
 

  

 

 

 

Structure and Magnetic Properties of 

Magnetocaloric Mn3Fe2Si3 

 

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen 

University zur Erlangung des akademischen Grades eines 

Doktors der Naturwissenschaften genehmigte Dissertation 

 

 

Vorgelegt von 

 

Mohammed Ait haddouch, M.Sc. 

aus 

Casablanca, Marokko, 

 

 

Berichter: Professor Dr. Thomas Brückel 

                Professor Dr. Georg Roth 

 

Tag der mündlichen Prüfung: 29.11.2021 

 

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar. 





Abstract

The magnetocaloric effect (MCE) is thermodynamically described by the temper-
ature change of a magnetic material upon adiabatic change of magnetic field. This
effect affords a sustainable technique for refrigeration, if cheap and environment-
friendly materials are used. Therefore, it attracts the attention of many scientific
studies. In this thesis we are interested in the compound Mn3Fe2Si3, which belongs
to the Mn5−xFexSi3 (0⩽ x⩽5). These compounds fit to the new paradigm that the
existence of different magnetic sites in a compound is beneficial for a large MCE.

First part of this thesis is devoted to macroscopic investigation on the single crys-
talline specimen of the Mn3Fe2Si3. The magnetic field vs temperature of Mn3Fe2Si3
is similar yet not identical to the parent compound Mn5Si3. The Mn3Fe2Si3 com-
pound exhibits two antiferromagnetic phase transitions AF1 and AF2. The magnetic
response is anisotropic, e.g. the transition AF2 to PM is visible only, if the field is
applied perpendicular [001]. Compared to Mn5Si3, which features a field driven tran-
sition from AF1 to AF2, no remarkable increase is observed in the magnetization of
Mn3Fe2Si3 and accordingly only a small isothermal entropy change is derived.

The second and third part of this thesis is about Crystal and magnetic structure
investigation by means of synchrotron radiation and neutron diffraction. The results
show that Mn3Fe2Si3 crystallizes in hexagonal space group P63/mcm. No clear sign
of a structural phase transition down to lowest temperature, nor any indication of a
clear response of the lattice parameter to the magnetic transitions. Mn3Fe2Si3 has a
collinear magnetic structure in the AF2 phase and a non-collinear magnetic structure
in AF1 phase. The both phases have ordered moments already on the M1 site and
2/3 of the M2 sites. By comparing the magnetic structure of Mn3Fe2Si3 and the
parent compound Mn5Si3, we find strong similarities in the magnetic structure with
the distinct difference of the ordering on the M1 site. We associate these differences
with the strength of the magneto-caloric properties.





Zusammenfassung

Der magnetokalorische Effekt (MCE) wird thermodynamisch durch die Tempera-
turänderung eines magnetischen Materials bei einer adiabatischen Änderung des Ma-
gnetfelds beschrieben. Dieser Effekt ermöglicht eine nachhaltige Kältetechnik, wenn
günstige und umweltfreundliche Materialien verwendet werden. Daher zieht es die
Aufmerksamkeit vieler wissenschaftlicher Studien auf sich. In dieser Arbeit interessie-
ren wir uns für die Verbindung Mn3Fe2Si3, die zu Mn5−xFexSi3 (0⩽ x⩽5) gehört. Diese
Verbindungen passen zu dem neuen Paradigma, dass die Existenz verschiedener ma-
gnetischer Zentren in einer Verbindung für ein großes MCE von Vorteil ist.

Der erste Teil dieser Dissertation widmet sich der makroskopischen Untersuchung
an der einkristallinen Probe des Mn3Fe2Si3. Das Magnetfeld gegenüber der Tempera-
tur von Mn3Fe2Si3 ist ähnlich, aber nicht identisch mit der Mutterverbindung Mn5Si3
. Die Verbindung Mn3Fe2Si3 weist zwei antiferromagnetische Phasenübergänge AF1
und AF2 auf. Die magnetische Reaktion ist anisotrop, z.B. der Übergang AF2 zu PM
ist nur sichtbar, wenn das Feld senkrecht angelegt wird [001]. Im Vergleich zu Mn5Si3,
das einen feldgesteuerten Übergang von AF1 zu AF2 aufweist, wird keine bemerkens-
werte Zunahme der Magnetisierung von Mn3Fe2Si3 beobachtet und dementsprechend
wird nur eine kleine isotherme Entropieänderung abgeleitet.

Der zweite und dritte Teil dieser Arbeit beschäftigt sich mit Kristall- und Ma-
gnetstrukturuntersuchungen mittels Synchrotronstrahlung und Neutronenbeugung.
Die Ergebnisse zeigen, dass Mn3Fe2Si3 in der hexagonalen Raumgruppe P63/mcm
kristallisiert. Kein klares Anzeichen für einen strukturellen Phasenübergang bis zur
niedrigsten Temperatur, noch irgendein Hinweis auf eine klare Reaktion des Gitterpa-
rameters auf die magnetischen Übergänge. Mn3Fe2Si3 hat eine kollineare magnetische
Struktur in der AF2-Phase und eine nicht-kollineare magnetische Struktur in der
AF1-Phase. Die beiden Phasen haben bereits bestellte Momente auf der M1-Site und
2/3 der M2-Sites. Durch Vergleich der magnetischen Struktur von Mn3Fe2Si3 und der
Stammverbindung Mn5Si3 finden wir starke Ähnlichkeiten in der magnetischen Struk-
tur mit dem deutlichen Unterschied der Ordnung auf der M1-Stelle. Wir verbinden
diese Unterschiede mit der Stärke der magnetokalorischen Eigenschaften.
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1. Introduction
Over the past decade, the attraction for the magnetocaloric effect (MCE), has been
increasing because of their considerable potential for magnetic refrigeration applica-
tions, promising higher energy efficiency than existing technologies. The magnetic
refrigeration based on the MCE in magnetic materials has been promoted as a green
alternative to conventional vapor-compression based refrigeration technologies, as the
cooling efficiency around room temperature working with Gd as MCE material reaches
60%, whereas the best conventional gas compressor cycle refrigerators reach only 40%
[1]. Therefore, the application of solid magnetic refrigerants reduces indirectly CO2
emissions through efficiency benefits. Magnetic refrigeration systems can be built
more compactly than compressor-based refrigeration systems and the noise of the
refrigerators can be lowered. These advantages make the technology particularly in-
teresting for air-conditioning and domestic refrigeration applications.

Among these materials, the compound series Mn5−xFexSi3 has been studied in-
tensely not only for the characteristics of the observed MCE’s [5, 4, 2, 3], but also for
elucidating the fundamental mechanisms [6, 7, 8].

The focus of the thesis is an experimental investigation of structural and physical
properties of magnetocaloric Mn3Fe2Si3 (x=2).
The thesis is structured in 9 chapters. The aim of chapter "Magnetocaloric effect and
magnetic cooling" is to put the work in context. The MCE is first introduced with an
illustrative description of its application (magnetic refrigeration cycle). As this thesis
is focused on a better understanding of MCE materials, a general overview of mag-
netocaloric materials and their classes is presented. Next, information and physical
properties of other members of the Mn5−x Fex Si3 series are introduced as a reference,
before focusing on the material system investigated in this work (Mn3Fe2Si3).

Chapter "Theoretical Background" provides the theoretical foundation for the data
analysis. In the beginning a general information on antiferromagnetism is presented,
followed by basic physics and thermodynamics of the Magnetocaloric effect. Also the
basics of x-ray and neutron diffraction are introduced. At the end of this chapter,
the concepts of magnetic space groups is introduced. Chapters "Experimental meth-
ods and instruments" and "Experimental process" describe the different experimental
methods used in the synthesis and characterization of Mn3Fe2Si3 material. Chapter
"Macroscopic properties of the magnetocaloric compound Mn3Fe2Si3" presents the
results of the macroscopic property measurements of the compound Mn3Fe2Si3. In
chapter "Crystal structure of Mn3Fe2Si3" I discuss structural parameters of Mn3Fe2Si3,
derived from synchrotron radiation single crystal diffraction at different temperatures.

The magnetic structure of Mn3Fe2Si3 at different temperatures is explored in chap-
ter "Magnetic structures of Mn3Fe2Si3" using neutron powder diffraction.

1



1. Introduction

A wrap up of the results from the different techniques and a conclusion about the
relation between structure and magnetism in Mn3Fe2Si3 are given in "Summary". The
Appendix presents the procedures used for the data analysis, and supplementary
information.
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2. Magnetocaloric effect and
magnetic cooling

2.1. Magnetocaloric effect
The MCE is thermodynamically described by the temperature change of a magnetic
material upon adiabatic change of magnetic field. Its discovery is often attributed to
Emil Warburg during his work on the magnetization of pure iron in 1881 [9]. How-
ever, according to Smith et al [10], MCE was in fact discovered experimentally in
1917 by Weiss and Piccard by observing a sizable and reversible temperature change
in nickel near its Curie temperature [11]. Later, Giauque and MacDougall [12] inde-
pendently proposed that by making use of the MCE one can attain very low tem-
perature by adiabatically demagnetizing paramagnetic (PM) salts. In 1976, Brown
constructed the first magnetic refrigeration system [13] using gadolinium as magnetic
refrigerant, and demonstrated refrigeration by adiabatic demagnetization in the room-
temperature range. In 1997, Pecharsky and Gschneidner [14] discovered a giant MCE
in Gd5Si4−xGex alloys at 280 K associated with first-order magneto-structural transi-
tion. It was demonstrated that the temperature at which a large MCE exists could be
tuned to between 280 K and 20 K by substituting Ge for Si. The simultaneous changes
in in the crystal structure and magnetization at the transition temperature were ex-
pected to strongly influence both the lattice and the magnetic entropy. The reported
MCE of Gd5Si2Ge2 [14] was about 50 % larger than the up to then benchmark second
order material, Gd metal.

2.2. Magnetic refrigeration
In practice, the core of magnetic refrigeration based on MCE is the temperature
change of any suitable material in response to a changing magnetic field. The prin-
ciple of a magnetic refrigeration cycle is based on the four following steps illustrated
in Figure 2.1:

1) Adiabatic magnetisation: the temperature of the refrigerant increases due to the
application of an external magnetic field.
2) Iso-field cooling: Heat is transferred to the thermal bath.
3) Adiabatic demagnetisation: the temperature of the refrigerant decreases due to the
removal of magnetic field.
4) Iso-field heating: heat is loaded from the inside of the fridge. Once the refrigerant

3



2. Magnetocaloric effect and magnetic cooling

and the heat load reach a thermal equilibrium state, the cycle finishes, and a new one
begins.

H≠0 

H=0 

N 

S 

T+∆Tad 

T-∆Tad 

T 

N 

S 

T 

Magnetic refrigeration 

Figure 2.1.: Schematic representation of a magnetic refrigeration cycle. The figure is
adapted from [15].

2.3. Magnetocaloric (MC) materials
2.3.1. Classification of MC compounds
MCE is considered as the keystone physical property behind an alternative technology
for refrigeration both at room and at cryogenic temperatures. As the MCE is highest
around magnetic phase transitions, the behavior of materials around these transitions
is crucial for the performance of the refrigerant. MC compounds can be classified
according to the order of their magnetic phase transition and can be divided into first
order magnetic transition materials (FOMT) and second order magnetic transition
materials (SOMT).

