to the known Stoner-Wohlfarth results in 4.1.3, one observes
in most cases that additionally to a change in position of the entire potential land-
scape, that the potential wall between the two local minima increases. Since the
blocking temperature is predominantly associated with this potential wall, one can
already assume that the dipole-dipole interaction will increase the blocking temper-

ature.

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 29

Figure 35: Potential landscape for a superspin in a 8x8x8 magnetic supercell (fcc).
Plotted are energy differences compared to the energy for orientation 6 = 7/2, p =
0. Any cut-off of more than 30 contributing neighbours leads to an image that is
indistinguishable at this resolution

5.2 Simulation Results

We now present simulation results obtained by studying systems with interacting

nanoparticles.

5.2.1 Groundstates in Periodic, Dipolar 3D Systems

We discuss a topic that is motivated more from pure statistical physics point of
view, than in the context of self-assembled magnetic nanoparticles. We consider
3D crystal systems whose total energy is exclusively determined by the magnetic
dipole-dipole interaction of magnetic moments positioned on the lattice sites. The

alm is an investigation of a purely dipolar ground state in certain lattice structures.

5.2.1.1 Results in the Limit of Vanishing Magnetocrystalline Anisotropy

We realize that the question above is equivalent to the physically not viable case of
self-assembled magnetic nanoparticles in the limit of vanishing magnetocrystalline
anisotropy at each lattice site. Simulations can be therefore carried out in a straight-
forward fashion with our existing methods. We consider systems that are initiated
at very high temperatures and then cooled down with zero applied field. We pay
particular attention to the energy of the system and discuss the superspin landscape
at T'— 0.

With the help of the self-developed program which is documented in B.2, we will

produce figures like figure 36. In all of these figures, all spins are grouped into

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 60

sublattices that in most cases span the magnetic super cell and require all of their

member sites to be parallel aligned within a certain margin of error.

TN .
G
M RN, e '

i NN 3 =X I
Sublattice 1 e Ve . t
e A

ublattice 2 _— N NN F ﬁ Q"-— <

4 LI R Ay NIFESTST=
Sublattice 3 T ’Q QS \X‘g}'\\ ‘j\d\!\ ‘T\\

ST=—="= S =K - AN
Sublattice 4 ' JE‘ RY\K@&—&“\—%@M}% TN
N s |
Sublattice 5 — ‘l\/\'&,/}j' | \;:% jig\i\q\—\f\ \'jii, I
Sublattice 6 — E\&_z‘ N4 it g;ﬁf;&#},\l(/:/’\
Sublattice 7 —_— \ wNTEN ‘/‘\\‘ I’\ ‘ji |
— ORI
Sublattice 8 _ \X“ N i'
Sublattice 9 _ —

Sublattice 10 D

Figure 36: 8x8x8 magnetic super cell (fec) at T'= 1. Spin distribution of one start
configuration

In this thesis, I mostly show instances where these sublattices have the peculiar
property of being essentially 2-dimensional so that one can find a perspective that

makes the spin structure readable by a projection on a plane, as seen in figure 37.

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 61

Figure 37: Rotated view of figure 36

5.2.1.2 Series of ’Groundstates’ Depending on Different Parameters in
the Onsager Approximation

We present several low energy states and their spin structure that were obtained
with varying spin initializations. Although different cut-off radii were employed to
further increase the variety of simulated configurations, the following selection of

low-energy structures were found independently from these respective choices.

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE

INTERACTION

62

AN
™~
< N 2
P pd
e DN £
pd
N N
s
DN ~
e
X /

Figure 38: 2 sublattices, inspecific view

3

2

R A A A A
ANV A A A A A 4
A AR A AR A AN
VA A AT A A A 4
YR AR AR R AP AR S
LR AR AP AN SN AN 4
AR AT A AN A
A AN A A A 4
ARV A A A A Y
ORI A A A 4
VA A AR Y
A A A A A Y 4
A AT A A A A

" l‘ l’ l' ¥ l' l'

v ¢ & 72 /7 7 7 7/
VAR AT AN AR S 4

t ¢« £ & & 7 7 v
FARD ARV AR SEP AN S

r » 4 & 7 ¢ 7 7
VAN ARP AN AP AN A

r & & & ¢ 7 r 7
PR AR AN A A AN

rf &2 & & & r 7 7
VA S A A S A |

r 7 ¢ & 7 7 r 7
P2 SR 2D S S A4

r / 7 7 7 r 7 7

Y A A A 4

2 2 2

AR A AR A A §

2 2 P

2
L4 7 7 4 4 7

Figure 39: Rotated view of figure 38

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE

INTERACTION

63

Figure 40: 4 sublattices, inspecific view

28 _ 28 £% S8 £8 4% $3

¥

7 §7 $7 S7 &7 37

td

FAANANANAAN AN AN A

RINENININS NN N

28 S8 _£#3 S8 28 28 2

7 S7 ST ST W7 §F 7

o

Figure 41: Rotated view of figure 40

64

x>, AN Z A FAS AN 2% 2

0\ 5 - I
Ay S
TS

A WA WA WA WY A WA WA WS

& “F “F ~F “F ¥ wF

NP N V2V Nl NP
AN NV T Y Ve
b N NN N NN N
PN N NN N T N N
AN AN S V2V VAN AN
AN Nl N T2 V2Vl
LA AN
N NSV VN NV
AN AN T 20 T o VAl
A N AV V2 T 2V
NP ANV VIV Nl Nl
VAN NP V2 VA g
R NN NN NSNS
VN e NV T 2 Vol

2% % AN FAN A 2% 2%

¥ N7 N7 N7 N7 N7 NN

Figure 42: 4 sublattices, inspecific view

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE

INTERACTION

F WF NF NF \NF NF NF W

Figure 43: Rotated view of figure 42

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 65

NN RN
j.ﬁl*u o Kt e
HEEE

ST
T;@};j'mﬁ:;
[EEEEEE

Figure 44: 4-6 sublattices as a more complex configuration, rotated view

Figure 45: 8 sublattices, inspecific view

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION

S - A s
e T TRt TN L N T
MAANN AN AN AANSN NS
PN TN TN TN TN TN TN
N NAANIN AN AN N 7N
F S 7N TN TN TN TN N T
MANAN AN AN TN IN NS
N TN N TN TN TN TN T
MANTNINSNTN TN 7N
PN TN TN TN TN TN TN Y
MANSINININ NN 7N
PN TN TN TN TN TN TN P
MANAINANIN SN SN 7N
B e Tt T T L N N N
TN TN TN IN SN NN

Figure 46: Rotated view of figure 45, yz-plane

= e - - - - - -
— e > L

D R T e e T e e O
AT T T T T T T T T T T N T
I T e Tt Yo S
AT T T T T T T T P T T T P e
I R e S N e R
AT TN T I T T T B T e T L AT T A
e T e T U Nl
AT T T T T T T o T o T T T A
R s e T T R O
AT T T T T T T T T T T e T S T
S R T T R O e O o
AT T T T Vs T S P T T S T el AT
O T s e T S R N
AT T T Vo T T T T T T T e T e AT

== = fpey ey == — = o -
~~ ~ ~~ - ~ =T =

7

4

[

4

W\

[

4

)

4

4

4

Figure 47: Rotated view of figure 45, xz-plane

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE

INTERACTION

67

2 4 A V4

AN A N4\ £\ £

_ AN\ £\

2 ra 2
<7 <7 < Cd <7 <7 =7

AN VT 20V Vel Vel
of \\/' \\/\Q/ NN N 4
NG VT2 Y2Vl Ve
- A/ \\/ N \\/ s/ \‘/\ Q/ EY
Pl VT 0 V2Vl VeV ¢
VAV AN N AN Y Y o
A VT 20 V2 Vel Vel
" Q/\ \\/ {/\\\/ s/ \\/ \\/
VAV e VT Y VvV
MRV N O Y VN g
P VA VT 20V Vb Ve
of \\/“t/ \\/' N4 a/ o
PV VT 20V 2 Vol Ve
VLN N T VLN

N7

N7

7 N7

N7 N

N7

v

AN AR A AR AN 2% AR
7 <7 Y d wF &7 w7 &7)

Figure 48: Rotated view of figure 45, xy-plane

0.6

0.5 -

04 -

0.3 -

0.2 -

M/Mmax

0.1 o~
)

AN ANy
O /\/<§<7&/ S

—-0.1

Vo NP\ NN NN
AR A f‘xa@#\%&z@@gﬁ;@xx :

%
K

ke

<,>.<- ><>/4

el |

0

200

400 600 800
TK]

1000

X+

Figure 49: Temperature dependence of the magnetization components for the sample
as shown in both figures 42 and 43. Mx, My, Mz are defined in (5.25). By these
‘components’, the 2-dimensional character of the low-energy state corresponds to

the vanishing of "MZ’

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE
INTERACTION 68

It is useful to define the following quantities:

N
Ma = Z|m;| o=,z (5.25)

=1

This means that e.g. Mx = 0 if the x-component of the magnetization of each site is
zero and not just randomly distributed in (—1, 1). Therefore, Mz measures if the z-
component of the magnetization vanishes completely, and the system therefore does
not have a 3-dimensional, but a layered 2-dimensional magnetization landscape.

Apart from this often occurring reduction of dimensionality, it has always been ob-
served that an even number of antiparallel sublattices emerges at low temperatures.
However, we cannot call this behaviour antiferromagnetic because no spontaneous
symmetry breaking is observed. Conversely, this 'phase transition’ happens steadily

but slowly in an arbitrarily large temperature region.

5.2.1.3 Reconsidering Non-Vanishing Anisotropy
We connect the previous chapter back to the more realistic setting of magnetic
nanoparticles such as maghemite nanoparticles. We discuss how stable the findings

of chapter 5.2.1.2 are with regards to non-zero anisotropy energies.

In short, employing realistic parameters of the maghemite nanoparticles in order
to study the number and character of sublattices at low temperatures yields a clear
but disappointing result: No long range order can be detected, meaning that the

random anisotropy changes the local potential landscapes too strongly.

On a more positive note, we can therefore study ZFC curves quite well with the
help of the ORF method because it is even more viable if there is no (short-range)
magnetic order at the temperatures we consider. Simulation results are given in fig-
ures 50 and 51. Because of the more complicated potential landscape, it is necessary
to make the simulations with a smaller test-vector length than in the non-interacting
case. Otherwise, local potential minima maybe insufficiently scanned by our algo-
rithm and we would find non-physical dynamics.

Both simulations are performed with d,, = 0.1 < 1, but the first plot shows that
one must then also increase the number of Monte-Carlo steps per measurement: It
has only been increased to 2000 from 1000 in the non-interacting examples earlier.
The different shape and unrealistically high blocking temperature show that this
simulation does not represent nature, and one has to increase the number of MCS

even further. Of course, the real computation time also increases linearly.

5. FERROMAGNETIC NANOPARTICLES WITH DIPOLE-DIPOLE

INTERACTION 69
O . 5 T - +H:§—f—‘§»+++ L T T T I T
+ B RS55252554
0.4 + b SR S
: + et
. ++ =+ ‘\—y‘j:::tﬂ—i‘ s .
0.3 - + %w%“ i *ﬂ%*ﬁhﬁyf
§ % +
non-interactin +
5 0.2 & dd—interactin% X]
= X%*
0.1 %j]
0X X x X X X X % ok % X X % % x X

1 ! ! ! ! ! ! !
200 300 400 500 600 700 800 900 1000
TK]

Figure 50: Simulated ZFC curve for maghemite nanoparticles at pgH = 8mT with
and without dipole-dipole interaction. The observed difference in Tz is highly exag-
gerated, as is the difference in shape. This is because the number of MCS is chosen
too low and the blue curve does not represent a system that has found its thermal
equilibrium at any point

0.8
LSOOI KOOI H AKX XK
0.7 ><><><><><>< ,
0.6 X R o S NENETE
O X ++++ .
X +
0.5 F X + i
5 +
1
L X + . .
§ 0.4 + non-interacting -+
= 0.3 |« ++ dd-interacting
= 14
0.2 + |
0.1t i
. 4 < +
0 Stk ket Sk etttk Sk skt s kot s ok X ks

1 ! ! ! ! ! ! !
100 150 200 250 300 350 400 450 500
TK]

Figure 51: Simulated ZFC curve for maghemite nanoparticles at puoH = 20mT
with and without dipole-dipole interaction. In contrast to figure 50, the number of
MCS per temperature step is increased by a factor of 10 with unaltered d,, = 0.1.
The result is in far better accordance with experiments because the shape is better
preserved and the difference in T is only at about 100K

6. SUMMARY AND OUTLOOK 70

6 Summary and Outlook

From the study of interacting particles, we have learned about the significance of
simulation parameters like the test-vector length. The introduction of the Onsager
Reaction Field method has been shown to be a valid approximation that can be used
for magnetometric simulations like ZFC/FC curves in order to drastically reduce
computational effort.

The presented research on purely dipolar systems in fcc-geometry has shown peculiar
magnetic behavior that is very much distinct from magnetic phenomena associated
with short-range exchange interactions. Our research was very much restricted only
towards pure bulk behaviour. Certainly surface effects are extremely important in
conjunction with dipole-dipole interaction and need to be addressed in a next step.
Also it appears quite likely that the magnetocrystalline anisotropy has a large impact
when studying systems with long-range magnetic order. Therefore, the limit of
vanishing anisotropy is not a satisfactory basis for understanding realistic behaviour
of assemblies of nanoparticles.

Because our current algorithm and implementation does allow for any choice in
lattice constant, saturation magnetization, anisotropy distribution etc, future work

should be done by studying larger regions of parameter space.