The FOMT often involve magnetostructural changes and show a discontinuity in
the first derivative of the free energy. The discontinuity in the entropy is related to
the enthalpy of transformation, called the latent heat. This reduces the efficiency of
MCE. FOMTs reach the highest measured values of MCE. However, large magnetic
fields are needed to trigger the magnetostructural transitions. This generally gives
a high MCE in a narrow temperature range limiting the refrigeration capacity. Fur-
thermore, most of the known FOMT material systems either contain very expensive
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elements (e.g. Gd), toxic elements (e.g. As) or have very complicated and expensive
synthesis routes. On the other hand, for SOPTs, the first derivative of the free energy
is continuous while the second derivative is discontinuous. SOMT materials in general
have broader transitions with lower values of the MCE. Since in technological appli-
cations several other material properties are important, the choice between FOMT
and SOMT materials is not as simple as it seems.

Figure 2.2 shows a comparison of some of the most investigated magnetocaloric ma-
terials in a plot of isothermal change of magnetic entropy for a magnetic field change
between 0 and 5 T, ∆SM(T )∆H=5T versus transition temperature. Several materials
such as La(FexSi1−x)13 [16], La(Fe,Si)13H [17], MnAs-based [5], and Fe2P-based al-
loys [18] have shown interesting magnetocaloric performances. Also, the reference
material Gd and compounds Gd5Si2Ge2 [14] are among the best candidate materials
for ambient temperature magnetocaloric devices. The magnitude of the MCE in the
MnFeP1−xAsx [5] compounds is higher than Gd metal and comparable to compounds
such as Gd5Si2Ge2 [14] which undergo FOMT.

Figure 2.2.: Absolute value of maximum isothermal entropy change for field change
from 0 to 5 T versus magnetic transition temperature for different families
of MC materials, taken from [1]

The Giant MCE in the MnFeP1−xAsx compounds originates from a field-induced
metamagnetic FOMT. Unlike to what happens in the Gd5Si4−xGex compounds, the
symmetry of the hexagonal Fe2P-type [18] structure does not change below and above
the transition, but a sharp decrease of the a-axis lattice parameter and a sharp increase
of the c-axis lattice parameter accompanies the transition from FM to PM phase.

The MCE is induced via the coupling of the magnetic sublattice with the applied
magnetic field. For large MCE at room temperature, a flexible structure which ac-
commodate substitutions by various ions is required, since this could cause structural
changes, a variety of magnetic phase transitions and enhance the MCE properties.

Apart from the large magnetic entropy change and large adiabatic temperature

5
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change, there is a number of other criteria that must be taken into account for se-
lecting materials for a commercial magnetic refrigeration design. These include: raw
material cost, production cost, toxicity, recycling capability, low thermal and mag-
netic hysteresis for high operation frequency, and environmental impacts.

2.3.2. The Mn5−xFexSi3 series (0⩽ x⩽5)
The Mn5−x Fex Si3 (0⩽ x⩽5) compounds are known for their magnetocaloric properties
and they consist of abundant, non-toxic and cheap elements. The largest MCE re-
ported for this system was observed in Mn5−x Fex Si3 (x = 4), e.g. for a field variation
from 0 to 2 T, the MCE of this compound is ∆SM(T )x=4 ≈ 2 J/kg K [4, 3]. This is a
modest MCE compared to MC compounds mentioned in the previous section such as
MnFeP1−xAsx (x = 0.45) with ∆SM(T )x=0.45 ≈ 20 J/kg K for 0 to 2 T field change [5].
Despite this fact, the Mn5−x Fex Si3 compounds are considered as interesting model
systems to develop a better understanding of the underlying mechanism of the MCE
in multiple site driven magnetocaloric materials.

The reason for our interest on this family of compounds are:
First, they undergo a variety of magnetic phase transitions at different tempera-

tures depending on their iron content, i.e. the predominant interactions change from
antiferromagnetic (AF ) to ferromagnetic (FM) when moving from the Mn end mem-
ber to the Fe end member (see Figure 2.3 (left)). Second, the corresponding magnetic
entropy changes show different shapes and magnitudes ranging from a negative MCE
(x=0) to the modestly high positive magnetocaloric effect (MCE) of ∼ 2J̇/kg K at a
magnetic field change from 0 T to 2 T for MnFe4Si3 (x=4) (see Figure 2.3 (Right)).
Third, it is possible to synthesize these materials as large single crystals, which is
not achievable for most other magnetocaloric materials that are generally obtainable
in polycrystalline form. This is an essential advantage for examining the underlying
mechanism of the MCE, as a set of experimental techniques are only applicable if
large single crystals are available.

2.3.2.1. Mn5Si3 (x=0)

The crystal structure of the parent compound Mn5Si3 belongs to the hexagonal space
group P63/mcm at room temperature with two distinct crystallographic positions
for the Mn atoms, M1 (Wyckoff position (WP ): 4d; 1/3,2/3,0) and M2 (Wyckoff
position: 6g; x,0,1/4; x ≈ 0.2364) [20]. The Si atom also resides on a 6g position with
( x,0,1/4; x ≈ 0.5957) [20]. Upon the substitution of Mn for Fe in Mn5−x Fex Si3 series,
Fe occupies preferentially the M1(WP :4d) position [20], however, without reaching
complete site order.

The M1 (WP :4d) atom is surrounded by 6 Si atoms at distances of approximately
2.4 Å in the form of a distorted octahedron [M1Si6] (see Figure 2.4). These octahe-
dra share triangular faces with their analogs forming infinite chains of composition
∞[M1Si3] along the c axis [20, 3, 2]. The M2 atoms are interconnected to form dis-
torted empty octahedra [◻ (M2)6]. They also share common triangular faces and

6



2.3. Magnetocaloric (MC) materials

Figure 2.3.: (Left) Magnetic phase diagram adapted from [4], additional data points
(x=1.5 and x=2.5) are taken from [19]. (Right) magnetic entropy changes
for two different magnetic field variations for the Mn5−x Fex Si3 system
(taken from [4]).

form infinite chains of composition ∞[ ◻(M2)3] along the c-direction. Neighbouring
∞[M1Si3] chains share common edges with each other, forming channels occupied by
the chains of empty octahedra [◻ (M2)6] [20, 3, 2].

1/4 

Figure 2.4.: Crystal structure of Mn5−x Fex Si3 (taken from [21]).

In the Fe-rich compounds of the Mn5−x Fex Si3 system, no temperature-induced
structural phase transitions are observed [20]. However, the parent compound Mn5Si3
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2. Magnetocaloric effect and magnetic cooling

has a structural phase transition at 99 K where the space group symmetry changes
from hexagonal P63/mcm to orthorhombic Ccmm with lattice parameter aortho ≈ ahex,
bortho ≈ ahex+2bhex, cortho ≈ chex (see Appendix A.10). This structural phase transition
coincides with the magnetic transition from a paramagnetic (PM) to an antiferro-
magnetic state (AF2) [2, 22]. In Ccmm space group the M2 positions (WP6g) split
into two sets of inequivalent positions, so that in the AF2 phase three symmetrically
independent sites are available for Mn, designated M1 (WP :8e; 0,y,0), M21 (WP :4c;
x,0,1/4), and M22 (WP :8g; x,y,1/4) in the following. Additional magnetic reflections,
which appear in the AF2 phase, can be indexed with a propagation vector of (010)
referring to the orthorhombic setting. They appear at reflection positions violating
the extinction rules for C-centering (hkl ∶ h + k = 2n + 1). At 90 K this phase com-
prises an antiferromagnetic collinear arrangement of Mn magnetic moments on the
M22 position which have their magnetic moments of magnitude 1.48(1)µB, pointing
along the b-direction, while M1 and M21 sites carry no static magnetic moments (see
Figure 2.5) [2, 22]. A small temperature dependent deviation from collinearity was
observed, 3○ of tilt at 80 K and 8○ of tilt at 70 K (Figure 2.5), with respect to the b
crystallographic direction. Nevertheless AF2 was referred to as collinear phase in the
literature [22, 2].

At 60 K the magnetic ordering is changed due to a phase transition taking place
at ∼62(1)K [2]. The magnetic structure of the low temperature AF1 phase is char-
acterized by a monoclinic spin arrangement although the atomic positions can still
be described with the non-centrosymmetric orthorhombic symmetry Cc2m. In this
phase, three sublattices have to be be considered. They are formed by the magnetic
moments on M22 and M23 with moments pointing into different directions forming
a complex non-collinear antiferromagnetic structure [23, 2], and the M1 sites which
carry a smaller magnetic moment.

At the transition temperature from the AF2 to AF1 phase a discontinuous expan-
sion in the c-lattice parameter is observed. According to the literature, this expansion
leads to a larger Mn1-Mn1 distance ( = 0.5 c) in the AF1 phase, this way enabling
the ordering of the moments on the Mn1 site, which is suppressed by the smaller
Mn1-Mn1 distance in the AF2 phase [22](see Figure 2.5).

Discrepancies exist in literature concerning the presence of magnetic moments on
Mn21 and Mn22 sites: while according to [23] no ordered magnetic moment was
observed, a very small magnetic moment was observed on these sites in [2]. Based
on neutron powder diffraction data, Gottschlich et al [2] identify an additional low-
temperature high-field phase, designated AF1′, in which the ordered moment on the
Mn1 site presumably disappears again. The end member Mn5Si3 (x=0) exhibits an
inverse MCE [5, 4], with an isothermal entropy change of 3 J/kg K for a field change of
5 T at the magnetic phase transitions near 62 K between the non-collinear AF1 phase
and the collinear AF2 phase. The entropy change becomes negative slightly above
the transition temperature from AF1-AF2 and decreases with increasing temperature
till the paramagnetic state is reached [5].

Recently, it has been demonstrated that the inverse MCE can be attributed to
changes in the magnetic excitation spectrum across the phase transition. In the AF1
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2.3. Magnetocaloric (MC) materials

Figure 2.5.: Projection in the (a,b) plane of the orthorhombic unit cell of Mn5Si3 at
60, 70, 90 K (taken from [2]). For the AF1 phase (60 K) the Mn23 and
Mn24 sites correspond to the Mn22 sites of the AF2 phase (70 K and
90 K) [23, 2].

phase the spectrum is dominated by spin waves, while in the AF2 phase low energy
spin fluctuations become strong and increase the magnetic entropy significantly [6].
The macroscopic response of Mn5Si3 has been recently revisited by means of Hall
effect measurements by Sürgers et al. [24] and magnetization measurements up to 14
T by Das et al. [25]. Das et al. observed a small change in the M(H) isotherms slope
below of 66 K, when moving from the AF1 to the AF1′ phase. In addition to that, a
sharp change in M values of the M(H) isotherms was observed which is associated to
the AF1′ to AF2 transition. Both the transition fields are found to be shifted toward
the lower value with increasing temperature [25].

2.3.2.2. MnFe4Si3 (x=4)

On the basis of neutron and X-ray single crystal diffraction study on the ferromag-
netic compound MnFe4Si3 at 380 K [3], it was shown that, in contrast to the parent
structure, a partial ordering of Mn and Fe takes place on the M2 sites, leading to
a lowering of the symmetry to P6 space group with six symmetrically independent
sites (M1a/M1b; M2a/M2b; Si1a/Si1b). The M1a/M1b sites are nearly exclusively oc-
cupied by Fe, while the M2a/M2b sites have a mixed occupancy of Mn and Fe. Below
300 K, the sites with mixed occupancy of Mn/Fe carry an ordered magnetic moment
of approximately 1.5(2)µB pointing perpendicular to the c-direction, whereas, for the
position which is occupied by Fe, the refined magnetic moment is smaller than the
error (see Figure 2.6). [3].

The magnetization of MnFe4Si3 rapidly reaches about 1.7(1) µB per metal atom
at a field of 0.5 T at a temperature of 50 K [3], while, the average magnetic moment
per iron atom of the ferromagnetic Fe5Si3 is about 1.32 µB in a field of 5 T[4]. The
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2. Magnetocaloric effect and magnetic cooling

Figure 2.6.: Schematic diagram illustrating the ferromagnetic structure of MnFe4Si3
at 200 K in magnetic space group Pm′. Left, slightly tilted projection ap-
proximately along [110]-direction; right, projection along [001]-direction
(taken from [3]).

fact that the total magnetic moment in MnFe4Si3 is higher than the total magnetic
moment in Fe5Si3 can be attributed to the relatively large value of the Mn moment
when forced into a ferromagnetic moment arrangement.

The large magnetic moment of the Mn atoms coupled parallel to the Fe moments
can also explain the modestly large direct MCE of MnFe4Si3 (x=4) with an isothermal
entropy change of −∆iso= 4 J/kg K for a field change of 5 T [3], which is higher than
the isothermal entropy change of Fe5Si3, −∆iso= 2.7 J/kg K for the same field change
[4] (see Figure 2.3).

2.3.2.3. Mn3Fe2Si3 (x=2)

This thesis is focused on the compound Mn3Fe2Si3 (x=2; space group P63/mcm at
RT) which show some similarities to the Mn5Si3 compound. Neutron studies on this
compound shows a high degree of structural order of the paramagnetic ions with Fe
being preferentially incorporated into the M1 (4d) site which is coordinated octa-
hedrally by Si, while Mn preferentially occupies the remaining M2 (orthorhombic:
M21/M22) positions [20]. According to earlier magnetization measurements on poly-
crystalline material, the compound has a transition from the paramagnetic to the
AF2 phase at approximately 125 K and a second transition from AF2 to AF1 at
approximately 70 K [4]. The magnetization has been measured in pulsed fields up
to 38 T, without a hint for an additional transition [4]. As a consequence of the in-
corporation of Fe into the structure, one expects significant changes in the magnetic
and structural properties. We therefore studied structural and magnetic properties
of single crystals and powder of Mn3Fe2Si3 to elucidate this effect further. This way,
we hope to contribute to a better understanding of the MCE in the whole series of
compounds.
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3. Theoretical Background

3.1. Magnetic Order: Antiferromagnetism
The Heisenberg model describes the exchange interaction between localized spins in
a crystal, its Hamiltonian reads:

H = −∑
i,j

JijS⃗i ⋅ S⃗j (3.1)

The sum runs over all sites in the crystal and Jij is the exchange integral between
atoms i, j. A positive Ji,j refers to a ferromagnetic exchange, i. e. it favors a parallel
alignment of spins on site i and j, while Ji,j < 0 tends to align the spins on sites i, j
in an antiparallel manner.

Antiferromagnetic materials exhibit a small but positive susceptibility χ > 0, at
all temperatures (T )[26, 27]. In zero applied field the spins of an antiferromagnet
are ordered in an anti-parallel arrangement with zero net magnetic moment at tem-
peratures below the ordering temperature, which is called the Néel temperature TN .
Above TN , where the substance is paramagnetic, the moments are oriented randomly
resulting in a zero net magnetization (M) in the absence of a magnetic field.

To model magnetic interactions, Weiss Mean Field Theory of Ferromagnetism as-
sumed that Sj in eq. 3.1 can be replaced by its average value < Sj > which is pro-
portional to the magnetization M . The interaction then acts as an internal field Hint

[28]. If there is an external field H, then the total field acting on the ith spin is :

Htot =H +Hint =H − ∣λ∣M, (3.2)
where λ is the molecular field coefficient. This quantity is proportional describes

the interaction of a magnetic ion with the others [29].
The case of an antiferromagnet is the model of a crystal with two sublattices, A

and B with equal sublattice magnetization and anti-parallel spin alignment. Since for
an AF the exchange integrals are negative, then λ is also negative. In general, the
interaction between the nearest neighbor (between two sublattices A and B) can be
significantly different from the interaction between the next-nearest neighbor (witin
the same sublattice). The mean exchange fields acting on each sublattice of an anti-
ferromagnet may be written as [30]:

HintA = −ΓMA − ∣λ∣MB ; HintB = −ΓMB − ∣λ∣MA (3.3)
Γ is a constant which expresses the contribution to the molecular field from the

same sublattice. Applying the mean-field treatment one obtains the Curie-Weiss
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3. Theoretical Background

temperature θ = −C(∣λ∣ + Γ) and the AF ordering sets in the Neel temperature TN =

C(∣λ∣−Γ). Then, we obtain the ratio relating the strength of inter- and intra-sublattice
interactions [30].

TN

θ
= −
∣λ∣ − Γ
∣λ∣ + Γ (3.4)

For the susceptibility one can derive the expression:

χ = lim
H→0

M

H
=

C

T −C(∣λ∣ + Γ) =
C

T + θ
, (3.5)

By fitting the linear part of the plot of 1
χ as function of temperature where the

Curie-Weiss law is obeyed (Paramagnetic regime), we can extract the characteristic
temperature θ from the intercept with the abszissa and Curie constant from the slope
of the linear fit. As result, we can calculate the effective paramagnetic moment by
the following relation expressed in SI units [31]:

µeff =

√
3kBC

Nµ0µ2
B

, (3.6)

where kB is the Boltzmann’s constant, N is the number of magnetic atoms per unit
volume, µB is the Bohr magneton and µ0 is permeability of free space, the µeff is
measured in Bohr magnetons per formula unit. According to the mean-field approx-
imation, µeff can be also given by µ2

eff = xg
2S(S + 1)µ2

B, where x is the fraction of
magnetic ions per formula unit, g is their gyromagnetic factor, and S their spin quan-
tum number [32]. The effective paramagnetic moment µeff for a system containing
more than one type of magnetic ion can be treated as separate magnetic systems with
the same ordering temperature. e.g. µeff for system with two magnetic ions can be
expressed as [32]:

µeff =
√
µ2

eff(1) + µ
2
eff(2), (3.7)

Below TN , the susceptibility of antiferromagnets depends on the direction of the
applied field relative to the spin axis. For a simple antiferromagnet, applying a small
magnetic field perpendicular to the axis of the spins invokes a slight tilt of the spins
against the molecular field so that a component of magnetization is produced along
the applied magnetic field. The susceptibility χ� ≠ 0 does not depend on temperature
below TN .

In the case of the parallel orientation of the magnetic field to the axis of the spins,
the parallel susceptibility χ∣∣ goes to zero as T → 0 and increases smoothly with
increasing temperature up to TN [33].

3.2. Basic physics and thermodynamics of
Magnetocaloric effect

The magnetocaloric effect is an effect characterized by the adiabatic temperature
change (∆Tad) or the isothermal entropy change (∆Siso) due to the application of the
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3.2. Basic physics and thermodynamics of Magnetocaloric effect

magnetic field H. The total entropy ∆Siso and adiabatic temperature change ∆Tad are
shown in a temperature-entropy (TS) diagram between two magnetic isofield curves
without magnetic field (H=0) and a non-zero magnetic field (H≠0) (see Figure 3.1)
for a material featuring a direct MCE. In the isothermal process A-B, the increase of
the applied magnetic field orders magnetic moments in the material, which results in
a lowering of the magnetic entropy ∆SM and consequently in a lowering of the total
entropy ∆Siso. In the process A-C, the magnetic field is applied adiabatically (the
total entropy remains constant).

The total entropy of a magnetic substance at constant pressure and volume depends
on both magnetic field H and temperature, T . It consist of lattice (Sl) and electronic
contributions (Se) besides the magnetic contributions from the atomic magnetic mo-
ments (Sm) (see Eq.3.8). In order to conserve the total entropy under adiabatic
conditions, the system is forced to increase its temperature. In the adiabatic con-
ditions, the reduction of the magnetic entropy is compensated by an increase in the
lattice and/or electronic entropy.

∆Sl(T,H) +∆Se(T,H) +∆Sm(T,H) = 0 (3.8)

E
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Temperature

∆𝑆𝑖𝑠𝑜 

∆𝑇𝑎𝑑 𝐴 
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𝐶 

𝐻 = 0 

𝐻 ≠ 0 

Figure 3.1.: Schematic Entropy-Temperature diagram for constant pressure and two
different magnetic fields

In order to explain the origin of the magnetocaloric effect, we describe the thermo-
dynamics of a magnetic material under a magnetic field using the description of the
Gibbs free energy, G.

G = U − TS + PV −Mµ0H (3.9)

Where U,S,V,M and µ0 are the internal energy, total entropy, volume, magnetiza-
tion of the system and permeability of free space, respectively. By using the first law
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3. Theoretical Background

of thermodynamics: dU(T,P,H) = TdS + µ0HdM −PdV , we can write the variation
of the Gibbs free energy as:

dG(T,P,H) = −SdT + V dP −Mµ0dH (3.10)

Therefore, we can determine the expression for S, V and µ0M from the first deriva-
tive of G, as follows:

S(T,P,H) = −(
∂G

∂T
)

H,P

(3.11)

V (T,P,H) = −(
∂G

∂P
)

T,H

(3.12)

µ0M(T,P,H) = −(
∂G

∂H
)

T,P

(3.13)

The Maxwell relation relating the entropy with the the magnetization, can be
obtained by making the derivative for equations 3.11 and 3.13:

(
∂S

∂H
)

T,P

= µ0 (
∂M

∂T
)

H,P

(3.14)

Considering the total entropy of the system, S(T,P,H), the total differential of the
total entropy can be written as:

dS(T,P,H) = (
∂S

∂P
)

T,H

dP + (
∂S

∂T
)

P,H

dT + µ0 (
∂S

∂H
)

P,T

dH (3.15)

By using the Maxwell relation 3.14 for an isothermal and isobaric process, we can
derive the change in entropy as function of the magnetization M :

dS = µ0 (
∂M

∂T
)

H,P

dH (3.16)

i. e. the entropy changes strongly, when the magnetization changes strongly with
temperature.

The isothermal entropy change can then be calculated by integrating the Eq.3.16
between two magnetic fields Hi and Hf .

∆SM(T,P,∆H) = µ0

Hf

∫
Hi

(
∂M

∂T
)

H,P

dH (3.17)

The entropy change can be also expressed in terms of heat capacity CH,P under
constant pressure and magnetic field:

CH,P (T ) = T (
∂S

∂T
)

H

(3.18)
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This permits us to calculate the isothermal entropy change from the evolution of
the heat capacity as a function of temperature:

∆SM(T,∆H) =
Tf

∫
0

CHf ,P (T ) −CHi,P (T )

T
dT (3.19)

Under adiabatic dS = 0 and isobaric dP = 0 conditions, Eq.3.15 can now be pre-
sented as:

dT = −µ0 (
∂S

∂H
)

T

(
∂T

∂S
)

H

dH (3.20)

By using the Maxwell relation and the definition of the specific heat under constant
field (Eq.3.18), we can integrate from Hi to Hf to get of the adiabatic temperature
change ∆Tad:

∆Tad(T,∆H) = −µ0

Hf

∫
Hi

(
T

CH,P (T )
)

H

(
∂M(T,H)

∂T
)

H

dH (3.21)

Figure 3.2.: The behavior of the magnetization, free energy, entropy, and heat ca-
pacity according to the first-order and second-order phase transitions.
Adapted from [34].

As already mentioned in first chapter, the MCE is expected to be large around a
phase transition when the temperature derivative of the magnetization (∂M

∂T
)

H
is large.

In the first-order phase transitions, the change of entropy of a system is discontinuous.
This is a result of the latent heat associated with the transition. The heat capacity
therefore goes to infinity when the transition point is approached from either side
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3. Theoretical Background

(see Figure3.2). In the case of second-order transitions, there is no latent heat and
therefore the change of entropy of a system is continuous. The specific heat is expected
to be a discontinuous parameter as it is proportional to the first derivative of entropy
with temperature (see Figure3.2).