A. DETAILED CALCULATIONS 71

A Detailed Calculations

A.1 Magnetostatic Derivation of the Onsager Reaction Field

The ORF is a consequence of the magnetic Poisson equation that was derived,
including suitable boundary conditions, in 5.1.6.2. Our 'magnetic sources’ V - M

are zero almost everywhere:

e Except for the magnetic dipole in the center, the inside of our cut-off sphere
{r e R®|0 < r < R} is modeled as vacuum, i.e. M = 0.

e The outside {r € R*|r > R} is homogenuously magnetized, i.e. V- M = 0.

Therefore, it is more elegant to use the general solution of the homogenuous Laplace
equation which is easier to find, and account for everything else by finding special
solutions at » = 0 and r = R via the boundary conditions. Since the solution to any
boundary value problem as stated is unique, any solution we find, will automatically

be the correct solution.

A.1.1 Laplace Equation in Azimuthal Symmetry

We are interested in the solution to the homogenous Laplace equation in spherical
coordinates:
AW(r)=0; W(r)=W(r0,¢)
102 1 0 ow 1 PW
g = Y (gino —
r Or? (W) + r2sin 6 00 (sm 06) r2sin? 0 Jp?

We will immediately ignore the (p-part because we can always reduce our systems

0 (A.1)

of interest to such with azimuthal symmetry. Furthermore, we make a separation

ansatz:

W(r,0,p) =W(r0) = UTT) P(6)

Plugging this into (A.1) and multiplying by r?/(uP) yields

r? d*u 1 d dpP

o = (sin6=-) =0 A2
u dr? * Psinf do (Sm de) (8.2)
—— N P ,

independent from ¢ independent from r

Therefore, both summands have to be simultaneously constant and opposite in sign.
We therefore can define
r? d*u d*u N\

=AeR = — ——=u=0 (A.3)

u dr? dr? 7?2

d 1 d
x :=cosf = %<.>:_sin8@<.> (A.4)

and

A. DETAILED CALCULATIONS 72

With these definitions we obtain from the second summand in (A.2) the ordinary

differential equation

d o dP
2p P
(l—xQ)C;?—Qxfi—z—l—)\P:O -1<z<1 (A.5)

At this point, we must stress that the solutions need to cover the complete domain

€ [—1,1]. We now define a function w,(x)

wy(7) == —(z* = 1)" (A.6)
= (1 —2*)w' + 2nzw =0
Differentiate n+1 times = (1 — 25w — 200" L n(n + 1)w™ =0
(A7)

This means that we have found functions w!, that solve our 2nd order ordinary differ-
ential equation (A.5) including the necessary condition that it is defined
Va € [—1,1] These functions are therefore the only possible and unique solutions

and we found that X\ is not an arbitrary real number, but has to have the form
A=n(n+1)

so that our differential equation is the Legendre Differential Equation

d% {(1 — zQ)d%Pn(z)} +nn+1)P,(2) =0

The so-called Rodrigo form

P, =uw ﬂ

— 2_1n
=

that we recovered up to a normalization factor produces the Legendre Polynomials

Pn@)

Po(z) = 1
Pi(z) = 2

Py(z) = %(3932 —)
Py(a) = 5(50° — 30)

A. DETAILED CALCULATIONS 73

Since we have also found what A is, we can now investigate (A.3):

d*u n(n+1)
p i Al

The general solution to this for any given n € Nj is

b,

n+1

u(r) = un(r) = apr” + (A.8)

Together, the general solution of the Laplace equation for problems with azimuthal

symmetry is

oo

W(r)=W(r6) =) (alr + %) P(cos 6) (A.9)

=0

W (r) finite forr=0=0,=0 VI >0
W(r)—=0forr 00o=aq=0 VI>0

d

W(r)=A(r)a-r=VW(r) = =

——A(r) T (a-r)+a A(r)

A.1.2 Solution to Our Boundary Value Problem

We restate the two distinct boundary value problems from section 5.1.6.2 with az-

imuthal symmetry that we want to solve with the above.

AWI/H V- MI/H

m-r
47r3
Whr — o0) = 0

W(r = R) = continuous

Whr —0) —

H?nl = MTngLt
H;,! = H,,
W(r —0) —
WH(r — 00) = —Hey -1
W (r = R) = continuous
Hy,* = - Ho
| = el = el

mn out

A. DETAILED CALCULATIONS 74

Because the Legendre polynomials form an orthonormal set, one only needs to look
at the powers or cos 6 that show up in the equations. This simplifies the problem to

the following set of equations.

cos
2

WI

m

(r) =« + B cosf

0
Wk .(r) =~ C(;SQ + 671 cosf

with a, 3,7,0 € R to be determined from the boundary conditions.

N O U R W N

oo

10
11
12
13
14
15
16
17

18

19

20

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

B. PROGRAMMING 75

B Programming

B.1 C++ implementation of Metropolis algorithm

Here we give the C++ implementation that has given all simulation results that
were presented in this thesis, except for the dynamic susceptibility measurements.
To achieve this versatility of one programme, the user must set logical parameters
declaring what part of the programme will be relevant when executed. Also, the user
can still declare things when running the executable. It is written in the C4++11
standard.

The basic structure of this implementation is taken from an older C programme
with permission by Oleg Petracic. Both the transition to the more modern C++
realization and the treatment of 2-particle interactions, especially within ORF were

written by the author.

B.1.1 main.cpp

/*
MonteCarlo.cpp — Main file

M vs T / M vs B — simulation

rrr
This programme is written in C++11 standard and wutilizes openMP for easily implemented

multithreaded computations
It

The following is based on work leading to MnO Bulk, see its history below

Modification: 23/01/08, 24/01/03: main loop structure

Modification: 27/02/03: show+save Dip.— and Anis.— Energies —> MCS_one()

Modification: Feb/2009: rename to 5, with and without periodic boundary cond.

Modification: Nov/2012: MnO Bulk

START OF HEAVY MODIFICATION/REDUCTION since Nov/2016

Modification: Nov/2016: Transition to C++, intended to be ezecuted on Linuz —> e.g. substituting

’_s’ functions.

Visual C elements like
Modification: Dec/2016: Heavy reduction leading to Heisenberg Paramagnetic simulation. Spin data
as output for wvisualization in gnuplot or similar. Necessary dipole—dipole functions added
Modification: Jan/2017: sc lattice generator for easiest super—crystal structure. Optional cut—
off implementation to speed up computation .
Modification: Feb/2017: include anisotropy energy. implement random distribution easy azes at
every site
Modification: Sep/2017: Inclusion of perAuz.h and introduction of ORF method for speedy
simulations of interacting, periodic systems

*/

#include <iostream>
#include <fstream>
#include <cmath>
#include <vector>
#include <array>
#include <string>
#include <algorithm>
#include <thread>

#include <stdlib.h>
#include <omp.h>

#include ”parameter.h” // parameter file

#include ”rnd250.c¢” // randum number generation

#include ”random_spd5.h” // rng addition

#include ”input_ini.h” // necessary programming stuff like arrays, file save

#include ”perAux.h” // contains functions for periodic boundary conditions and ORF method
#include ”ORFO_str.h” // functions with physical meaning

using namespace std;

45

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

B. PROGRAMMING

76

int main ()

{

cout

cout << ”Include._d—d_interaction?.”;

<<

"NN_estimate:.” << NN << endl

J

cin >> DIPOLAR;

int

edit

ion ;

cout << ”Edition:.”;
cin >> edition;
cout << endl;

latt_const = latt_const_-0;
int xx, StepNr, Ix, lm, c;
xx = 1;

xxmax = 1;

reset_files (edition);

if (PERIODIC)

{

else

»

if (type == 7sc”)

{
sc.generator_new (edge
max_-N = pow(edge_N,3)

5

N

5

}

if (type == ”bcc”)

{
bcc_generator_-new (edge-N) ;
max_N = 2xpow (edge_N,3) ;

¥

if (type == 7 fcc”)

{
fcc_generator_new (edge_N);
max_N = 4xpow(edge_N,3) ;

}

if (type = "hep”)

{
hcp_generator_new (edge_N) ;
max_N = lsxpow(edge_N,3);

}

makePeriodic () ;

if (type == 7sc”)
sc_generator_new (edge

if (type == "bcc”)

-N);

bcc_generator_new (edge_-N);

if (type == 7 fcc”)

fcc_generator_new (edge_-N);

if (type == "hcp”)

hcp_generator_new (edge_N) ;

if (SPHERICAL)

{
max_-N = det_spheric ()
new_pos () ;
¥
else
{
max_-N = max_N_temp;
cout << max-N << ”_in
}

InitMain (edition);

auto

t1

= chrono:: high_resolution_clock ::now();

vector<double> comp-t;

comp-t.push_back (0.) ;
double Et = 0.;

/) Eokskokokskokskokkokok ok SCATLS ok ok sk ok sk ok sk ok ok sk ok ok K K

for

{

(int

cfg = 0; cfg < CFG; cfg++)

InitArray () ;

5

_cube.\n”;

// config

loop

127
128
129

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

B. PROGRAMMING 7

anisosave (edition);

aniso_test ();

cout << ”start_T_osweep\n”;

/) dokskskok sk skokok ko skokokok ok TSI @M sk sk ok skok sk sk ok sk ok sk ok ok ok ok ok

T[xx] = Tpt[0];

Bx[xx] = Bxfix[0];

//BBz[zz] = Cz x Bz[zz] // OFF In para0 not necessary

for (¢ = 0; ¢ < MR; c++4) // sweep counter loop
{

// one single temperature step at the beginning
if (Tsteps[c] > 0)

{
T[xx] = Tptlc];
Bx[xx] = Bxfix[c];
array<double, 2> arr = rel_perm (Bx[xx]) ;
double mu.r = arr [0];
double M = arr [1];
for (lx = 0; Ix < TRlxLoops[c]; Ix++4) // Relazation loop
{
MCS_one(xx, Bx[xx], KB*T[xx], mu.r, M);
¥
for (Ilm = 0; Im < TAvgLoops|[c]; lm++4) // Awveraging loop
{
MCS_one(xx, Bx[xx], KB+T[xx], mu.r, M);
Mx|[xx] += measure () ;
¥
Mx|[xx] /= ((double) TAvgLoops[c]);
auto t2 = chrono:: high_resolution_clock ::now();
chrono :: duration<double, milli> fp_ms = t2—t1;
comp-t.push_back (fp_-ms.count());
spinsave (edition); // NOT advised here! GB files!
filesave (edition , xx);
double Et = E_filesave (edition, xx);
detailed-measure (edition , xx);
cout << Vcfg:l” << cfg + 1 << 7, Te=" << Txx] << 7, Bo=27 <<
Bx[xx] << 7, Mx.=." << Mx[xx] << 7 ,_.Etot_=." << Bt << ”_in.”
3
cout << (comp-t[xx]—comp_t[xx—1])/1000 << "_[s]\n”;
cout << "rel_Permeability:.” << mu.r;
if (mur < 1)
{
cout << ”_—>_physical?!”;
//abort () ;
¥
cout << endl;
XX A4+;
xxmax—+-+;
T[xx] = T[xx—1] + dT[c];
}

for (StepNr = 0; StepNr < Tsteps[c]; StepNr+4+4)

{
Bx[xx] = Bxfix[c];
array <double, 2> arr = rel_perm (Bx[xx]);
double mu.r = arr [0];

double M = arr [1];
for (lx = 0; lx < TRIlxLoops|[c]; lx++4) // Relazation loop

{

MCS_one(xx, Bx[xx], KB+*T[xx], mu-r, M);

for (lm = 0; lm < TAvgLoops[c]; lm++4) // Averaging loop

221

224
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

259
260
261
262
263
264
265
266
267
268
269
270

271
272
273
274
275
276
277
278
279
280
281
282

B. PROGRAMMING

78

MCS_one(xx, Bx[xx], KB«T[xx], mu.r, M);

Mx[xx] += measure() ;

Mx[xx] /= ((double) TAvgLoops[c]) ;

auto t2 = chrono:: high_resolution_clock ::now();

chrono :: duration<double, milli> fp_-ms = t2—t1;

comp-t.push_back(fp-ms.count());

spinsave (edition);
filesave (edition, xx);
Et = E_filesave (edition, xx);

detailed_measure (edition , xx);

// NOT ADVISED: GB files !

cout << Vcfg:.” << cfg + 1 << 7, To=27 << Tlxx] << 7, .Bo=2" <<

Bx[xx] << 7 ,_Mx.=.” << Mx[xx] << 7 ,_.Etot_=."

3

cout << (comp_t[xx]—comp_t[xx—1])/1000 << ”_

cout << "rel_Permeability:.” << mu.r;
if (mu.r < 1)
{
cout << 7 _—>_physical ?7!”;
//abort ();
}

cout << endl;
//cout << 7spin update\n”;

xx++;
xxmax-++;

T[xx] = T[xx—1] + dT[c];

// cout << 7"start B sweep\n”;

J/ kkkokwkkkkxkx B—Scan skxxkxkxkkkkkxkxk // Won’t be activated here

0;

Bx[xx] = Bxpt[0];
T[xx] = Tfix [0];

for (¢ = 0; ¢ < MR; c++4)
{
// one single field step at the beginning

// int status = 0; // wariable ’status’ and

are strictly cosmetic: =~ computation status
if (Bsteps[c] > 0)
{
Bx[xx] = Bxpt[c];
T[xx] = Tfix[c];
array<double, 2> arr = rel_perm (Bx[xx]) ;
double mu.r = arr [0];

double M = arr [1];
//cout << ”Single step, relazation: 7;

for (lx = 0; 1x < BRIxLoops|c]; lx++4) // Relazation

‘countdown

<< Et << 7_in.”

Tsteps [] =

)

loop

//status = countdown (BRlzLoops[c],

{
MCS_one(xx, Bx[xx], KB«T[xx], mu.r, M);
lz, status);
}
for (Ilm = 0; Im < BAvgLoops|[c]; lm++4) // Aweraging
{
MCS_one(xx, Bx[xx], KB*T[xx], mu.r, M);
Mx[xx] += measure () ;
}

Mx|[xx] /= ((double) TAvgLoops[c]) ;

auto t2 = chrono:: high_resolution_clock ::now();

loop

291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

340
341
342
343
344
345
346
347
348
349

350
351
352
353
354
355
356
357
358
359

B. PROGRAMMING

79

chrono :: duration<double, milli> fp_ms = t2—t1;
comp_t.push_back (fp-ms.count());

spinsave (edition); // NOT ADVISED: GB files!
filesave (edition , xx);

Et = E_filesave (edition, xx);

detailed-measure (edition , xx);

cout << Vcfg:l” << cfg + 1 << 7, T=." << T[xx] << 7 ,.B=." <<
Bx[xx] << 7 ,-Mx.=." << Mx[xx] << 7 ,.Etot_=." << Et << ”_in.”

cout << (comp-t[xx]—comp_t[xx—1])/1000 << " _[s]\n”;

+xx;

++xxmax ;

Bx[xx] = Bx[xx—1] + dBx[c];

//status = 0;

for

{

(StepNr = 0; StepNr < Bsteps[c]; StepNr++)

T[xx] = Tfix[c];
array<double, 2> arr = rel_perm (Bx[xx]) ;
double mu.r = arr [0];

double M = arr [1];
//cout << ”"Relazation progress: ”;
for (lx = 0; 1x < BRIxLoops|[c]; lx++4) // Relazation loop

{
MCS_one(xx, Bx[xx], KB+T[xx], mu.r, M);
//status = countdown (BRlzLoops[c], lz, status);

for (lm = 0; lm < BAvgLoops[c]; Im++) // Awveraging loop
//cout << 7 Schleife\n”;

MCS_one(xx, Bx[xx], KB*T[xx], mu.r, M);
Mx[xx] += measure () ;
//status = countdown (BAvgLoops[c], Ilm, status);

Mx|[xx] /= ((double) TAvgLoops[c]) ;
//cout << ”"Awveraging done\n”;

auto t2 = chrono:: high_resolution_clock ::now();

chrono :: duration<double, milli> fp_ms = t2—t1;
comp-t.push_back (fp-ms.count());

spinsave (edition); // NOT ADVISED: GB files!
filesave (edition , xx);

Et = E_filesave (edition, xx);

detailed-measure (edition , xx);

cout << Vcfg:l” << cfg + 1 << 7, T =" << T[xx] << 7 ,.B=." <<
Bx[xx] << 7 ,-Mx.=." << Mx[xx] << 7 ,.BEtot_=." << Bt << ”_in.”

cout << (comp-_t[xx]—comp_t[xx—1])/1000 << ”"_[s]\n”;

+Hxx;

++xxmax ;

Bx[xx] = Bx[xx—1]+dBx[c];

// output.dat only updated after 1 sweep, NOT after every step as spin.

!

// OFF spintable ();

} // \configuration loop

B. PROGRAMMING 80

360 }

361 return O0O;
362}

363

364

365 //end.

B.1.2 parameter.h

1 // parameter.h

2 // configuration file

3 // for MC simulation

4

5 using namespace std;

6

7

8 extern const string data_file = "output”;

9 extern const string table_file = ”spin”;

10 extern const string aniso_file = ”aniso”;

11 extern const string Edata_file = ”Edata”;

12 extern const string Mdata_file = ”Mdata”;

13 //extern const string blockT_file = 7blockT.dat”;

14

15

16 // Natural constants. Only to be changed for convenience!!

17 const double pi = M_PI; // pi

18 const double KB = 1.38064852e¢—23; // Boltzmann constant

19 const double mu0 = pixde—7; // vacuum permeability

20 const double eV = 1.60217662e¢—19; // electron charge for easy conversion Joule <—> electron Volt
21 const double hbar = 1.0545718e—34; // h bar

22

23 // Parameters that distinguish the sample/ezperiment and its dynamics

24 const double d.m = 1.; // test—rotation wvector length

25 const double Mag = 0.38e6xpi/6xpow(20e—9,3); // Magnetic moment (saturization mag. * Volume)
26 //const double KV = 0.;

27 const double KV = 1.34e4xpi/6xpow(20e—9,3); // anisotropy constant % Volume //

28 const double latt_const_-0 = 1.%x20e—9x1.1xsqrt (2.); // lattice constant of outer sc lattice
29 double latt_const; // lattice updated via edition parameter!!

30 const double def_mur = 15.;

31

32

33

34 // Parameters that define size of system and thus largely influence computation time!

35 //const bool DIPOLAR = true;

36 bool DIPOLAR;

37 const bool PERIODIC = true; // Calculate periodic system with ORF approz. If true, SPHERICAL is

inactive

38 const bool PRINT_.ENERGIES = false; // if true, all total energies are regularly calculated and
saved

39 const bool PRINT_SPINS = false; // if true, spin_tables are regularly printed (GB files!!)

40 const bool DETAILED MEASURE = true; // if true, other magnetizations than mz and their abs are
recorded

41 const bool ONSDAT = false; // if true, all (!!!) Onsager energies will be recorded —> GB files !!

42 extern const string type = ”fcc”;

43 const bool SPHERICAL = false; // if true, original cube is cut off to a sphere

44

45 const int edge.N = 7; // # spins per edge

46 //const int maz_N_temp = 2046 // # spins being considered

47 //const int maz_N_temp = pow(edge_-N,3); // general sc

48 int max._N;

49 //const int maz_N_temp = pow(edge-N,3) + pow(edge-N—1,3); // general bcc

50 const int max_N_temp = 4sxpow(edge_-N,3); // general fcc

51 //const int maz_-N_temp = pow(edge_-N,3) + 3xedge_Nxpow(edge_-N—1,2);

52 const int loopNrAvg = 10; // # MC Awvgloops per step

53 const int loopNrRlx = 500; // # MC Rlzloops per step // !! in anisoBlock: loopNr2 = loopNr
always !!

54 const double CUTOFF = 2; // mazimum distance up to which dipole energy is calculated

55 double BEST_CUTOFF; // largest radius containing same neighbours as above wvalue

56

57

58 // Parameters with mostly computational rather than physical meaning

59 const int numThreads = 4; // number of possible parallel threads

60 const int numThreads2 = 2; // alternative number of parallel threads

61 //const int Ntrunc = maz_-N/num_threads ;

62 const int SEED = 11102017; //date as seed for rnd250()

63 const int MR = 3; // number of possible sweeps

64 const int MAXDATA = 100000; // maz. number of data points

65 const int CFG = 1; // number of configurations

66

67

68 // Temperature T in K(elvin)

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

=
= O © 0 O Gk W

GO @ Ut Ut Ut U Ot OO U OT U R R R R R R R R B B W W W W W W W W W WNNNNNNNNNN = e e e e
N = O © 010 0k WO ©WOoWw=NO U s WNFOO©WNODOWERWNRO®OWSNOUKR WNFO©OWNO U B WN

B. PROGRAMMING 81

// and
// magnetic field B in T(esla)

// Points for T — sweeps
const double Tpt[MR+1] = {1000, 25, 1000, 1000};

const double dT[MR] = {—25, 25,—100};

const double Bxfix[MR] = {0.0, 0.015, 0.015};

const int TRIlxLoops[MR] = {loopNrRlx, loopNrRlx, loopNrRlx};
const int TAvgLoops[MR] = {loopNrAvg, loopNrAvg, loopNrAvg};

// Points for B— sweeps

const double Bxpt[MR+1] = {0.15, 0.15, 0.15,0.15};

const double dBx[MR] = {0.005, —0.005,0.005};

const double Tfix [MR] = {10, 10,10};

MR] = {loopNrRlx, loopNrRlx, loopNrRlx};
MR] = {loopNrAvg, loopNrAvg, loopNrAvg};

const int BRIxLoops|
const int BAvgLoops]|

B.1.3 input-ini.h

// input_ini.h

// based on ini_spd5tbl.h
// computational necessities without physical meaning are defined here.

//
using namespace std;

// Spin positions

double POS[max_N_temp][3]; // Generates the sc lattice of spin positions.
bool intern [max_N_temp]l; // flags if sites are within spherical cutoff
double N_POS|[max-N_temp][3];

// Spin tables
double s[max_N_temp][3];

double sx [max_N_temp], sy [max_N_temp], sz[max_N_temp];

// Anisotropy easy azes
double k[max_N_temp][3];
double kx[max_N_temp], ky[max_N_temp], kz[max_N_temp];

void ini_config(); // initialize configuration

void InitArray (); // array initialization function —> CFG loop

void dist_-matrix(); // calculate distance matriz for spin interaction
void r_vectors(); // calculate normalized distance vectors

void local_matrix(); // determine neighbourhood positions for dipole interaction
void line_generator (); // generates line of positions

void sc_generator(); // sc generator

void bcc_generator(); // bcc generator

void fcc_generator(); // fcc generator

void sc_only (); // POS only with sc generated

double best_cutoff();

int Tsteps [MR], Bsteps[MR];

int xxmax;

double T[MAXDATA], Bx[MAXDATA];
double Mx[MAXDATA];

double TBsteps [CFG][5];

void InitMain (int ed)
{
int maxdat, i, xx;
int SEED_cluster;
if (ed < 1000)
SEED _cluster = SEED ;
else
SEED _cluster = SEED + ed;
seed250 (SEED _cluster) ;
srand (SEED _cluster) ;

maxdat = 0;
for (i = 0; i < MR; i++)
{

//Tsteps[i] = abs((int) ((Tpt[i]—Tpt[i+1])/dT[i]));

63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

96
97
98
99
100
101
102
103
104
105
106
107
108

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143

B. PROGRAMMING

82

// Pure B Sweep!!!

Tsteps[i] = abs((int) ((Tpt[i]-Tpt[i+1])/dT[i]));
Bsteps[i] = abs((int) ((Bxpt[i]—-Bxpt[i+1])/dBx[i]));
//Bsteps[i] = 0; // Only T sweeps herel!!

maxdat += Tsteps[i]+Bsteps[i];

cout << (maxdat+1)*CFG << ”_Data_points\n”;

if ((maxdatxCFG+1) > MAXDATA)
{

cout << ”too._many.-data_points!!\n”;
abort () ;

for (xx = 0; xx < MAXDATA; xx++)

Mx[xx] = 0.0;
T[xx] = 0.0;
Bx[xx] = 0.0;
}
for (int i = 0; i < CFG; i++)
{
for (int j = 0; j <=5; j++)
{

TBsteps[i][j] = 0;

cout << ”data_variables_initialized!\n”;

void InitArray ()

{

cout << ”initialize_arrays...\n”;
ini_config () ;
cout << ”arrays_initialized!\n”;

// If no dipole—dipole interaction is considered, below functions

cout << 7calculate_distances...\n”;
dist_matrix () ;

cout << ”distances_calculated!\n”;

if (PERIODIC)
BEST_CUTOFF = best_cutoff();

if (PRINT_ENERGIES or not PERIODIC)
{

cout << ”calculate_distance_vectors...\n”;
r_-vectors () ;
cout << ”distance_vectors.calculated!\n”;

/*
cout << ”"calculate dipole neighbours\n”;
local-matriz () ;

cout << ”"dipole meighbours determined\n”;

*/

void ini_config ()

{

for (int i = 0; i < maxN; i+4+4)
{
// Both spin and easy axis are stored as wunit vectors
angle between them wvia scalar product

// Set initial spin vector directions
Marsaglia(s[i]);

sx[i] = s[i][0];
sy[i] = s[i][1];
sz[i] = s[i][2];

// Set initial easy azes directions

are NOT necessary

because we mneed only the

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

191

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

B. PROGRAMMING

83

Marsaglia(k[i]);

kx[i] = k[i][0];
ky[i] = k[i][1];
ka[i] = k[i][2];

}
cout << ”Initial_spin_directions_set.\n”;

cout << ”Easy._axes_are_set.\n”;

// Two optional functions that are only wuseful when comparing magnetization to theoretical

paramagnetic case!

double Langevin(double Ezee, double kbT)

{
return (1/tanh (Ezee/kbT)—kbT/Ezee);

// Reset all output files
void reset_files (int ed)

{
string data_file_cluster = data_file + to_string(ed) + ”.dat”;
string table_file_cluster = table_file + to_string(ed) + ”.dat”;
string aniso_file_cluster = aniso_file + to_string(ed) + 7 .dat”;
string Edata_file_cluster = Edata_file + to_string(ed) + ”.dat”;
string Mdata_file_cluster = Mdata_file + to_string(ed) + ”.dat”;
ofstream fout;
fout.open(data_file_cluster , ios::trunc);
fout.close () ;
ofstream spinout;
spinout.open(table_file_cluster , ios::trunc);
spinout.close () ;
ofstream anisout;
anisout.open(aniso_file_cluster , ios::trunc);
anisout.close ();
ofstream Efout;
Efout.open(Edata_file_cluster , ios::trunc);
Efout.close ();
ofstream Mfout;
Mfout.open(Mdata_file_cluster , ios::trunc);
Mfout . close () ;
if (ONSDAT)
{
ofstream ons;
ons.open(”ons.dat”, ios::trunc);
ons.close () ;
}
/*
ofstream blockout;
blockout.open(blockT_file , ios::trunc);
blockout.close ();
*/
}
// Save data_file which contains magnetization at applied field , temperature
void filesave (int ed, int xx)
{
string data_file_cluster = data_file + to_string(ed) + ”.dat”;
ofstream fout;
fout.open(data_file_cluster , ios::app);
//fout << 7cgf T B M\n”;
fout << xx << 7\t7 << T[xx] << 7\t7 << Bx[xx] << "\t” << Mx[xx] << endl;
fout.close ();
}

// Save spin positions. Every block of maz_N rows corresponds to one row in data_file.