The magnetocaloric effect is categorized in the following way: a) Direct MCE,
where (∂M

∂T
)

H
< 0 resulting in ∆Siso < 0 and ∆Tad > 0 and b) and indirect MCE,

where (∂M
∂T
)

H
> 0 resulting in ∆Siso < 0 and ∆Tad < 0. A direct MCE is typically

been observed in the vicinity of a ferromagnetic-paramagnetic phase transition as the
magnetic entropy is reduced by suppressing the spin fluctuations. The indirect MCE,
namely an increase of the magnetic entropy, means, that spin fluctuations are induced
by application of a field.

3.3. Diffraction
3.3.1. X-ray diffraction
An ideal crystal consists of a periodic arrangement of atoms. Within the crystal
parallel lattice planes decorated with atoms are identified by Miller Indices (hkl)
which are defined on the basis of the reciprocals of the intercepts of the plane with
the crystallographic axes. The distance between parallel rows of lattice planes hkl of
atoms is commonly denoted as d-spacing (dhkl).

An incoming x-ray beam with a wavelength comparable to the spacings of the
atoms in the crystal interacts with the electron clouds of the atoms. At certain angles
θ, when the Bragg condition is fulfilled [35], constructive interference between the
diffracted waves occurs and diffracted intensity from the particular lattice plans can
be observed with a detector.

The electron density distribution as a function of position xyz within the unit cell
is described as :

ρxyz =
1
V
∑hkl

Fhkl ⋅ exp(i ⋅ (h ⋅ x + k ⋅ y + l ⋅ z)). (3.22)

Eq. 3.22 represents the Fourier transform between the real space (where the atoms
are represented by ρxyz) and the reciprocal space (diffraction pattern) represented by
the structure factors Fhkl (Note: in crystallography it is common to include 2π in the
argument of the functions). V and xyz represents the volume of the unit cell and the
position of the atoms in the unit cell, respectively. Fhkl describes both the amplitude
and the phase of the diffracted waves from scattering planes hkl and it is given by:

Fhkl =∑
n=0
N

fn ⋅ exp(i ⋅ (h ⋅ xn + k ⋅ yn + l ⋅ zn)). (3.23)
where the sum is over all the atoms n in the unit cell, fn is the scattering factor of
atom n, and xn, yn and zn describe the position of the n-th atom the unit cell.The co-
ordinates xn, yn and zn refer to the coordinate system defined by the lattice parameter
a, b, c.
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3.3. Diffraction

The atomic scattering factor is a measure for the scattering power of an individual
atom and derived by considering the interference of all the waves scattered by the
electrons in this atom.

When the electron density distribution has spherical symmetry, the atomic scat-
tering factor can be presented and plotted as a function of the magnitude of the
scattering vector (see Figure 3.3):

∣Q⃗∣ = 4πsinθ
λ
, (3.24)

where θ is the angle between the incident X-ray beam and the diffracting lattice plane,
and λ is the wavelength of the X-rays. The atomic scattering factor depends on the
type of atom and the direction of scattering, so that it reaches a maximum in the
same direction of the incident X-rays Q = 0 where fn is equal to the atomic number
Z, and decreases as a function of the angle of incidence[36] due to the destructive
interference effects between the Z electrons scattered waves.

of waves scattered from electrons of an atom.
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Figure 3.3.: The variation in the atomic scattering factor for Mn, Fe and Si elements

as function of Q

The diffraction pattern can be calculated by a Fourier transform of the electron
density if there is prior knowledge of the electron density. To obtain the electron
density from the diffraction pattern one has to apply an inverse Fourier transform.
For this, the amplitude and the phase of the structure factor are needed. However,
in the diffraction experiment one only gets the modulus of the structure factor ∣Fhkl∣

proportional to the square root of the intensity measured on the detector, while the
value of the phase (i ⋅ (h ⋅xn+k ⋅yn+ l ⋅zn)), which is an essential piece of information,
is lost. This is known as the phase problem of crystallography.

Different methods were developed to reconstruct the missing phase information [37]
which will not be described in detail here, as, in our case, we used a structural model
from the literature as a starting model, and calculated initial phases based on it.
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3. Theoretical Background

So far, all the above equations are written by considering rigid atoms in unit cell at
the absolute temperature of 0 K. For temperatures T > 0 K, the atoms are vibrating
about their equilibrium position. These vibrations cause a drop-off in the intensity
of the Bragg peaks with increasing θ angle, giving rise instead to diffuse intensity
distributed in the reciprocal space. These diffuse intensities give information about
the dynamics of the atoms constituting the crystal, and they are called thermal diffuse
scattering or inelastic phonon scattering.

So, in X-ray diffraction, the intensity drop-off as a function of θ arises from the drop
in the atomic scattering factor and from atomic vibrations that can be represented
by the exponential function called the Debye-Waller factor W [37]:

W = exp(−B (
sin(θ)

λ
)

2

) (3.25)

where B = 8π2U and where U =< u2 > is the mean quadratic atomic displacement.
As a result the expression for ∣Fhkl∣ becomes:

Fhkl =∑
n=0
N

fn ⋅ exp(2 ⋅ π ⋅ i ⋅ (h ⋅ xn + k ⋅ yn + l ⋅ zn)) ⋅Wn (3.26)

In crystal structures, each atom vibrates in general anisotropically, and the electron
density for an atom has the form of a triaxial ellipsoid. These ellipsoids must be
constrained in accordance with the site symmetry, and their shape and orientation
can be determined by six atomic anisotropic displacement parameters (ADPs). They
are the diagonal and off diagonal terms of a three-by-three matrix:

U =
⎛
⎜
⎝

U11 U12 U13
U21 U22 U23
U31 U32 U33

⎞
⎟
⎠
. (3.27)

The diagonal terms U11, U22 and U33 are related to the lengths of the principal axes of
the vibration ellipsoid, and the "off diagonal" terms U13,U23,U12 refer to the orientation
of the ellipsoid with respect to the reciprocal axes. For isotropic vibrations, the
ellipsoids would have all off-diagonal terms equal to zero, and all diagonal terms are
identical i.e. the thermal ellipsoids are spherical.

If we assume that the diffraction vector is referred to the basis of the reciprocal
lattice H = ha∗1 + ka∗2 + la∗3 and the atomic displacement vector to the basis of the
direct lattice U =∆xa1+∆ya2+∆za3 (with a1 = a, a2 = b, a3 = c), then we can replace
the six-parameter description of the anisotropic displacement parameter by a single
quantity using a new relation [38, 39]:

Ueq =
1
3

3
∑
i=1

3
∑
j=1
Uija

∗
i a
∗
jaiaj, (3.28)

.
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3.3.1.1. Absorption correction

As X-ray beam of intensity I0 travels a distance L through a homogeneous isotropic
material, a percentage of the X-rays will be absorbed by the sample according to the
following equation [41, 40]:

T =
I

I0
= e−µ⋅L, (3.29)

I is the diffracted beam intensity which is attenuated relative to the incident beam
intensity I0, T is the transmission factor that can adopt values between 0 and 1. L is
the total length equal to the sum of the path lengths traversed by the incident beam
(L1) and diffracted beam (L2). The absorption correction is then given by [41]:

A =
1
T

(3.30)

Despite the simplicity of the exponential expression, the degree of absorption is
generally complex to calculate since the different volume (V ) elements within the
sample are not constrained to have the same values of L. The absorption from the
entire sample is thus represented by the volume integral. Therefore the transmission
coefficient can be represented as[41, 40]:

T =
1
V ∫

e−µ⋅LdV, (3.31)

3.3.2. Neutron diffraction
3.3.2.1. Nuclear scattering

Neutrons interact with the nucleus via the strong-force interaction, in contrast to
x-rays or electrons which interact with the electron cloud. The interaction between
an incident neutron at position r and the n-th atomic nucleus positioned at Rn can
be approximated by a delta function [42]:

Vnuc(r⃗) =
2πh̵2

m
∑
n

bδ(r⃗ − R⃗n) (3.32)

The proportionality factor b is called neutron scattering length, it can vary greatly
between elements of similar atomic number, and even between isotopes of the same
element. As an example, there is a very high contrast between Mn (b=-3.73 fm) and
Fe (b=9.45 fm), for which x-rays are insensitive since these two elements have nearly
the same number of electrons. Neutron diffraction is also sensitive to the hydrogen
atom even in the presence of such heavy elements as uranium, which is difficult to
detect by x-rays since hydrogen in bonds has often less than one surrounding electron
[43].

The strength of the scattering length b depends on the intra-nuclear structure and
is therefore different for different isotopes. This fact gives rise to coherent scatter-
ing and incoherent scattering. The coherent part shows interference effects between
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scattered neutron waves from different atoms, and provides information about the
nuclear structure. In the incoherent scattering part, there is no interference between
waves scattered by different nuclei. Actually, it corresponds to the scattering from
single atoms, which subsequently superimpose in an incoherent manner (The intensi-
ties scattered from each nucleus just add up independently), and causes an isotropic
background in neutron experiments.

In the following, we will focus only on coherent scattering, where, the partial dif-
ferential cross-section for elastic coherent nuclear scattering is derived as:

(
dσ

dΩ)nuc,coh

=
8π3

v0
∑
τ⃗

∣FNuc(Q⃗)∣
2 ⋅ δ(Q⃗ − τ⃗), (3.33)

where v0 is the unit cell volume, τ⃗ is a reciprocal lattice vector, Q⃗ = k⃗f − k⃗i is
the scattering vector, k⃗i and k⃗f describe the direction of the incident and diffracted
neutron beam with respect to the crystal, respectively. The nuclear structure factor
is given by [44]:

FNuc(Q) =∑
n=0
N

bn ⋅ exp(i ⋅ Q⃗ ⋅ rn) ⋅Wn (3.34)

3.3.2.2. Magnetic scattering

The dipolar interaction between the neutron magnetic moment and the magnetic
moment of atoms with unpaired electrons leads to a magnetic neutron scattering con-
tribution. The interaction potential of a neutron in spin state σN and a propagating
electron with momentum p⃗ and spin s⃗ can be written as follows [42]

Vmag(r⃗) = −γµN2µBσ⃗N [∇× (
s⃗ × R⃗

R3 ) +
p⃗ × R⃗

h̵R3 ] , (3.35)

where γ=1.913 is the gyromagnetic factor of the neutron, µN is the nuclear magneton
and µB is the Bohr magneton. ∇×( s⃗×R⃗

R3 ) and p⃗×R⃗
h̵R3 are due to the intrinsic electron spin

and the orbital motion of the electron, respectively. In the case of magnetic coherent
Bragg scattering, the partial differential cross-section is:

(
dσ

dΩ)mag,coh

=
1
Nm

8π3

v0
∑
⃗τM

∣FM�( ⃗τM)∣
2 ⋅ δ(Q⃗ − ⃗τM), (3.36)

Nm is the number of magnetic ions ⃗τM = τ⃗±k⃗ is the reciprocal vector of the magnetic
structure. k⃗ is called the propagation vector that describes the relation between
moment orientations of equivalent magnetic atoms in different nuclear unit cells. ⃗FM�
denotes the component of the Fourier transform of the samples magnetization, which
is perpendicular to the scattering vector Q⃗: ⃗FM� = Q⃗ × F⃗M × Q⃗, i.e the magnetic
Bragg peaks can be detected if the neutron wave vector transfer Q⃗ has a component
perpendicular to the direction of the ordered spins and equals a magnetic reciprocal
lattice vector ⃗τM . The magnetic structure factor is given by: by[45, 46]:

F⃗M(Q⃗) =∑
n=0
N

fM
n (Q⃗)m⃗nexp(i ⋅ Q⃗ ⋅ rn) ⋅Wn (3.37)
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3.4. Magnetic structure

fM
n (Q) is the magnetic form factor which describes the density of magnetic moments

in an atom. Similarly to the X-ray form factor, the magnetic form factor decreases of
at larger Q, while the nuclear scattering length is independent of Q.