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

255
256
257
258
259
260
261
262
263

264
265

284

291

301

B. PROGRAMMING

84

void spinsave(int ed)
{
if (PRINT_SPINS)
{
string table_file_cluster = table_file 4+ to_string(ed) + 7 .dat”;
ofstream spinout;
spinout.open(table_file_cluster , ios::app);
//fout << “cgf T B M\n”;
double X,Y,Z,VX,VY,VZ;
for (int n = 0; n < maxN; n+4+)
{
VX = sx[n];
VY = sy [n];
VZ = sz [n];
X = POS[n][0];
Y = POS[n][1];
Z = POS[n][2];
/%
// Operations on sz, POS in order to make the plots in gnuplot
easier
VX = 0.5%sz[n];
VY = 0.5%sy[n];
VZ = 0.5%xsz[n];
X = POS[n][0]/latt_const —0.5%+VX;
Y = POS[n][1]/latt_const —0.5xVY;
Z = POS[n][2]/latt_const —0.5%VZ;
*/
spinout << X << "\t” << Y << "\t << Z << T\t << VX << T\t <<
VY << 7\t” << VZ << endl;
//spinout << POS[n][0] << 7"\t” << POS[n][1] << 7\t” << POS[n][2]
<< N\t << sz fn] << \t7 << sy [n] << "\t7 << sz [n] << endl;
¥
//fout << endl;
spinout.close () ;
}
}
// Save easy azes at every site analogously to spinsave.
void anisosave (int ed)
{

string aniso_file_cluster =

ofstream anisout;

aniso_file + to_string(ed) + ”.dat”;

anisout .open(aniso_file_cluster);

double X,Y,Z,VX,VY,VZ;

for (int n = 0; n < max_N; n++)
{

VX = kx[n];
VY = ky[n];
VZ = kz[n];
X = POS[n][0];
Y = POS[n][1];
Z = POS| ;
/%

VX = 0.5xkz[n];
VY = 0.5xky[n];

VZ =

0.5%kz[n];

X = POS[n][0]/latt_const —0.5xVX;
Y = POS[n][1]/latt_const —0.5xVY;

304
305
306
307
308

309
310

311
312
313
314
315
316
317
318
319

N =

14

B. PROGRAMMING 85

Z = POS[n][2]/latt_const —0.5xVZ;
*/

anisout << X << "\t”7 << Y << "\t7 << Z << "\t7 << VX << P\t? << VY << 7\
t”? << VZ << endl;
//spinout << POS[n][0] << "\t”7 << POS[n][1] << "\t” << POS[n][2] << "\t~
<< sz [n] << \t7 << sy[n] << "\t7 << sz [n] << endl;
}

//fout << endl;

cout << ”Wrote_easy_axes_table.\n”;

anisout.close ();

//end.
B.1.4 str.h

// str.h
// functions and definitions that translate the physical structure of the simulated system are

done here

using namespace std;

double dist [max_N_temp][max_N_temp];
double rVectors [max_-N_temp][max_N_temp][3];

// function that calculates array dist[maz_N][maz_N]

void line_generator (int edge, double start[3], int direction, int start_-index)
{

int n = start_index;

double a = 1.;

int dir [3] = {0,0,0};

dir [direction] = 1;

for (int i = 0; i < edge; i++)

{
POS[n][0] = axixdir [0]+ start [0];
POS[n][1] = axixdir[1]+start [1];
POS[n][2] = axixdir[2]+ start [2];
n++;
}
}
void sc_generator(int edge, double start[3], int start_index)
{
int n = start_index;
double a = 1.;
for (int i = 0; i<edge; i++4)
{
for (int j = 0; j< edge; j++)
{
for (int k = 0; k< edge; k++)
{
POS[n][0] = axit+start [0];
POS[n]|[1] = axj+start [1];
POS[n][2] = axktstart [2];
n++;
¥
¥
}
}
void sc_only (int outer_edge)
{
double sc.start [3] = {0,0,0};
sc_generator (outer_edge , sc_start ,0);
if (max_N_temp != pow(edge_N,3))
{
cout << ”"Error.in.sc.generation ,_.check_site_numbers!” << endl;
abort () ;
}
}

100
101
102
103
104

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

B. PROGRAMMING

86

void bcc_generator (int outer_edge)

{

{

double a = 1.;

double outer_start [3] = {0,0,0};

double inner_start [3] = {0.5%xa,0.5%a,0.5x%a};

if (outer_edge < 2 or max_N_temp != pow(edge_N,63)+pow(edge_N —1,3))

{
cout << "error.in._bcc_generation ,_check_site_numbers!” << endl;
abort () ;

}

sc_generator (outer_edge , outer_start, 0);

int outer_index = pow(outer_edge ,3);

sc_generator (outer_edge —1, inner_start , outer_index);

void fcc_generator (int outer_edge)

double a = 1.;

double outer_start [3] = {0,0,0};

if (outer_edge < 2 or max_N_temp != pow(edge_N,63)+3xedge_Nxpow(edge_-N —1,2))

{
cout << "error.in.fcc_generation ,_check_site_numbers!” << endl;
abort () ;

}

sc_generator (outer_edge , outer_start, 0);

int current_-index = pow(outer_edge ,3);

// gemnerate lines in z—direction

double current_start[3] = {0,0,0};

for (int i = 0; i < outer_edge —1; i++)

{
for (int j = 0; j < outer_edge —1; j++)
{
current_start [1] = ax(0.541);
current_start [2] = ax(0.54j);
line_generator (outer_edge , current_start , O,
current_-index 4= outer_edge;
¥
}
current_start [1] = 0;
current_start [2] = 0;

// gemerate lines in y—direction

for (int i = 0; i < outer_edge —1; i++)

{
for (int j = 0; j < outer_edge —1; j++)
{
current_start [0] = ax(0.541);
current_start [2] = ax(0.54j);
line_generator (outer_edge , current_start, 1,
current_-index 4= outer_edge;
}
}
current_start [0] = 0;
current_start [2] = 0;

// generate lines in z—direction

for (int i = 0; i < outer_edge —1; i++)

{
for (int j = 0; j < outer_edge —1; j++)
{
current_start [0] = ax(0.541);
current_start [1] = ax(0.54j);
line_generator (outer_edge , current_start , 2,
current-index 4= outer_edge;
¥
}
current_start [0] = 0;
current_start [1] = 0;

current_index) ;

current_index);

current_index);

B. PROGRAMMING

142}

143

144 array<double, 4> calc_cent_rad ()

145 {

146 array <double, 4> CENTER = {0,0,0,0};

147 for (int i = 0; i < max_N_temp; i++)

148 {

149 CENTER[0] += POS[i][0];

150 CENTER([1] += POS[i][1];

151 CENTER[2] += POS[i][2];

152 !

153

154 CENTER[0] /= max_N_temp;

155 CENTER[1] /= max_N_temp;

156 CENTER[2] /= max_N_temp;

157

158 CENTER[3] = 0.5 x (edge-N-—1);

159 return CENTER;

160 }

161

162 bool in_sphere (double x, double y, double z, array<double,4> center)
163 {

164 double x2 = center [0];

165 double y2 = center [1];

166 double z2 = center [2];

167 double R = center [3];

168

169 double r = pow(x—x2,2) + pow(y—-y2,2) + pow(z—z2,2);
170

171 return (r <= Rx*R);

172

173}

174

175

176 int det_spheric ()

177 |

178 int MAX = 0;

179

180 array <double,4> CENTER = calc_cent_rad () ;
181

182 //cout << ”Center: 7 << CENTER[0] << 7 7 << CENTER[1] << 7 7 << CENTER[2] << endl;
183 //cout << ”Radius: 7 << CENTER[3] << endl;

185 fill_n (intern, max_N_temp, false);

188 double x, y, z;

190 for (int i = 0; i < max_N_temp; i++)
191 {

,_.
©
@
|

= POS[i][0];
194 y = POS[i][1];
195 z = POS[i][2];

197 J/cout << z << 7 V<< y << 77 << 2z << endl;

199 if (in_sphere(x, y, z, CENTER))
200 {

201 MAX4+;

202 intern[i] = true;

204 3

205

206 }

207

208 cout << MAX << ”_of_.” << max_N_temp << ”_in_sphere.\n"”;
209

210 return MAX;

211}

212

213

214 void new_pos()

215 {

216 int n = 0;

217

218 for (int i = 0; i < max_-N_temp; i++)
219 {

220 if (intern[i])

221 {

222 N_POS[n][0] = POS[i][0];
223 N_POS[n][1] = POS[i][1];

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

300
301
302
303

B. PROGRAMMING 38

N_POS[n][2] = POS[i][2];

n++;
}
}
if (n != max.N)
{
cout << ”Error_in_spherical_cutoff!\n”;
abort () ;
}

// rTeset POS with arbitrary value (—42)
fill (POS[0], POS[0] 4+ max_N_temp = 3, —42.);

// for relevant indices, fill POS with N_POS
for (int i = 0; i < maxN; i+4++4)

{
POS[i][0] = N_POS[i][0];
POS[i][1] = NPOS[i][1];
POS[i][2] = N_POS[i][2];
}

}
/*
const int MAX = maz_N;
double N_POS[MAX][3];
*/
void dist_matrix ()
{
int i = 0;
while (i < max.N)
{
int j = i;
while (j<max.N)
{
dist[i][j] = latt_-constx sqrt(pow(POS[i][0] —POS[j][0],2) 4+ pow(POS[i
[[1] =POS[j][1],2) + pow(POS[i][2] —POS[j][2],2));
i++;
}
i++;
}
int j = 0;
// counter loop for case i>j
while (j < max_N)
{
int i = j;
while (i<max_N)
{
dist [11[§] = dist [§1[i];
i+
¥
J++s
}
//cout << " Test dist 7 << dist [2][538] << 7 7 << dist [53][2] << endl;
}

// calculation of the mormalized distance wvectors between sites —> rVectors[maz_N][maz_N][3]
void r_vectors ()

{
for (int i = 0; i<max-N; i++)
{
for (int j = i41; j<maxN; j++)
{
//double d = dist[i][j];
double vec[3] = {POS[i][0] —POS[j][0] ,POS[i][1] —POS[j][1],POS[i][2] —POS[]
11213}

double mod = sqrt (pow(vec[0],2)4pow(vec[1l],2)4pow(vec[2],2));
vec [0] /= mod;
vec[1l] /= mod;
vec [2] /= mod;

304
305
306
307
308
309
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

332
333
334
335
336

337
338
339
340
341

342
343
344
345
346
347
348

349
350
351

352
353

354
355
356

357
358
359
360

361
362
363
364
365
366
367
368
369
370
371
372
373

B. PROGRAMMING

89

rVectors[i][j][0] = vec[O0];
rVectors [i][j][1] = vec[1];
rVectors [i][j][2] = vec[2];
//cout << wec [2] << endl;

//Ed += 1./pow(d,3) * (3%
Jxvec[0]+sy[i]xvec[l]+sz[i]xvec[2]) —

(sz[j]xvec[0]+sy[j]xvec[l]+sz[j]xvec[2])*(sz[i

(swli]esalif+syli]xsyli]+s2i

Jxsz[i]));
¥

}

int j = 0;

// counter loop for case i>j

while (j < max_N)

{

int i = j;

while (i<max_N)

{
rVectors[i][j][0] = rVectors[j][i][0];
rVectors[i][j][1] = rVectors[j][i][1];
rVectors[i][j][2] = rVectors[j][i][2];
i+

¥

J++s

}

//cout << "Test r—Vec: 7 << rVectors [2][53][0] << 7 7 << rVectors [2][58][1] << 7 7 <<
rVectors [2][53][2] << 7 7 << rVectors [53][2][0] << 7 7 << rVectors [58][2][1] << 7 7
<< rVectors [53][2][2] << endl;

}

// get the neighbours that are within the cutoff range and store their indices.

// Note that only i=0 gets all neighbours exzplicitly , neighbours for i>0 are partly contained
for smaller i Il

/*

void local_-matriz ()

{

int min = maz-N; // completely optional:

int maz = 0; // show the minimal/mazimal number of neighbours that will be
considered for E_dipole

// loop over all sites 1

for (int i = 0; i < maz_N; i++)

{

int loc = 1; // counts # neighbours for site i
locc.POS[i][0] = 0; // O0th element contains number of mneighbours, wused in
loc_E_dipole ()
// because of symmetry of E_dipole, only upper triangle matriz needs to filled
for (int j = i+1; j < maz_N; j++) // only wviable if loc_E_dipole () works with
corresponding structure!
{
// loc.POS only filled with neighbouring sites within a distance of ~
cutoff’ around site 1
if (dist[i][j] <= cutoff)
{
loc.POS[i][loc] = j; // So, loc.POS[a][b] = ¢ reads: the
position vector of the bth mneighbour of site a is stored as
cth element of the ORIGINAL POS array.
loc++;
loc.POS[i][0]+=1;
}
// Because of this construction , mno dipole—dipole pair will be either
counted double or forgotten!
}
if (loc > max)
{
mazr = loc;
¥
if (loc < min)
{
min = loc;
¥
}

374

375
376
377
378
379
380
381
382
383
384
385
386
387
388

389
390
391
392
393
394
395
396
397
398
399
400
401

402
403
404
405
406
407
408
409
410
411
412
413
414
415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

443
444
445
446

B. PROGRAMMING 90

cout << "Up to 7 << maz—1 << 7 meighbours per site considered instead of original 7 <<
maz-N—1 << endl;

}
*/
double dipole(int i, int j)
{
double d = dist [i][j];
double vec[3];
vec [0] = rVectors[i][j][0];
vec[l] = rVectors[i][j][1];
vec [2] = rVectors[i][j][2];
it (il=j)
return —muOx*MagxMag/(4*PI x pow(d,3)) = (3% (sx[j]*xvec[0]+sy[j]*vec[l]+sz[]j]*vec
[2]) *(sx[i]*vec[0]+sy[i]*xvec[l]+sz[i]*xvec[2]) — (sx[jl*xsx[i]+sy[jl*sy[i]+sz]
jlesz[i]));
else
return O0;
}

// this function calculates the sum of all dipole—dipole energies w/o cutoff!
double E_dipole ()

{
double Ed = 0;
//int status;
for (int i = 0; i<max.N; i++)
{
for (int j = i+41; j<maxN; j++4) // upper triangle matriz: main diagonal entries
must be 0, rest isn’t determined because dipole pairs mustn’t be counted
twice
{

double d = dist [i][j];

double vec[3];

vec [0] = rVectors[i][j][O0];

vec[1] = rVectors[i][j][1];

vec [2] = rVectors[i][j][2];

//cout << wec [2] << endl;

Ed —= muOxMag*Mag/(4*PI * pow(d,3)) =* (3% (sx[j]lxvec[0]+sy[j]l*vec[l]+sz]
jlxvec[2]) x(sx[i]*xvec[0]+sy[i]*vec[l]+sz[i]*xvec[2]) — (sx[j]*sx[i]+
sy [il*xsy[il+sz[jlxsz[i]));

//status = countdown (maz_N, i, status);

}
}
return Ed;
}
double E_dipole_quick (int j)
{
double Ed = 0;
//int status;
for (int i = 0; i<max.Nj; i++)
{
if (i !=j)
{

double d = dist [i][j];

double vec[3];

vec [0] = rVectors[i][j][0];

vec[1] = rVectors[i][j][1];

vec [2] = rVectors[i][j][2];

//cout << wec [2] << endl;

Ed —= muOxMag*Mag/(4*PI * pow(d,3)) =* (3% (sx[j]*xvec[0]+sy[j]*vec[l]+sz]
jl*vec[2]) x(sx[i]*xvec[0]+sy[i]*vec[l]4+sz[i]*xvec[2]) — (sx[]j]*sx[i]+
sy [ilxsy[il+sz[jlxsz[i]));

//status = countdown (maz_N, i, status);

B. PROGRAMMING

447 return Ed;

448

449}

450

451 double E_dipole_total ()

452 {

453 double Ed = 0;

454

455 omp-set_-num_threads (numThreads) ;

456 #pragma omp parallel for reduction (+:Ed)
457 for (int i = 0; i < max-N—1; i++4)

458 {

459 for (int j = i+4+1; j < maxN; j++)
460 {

461 Ed += dipole(i,j);

462 }

463 }

464

465 Ed /= pow((edge_-N —1)xlatt_const ,3);

466 return Ed;

467 }

468

469 double E_aniso_total ()

470 |

471 double Ea = 0;

472

473 omp-set-num_threads (numThreads) ;

474 #pragma omp parallel for reduction(+:Ea)
475 for (int n = 0; n < maxN; n+4++4)

476 //Ea += KV %(1— pow(sz [n]*xkz[n]+sy[n]xky[n]+sz[n]xkz[n], 2));
477 Ea += KV %(0— pow(sx[n]*xkx[n]+sy[n]*xky[n]+sz[n]*kz[n], 2));
478

479 Ea /= pow((edge-N—1)xlatt_const ,3);

480 return Ea;

481 }

482

483 double E_zee_total (double BBx)

484 {

485 double Ezee = 0;

486

487 omp-set_-num_threads (numThreads) ;

488 #pragma omp parallel for reduction(—:Ezee)
489 for (int n = 0; n < maxN; n+4+4)

490 Ezee += —Mag * BBx * sx[n];

491

492 Ezee /= pow((edge_.N—1)*xlatt_const ,3);
493 return Egzee;

494

495 }

496

497

498 double E_surf_total ()

499 {

500 double Esurf = 0;

501

502 omp-set_-num-_threads (numThreads) ;

503 #pragma omp parallel for reduction(+:Esurf)
504 for (int n = 0; n < max-N—1; n++)

505 {

506 for (int m = n+1; m < max_-N; mt+)
507 Esurf += sx[n]*sx[m] + sy[n]*sy[m] + sz[n]*sz[m];
508 }

509

510 Esurf *= mu0 * Mag * Mag / (2 % pow((edge_N—1)*xlatt_const , 6));
511

512 return Esurf;

513}

514

515

516 double E_dipole_quick_MULT (int j)

517 {

518 double Ed = 0;

519 //int Ntrunc = maz_N/num_threads ;

520 //int status;

521 omp-set_num_threads (numThreads) ;

522 #pragma omp parallel for reduction (+:Ed)
523 for (int i = 0; i < maxN; i+4+4)

524 {

525 Ed 4= dipole(i,j);

526 }

527

528 return Ed;

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

601
602
603
604
605
606
607

B. PROGRAMMING

92

double E_filesave (int ed, int xx)

<< muy << 7

{
double Etotal = 0;
if (PRINT_ENERGIES)
{
string data_file_cluster = Edata_file + to_string(ed) + ”.dat”;
ofstream fout;
fout .open(data_file_cluster , ios::app);
//fout << “cgf T B M\n”;
double Ed, Ea, Ezee, Esurf;
Ed = E_dipole_total();
Ea = E_aniso_total();
Ezee = E_zee_total (Bx[xx]) ;
Esurf = E_surf_total();
Etotal = Ed + Ea + Ezee + Esurf;
fout << xx << "\t7 << T[xx] << 7"\t” << Bx[xx] << 7\t” << Ezee << 7\t” << Ea << ”
\t7 << Ed << "\t” << Esurf << ”"\t” << Etotal << endl;
fout.close ();
}
return Etotal;
}
void detailed_-measure (int ed, int xx)
{
if (DETAILED_-MEASURE)
{
double m_x, m.y, m_z, MX, MY, MZ;
m-x = 0;
m.y = 0;
m-z = 0;
MX = 0;
MY = 0;
MZ = 0;
omp_set_num_threads (2) ;
#pragma omp parallel for reduction(+:m-_x), reduction(+:m.y), reduction(+:m.z),
reduction (+:MX), reduction (4:MY), reduction (+4:MZ)
for (int n = 0; n < maxN; n++)
{
mx += sx[n]; // measure in z—direction
m_y += sy[n];
m.z += sz [n];
MX += abs(sx[n]); // measure total z—alignment
MY += abs(sy[n]);
MZ += abs(sz[n]);
}
m_x /= max-N;
m_y /= max_N;
m_z /= max_N;
MX /= max_N;
MY /= max_N;
MZ /= max_N;
string data_file_cluster = Mdata_file + to_string (ed) 4+ ”.dat”;
ofstream fout;
fout.open(data_file_cluster , ios::app);
//fout << 7cgf T B M\n”;
fout << xx << "\t”7 << T[xx] << 7"\t” << Bx[xx] << 7\t” << m_x << "\t”
\t7 << moz << 7\ t7 << MX << 7\ t7 << MY << "\ t7 << MZ << endl;
fout.close ();
}
}

608
609
610
611

612
613
614
615
616
617

618
619

620
621
622
623

624
625
626
627
628
629
630
631
632
633
634
635

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

B. PROGRAMMING 93

/%

// calculate E_dipole, but at every site i, only the local mneighbours determined in local-matriz
() are considered

double loc_E_dipole ()

{
double Ed = 0;
for (int i = 0; i<maz_N; i++)
{
int maz = loc.POS[i][0]; // exzploit that we already calculated the
number of meighbours = number of loops
// the upper triangle matriz is already implemented in local_-matriz (),
therefore j starts always at 1 as the 0Oth element is #(neighbours),
NOT an index !!
for (int j = 1; j<maz; j++)
{
int | = loc.POS[i][j]; // 1 is the ’old’ index when all sites
were considered so that we can still wuse dist [][] and
rVectors []J[][]
// ezactly the same as in E_dipole () from here.
double d = dist[i][1];
double wvec [3];
vec [0] = rVectors[¢][L][0];
vec[1] = rVectors[i][L][1];
vec [2] = rVectors[i][L][2];
Ed —= mu0*MagxMag/(4* PI x pow(d,3)) *x (8% (sz[l]xvec[O0]+sy[l]*
vec[1]+sz[l]xvec [2])«(sz[i]*xvec[0]+sy[i]xvec[l]+sz[i]xvec
[2]) — (sx[l]xsaz[i]+sy[l]xsy[i]+sz[l]xsz[i]));
//status = countdown (max_N, i, status);
}
}
return Ed;
}
*/

double measure ()

{
double m_x = 0.;
omp_set_-num_threads (numThreads) ;
#pragma omp parallel for reduction(4:m_x)
for (int n = 0; n < maxN; n+4++4)
{
m_x += sx[n]; // measure in z—direction
}
return m_x/max-N;
}

array<double,2> rel_perm (double B)
{
array <double,2> res;
double mu_r;
double M;
double meas = measure () ;
double VOL = pow ((edge_-N —1)xlatt_const ,3);

//double z = muOxmaz_Nsxmeasure ()*Mag/(3% VOLxB) ;
M = max_N=*meas*Mag/VOL;

if (B = 0)
mu-r = def_mur;

else

{
J/mu-r = (1+2%z)/(1—2);
mu.r = 1 + muO*M/B;

//mu_r = B / (B—muOxmaz_-N*xmeasure ()*Mag) ;

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762

B. PROGRAMMING 94

J//mu-r = def_-mur;
res [0] = mu.r;
res [1] = M;

return res;

}
double best_cutoff ()
{
double best_-CUTOFF = edge-N —1;
double curr_dist;
for (int i = 0; i < max.N—1; i++)
{
for (int j = i 4+ 1; j < maxN; j++)
{
curr_dist = dist[i][j]/latt_const;
if (curr_dist > CUTOFF and curr_dist < best_.CUTOFF)
best _ CUTOFF = curr_dist;
//cout << curr_dist << "\t”;
}
}
best CUTOFF —= 0.000001;
cout << "cutoff_is_.” << best_.CUTOFF << ”_up-from.” << CUTOFF << endl;
return best_.CUTOFF;
}

vector<int> shuffle_list ()

{
vector<int> rand_list;
for (int i = 0; i < maxN; i+4++4)
rand_list .push_back(i);
random_shuffle(rand_list.begin (), rand_list.end());
return rand_list;
}

void MCS_ALT(int xx, double BBx, double kt)
{
int n;
double E0, El1, E_a, mod-M, M_temp[3], d-M[3];
//int status;
for (n = 0; n<max_N; n++)

{
E_a = -KV x pow(sx[n]xkx[n]+sy[n]*xky[n]+sz[n]*xkz[n], 2); // Anistropy energy
//E-d = loc_E_dipole () ; // choose cutoff approzimation for speed—up
//E_-d = E_dipole(); // choose to consider ALL sites for dipole—

dipole i.a.
EO = — Mag * BBx * sx[n]; // field in z—direction (Zeeman energy)
EO += E_a; // sum of dipole energies

M_temp [0] = sx[n];
M_temp [1] = sy[n];
M_temp [2] = sz [n];

Marsaglia (d-M) ;

sx [n] 4= (d-m * d-M
sy [n] 4= (d-m * d-M
sz[n] 4= (d-m * d-M
mod-M = sqrt (pow(sx

sx [n] /= modM;
sy [n] /= mod_-M;
sz [n] /= mod-M;

E_a = —KV x pow(sx[n]xkx[n]+sy[n]*xky[n]+sz[n]*xkz[n], 2); // Anistropy energy
//E_-d = loc_E_dipole ();

//E-d = E_dipole();

El = — Mag * BBx * sx[n]; // must be same (updated) calculation as EO

El 4= E_.a;

if (E1 > EO0)

{
if (rand0-1() > exp((E0—-E1l)/kt))
{

763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779
780
781
782
783
784
785

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842

PROGRAMMING

95

void MCS_one(int xx,

{

sx[n] = M_temp[O0];
sy [n] = M_temp[1];
sz [n] = M_temp [2];
}
}
//status = countdown (maz_N, n, status);

double EO, El1, E_a,

double BBx, double kt, double mu.r, double M)

E_.d, mod-M, M_temp[3], d-M[3];

vector<int> rand_list = shuffle_list (); // ezperimental DO NOT USE IN THIS VERSION

//int status ;

for (int m = 0; m<max_N; m++)

{
E_.d = 0;

int n = rand_list [m]; // every superspin wupdated ezactly once per MCS_one call ,

but in

a random fashion —> permutation

//int n = rnd250()%maz_N ;

//int n = m;
E_a = -KV * pow(sx[n]*xkx[n]+sy[n]*xky[n]+sz[n]*xkz[n], 2); // Anistropy energy
//E_d = loc_E_dipole (); // choose cutoff approzimation for speed—up
if (DIPOLAR)
{
if (PERIODIC)
{
E_.d = ORF(n, mu.r, BBx, M);
E0 = 0;
//E_a x= (3xmu_r / (142xmu.r));
¥
else
{
E_d = E_dipole_quick_-MULT (n) ;
EO = — Mag * BBx * sx[n]; // field in z—direction (Zeeman energy
)
¥
¥
else
EO = — Mag * BBx * sx[n]; // field in z—direction (Zeeman energy)