3.4. Magnetic structure

3.4.1. Polar and Axial Vectors
Due to their spin, unpaired electrons have a magnetic dipole moment represented as
an axial vector perpendicular to a current loop and its direction is given by the right
hand thumb rule of electromagnetism. An axial vector is most often presented as
the cross product of two polar vectors. The axial vector transform like polar vector
under proper rotations, but change sign under improper symmetry operation such as
inversion, mirrors and roto-inversions.

Figure 3.4.: Action of time reversal on a current loop: the axial vector (magnetic
dipole) is inverted. Taken from [47]

Figure 3.5.: Action of a mirror plane on a polar vector and on an axial vector. Taken
from [47]
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3. Theoretical Background

To describe the direction of the axial vector, a new symmetry operator can be
introduced, designated as 1′. This new operator is called spin reversal operator or
time reversal operator. Under this operator, the current loop must change its sign
and as a result, it flips the direction of the magnetic moment 1′m⃗ = −m⃗ ( see Figure
3.4).

Unlike the axial vector it is not necessary to consider a loop for a polar vector,
therefore, the operation of symmetry on a polar vector is easily understood. The
differences between the two vectors under a mirror symmetry operation are indicated
in Figure 3.5.

If we combine a symmetry operator g with 1′, we simply write g′(a primed element).
Then, a general operator g acts on the magnetic moment m⃗ as: gm = δ det(g)gm,
where δ is the signature of the operator, that is, δ=1 if the operator is unprimed and
δ=-1 if the operator is primed.

3.4.1.1. Magnetic space groups: Shubnikov groups

If a magnetic group is denoted as M and a conventional crystallographic group as
G, then M can be obtained as a subgroup of the outer direct product of R with the
crystallographic group G (M ⊂G⊗R, where R is defined as the time reversal group
that is formed by only two elements {1,1′}. The group G is known as colorless group.
The paramagnetic group P is known as a gray group. It is a simple summation of a
crystallographic group and a time reversal operation (P= G + G1′). The notation
of the resulting group is exactly the conventional Hermann–Mauguin (HM) symbol
followed by the symbol 1′. The colorless groups G and the gray groups P are trivial
and they both comprise 230 groups [48].

For the magnetic space groups M, the non-trivial black-white groups are important.
The M group can be derived from the crystallographic group G. This relation is
expressed as M = H + (G – H)1′, where H is subgroup of index 2 of the parent
group G constituting the unprimed elements, and G −H are the elements that are
multiplied by the time reversal operator. This is valid for all kind of groups: point
groups, translation groups and space groups [48].

The total number of magnetic space groups classified by Shubnikov is 1651 [49].
Among these 1651 magnetic space groups, there are 230 colorless groups G and 230
gray groups P. In addition, using the relation (M = H + (G – H)1′), one obtains
1191 Black–White groups. The Black-White (BW) group can be divided into two
types based on whether the translational symmetry changes with respect to the space
group G or not [48]. In the Shubnikov groups of the first kind of Black–White groups
(BW1) the subgroup of translations is the same as that of the space group from
which they derive (H ⊂G). These groups are translationengleich or t-subgroups of
G. This means that the spin reversal operator is not associated with translations
and the magnetic unit cell is the same as the crystallographic cell. The notation of
these groups is the same as the Hermann–Mauguin symbol of G, except for the fact
that the appropriate generators are primed. There are 674 subgroups that fulfill this
equi-translation condition.
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3.4. Magnetic structure

In the remaining 517 of the black-white groups, there is a change in the translational
symmetry but the crystal class is kept. This corresponds to klassengleiche or k-
subgroups of G. In this case, the translation subgroup contains translation that are
combined with the time inversion. These groups are called equi-class groups or second
Black–White groups ( BW2) [48].

To denote a magnetic space group, two notations are used: Opechowski–Guccione
(OG) based on the parent crystallographic group G and Belov–Neronova–Smirnova
(BNS) based on the subgroup H. The difference between both notations is in the
description of the magnetic lattices of the BW2 groups. In the BNS notation none of
the generators constituting the symbol of the group are primed, instead the primed
element can be obtained from the magnetic lattice type that is explicitly specified.
On the contrary, the OG notation conserves the original HM symbol and uses the
primed generators. Note that for BW1 groups, the BNS and OG notations coincide
[48, 50].

For BW2 groups in the BNS setting, the magnetic space-group symbol is the crystal-
lographic space-group symbol for H with a subscript added to the first letter, denoting
the type of colored lattice. As an example, if one considers a primitive Bravais lattice
with black lattice points at TP and one adds a white lattice point to the centre of
each unit cell, i.e. TI=TP +tC (where tC is a vector corresponding to half the body
diagonal, one obtains a black and white Bravais lattice PI [50]. PI thus denotes that
an original body centred lattice becomes primitive, as the centring translations are
combined with time inversion and become anti-translations. The general expression
of the magnetic lattice containing translations and anti-translations is given by [48]:

ML =HL + (T −HL)1′, (3.38)

where HL is a subgroup of index 2 containing pure lattice translations and (T−HL)1′ =
H′L are the remaining operators containing the anti-translation.

3.4.1.2. Formalism of a propagation vector k⃗

Magnetic structures can be described by the periodic repetition of a magnetic unit
cell in the three directions of space, just as nuclear crystal structures are described
by lattice translation of a unit cell. In order to describe a magnetic structure one
uses a description based on the nuclear unit cell and a ’propagation vector’, k⃗, that
describes the relation between moment orientations of equivalent magnetic atoms in
different nuclear unit cells. k⃗ can be determined from the position of the magnetic
Bragg reflections seen in neutron diffraction patterns recorded at magnetically ordered
phase of a material. In general a magnetic structure is given by its Fourier-components
in the form:

ml,j = −∑
q

mk,j ⋅ exp(i ⋅ k ⋅Rl), (3.39)

where ml,j denotes the moments of atom j in cell in the unit cell having as origin
the lattice vector Rl.

23



3. Theoretical Background

3.4.1.3. Example: possible magnetic space groups for Mn3Fe2Si3
The space group describing the symmetry of Mn3Fe2Si3 is P63mcm. No structural
phase transition was observed in Mn3Fe2Si3 at low temperatures, yet in the following
it will be described in the orthohexagonal setting corresponding to the Ccmm cell
(subgroup of P63mcm) which was chosen in the literature for the description of the
parent compound Mn5Si3 [2, 22, 23]. (see Appendix A.1 for further details).

Starting from the space group Ccmm (group G) the magnetic space groups can
be constructed using the International tables for Crystallography, Volume A (ITA)
[51]. For this, one first has to derive all space groups that are subgroups (H) of
index 2 of G. There are three different kinds of maximal non-isomorphic subgroup
for Ccmm, namely, I, IIa and IIb (empty) [51]. The subgroups in group I correspond
to t-subgroups and the ones in group II are k-subgroups. Based on the magnetic
space group approach described above, the division I and II correspond to the BW1
and BW2-type, respectively. In the following only the BW2-type groups are derived.
In the ITA, IIa composed of eight subgroups H of index k = 2 are given [51].

H
Index 2 Notations of M Based on Eq.3.38 BNS1 BNS2 OG

Pmma {1,21x,2y,2z,−1,mx,my, az}HL + {1,21x,21y,21z,−1, nx, cy, nz}H′L PAmma PCcmm CPmcm
Pnna {1,2x,21y,2z,−1, nx, ny, az}HL + {1,21x,21y,21z,−1, bx,my,mz}H′L PBnna PCnan CPm′c′m′

Pbcm {1,2x,21y,21z,−1, bx, cy,mz}HL + {1,21x,2y,21z,−1,mx, ny, nz}H′L PCbcm PCcam CPm′cm
Pnnm {1,21x,21y,2z,−1, nx, ny,mz}HL + {1,2x,21y,21z,−1, bx,my, az}H′L PBnnm PCnmn CPmc′m′

Pmmn {1,21x,21y,2z,−1,mx,my, nz}HL + {1,2x,21y,21z,−1, cx, ny, bz}H′L PBmmn PCnmm CPmc′m
Pbcn {1,21x,2y,21z,−1, bx, cy, nz}HL + {1,2x,21y,21z,−1,mx, ny,mz}H′L PCbcn PCcan CPm′cm′

Pnma {1,21x,21y,21z,−1, nx,my, az}HL + {1,21x,2y,2z,−1,mx, cy, nz}H′L PAnma PCcmn CPmcm′

Pnma {1,21x,21y,21z,−1, nx,my, az}HL + {1,2x,21y,2z,−1, bx, ny,mz}H′L PBnma PCnam CPm′c′m′

Table 3.1.: Magnetic space groups M in the standard setting with respect to BNS
and OG notations derived from Ccmm space group of the parent structure
using Eq. 3.38. 1 Standard setting, 2 Non-Standard setting.

Table 3.1 shows these eight magnetic space groups M in BNS and OG notations
derived from the Ccmm space group of the parent structure using Eq. 3.38. For the
BNS standard setting, three types of Black-and-white lattice generators (Operations
corresponding to a translation) were used to construct the magnetic space groups:
(0,1

2 ,1
2) for PA, (1

2 ,0,1
2) for PB and (1

2 ,1
2 ,0) for PC .

It should be pointed out here that for the refinement the non-standard settings
of the magnetic space groups were used in order to keep the origin and unit-cell
orientation of the nuclear structure comparable in all models.
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4. Experimental methods and
instruments

4.1. Synthesis and crystal growth
4.1.1. Cold crucible induction melting

(c) (a) 

(b) 

Figure 4.1.: Schematic drawing of an apparatus for cold crucible induction melting
taken from [52].

The cold crucible induction melting (CCIM) ( see Figure 4.1-a) is a process to
melt high temperature reactive materials [53]. The CCIM combines metal melting
and levitation, and avoids contact between the molten material and the crucible. The
sample is placed in a copper crucible which is divided in several segments. Each
segment is insulated from the neighboring segments, and cooled with water. An
electric field is generated from high frequency alternating current (AC) which passes
through multi-turn induction coils that surround the glass tube covering the crucible.
The induced current IT looped around each segment generates an induced current
IS in the sample, resulting in the required magnetic field in the metallic sample
(see Figure 4.1-c). An increase in power causes eddy currents that produce joule
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4. Experimental methods and instruments

heating which melts the sample in a sphere-like shape. The molten metal is levitated
by Lorentz forces, which minimize the thermal losses and accelerate the process of
heating (see Figure 4.1-b). Additional forces F are generated from the interaction
between the induced currents and the magnetic field and result in further movements
of the melt. Hence, through the constant and well controlled stirring, a melt of high
homogeneity and purity grades can be produced.

4.1.2. Single crystal growth (Czochralski method)

The single crystals investigated in the course of this thesis were grown by the Czochral-
ski method [54], a technique widely used for growing large-size single crystals. Figure
4.2 presents the basic setup of the Czochralski process. A crucible of suitable size is
put on a holder surrounded by Copper coils. A generator supplies a large alternating
current which passes through the coils to heat the starting material which is placed
in the crucible. The solid is inductively heated due to its electrical conductivity. A
suitable seed crystal is then mounted on a rod and dipped into the surface of the melt.
When crystal growth begins, the rod with the seed crystal is rotated and slowly drawn
from the melt. The diameter of the pulled crystal is controlled by manipulating the
temperature of the melt and the pulling rate.

Puller rod 

Heater 

Crucible  

Seed  
Growing Crystal 

Seed-holder 

Figure 4.2.: Illustration of the setup used for the growth of single crystals with the
Czochralski method
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4.2. Measurement of physical properties

4.2. Measurement of physical properties
The magnetic and thermal property measurements described in this thesis were per-
formed using the commercial Physical Property Measurement System (PPMS) from
Quantum Design. The system provides magnetic field up to ± 9 Tesla and temper-
atures in the range of 1.9 - 400 K, which can be extended depending on the used
measurement option from 0.05 K to 1000K.

4.2.1. Vibrating sample magnetometer (VSM)
A Vibrating Sample Magnetometer (VSM) is one of the measurement options of the
PPMS to determine the magnetic moment of a sample, magnetization, isothermal
remanent magnetization as well as demagnetization curves. The sample is placed
between sensing coils and is mechanically vibrated (sinusoidal motion) by the VSM
linear motor transport (head). The sample must be precisely positioned in the center
of the gradiometer pickup coil. The precise position and amplitude of oscillation are
controlled by the VSM motor module.

According to Faraday’s Law of electromagnetic induction, the resulting magnetic
flux changes induce a voltage in the sensing coils that is proportional to the magnetic
moment of the sample. The induced voltage is amplified and detected in the VSM
detection module. The VSM detection module uses the position encoder signal as a
reference for synchronous detection. In order to reach a sensitivity to magnetization
changes less than 10−6 emu at a data rate of 1 Hz, an oscillation amplitude with a
peak of 1-3 mm, and a frequency of 40 Hz is usually applied.

4.2.2. Heat Capacity
The Physical Property Measurement System (PPMS) employs the relaxation calorime-
try method for the specific heat measurements by controlling the heat added to and
removed from a sample while monitoring the resulting change in temperature. In
the calorimeter, a heater and a thermometer are attached to the bottom side of the
platform suspended by eight wires in the center of the puck (See Figure 4.3). The
wires provide a thermal connection to the platform and an electrical connection to
the thermometer and the heater. The sample is attached and thermally coupled to
the platform by using a thin layer of grease [55].

During the measurement, a known amount of heat is applied for a fixed time and
then followed by a cooling period of the same duration. The relaxation process is
recorded and the value of the specific heat of the sample can then be obtained from
the fit of the data. Because both the platform and the grease will contribute to
this relaxation time, it is crucial to take an addenda measurement at the beginning,
where the heat capacity of the puck with grease is measured separately. Afterwards,
the heat capacity of the sample is calculated by subtracting the calculated addenda
contribution from the total heat capacity measurements at each temperature [55].
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To fit the temperature response curve, the software uses two thermal models, the
’simple’ model and the two tau model, depending on the thermal link between the
sample and the platform.

The simple model assumes that the sample and platform have a good thermal
coupling between each other and are at the same temperature during the measure-
ment; generally this model is used to measure the addenda. However, when the
thermal coupling between the sample and platform is poor ( grease between sample
and platform), the software uses the two-tau model to measure the heat capacity.
The following equations express the two-tau model:

Cp

dTp

dt
= P (t) −K1(Tp(t) − Tb) +K2(Ts(t) − Tp(t)) (4.1)

Cs
dTs

dt
= −K2(Ts(t) − Tp(t)) (4.2)

where a Cp, Cs are the heat capacity of the platform and sample, receptively; K1
is the thermal conductance of the supporting wires; K2 is the thermal conductance
between the sample and platform due to the grease; Tp and Ts are the respective
temperatures of the platform and sample; and P (t) is the power applied by the heater.
In the two-tau model, the first time-constant (tau 1) represents the relaxation time
between the sample platform and the puck, and the second time constant (tau 2)
represents the relaxation time between the sample platform and the sample itself. A
detailed description of this model can be found in [56].

1 2 

6 

7 

1: Sample   2:Platform            3:Grease  

4:Heater     5:Thermometer    6: Puck    

7: Connecting wires 

1 

2 3 

4 5 

Figure 4.3.: Scheme of a PPMS puck for heat capacity measurements.

4.3. Scattering techniques: instrumentation
4.3.1. X-ray Diffraction: Laue camera
The back-reflection Laue method [57] was used to determine the orientation of large
single crystals in the course of this thesis. An incident white X-radiation beam strikes
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the crystal and is then diffracted by the crystal planes into a spot pattern according
to Bragg’s law. The Laue apparatus used here to orient the crystals is the MWL120
real-time back-reflection Laue camera system, equipped with a multiwire detector and
a tungsten X-ray tube. In the MWL120 system, the crystal is mounted on a holder
fixed on a three-axis motorized rotation goniometer With the help of the camera, the
orientation process can be observed in real time [58].

4.3.2. X-ray diffraction: 4-circle Huber single crystal
diffractometer (P24-Beamline, DESY)

The 4-circle Huber single crystal diffractometer with Eulerian cradle is installed in
the second experimental hutch (EH2) of the P24 beamline. And it is equipped with
marCCD165 detector at the high brilliance PETRA III storage ring at DESY (Ham-
burg, Germany) [59]. The experimental hutch is located at 84 m from the undulator.
The energy of the beam can be tuned within a range between 2.4 keV and 44 keV
with the help of two crystal pairs, Si(111) and Si(311) which form the double crystal
monochromators [59]. The scheme of the 4-circle diffractometer with Eulerian geom-
etry is shown in Figure 4.4. The crystal can be rotated around three axis ( ω,ϕ,χ)
and the detector is moved around a fourth axis (2θ).

The goniometer is mounted on an ω-circle, lying in the horizontal plane, and so
having a vertical rotation axis. Perpendicular to ω-circle is the vertical χ-circle, having
a horizontal axis, whatever the value of ω. The goniometer head on which the crystal
is attached, is mounted on the ϕ-circle, located on the inside of χ [37].

𝜒 

𝜑 

𝜔 

Crystal 

Figure 4.4.: Scheme of the 4-circle Eulerian geometry taken from [37]
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4.3.3. Neutron Diffraction: Double-axis diffractometer
(E4-Beamline, Berlin)

The double-axis E-4 diffractometer is operated by the Helmholtz-Zentrum Berlin at
BER II research reactor [60]. It provides sample environments covering magnetic fields
up to 17 T and temperatures down to 30 mK. The monochromator shielding contains
one beam channel at a take-off angle 2θM = 42.5○. This position corresponds to the
incident wavelength of 0.24 nm for the vertical focusing PG(002) monochromator.
A radial collimator is oscillated several degrees about the sample position,so that
any shadowing of the detectors is uniformly distributed. This collimator is placed
between the monochromator and the primary shutter. The instrument is equipped
with a position sensitive 200x200 mm2 detector (PSD) (see Figure 4.5) [60].

1 

2 

3 

4 5 
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7 

8 

1 Filter, Primary Shutter       Radial Collimator        PG monochromator  
Monitor and Secondary Shutter        Sample Table         Radial Collimator  
PSD        Beam stop 

2 3 

4 5 6 

7 8 

Figure 4.5.: Schematic view of the 2-axis E4 diffractometer taken from [60].

4.3.4. Neutron scattering: Time-of-flight spectroscopy (Merlin)

The MERLIN time of flight (TOF) spectrometer (Figure 4.6) is installed at target
station 1 of the ISIS Pulsed Neutron and Muon Source (STFC Rutherford Appleton
Laboratory, U.K.). This instrument is a direct geometry spectrometer, i.e. the en-
ergy of the incoming neutrons is fixed, and the energy of the scattered neutrons is
measured by time-of-flight analysis. Thanks to the large area position sensitive de-
tector MERLIN resolves the momentum and the energy transfer with good resolution
MERLIN provides a large incident flux compared to other INS spectrometers thanks
to the supermirror guide. [61]. The energy of the incident neutrons can be chosen in
a wide range, from 10 to 1000 meV, with an energy resolution of the order of 3 − 5%
[61].
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Figure 4.6.: Schematic view of the MERLIN spectrometer at ISIS taken from [61].

4.3.5. Neutron diffraction: Time-of-flight diffraction (POWGEN)
POWGEN is a third-generation time of flight powder diffractometer (see Figure 4.7)
constructed at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory.
The source to sample distance of 60 m and the source frequency of 60 Hz provide a
bandwidth ∆λ=1 Å, that can be centered around λ0 = 0.8,1.5,2.67,4.8 Å to cover
a lattice d-spacing range 0.1 Å< d < 38 Å. The detector covers an angular range
10○ < 2θ < 170○. It covers d-spacings from ∼ 0.1 Å, or less, to 8 Å in a single
measurement. The particular geometric design of POWGEN and the flight path from
moderator and sample yields a high count rate while preserving a high resolution of
∆d/d = 0.0015 at a d = 1 Å[62].

Figure 4.7.: Schematic top view of POWGEN taken from [63]
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5.1. Synthesis of Mn3Fe2Si3 single crystal

Polycrystalline samples of Mn3Fe2Si3 were prepared by the cold crucible induction
melting process under argon atmosphere. First, the pure constituent elements, man-
ganese Sigma Aldrich, 99,9%, iron Sigma Aldrich, 99,9% and silicon Chempur, 99,9%
were weighed according to the respective stoichiometric ratio in the compound (see
table 5.1). The sample was placed in a copper crucible using cleaned tweezers in order
to prevent any possible contamination.

The big pieces of the raw materials were placed at the bottom of the crucible to avoid
the fall out of the smaller pieces from the slits of the crucible. All raw materials were
heated under vacuum ( 10−6 mbar) to prevent oxidation of the ingots. Afterwards,
the sample chamber was filled with 800 mbar of argon. And finally, the raw materials
were melted with high frequency alternating magnetic fields and quenched to room
temperature. Once the molten sample has cooled we turned it around and melted
it again for two times in order to improve its homogeneity. This synthesis has been
performed two times and two pellets of the polycrystalline materials were obtained
and weighed approximately 50 g each. They were brushed and cleaned with ethanol
and set to an ultrasonic bath to remove impurities. The obtained polycrystalline
materials were then used as starting materials for the growth of a large single crystal
of Mn3Fe2Si3 by the Czochralski method (see section 4.1.2). The pellets were filled
into an aluminum oxide crucible, which was also cleaned with ethanol. The aluminum
oxide crucible was put into a larger ceramic crucible and then put at the center of the
furnace to ensure that the heat was evenly distributed. After melting the material
in argon atmosphere, the single crystal growth was started using a seed crystal of
tungsten with rotation speed of 20 rev/min mounted on a rod which moved with
a pulling rate of 10 mm/h. The obtained crystal of Mn3Fe2Si3 is shown in figure
5.1. The phase purity of the grown single crystal was checked by laboratory X-ray
powder diffraction on a ground piece of the single crystal. The chemical composition
of the prepared samples was confirmed with Inductively Coupled Plasma with Optical
Emission Spectroscopy (ICP-OES) (see table 5.1)
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Substance Real Mass (g) Mass ratio (%) ICP OES results Producer
Mn 22.847 45.69 45.6±0.3 Aldrich
Fe 15.48 30.96 29.3±0.2 Aldrich
Si 11.68 23.36 23.41±0.14 Chempur

Table 5.1.: Stoichiometric ratio and Mass of Mn3Fe2Si3 substances and their mean
concentration with standard deviation obtained by (ICP-OES) Spec-
troscopy

Figure 5.1.: Photo of the final crystal. The long axis correspond to a crystallographic
c-axis.

5.2. Macroscopic measurements

5.2.1. Magnetization measurements
Measurements of the temperature and magnetic field dependent magnetization paral-
lel and perpendicular to the hexagonal [001]-direction, were carried out in the temper-
ature region between 5 K and 380 K and magnetic fields in the range -9 T ≤ µ0H ≤ 9
T using the vibrating sample magnetometer (VSM) option in a PPMS from Quantum
Design. The crystallographic orientation of the two fragments of the single crystals
specimen were first determined using x-ray Laue diffraction and then the fragments
were cut using spark erosion. The weights of these two single crystals were 11.2 mg
and 17 mg for measurements with field perpendicular to [001] and parallel to [001],
respectively.