EO += E.a; //
EO += E_d; // sum of dipole energies

M_temp [0]
M_temp [1]
M_temp [2] =

sx[n];
sy [n];
sz [n];

Marsaglia (d-M) ;

sx[n] 4= (d-m * d-M [0
sy [n] 4= (d-m * d-M[1
sz [n] 4= (d-m * d_-M[2

[n

mod-M = sqrt

1 2)4pow (sy [n],2)+pow(sz[n],2));

sx [n] /= modM;
sy [n] /= modM;
sz [n] /= modM;

E_d

03

E_a = -KV x pow(sx[n]xkx[n]+sy[n]*xky[n]+sz[n]*xkz[n], 2); // Anistropy energy
//E-d = loc_E_dipole ();

if (DIPOLAR)
{

if (PERIODIC)

{

else

E.d = ORF(n, mu.r, BBx, M);
El = 0;
//E_a x= (8xmu_r / (1+2xmu.r));

843
844
845

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915

W N e

B. PROGRAMMING

96

{

}
}
else

E1
El += E_a;
El 4= E_d;

E_.d = E_dipole_quick_-MULT (n) ;

E1l

if (E1 > EO0)

= — Mag % BBx x sx[n]; // field
)

if (rand0-1() > exp((E0—-E1l)/kt))

{
{
}
}
//status =

void aniso_test ()

{

int n;
double
double
double

double
double
double

for (n

{

t_kx /=

t-ky /=
t_kz /=

cout <<

t_sx /=
t_sy /=
t-sz /=

cout <<

t-kx = 0.0;
t-ky = 0.0;
t_kz = 0.0;

t_sx = 0.0;
t-sy = 0.0;
t-sz = 0.0;

sX
sy
sz

[n] = Mtemp[0];
[n] = Mtemp[1];
[n] = Mtemp[2];

countdown (maz_-N, n, status);

in

z—direction (Zeeman

— Mag * BBx * sx[n]; // field in z—direction (Zeeman energy)

energy

= 0; n < max-N; n++)
t_kx += kx[n];

t-ky += ky[n];

t-kz += kz[n];

t_sx 4= sx[n];

t-sy += sy[n];

t_-sz 4= sz [n];
max-N ;

max-N ;

max_N;
"Avg._easy._axis_components_xyz:.” << t_kx <<7."<< t_ky <<7."<< t_kz << endl;
max_N;

max_N;

max_N;

7 Avg_Superspin_components._xyz:

B.1.5 perAux.h

/7
/7
/7
/7

perAuzx.h
additional s
intended for

tructural functions

simulations

makes use of openMP for

easily

for interacting periodic systems.
with ORF method

implemented multiprocessing

K< tosx <<V LUKK tosy <UL’ tosz << endl;

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

B. PROGRAMMING

97

// for MC simulation

using namespace std;

const int perFactor = 3;
const int NN = 10x*(pow(edge_N+2xCUTOFF,3)—pow (edge_N ,3))+max_N_temp;

const double rho_bcc = 1. + pow(((double) (edge_-N—1))/((double) (edge-N)),

const double rho_fcc = 1. + 3% pow(((double) (edge-N—1))/((double) (edge-N)) ,2);

const int CUT_-VOL = 100*pow (CUTOFF/1.5,3)+1;

double perPOS[NN][3];

double dist_per [max_N_temp][NN];

double rVectors_per [max_N_temp][NN][3];
int loc_.POS[max_N_temp] [CUT_-VOL];

int max_N_per;

vector<int> perlInd;

void sc_generator_new (int edge)

{
int n = 0;
double a = 1;
for (int i = 0; i < edge; i++)
{
for (int j = 0; j < edge; j++)
{
for (int k = 0; k < edge; k++)
{
POS[n][0] = O+4axi;
POS[n][1] = O+4axj;
POS[n][2] = O+4axk;
n++;
}
}
}
}
void fcc_generator_new (int edge)
{
int n = 0;
double a = 1.;
for (int i = 0; i<edge; i++)
{
for (int j = 0; j< edge; j++)
{
for (int k = 0; k< edge; k++)
{
POS[n][0] = O+4axi;
POS[n][1] = O+axj;
POS[n][2] = O+axk;
POS[n+1][0] = 0.54axi;
POS[n+1][1] = 0.54axj;
POS[n+1][2] = O+4axk;
POS[n+2][0] = 0.54+axi;
POS[n+2][1] = O+ax*j;
POS[n+2][2] = 0.5+axk;
POS[n+3][0] = O4axi;
POS[n+3][1] = 0.54axj;
POS[n+3][2] = 0.54+axk;
n+=4;
}
}
}
}

void bcc_generator_new (int edge)

{
int n = 0;
double a = 1.;

for (int i = 0; i<edge; i++)
{

for (int j = 0; j< edge; j++)

B. PROGRAMMING

87 {

88 for (int k = 0; k< edge; k++)
89 {

90 POS[n][0] = O+axi;

91 POS[n][1 O+axj;

92 POS[n][2] = O+axk;

93

94 POS[n+1][0] = 0.5+axi;
95 POS[n+1][1] = 0.5+axj;
96 POS[n+1][2] = 0.54+axk;
97

98 n+=2;

99 3

100 }

101 }

102}

103

104 void hcp_-generator_new (int edge)

105 {

106 int n = 0;

107 double a = 1.;

108

109 for (int i = 0; i<edge; i++)

110 {

111 for (int j = 0; j< edge; j++)

112 {

113 for (int k = 0; k< edge; k++)
114 {

115 POS[n][0] = (2xi+((j+k)%2))*a/2.;
116 POS[n][1] = sqrt(3.)=(j+1./3.%x(k%2))*a/2.;
117 POS[n][2] = 2xsqrt(6.) /3.xkxa/2.;
118

119

120 n+=1;

121 1

122 }

123 }

124}

125

126 bool inn_cube(double x, double y, double z, double marg)
127 {

128 if (x < 0 + marg)

129 return false;

130 if (x > (edge_-N—1)—marg)

131 return false;

133 if (y < 0 + marg)
134 return false;
135 if (y > (edge_.N—1)—marg)

136 return false;

138 if (z < 0 + marg)

139 return false;
140 if (z > (edge-N—1)—marg)
141 return false;

143 return true;

146 vector<int> find_-edgelnd2 ()

147 {

148 vector<int> EDGE;

149

150 double x,y,z;

151

152 for (int i = 0; i < maxN; i+4+4)

153 {

154 POS[i][0];

155 y = POS[i][1];

156 z = POS[i][2];

157

158 if (not inn_cube(x,y,z, CUTOFF))
159 EDGE. push_back (i) ;

160 }

161

162 return EDGE;

163}

164

165 bool copyable(double x, double y, double z, int cx, int cy, int cz)
166 {

167

168 bool trivial = (cx == 0 and cy ==0 and cz == 0);

B. PROGRAMMING

169

170 if (inn_cube(x,y,z,—sqrt(3)*CUTOFF) and not trivial)
171 return true;

172

173 return false;

174

175}

176

177 vector<array<double,3>> copies(array<double,3> original)

178 {

179 vector<array<double, 3>> CAND;

180 double x0 = original [0];

181 double y0 = original [1];

182 double z0 = original [2];

183

184 double x, y, z;

185

186 int sgn[3] = {—1,0,1};

187 array <double,3> cand;

188

189

190 for (int i = 0; i < 3; i++4)

191 {

192 for (int j = 0; j<3; j++)

193 {

194 for (int k = 0; k < 3; k++4+)

195 {

196 x = x0 + edge_-Nx*sgn[i];

197 y = yO + edge_Nx*sgn|[j];

198 z = z0 + edge_N=xsgn[k];

199

200 if (copyable(x,y,z, sgn[i], sgn[j], sgn[k]))
201 {

202 cand [0] = x;

203 cand [1] = y;

204 cand [2] = z;

205 CAND. push_back (cand) ;
206 }

207

208 }

209 }

210

211 }

212

213 return CAND;

214}

215

216 double distance(int i, int j)

217 {

218 double x1, x2, yl, y2, zl1, 22, r;

219

220 x1 = perPOS[i][0];
221 yl = perPOS[i][1];
222 z1 = perPOS[i][2];
223

224 x2 = perPOS[j][0
225 y2 = perPOS[j][1
226 z2 = perPOS[j][2
227

228 r = sqrt (pow(x1—x2,2)+4pow(yl—y2,2)4pow(z1—2z2,2));

229

230 return r;

231}

232

233

234 void makePeriodic ()

235

236

237 vector<int> EDGE;

238 EDGE = find_edgelnd2 () ;

239

240

241 int len = EDGE. size ();

242 int edgelnd;

243

244

245 cout << len << ”_of_.” << max-N << ”_in_edge.\n";

246

247 if (len >= max N — 1)

248 {

249 cout << ”Superspins_will_interact_with_own_copies_—>_not_physical!\n”;
250 bool cont;

Is
Is
I3

261

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

294

301

311

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

B. PROGRAMMING

100

cout << ”Continue_regardless?.”;

cin >> cont;
if (not cont)
abort () ;

array <double, 3> orig_-pos;
vector<array<double, 3>> copy-vector;

int len2;
int PERlen = 0;

double per_x, per_.y, per_z;

for (int i = 0; i < maxN; i+4+4)
{
perPOS[i][0] = POS[i]
perPOS[i][1] = POS[i][1];
perPOS[i][2] = POS[i]

perInd . push_back (i);

for (int j = 0; j < len; j++)
{

edgelnd = EDGE[j];

orig_pos [0] = POS[edgelnd][0];
orig_pos [1] = POS[edgelnd][1];
orig_pos [2] = POS[edgelnd][2];

copy-vector = copies(orig_-pos);

len2 = copy-vector.size ();

for (int i = 0; i < len2; i++4)

{
per_.x = copy-vector[i][0];
per.y = copy-vector[i][1];
per-z = copy-vector[i][2];

perPOS [PERlen+max_N][0] = per_x;
perPOS [PERlen4+max_N][1] = per_y;
perPOS [PERlen4+max_N][2] = per_z;

perInd . push_back (edgelnd) ;

PERlen++;

cout << PERlen << ”_copies_determined.\n”;
cout << ”Index._conversion._saved.\n”;

int neighb, k;
double d;
omp._set_-num_threads (numThreads) ;
#pragma omp parallel for private(k, neighb, d)
for (int i = 0; i < maxN; i+4++4)
{
//cout << "here\n”;

neighb = 0;

for (k = 0; k < max-N + PERlen; k++)

{
d = distance(i,k);
if (i != k and d <= CUTOFF)
{
neighb++;

loc.POS[i][neighb

] = k;
dist_per [i][k] = d;

// mo

symmetrization

necessary b/c k

B. PROGRAMMING 101

runs through ALL indices
333 double vec[3] = {perPOS[i][0] —perPOS[k][0] ,perPOS[i][1] —perPOS [k
1[1] , perPOS [1][2] — perPOS [k][2] } 5
334 double mod = sqrt (pow(vec[0],2)4pow(vec[1],2)4+pow(vec[2],2));
335 vec [0] /= mod;
336 vec[1] /= mod;
337 vec [2] /= mod;
338
339 rVectors_per[i][k][0] = vec[O0];
340 rVectors_per [i][k][1] vec[1];
341 rVectors_per[i][k][2] = vec[2];
342 }
343
344 }
345
346 loc_.POS[i][0] = neighb;
347
348 }
349
350
351
352 cout << loc_.POS[0][0] << ”_neighbours_per_site.” << endl;
353
354 double ORF(int i, double mu.r, double B, double M)
355 |
356
357 double Ed = 0;
358 double E_RF = 0;
359
360 double sx1 = sx[i];
361 double syl = sy[i];
362 double szl = sz [i];
363
364 double Sx = sx1;
365 double Sy = syl;
366 double Sz = szl;
367
368
369 int len = loc_POS[i][0];
370
371
372
373 omp-set_-num_threads (numThreads2) ;
374 #pragma omp parallel for reduction(+:Ed), reduction(+:Sx), reduction(+:Sy), reduction (+:
Sz)
375 for (int j = 1; j <= len; j++)
376 {
377
378 int neighbIndl = loc_.POS[i][j];
379
380 int neighbInd2 = perInd [neighbIndl];
381
382 double sx2 = sx[neighbInd2];
383 double sy2 = sy |[neighbInd2];
384 double sz2 = sz[neighbInd2];
385
386 Sx += sx2;
387 Sy 4= sy2;
388 Sz += sz2;
389
390
391 double d = dist_per[i][neighbIndl];
392
393 double vec[3];
394
395
396 vec [0] = rVectors_per[i][neighbIndl][0];
397 vec[1l] = rVectors_per[i][neighbIndl][1];
398 vec[2] = rVectors_per[i][neighbIndl][2];
399
400 Ed += —muOxMag+Mag/(4*PI * pow(d*latt_const ,3)) * (3% (sxlxvec[O]4+sylxvec[l]+szl
svec [2]) *(sx2xvec[0]+sy2xvec[l]+sz2xvec[2]) — (sxlksx24sylxsy2+4szlxsz2));

401

402 }

403

404 E_RF = —sx1%(B—0) * Mag * (3*mu.r / (14+2%mu.r));

405

406 E_RF += muOx Mag*Mag * (sx1*Sx + sylxSy + szl1lxSz) * (1—mu.r)/(2*mu-r+1)/(2xPIxpow(
BEST_-CUTOFFx*latt_const ,3));

407

408 if (ONSDAT)

409 {

410
411
412
413
414
415
416
417

© 00O Uk W N

CUOT U O U OO U s R s R s R R R R W W W W W W W W WNNNDNNNDNNNNRE SRR e e
N OO WN O OO0 WD RO OO OREWN O © 0NN REWN RO OO O O WN = O

0O U R W N -

B. PROGRAMMING

102

ofstream ons_file;
ons_file.open(”ons.dat”, ios::app);
ons_file << Ed << ”"\t” << E_RF << endl;
ons_file.close ();

}
return Ed + E_RF;

B.1.6 rnd250.c

/%

« RND250.C

*

* Zufallszahlengenerator nach dem Verfahren won Kirkpatrick und Stoll.
* Dieses C—Modul enthaelt nur die globale Definition der Daten und die
* Initialisierungsroutine. Der eigentliche Zufallszahlengenerator ist
* als Makro in der Datei RND250.H kodiert.