The datasets for all isofield magnetization experiments for both directions were
measured upon cooling in sweep mode at a temperature change rate of 2 K/min
yielding approximate temperature steps of 0.35 K, i.e. the temperature is varied
continuously while recording the magnetization with an integration time of 1s.

Isothermal magnetization measurements were performed by applying the sweep
mode for the field variation. For strong fields ( |µ0H| > 0.1 T), a change rate of
19.8 mT/s was used. However, because sweep mode does not attempt to stabilize the
field at the intermediate set points, it may not produce highly accurate data. So, to
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measure the steeper changes of the magnetization, the field change rate was reduced
to 5 mT/s ( |µ0H| < 0.1 T).

Table 5.2 summarizes the isothermal magnetization measurements protocol. Fur-
thermore, isothermal magnetization loops were also recorded in the field scan range
µ0H = ±8.5T at 10 K, 50 K, 100 K, 150 K and 300 K.

Temperature region (K) ∆T (K)
5-45 5
45-75 2
75-105 5
105-130 2
130-351 10

Table 5.2.: Temperature protocol of isothermal magnetization measurements

5.2.2. Heat capacity measurements
Heat capacity HC measurements on a Mn3Fe2Si3 single crystal were carried out at
different magnetic fields up to µ0H=6 T parallel and perpendicular to [001], between
10-150 K using a PPMS DynaCool from Quantum Design. For the addenda measure-
ment, a tiny amount of Apiezon-N-grease was added on the sample platform of the
puck and measurements were performed at zero magnetic field between 1- 150 K with
35 points. All HC measurements were perfomed on the fragment with mass 11.2 mg
used in the magnetization measurements. The sample was placed in the center of
the puck and carefully fixed in the grease. The table 5.3 summarizes the number of
points measured at all temperature ranges. Both, the addenda and sample measure-
ments, were performed with a linear temperature increase and a heating rate of 2%.
A polynomial interpolation between two neighboring data points was applied using
the automatic procedure implemented in the PPMS software, in order to subtract the
addenda heat capacity from the sample heat capacity at each temperature.

Temperature region (K) Number of points
10-40 15
40-75 70
75-116 20
116-126 20
126-151 12

Table 5.3.: Number of points in the heat capacity measurements at all temperature
ranges
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5.3. Neutron powder diffraction

5.3. Neutron powder diffraction
Temperature-dependent neutron powder diffraction data of Mn3Fe2Si3 were recorded
using time-of-flight (TOF) neutron diffraction at the POWGEN diffractometer at 20,
50, 90, 105, 150, 200 and 300 K. About 5 g of well ground Mn3Fe2Si3 powder sample
was loaded into a vanadium can with 8 mm diameter under He atmosphere to ensure
proper thermalisation of the powder. The container was sealed and then placed in
the carousal inside the sample changer. The data was recorded using two different
bands, one with central wavelength CWL= 0.8 Å and the other with CWL = 2.665 Å.
The two CWL lead to two d-spacing coverage 0.1340-8.200 Å and 1.0701-22.9342 Å,
which is required to measure both small d-spacing reflections, providing information
about the nuclear structure, and large d-spacing reflections originating from the AF
magnetic structure.

5.4. X-ray single crystal diffraction
For all measurements at the P24 beamline the wavelength of synchrotron radiation
was tuned to λ = 0.44279 Å. In the beginning, a standard corundum crystal with
well known lattice parameter was measured. From these data the geometrical center
of the detector (x0, y0) and its distance (d) from the sample were deduced.

Crystals of Mn3Fe2Si3 up to 100 µm in length were attached using a small amount
of two-component glue to the top of glass fibers and mounted on the goniometer.
The quality of the crystals was checked prior to the synchrotron measurements on
a laboratory diffractometer. The measurements were carried out by ϕ scans and ω
scans at different values of χ with the marCCD165 detector positioned at two different
2θ angles. The temperature-dependent measurements were performed using an open
flow Helium cryostat.

Run 2θ χ ω ϕi → ϕf ,∆ϕ ϕ ωi → ωf ,∆ω t (s) T
1 30 -70 0 0→180,1 1 (A)
2 0 -70 0 0→180,1 2 (A)
3 0 -40 0 20→200,1 2 (A & B)
4 0 -40 0 -20→30,1 2 (A & B)
5 0 -40 120 -20→30,1 2 (A & B)
6 0 -40 240 -20→30,1 2 (A & B)

Table 5.4.: Run lists of all measured data sets at temperatures A: Upon cooling (300,
250, 200, 150, 125, 100, 80, 60) K ; Upon heating ( 55, 90) K and B: Upon
cooling (40, 20) K; Upon heating (30, 50, 110, 125) K.

Table 5.4 summarizes the run lists of all measured data sets at temperatures A:
Upon cooling (300, 250, 200, 150, 125, 100, 80, 60) K ; Upon heating ( 55, 90) K and
B: Upon cooling (40, 20) K; Upon heating (30, 50, 110, 125) K. During cooling at
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5. Experimental process

temperatures below 50 K, diffraction from ice was observed in the first and second
run. Therefore, these two runs were excluded for the corresponding measurements
(designated B in Table 5.4). Figure 5.2 shows a representative diffraction image of
the first run at 300 K and 40 K where the ice start to form.

Run(1) 
300 K 

Run(1) 
40 K 

Figure 5.2.: Representative diffraction image of the first run at 300 K and 40 K where
the ice start to form.

5.5. Neutron single crystal scattering

5.5.1. MERLIN-Beamline

The neutron scattering of Mn3Fe2Si3 single-crystal of mass m = 790 mg was measured
on the MERLIN TOF spectrometer, at temperatures T= 5 K and 125 K using incident
energies of 9 meV, 13 meV, 21 meV, 40 meV and 108 meV. The single crystal was pre-
aligned by x-ray Laue diffraction.

For the Merlin experiment the crystal was mounted with (0kl) reflections in the
horizontal scattering plane and cooled in a closed cycle cryostat to a base tempera-
ture of 5 K. The crystal was rotated around the vertical axis in discrete steps of ∆ϕ
= 2○ covering an angular range of 90○, covering a large volume in reciprocal space.
The Fermi chopper was spun at a frequency of 350 Hz. The intensity normalization
and the detector calibration were performed by measuring the scattering from a stan-
dard vanadium sample with the incident beam. The four-dimensional S(Q⃗, ω) was
combined and analyzed using the software package Horace [64].
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5.5. Neutron single crystal scattering

5.5.2. E4-Beamline
The temperature-dependent evolution of the intensities of two magnetic reflections (1
0.5 1) and (1.5 1 0) indices refer to the hexagonal cell (a ≈ 6.85 Å and c ≈ 4.75 Å) were
measured on the double-axis diffractometer E4 at a neutron wavelength of λ= 2.451 Å
with a vertically focusing pyrolytic graphite (PG) monochromator. The correspond-
ing single crystal had a mass of m=150 mg. The single crystal was oriented at room
temperature having (0kl) reflections in the horizontal scattering plane. The orienta-
tion matrix was determined with five nuclear Bragg reflections found after large-range
scans at room temperature and checked again when the crystal was cooled down to
150 K. The sample was cooled to 90 K and then to 20 K, to identify the magnetic
Bragg reflections, and finally heated to measure the temperature dependence of re-
flections at different temperatures. An existing calibration file was used to account
for the detector sensitivity.
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6. Macroscopic properties of the
magnetocaloric compound
Mn3Fe2Si3

6.1. Heat Capacity (HC)
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Figure 6.1.: Temperature dependence of (a) total and (b) magnetic heat capacity
of Mn3Fe2Si3 at different fields with H⃗�[001] up to 150 K (HC at 6 T
was measured only in the temperature range centred around the first
anomaly). The red curve in (a) is the total heat capacity of the nonmag-
netic compound Ti5Si3.
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6.1. Heat Capacity (HC)
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Figure 6.2.: Temperature dependence of (a) total and (b) magnetic heat capacity of
Mn3Fe2Si3 at different fields with H⃗ ∣∣[001] up to 150 K (HC at 6 T was
measured only up 122 K). The red curve in (a) is the total heat capacity
of the nonmagnetic compound Ti5Si3.

Figure 6.1.a and 6.2.a, show heat capacity results of Mn3Fe2Si3 single crystal mea-
sured at different fields up to 6 T with H⃗�[001] and H⃗ ∣∣[001], respectively, together
with Ti5Si3 for temperatures of up to 150 K, which was scaled according to eq. A.22.
As explained in section A.1.5.2 the magnetic contribution to the specific heat capac-
ity of Mn3Fe2Si3 is estimated by subtracting the lattice contribution from the molar
mass scaled heat capacity of the nonmagnetic isostructural reference compound Ti5Si3
which varies monotonically, with no anomaly observed down to 2 K.

Figure 6.1.b and 6.2.b, show the magnetic contribution CM to specific heat of
Mn3Fe2Si3 for H⃗�[001] and H⃗ ∣∣[001], respectively. The magnetic contribution to the
specific heat of Mn3Fe2Si3 shows two maxima centred around ∼120 K and ∼69 K,
indicating the antiferromagnetic phase transition temperatures as have been observed
earlier [4]. The magnetic part of the specific heat changes hardly upon application of
the magnetic field. A slight deviation is observed at 6 T, when the field is ⊥ [001],
both at the anomaly at 120 K and for the temperature above. It has to be noted, that
this measurement was measured with a different addenda, which might also contribute
to this result.
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6. Macroscopic properties of the magnetocaloric compound Mn3Fe2Si3

The magnetic heat capacity contribution results show no evidence for a field-
induced magnetic transition which is in agreement with pulsed field measurements
up to 38 T reported by Songlin et al. [4]. Furthermore both anomalies in the specific
heat don’t move upon application of the field. This behavior is distinctly different
from Mn5Si3. In this compound the AF1-AF2 transition shifts towards lower temper-
ature (see Figure A.19 in appendix) [65].

6.2. Isofield Magnetization
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Figure 6.3.: Isofield M/B for different applied field perpendicular to [001] (a) and
parallel [001] (b) measured in field cooling conditions. Except for curve
at 0.05 T, all curves were shifted down vertically by 0.2 Am2kg−1T−1 for
clarity.
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Figure 6.4.: Inverse magnetic molar susceptibility as a function of temperature for

applied field (a) perpendicular to [001] and (b) parallel [001]. The red
line is a fit to the Curie-Weiss law.

Figure 6.3 presents a summary of isofield magnetization divided by field M
B as a

function of temperature T measured on a single crystal sample at different constant
fields B with the field applied ⊥ [001] (top) and ∥ [001] (bottom). Except for M

B curve
at 0.05 T, all curves at the other fields were shifted down vertically 0.2 Am2kg−1T−1

for clarity. Apparently the magnetic response is linear in the applied field for temper-
atures T > 270K, indicating the temperature region where the Curie-Weiss analysis
is valid.