*

* Implementation: Ralf Meyer, Fred Hucht

* Version ;2.0

* entwickelt am : 14. Februar 1995

*

* Copyright (c¢) 1995 Ralf Meyer, 47058 Duisburg, Germany

*/

#include ”rnd.h”
struct st_-rnd250 Rnd250;

void
seed250 (long seed)
/*

* Initialisiert den Zufallszahlengenerator. Hierzu wird ein Modulo—
* Zufallszahlengenerator benutzt. Um die lineare Unabhaengigkeit der
* einzelnen Bits zu garantieren werden nachtraeglich noch Bitmasken
* einem Tetl der Daten weberlagert. Um die dadurch verursachten An—
* fangskorrelationen zu beseitigen werden die ersten Zufallszahlen
* wverworfen.

*

* Parameter:

* seed — Startwert

*/
{

int ij

long j, k;

if (seed < 1) /% keine negativen Startwerte
seed = 1;
for (i=0; i<250; ++i) { /* Schieberegister mit Zufallszahlen fuellen

k = seed / 127773;
seed = 16807 x (seed — kx127773) — 2836x*k;
if (seed < 0)
seed += Ox7TFFFFFFF;
Rnd250. field [i] = seed;

k = Ox7TFFFFFFF; /* Masken wueberlagern

j = 0x40000000;
for (i=1; i<250; i+=8)

Rnd250. field [i] = (Rnd250.field [i] & k) | j;
Rnd250. point = 249; /* Zeiger initialisieren
for (i=0; i<4711; 4++i) /* Anfangszahlen verwerfen
rnd250 () ;

B.1.7 random-spd5.h

//
// random_spd5.h

/7

// functions that require randum number generators are collected here
// intended to wuse rnd.h by Ralf Meyer

const double PI = 3.1415926535897932385;

*/

*/

*/

*/

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90

B. PROGRAMMING

103

double GaussDis(double,double,double) ;

const double real RND250_-MAX = (double) MAXRAND250;

/*

generate a random

*/

double rand0-0999 ()

return (rnd250 ()

number in [0,1)

generate a random number in (0,1)

*/

double rand0001-0999 ()

/ (real_ RND250_-MAX+1.0));

return ((rnd250()+1.0) / (real_ RND250_-MAX+2.0));

/*

generate a random number in [0 ,1]

*/
double rand0-1()

return (rnd250 ()

fct = (1.0/(sqrt(2.0xPI)*sig))*exp(—0.5x(x—avg)*(x—avg)/(sigxsig));

/ real RND250_MAX) ;

}
/%
yield a 3D random wunit wvector
*/
void Marsaglia(double *V)
{
double rsq, yl, y2;
do
{
yl = rand0001.0999 () * 2.0 —
y2 = rand0001.0999 () * 2.0 —
rsq = yl % yl 4+ y2 * y2;
}
while (rsq > 1.0);
V[0] = 2.0 * yl * sqrt((1.0 — rsq));
V[1] = 2.0 * y2 * sqrt((1.0 — rsq));
V[2] = 1.0 — 2.0 * rsq;
}
double GaussDis(double x, double avg, double sig)
{
double fct;
return(fct);
}
/*

yields a 3D wunit

<—> anisotropy

azris

vector ,

distribution —

but with Gauss—Distribution in y,z—coordinates

void AnisotropyAzis(double *V)

{
double rsq, y,z,y2,
do
{
do
{
y =
y2=
¥
while (y2 >
do
{
z
z22=

22,5858 ;

rand0_1() =*
rand0-1 () ;

GaussDis (y,

= rand0_-1() =*

rand0-1() ;

easy

2.0 —

y-avg ,

2.0 —

aris in T—

1.0;

direction

y-sig));

1.0;

91
92
93
94
95
96
97
98
99
100

© 00 O Ul W N

e e e
0~ O Utk WN - O

19

20
21
22

23
24
25
26
27
28
29
30
31
32

33
34

35
36

37
38
39
40
41
42
43
44
45

B. PROGRAMMING 104

while (z2 > GaussDis(z, z-avg, z-sig));
TSq = Y*y + z*xz;

}

while (rsq > 1.0);

ss = rand0-1() = 2.0 — 1.0;

V[0] = (ss/fabs(ss))xsqrt(1.0—rsq);

V1] = y;

viz]

z;

}
«/
B.2 domainFinder.cpp

This is the programme used to generate the visualizations of 3D spin landscapes
that are presented in the later parts of the thesis. This programme finds sublattices
in a data set of spin positions and -orientations which are parallel, and analyzes size
and orientation of all theses sublattices within one set. In conjunction with gnuplot,
an entire set of spins can be visualized and via colorization by the programme, these
images can be interpreted by the user even if thousands of spins in three dimensions
are displayed at once.

Algorithm design and implementation in C++11 were done by the author.

#include <iostream>
#include <fstream>
#include <sstream>
#include <cmath>
#include <vector>
#include <array>
#include <string>
#include <algorithm>
#include <thread>
#include <chrono>

#include <stdlib .h>
//#include <omp.h>

using namespace std;

string data_file = ”spinl000.dat”; // Input file name

string ofile_name = ”showDomain.dat”; // gnuplot plotable coordinates of all vectors in a LARGE
domain

string ofile2_name = "DomNegative.dat”; // same as above, only reduced to ”"interesting” domain
PAIRS

string gnu-file = "colorDom.gnu”; // file name of gnu—script

const int max_ N = 4%x8x8x%8; // Number of lines registered in input file == number of vectors

considered

double latt_const = 1;

double POS[max_N][3]; // position wectors of sites

double VEC[max_N][3]; // orientation wectors of sites

bool forbidden [max_N]; // flag if a site has yet to be assigned to a domain

bool neg[maxN]; // flag if a site should be printed in negative file

double dist [max-N][max_N]; // distances btw sites

double MAXDIST = 10.; // mazimum distance btw to sites that are considered mneighbours

//double MIN.CORR = —1.;

double MIN.CORR = cos (20%3.142/180.); // minimum scalar product btw to orientations that are
considered belonging to same domain

double ACC;

double min_size = 80; // minimum size of a ’domain’ that is significant enough to be stored in
LARGEDOMAINS

//double perp_corr = 2.;

double perp_corr = cos(85%3.142/180.); // minimum scalar product btw to domains that are
considered antiferromagnetic pairs

int dcounter; // stores number of domains that have been identified

int mem_counter; // stores number of member in one such domain

vector<vector<int>> DOMAINS; // stores every index vector of all small(!!) domains

//read data files and fill position and vector arrays
void read_data(string filename, int num)

{

ifstream data;

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

B. PROGRAMMING

105

data.open(filename);

std::string line;

for (int i = 0; i < numsmax.N; i++)

{
getline (data, line);
double coll, col2, col3, cold, col5, col6;
istringstream ss(line);
ss >> coll >> col2 >> col3 >> cold >> colb >> col6;
}
int counter = 0;

for (int j = numsmax_N; j < (num+1)*maxN; j++)

{
getline (data, line);
double coll, col2, col3, cold, col5, col6;
istringstream ss(line);
ss >> coll >> col2 >> col3 >> cold >> colb5 >> col6;
POS[counter |[0] = coll;
POS[counter |[1] = col2;
POS[counter|[2] = col3;
VEC[counter][0] = col4d;
VEC[counter][1] = col5;
VEC[counter][2] = col6;
counter—++;
}

data.close () ;

// calculate distance btw two positions
double distance (int i, int j)

{

double x1, x2, yl, y2, zl, z2;

x1 = POS[i][0];

vl = POS[i][1];

z1l = POS[i][2];

x2 = POS[j][0];

y2 = POS[j][1];

z2 = POS[j][2];

return sqrt (pow(x1—x2,2) 4+ pow(yl—y2,2) 4 pow(zl—z2,2));
}

// scalar product btw two wvectors
double scp(int i, int j)

{
double vx1, vx2, vyl, vy2, vzl, vz2;
vxl = VEC[i][0];
vyl = VEC[i][1];
vzl = VEC[i][2];
vx2 = VEC[j][0];
vy2 = VEC[j][1];
vz2 = VEC[j][2];
return vxlsxvx24vylxvy2+4vzl*xvz2;
}

// calculate center of mass of a given vector of sites
vector<double> POS_center(vector<int> sample)
{

double center [3];

vector<double> result;

center [0] = 0;
center [1] = 0;
center [2] = 0;
int len = sample.size ();

for (int i = 0; i < len; i++)

128
129

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

B. PROGRAMMING

106

{
center [0]+=POS[sample[i]][0];
center [1]+=POS[sample[i]][1];
center [2]+=POS[sample[i]][2];
}

result .push_back(center [0]/len);
result.push_back(center [1]/len);
result.push_back(center [2]/len);

return result;

// calculate distance of two vectors (NOT indices)
double center_dist (vector<double> a, vector<double> b)

{

double x1, x2, yl, y2, zl, z2;

x1 = a[0];
yl = all];
z1l = a[2];
x2 = b[0];
y2 = b[1];
z2 = b[2];

return sqrt (pow(x1—x2,2) + pow(yl—y2,2) + pow(zl—z2,2));

// ignore vectors that aren’t unit vectors.
void test_data ()

{
for (int i = 0; i < max_N; i+4++)
if (scp(i,i) < 0.99 or scp(i,i) > 1.01)
{
VEC[i][0] = 05
VEC[i][1] = 0;
VEC[i][2] = 0;
cout << i+41 << ”._ignored!\n”;
¥
}

// fill distance matriz

void dist_matrix ()

{
//upper triangle matriz
for (int i = 0; i < maxN—1; i++4)
{
for (int j = i41; j < max-N; j++4)
dist [1][j] = distance(i,j);
}
// symmetry i<—>j
for (int i = 0; i < max.N—1; i++4)
{
for (int j = i+41; j < maxN; j++)
dist [j][1] = dist[i][]];
}
}

// return list of mneighbours within maz_dist radius

vector<int> neighbours(int i, double max_dist)

{
vector<int> neighb;
for (int j = 0; j < max_N; j++4)
{
if (dist[i][]j] <= max_dist)
{
//cout << i << 7 NB won 7 << j << endl;
neighb . push_back (j);
¥
}
return neighb;
}

// Calculate avg direction of a domain given its indexr in DOMAINS

vector <double> vec_mean (int domain)

{

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

244

251

270
271
272

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

B. PROGRAMMING

107

double new_mean [3];

new_mean [0]

new_mean [1]

new_mean [2]

0;
03
03

vector<double> result;

int

for

{

}
/*

len = DOMAINS[domain]. size () ;

(int

i

new._mean [0]+=VEC[DOMAINS[domain] [i]] [0
new_mean [1]+=VEC[DOMAINS|[domain] [i]][1];
new_mean [2]+=VEC[DOMAINS [domain] [i]][2

new_mean [0]

new-mean [1]

new_mean [2]

*/

double mod

for

return

(int

i

0; i < len; i++4)

pow (new-mean [0] , 1./len);
pow (new-mean 1], 1./len);
pow (new-mean [2], 1./len);

sqrt (pow(new_mean [0] ,2)+4pow(new_mean[1],2)+pow(new_mean [2],2));

0; i < 3; it++)

result .push_back(new_mean[i]/mod) ;

// scalar product

result;

of a given wvector old and a vector at index new-ind

double scp_vec_ind (vector<double> old, int new_ind)

{

double vx1,

vx1l
vyl
vzl

vx2
vy2
vz2

vx2, vyl, vy2, vzl, vz2;

= old [0];
= old [1];
= old [2];

= VEC[new_-ind | [0];
= VEC[new-_ind | [1];
= VEC[new_ind | [2];

return vxlxvx24vylsvy24vzl*xvz2;

// scalar product

{

of two directly given wvectors
double dom_dom(vector<double> a, vector<double> b)

double vx1,

vx1
vyl
vzl

vx2
vy2
vz2

= a[0];
= a[l];
= a[2];

= b[0];
=b[1l];
= b[2];

vx2, vyl, vy2, vzl, vz2;

return vxlxvx24vylsvy24vzl*xvz2;

// return list

of

7good” meitghbours among neighbours

vector<int> good_-neighbours(vector<double> dom_mean, vector<int> neighb, double

domain)
int

int

n;

len

neighb.size ();

vector<int> goodNs;
i=0;

for

{

(int

n

n

i<len;i++)

eighb [i];

//if (scp(n, j) >= min_corr and mnot forbidden [n])

if
{

(s

cp-vec-ind (dom_mean, n) >= min_corr and not forbidden [n])

forbidden [n] = true;

DOMAINS [domain] . push_back(n) ;

//cout << n << 7 found as good neighbor\n”;
goodNs. push_back(n);

min_corr ,

int

291
292

294
295
296
297
298
299
300

301
302
303
304
305
306
307
308
309
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

B. PROGRAMMING

108

// Central algorithm: Recursively

void findDomain(int

{

}
// flag if a sit

e i

findDomain ()

if (goodNs.size () == 0)

s isolated = w/o a single

goodNs . push_back(—1);

return goodNs;

associated wectors

vector<int> good

start ,

Ns;

vector<int> neighb;

find

double max_dist ,

vector <double> dom_mean;

int gn_size;

int new_start;

// continuous update

orientation

of current
if (DOMAINS[domain]. size () >= 1)

of what would

’good mneighbours’

double min_corr ,

good meighbour = break

int domain)

recursive loop

be considered a good neighbour from avg (!!!)

domain members

neighb, min_corr,

dom_mean = vec_mean (domain) ;
else
{
dom_mean. push_back (VEC[start][0])
dom_mean. push_back (VEC[start |[1]) ;
dom_mean. push_back (VEC[start][2])
}
neighb = neighbours(start, max_dist);
goodNs = good_neighbours (dom_mean,
gn_size = goodNs.size ();

for (int i = 0;

{

new._star

if (new_start

{

// print a single wvector

void print_coord (int i)

{

ofstream ofile;

i<

t =

//cout << "start findDomain from

findDomain (new_start ,

’s

gn._

size;

i++)

goodNs [i];

= —1)

coordinates for

ofile .open(ofile_name ,

double x, y, z,

VX,

double scale = 0.5;

vy,

vx = scale x VEC[i][0];
vy = scale x VEC[i][1];
vz = scale *= VEC[i][2];

x = POS[i][0] —
y = POS[i][1] —
z = POS[i][2] —

0.5%xvx;

0.5%vy;
0.5%vz;

ios ::

vz

app) ;

gnuplot to

max-dist, min_corr,

ofile_name

domain) ;

7 << mew-start <<

domain) ;

)

endl;

among connected and mnot yet domain—

ofile << x << "\t” << y << "\t” << z << "\t” << vx << "\t”? << vy << "\t” << vz << endl;

ofile.close ()

// print a single wvector

void print_coord-alt(int

{

ofstream ofile2;

ofile2 .open(ofile2_name, ios::

double x, y, z,

vx = VEC[i][0];

’s

i)

VX,

coordinates for

vy,

vz

app) ;

gnuplot to

ofile2_name

(EXV)

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

B. PROGRAMMING

109

vy = VEC[i][1];
vz = VEC[i][2];

x = POS[i][0] — 0.5%xvx;
y = POS[i][1] — 0.5%vy;
z = POS[i][2] — 0.5%vz;

ofile2 << x << "\t7 << y << "\t7 << z << "\t7 << vx << "\t7 << vy << "\t? << vz << endl;

ofile2 .close ();

// gemnerate the complete gnuplot script to wvisualize

void gnu_script(vector<vector<int>> data)

{

ofstream gnu;

gnu.open(gnu-_file);

vector<int> param;

int lines = data.size();

for (int i = 0; i < lines; i+4++4)

param . push_back (data[i].size ());

gnu << "reset” << endl;

gnu << "set_view_equal_xyz” << endl;
gnu << ”"set_title_.’’” << endl;

gnu << ”splot.”;

char ¢ = 77
int von = 0;
int bis = param[0] —1;

for (int i = 0; i < lines; i+4++4)

all large domains

;

{
gnu << 7’7 << ofile_name << 7 ’_u_.1:2:3:4:5:6 _.every._.1::7;
gnu << von << ”::” << bis << ”_with_vectors.”;
gnu << 7title.” << ¢ << 7 Sublattice” << i4+1 << ¢ << 7,7
von += param]|i|;
bis += param[i+1];

}

gnu << endl;

gnu.close ();

// MAIN FUNCTION
int main ()

{

int number;

cout << ”"Which_part?.”;
cin >> number;
// Some initializations.

dcounter=0;

ofstream ofile;

ofstream ofile2;

ofstream gnu;

ofile .open(ofile_name , ios::trunc);
ofile.close () ;

ofile2 .open(ofile2_name, ios::trunc);
ofile2 .close ();

gnu.open(gnu-file, ios::trunc);

gnu.close () ;
cout << ?Output_files._reset!\n”;

vector<vector<int>> LARGEDOMAINS;
vector<vector <double>> LARGEDOMAINS_AXIS;

B. PROGRAMMING 110

452

453 // read and test input file

454

455

456 read_data(data_file , number) ;

457 test_data () ;

458 cout << "data_file_read...\n”;

459

460

461 // Every spin is eligible for a domain and all distances are stored

462 for (int i = 0; i < maxN; i+4+4)

463 {

464 neg|[i] = true;

465 forbidden [i] = false;

466 }

467 dist_matrix () ;

468 cout << ”distances._calculated...\n”;

469

470 // Necessary initialization of wvectors

471 vector<int> placeholder;

472 DOMAINS. push_back (placeholder);

473

474 //int domainSize;

475

476 // Call the central algorithm wuntil every site has been assigned to an element of
DOMAINS or has been found as isolated

477 for (int i = 0; i < maxN; i+4+4)

478 {

479 //cout << "Test 7 << i << endl;

480 if (not forbidden|[i])

481 {

482 DOMAINS. push_back (placeholder) ;

483 dcounter++;

484 findDomain (i, MAX_DIST, MIN.CORR, dcounter);

485 }

486 }

487

488 cout << ”"How._accurate?.”;

489 cin >> ACC;

490

491 // From the partitioning , remove deviating spins and find LARGE domains (minimum number

of members) and store them together with their orientation in LARGEDOMAINS
492 double ratio = 0;

493 int DCOUNTER = 0;

494

495 double x, y, z;

496 vector <double> dom_mean;

497 int DOMsize = DOMAINS. size () ;

498

499 for (int i = 0; i < DOMsize; i++)

500 {

501 vector<int> v_candidate = DOMAINS[i];

502 int len_candidate = v_candidate.size ();

503 dom_mean = vec_mean (i) ;

504

505 vector<int> v;

506

507 // remove/don’t add spins that deviate too much from mean direction
508 for (int j = 0; j < len_candidate; j++)

509 {

510 if (scp-vec-ind (dom_-mean, v_candidate[j]) >= ACC % sqrt((1+MIN.CORR) /2))
511 {

512 v.push_back(v_candidate[j]) ;
513 neg|[v.candidate[j]] = false;
514

515 1

516 3

517

518 int len = v.size ();

519

520 // find best sets with significant size

521 if (len >= min_size)

522 {

523 LARGEDOMAINS. push_back (v) ;

524 DCOUNTERH+;

525 ratio += len;

526

527 LARGEDOMAINS_AXIS. push_back (dom_mean) ;
528 x = dom_mean [0];

529 y = dom_mean[1];

530 z = dom_mean [2];

531

532
533
534

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575

576

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

cout << ”"Sublattice.” << DCOUNTER << ”_of_size.” << len << ”"._w/_
direction.” << x << 7.7 <Ky << 7.7 <K< z << endl;
for (int j = 0; j < len; j++)
print_coord (v([j]);
//ofile << endl;
¥
}
ratio /= max_N;
cout << DCOUNTER << ”_sublattices_found!\n”;
cout << ”Sublattice_in/out_ratio_.=.” << ratio << endl;
// Among the significant domains, find “interesting” domains, i.e. w/ anti—parallel or
perpendicular orientation
int large_size = LARGEDOMAINS. size () ;
int pair_counter = 0; // count all pairs (perp, parall, anti—parall)
int anti_counter = 0; // count anti—pairs
int red_counter; // count almost parallel pairs
int RED_COUNTER = 0;
if (large_size >= 2)
{
for (int i = 0; i < large_size —1; i+4++)
{
red_counter = 0;
for (int j = i+41; j < large_size; j++)
{

vector <double> a

vector <double> b

vector<int> vl =

vector<int> v2 =

//if (center_dis
MAX_DIST)

if (dom_dom(a,b)

= LARGEDOMAINS_AXIS[i | ;
= LARGEDOMAINS_AXIS[j | ;
LARGEDOMAINS[i] ;
LARGEDOMAINS| j] ;
t (POS_center(vl), POS_center(v2)) <= min_sizex

<= — ACC % sqrt (0.5%(MIN.CORR+1)) or abs(

dom_dom(a,b)) <= perp_corr)

{
pair_counter-++4;
cout << i+l << 7"_vs.” << j+1 << 7_interesting!”;
if (dom_dom(a,b) <= — ACC % sqrt (0.5%(MIN.CORR+1)))
{
cout << ”_(anti—parr)\n”;
anti—_counter—4-;
¥
else
cout << ”_(perpendicular)\n”;
/*
int lenl = wvl.size();
int len2 = v2.size();
for (int k = 0; k < lenl; k++)
print_coord_interesting (vl [k]);
for (int k = 0; k < len2; k++)
print_coord_interesting (v2/[k]) ;
*/
}
else
{
if (dom_dom(a,b) >= + ACC % sqrt (0.5 (MIN.CORR+1)))
{
pair_counter-+-;
cout << i4+1 << 7_.vs.” << j+1 << ”_interesting!”;
cout << ”_(almost_parr)\n”;
red_counter—++;
¥
}

B. PROGRAMMING 112

610 RED_COUNTER += red_counter;

611

612

613 }

614 }

615

616 if (2% anti_counter == large_size -RED_.COUNTER)

617 cout << 7 !!!_Each_sublattice_has_exact_antiparallel_partner_!!!\n”;

618 }

619

620

621

622 // In case any large domains were found, produce the complete gnuscript for colored
visualization

623 cout << pair_counter << ”_interesting_pairs.\n”;

624

625

626 if (large_size >= 1)

627 {

628 gnu_script (LARGEDOMAINS) ;

629

630 for (int i = 0; i < maxN; i+4+4)

631 {

632 if (negli])

633 print_coord_alt (i);

634 }

635 }

636

637 return O;

638

639 }

C. REFERENCES 113

C
1]

[12]

References

J.-O. Andersson, C. Djurberg, T. Jonsson, P. Svedlindh, and P. Nordblad.
Monte carlo studies of the dynamics of an interacting monodispersive magnetic-

particle system. Phys. Rev. B, 56:13983-13988, Dec 1997.

International Mineralogical Association. IMA List of Minerals. http://
ima-cnmnc.nrm.se/IMA_Master_List_%282017-11%29.pdf.

Subhankar Bedanta, Oleg Petracic, and Wolfgang Kleemann. Chapter 1 - Su-

permagnetism, volume 23 of Handbook of Magnetic Materials. Elsevier, 2015.

Sabrina Disch, Erik Wetterskog, Raphaél P. Hermann, German Salazar-Alvarez,
Peter Busch, Thomas Briickel, Lennart Bergstrom, and Saeed Kamali. Shape

induced symmetry in self-assembled mesocrystals of iron oxide nanocubes. Nano

Letters, 11(4):1651-1656, 2011. PMID: 21388121.

Zhendong Fu, Yinguo Xiao, Artem Feoktystov, Vitaliy Pipich, Marie-Sousai
Appavou, Yixi Su, Erxi Feng, Wentao Jin, and Thomas Briickel. Field-induced
self-assembly of iron oxide nanoparticles investigated using small-angle neutron
scattering. Nanoscale, 8:18541-18550, 2016.

Axel Gelfert and Wolfgang Nolting. The absence of finite-temperature phase
transitions in low-dimensional many-body models: a survey and new results.
Journal of Physics: Condensed Matter, 13(27):R505, 2001.

Giuseppe Grosso and Giuseppe Pastori Parravicini. Chapter 2 - Geometrical
Description of Crystals: Direct and Reciprocal Lattices. Academic Press, Ams-

terdam, second edition edition, 2014.

Cherie R. Kagan, Efrat Lifshitz, Edward H. Sargent, and Dmitri V. Talapin.
Building devices from colloidal quantum dots. Science, 353(6302), 2016.

J M Kosterlitz and D J Thouless. Ordering, metastability and phase transi-
tions in two-dimensional systems. Journal of Physics C: Solid State Physics,
6(7):1181, 1973.

David Landau and Kurt Binder. A Guide to Monte Carlo Simulations in Sta-
tistical Physics. Cambridge University Press, New York, NY, USA, 2005.

Bishop Kyle J. M., Wilmer Christopher E., Soh Siowling, and Grzybowski Bar-
tosz A. Nanoscale forces and their uses in self-assembly. Small, 5(14):1600-1630,
2009.

Gil Markovich. Magneto-transport and magnetization dynamics in magnetic
nanoparticle assemblies. MRS Bulletin, 38(11):939-944, 2013.

C. REFERENCES 114

[13]

[14]

[18]

G. Marsaglia and T. A. Bray. A convenient method for generating normal
variables. SIAM Review, 6(3):260-264, 1964.

N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromag-
netism in one- or two-dimensional isotropic heisenberg models. Phys. Rev.

Lett., 17:1133-1136, Nov 1966.

Nicholas Metropolis and S. Ulam. The monte carlo method. Journal of the
American Statistical Association, 44(247):335-341, 1949.

Lars Onsager. Electric moments of molecules in liquids. Journal of the American
Chemical Society, 58(8):1486-1493, 1936.

F. X. Redl, K.-S. Cho, C. B. Murray, and S. O’Brien. Three-dimensional bi-
nary superlattices of magnetic nanocrystals and semiconductor quantum dots.
Nature, 423:968 EP —, Jun 2003.

L.-M. Wang, O. Petracic, E. Kentzinger, U. Rucker, M. Schmitz, X.-K. Wei,
M. Heggen, and Th. Briickel. Strain and electric-field control of magnetism in

supercrystalline iron oxide nanoparticle-batio3 composites. Nanoscale, 9:12957—
12962, 2017.

Ich versichere, dass ich die Arbeit selbststéandig verfasst und keine anderen als

die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht

habe.

Aachen, den