Figure 6.4 shows χ−1
mol(T ) of Mn3Fe2Si3 at µ0H=0.05 T, with field parallel and

perpendicular to [001]. The Curie-Weiss constant was extracted by fitting the high
temperature linear region of the inverse magnetic susceptibility (1/χ vs. T plot) using
Eq.3.5 and extrapolating the fitted straight line to the x-axis. The intercept value
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6. Macroscopic properties of the magnetocaloric compound Mn3Fe2Si3

determines the curie-Weiss temperature θCW .
Multiple temperature ranges have been chosen for the Curie-Weiss analysis in order

to have a proper estimate for the uncertainty of the refined mean field parameters.
Thus in the fitting, the lower temperature limit has been varied between 280-330 K
while keeping the higher temperature limit always at 380 K. The Curie-Weiss tem-
perature and µeff are slightly different for the different directions and they show small
variations with the change in temperature range fitting (280-330 K). The Curie-Weiss
temperature is then estimated to be θ∣∣CW =-14 (1) K for H⃗ parallel to [001] and θ�CW =-
4.7 (5) K for H⃗ perpendicular to [001] (The variation of the fitted parameters are
indicated within the parenthesis). This difference in the field directions was also
observed in the Curie-Weiss analysis performed at each magnetic field with a slight
fluctuation in the Curie-Weiss temperatures.

The effective paramagnetic moments per metal atom obtained from the Curie con-
stant C, are µ

∣∣
eff ⋍ 4.23(1)µB for H⃗ parallel to [001] and µ�eff ⋍ 4.18(1)µB for H⃗

perpendicular to [001]. The average value of µeff obtained in this work differs from
the µeff reported by Herlitschke et al. for powder data of the Mn3Fe2Si3 compound
[66], but has a value larger than ≈ 4.1µB similar to the other compounds reported by
the same author [66]. According to the mean-field approximation discussed in chapter
3.1, the calculated effective paramagnetic moment µcal

eff of Mn3Fe2Si3 compound in-
corporated with Mn2+ and Fe3+ ions can be described as µcal

eff =
√
(µMn2+)2 + (µFe3+)2.

The observed effective paramagnetic moments per metal atom is smaller than the
theoretically expected 5.9µB.

The Curie-Weiss temperatures for both directions are significantly lower than TN

(θ∣∣CW , θ
�
CW ≪ TN), with TN

θ
∣∣
CW

≈ −5 and TN

θ�CW
≈ −14.9. If we consider the molecular

field theory in a simple two-sublattice picture of antiferromagnetism, we can assume
λ as the nearest neighbor exchange coupling (inter-sublattice interactions) and Γ as
the next nearest neighbor (intra-sublattice interactions), we obtain TN

θCW
= −

∣λ∣−Γ
∣λ∣+Γ (see

chapter 3). This would suggest that ∣λ∣
Γ is ≈ -1.5 for H⃗ parallel to [001] and ≈ -

1.14 for field for H⃗ perpendicular to [001]. ∣λ∣ and Γ have opposite sign, so, since
∣λ∣ presents AFM inter-sublattice interaction this suggest that Γ presents the FM
intra-sublattice interaction. In both field directions, ∣λ∣ > ∣Γ∣, therefore, the dominant
interactions in Mn3Fe2Si3 are antiferromagnetic. Below∼270 K, 1

χ starts to deviate
from the Curie–Weiss fit (Figure 6.4).

In the temperature range between 120 K and 270 K, M
B has an increased response

and a concave shape for small applied field µ0H < 0.5 T, indicating the existence of
some ferromagnetic correlations (Figure 6.3). This effect is seen more strongly for the
field applied perpendicular to the [001] direction.

For the low field measurements with H⃗ perpendicular to the [001]-direction, two
strong features are observed at TN2 ≈121 K and TN1 ≈72 K. If we evaluate the numer-
ical derivative of the data (see Appendix A.1) we can see also a feature at ≈ 121 K
for the field applied parallel [001], which is hardly visible in the magnetization data
directly. This feature hardly varies with temperature in the entire field range.
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6.2. Isofield Magnetization

The feature at ∼72 K, which is local maxima of M
B for small fields, becomes less pro-

nounced with increasing field (Figure 6.3). Figure 6.5 and 6.6 show the temperature
derivatives from 70 K to 140 K and from 10 K to 90 K for the different field directions
to clarify the changes attributed with the different magnetic phases. They exhibit
also distinct features for higher applied fields. The sign change of the temperature
derivative shifts to lower temperature with increasing magnetic field (Inset of Figure
6.6 a and b).

For large fields, the magnetization measurements exhibit a complex behavior as seen
by the small slope in the temperature region from 45 K to 60 K (Figure 6.3. If the
field is applied in [001] direction, the magnetic response (identified by the maximum
of the temperature derivative) exhibits a smaller variation, and the zero point of the
derivative is well defined for the entire field range (Figure 6.6).
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Figure 6.5.: dM/dT curves of Mn3Fe2Si3 at different fields, with (a) H⃗�[001] and (b)
H⃗ ∣∣[001]. The numerical calculation of the derivative, the measured data
has been rebinned to a temperature grid with step-size ∼1 K.
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Figure 6.6.: dM/dT curves of Mn3Fe2Si3, with (a) H⃗�[001] (b) H⃗ ∣∣[001]; Insert shows
zoomed view where the of dM/dT curves cross the point zero. The numer-
ical calculation of the derivative, the measured data has been re-binned
to a temperature grid with step-size ∼1 K.
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6.3. Isothermal Magnetization
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Figure 6.7.: Isothermal magnetization measurements of Mn3Fe2Si3 at different tem-
peratures with (a) H⃗�[001] (b) H⃗ ∣∣[001]. The color palettes show the
temperature change of the isotherms in the range [5 K-73 K] and [75 K-
129 K].

The magnetic response observed by isofield magnetization measurement was further
explored by means of isothermal measurements of the magnetization in the field range
from 0 T to +8.5, T, again applying the field perpendicular and parallel to the [001]
direction (Figure. 6.7). Whereas, the color palettes show the temperature change
of the isotherms in the range [5 K-73 K] and [75 K-129 K]. The magnetization as a
function of field looks fairly similar for the direction perpendicular and parallel [001].
They approach similar values for the largest applied fields and depart from linear field
dependence in the field range from 2 to 6 T. This deviation has been further analyzed
by calculating the derivative dM

dH . The details about the derivation process used for
isothermal data obtained with sweep and driven mode are shown in Chapter A.1.5.1.

At low temperatures, one observes an inflection point, which is easily located as
a maximum in the dM

dH curve shown in (Figure.6.8). dM
dH (H) behaves differently de-

pending on the direction of the field: For field applied ∣∣[001] the dM
dH (H) exhibits a
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Figure 6.8.: dM/dH curves of Mn3Fe2Si3 with (a)H⃗�[001], calculated from re-binned
data measured at sweep mode and (b) H⃗ ∣∣[001], calculated from raw
data measured in driven mode. The color palette shows the tempera-
ture change of the isotherms in the range [5 K-73 K].

rather sharp maximum that hardly moves with temperature until it disappears com-
pletely at approximately 69 K (see Figure.6.8(b)). For the field applied ⊥ [001] (see
Figure.6.8(a)), the maximum in the dM

dH (H) is significantly broader and shifts towards
lower fields with increasing temperature. The appearance of this maximum remained
persistent until it disappears completely at approximately ≈120 K (see Figure.6.9).

The macroscopic response of Mn5Si3 has been recently revisited by means of Hall
effect measurements by Sürgers et al. [24] and magnetization measurements up to 14
T by Das et al. [25], they observed an additional low-temperature high-field phase,
designated AF1′, which was earlier observed based on neutron powder diffraction
data reported by Gottschlich et al. [2]. The field-driven transition between AF1′ and
AF2, which is evidenced by a steep increase of the magnetization in Mn5Si3 [24, 25], is
not observed within the investigated field range for Mn3Fe2Si3, which is in agreement
with pulsed field measurements up to 38 T reported by Songlin et al. [4].
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Figure 6.9.: dM/dH curves of Mn3Fe2Si3 with H⃗�[001], calculated from re-binned
data measured at sweep mode and. The color palette shows the temper-
ature change of the isotherms in the range [75 K-129 K].

6.3.1. Magnetic field vs. temperature diagram
The results of the macroscopic measurements are summarized in the magnetic field
versus temperature diagrams shown in Figure 6.10. From transition observed in heat
capacity measurements (Figure 6.1 and 6.1), we determine the phase boundaries AF1-
AF2 and AF2-PM shown by open circle symbols in the diagrams (see Figure 6.10).
The transition temperature between AF2 (purple) and PM (red) is not affected by
the application of a magnetic field. Also, the transition between AF1 (blue) and
AF2 (purple) is rather steep compared to the case of Mn5Si3 where the AF1-AF2
transition temperature decreases strongly with increasing field [24]. No evidence
for a field-induced magnetic transition was observed in the magnetic heat capacity
contribution results in agreement with pulsed field measurements up to 38 T reported
by Songlin et al. [4].

In contrast to the specific heat measurements the macroscopic magnetization mea-
surements exhibit a plethora of features, both under isothermal and under isofield
conditions. Plotted in the field vs. temperature diagram Fig. 6.10, we see that the
features measured under different conditions do not coincide. This hints towards a non
homogeneous magnetic structure, i.e. a formation of domains, which are populated
differently depending on the thermo-magnetic history. In the light of the macroscopic
measurements this statement remains speculative and would require spatially resolved
methods for further analysis.

The macroscopic measurements show also a clear field direction dependence in
the magnetic response. Similar to the behaviors observed in Mn5Si3 [67], Mn3Fe2Si3
shows an effect only in the low temperature phase when field is applied along [001].
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Figure 6.10.: Magnetic field versus temperature diagram. Data obtained from heat
capacity measurements (circle symbols), isofield (square symbols) and
isothermal (triangle symbols) measurements for the field applied per-
pendicular (a) and parallel (b) to the [001] direction.

If the field is applied in the perpendicular plane, we observe a feature that shifts
with temperature. This feature shifts with temperature in phase AF1, but remains
at constant field throughout AF2 and disappears only at TAF 2−P M = 121 K.

6.4. Magnetocaloric effect
We analyze the macroscopic magnetization results for its magnetocaloric properties
on the basis of eq. 3.17. Typically, the isothermal entropy change is calculated from
isothermal magnetization measurements performed at different temperatures [5, 68,
69]. While the Maxwell relation 3.16 connects the isothermal entropy change with
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6.4. Magnetocaloric effect

the isofield magnetization change, this procedure is typically justified, as many MCE
materials do not depend strongly on the thermo-magnetic protocol of the meausure-
ment. As this is clearly different in the case of Mn3Fe2Si3, we perform the numerical
integration of eq. 3.17 using the isofield measurements presented in the previous chap-
ter. Figure 6.11 shows isothermal entropy changes of Mn3Fe2Si3 for H⃗ parallel and
perpendicular to [001] (Figure 6.3) for field changes of 1.5 T, 2.5 T, 3.5 T and 4.5 T.
The magneto-caloric effect shows also a field direction dependence as -∆Siso features
different magnitude and shape for the different directions. For the field perpendicular
[001], −∆Siso exhibits the smaller magnitude and it has a rather broad minimum,
which moves with increasing field range towards lower temperature, related to the
increase of the transition field with decreasing temperature.
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Figure 6.11.: Magnetic entropy changes as a function of temperature and field calcu-
lated from isofield magnetization measurements ,for field perpendicular
(a) and parallel to [001] (b).

For the field parallel to the [001] direction, we observe an inverse MCE in a narrow
temperature region around 60 K. The peak of the entropy changes hardly varies with
increasing field. At 30 K we observe a second feature, which becomes more distinct,
when the field is increased. For both field directions, the sign of −∆Siso changes
from negative, i.e. the application of the field increases the entropy, to positive
close to the transition temperature between AF1 and AF2. Also the end member
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6. Macroscopic properties of the magnetocaloric compound Mn3Fe2Si3

Mn5Si3 shows an inverse MCE, albeit much larger. The size of the inverse MCE
for Mn3Fe2Si3 is significantly reduced by a factor ∼10 [4, 5]. Recently this has been
attributed to the transition from the AF1 phase into the AF2 upon application of a
magnetic field and a microscopic explanation on the basis of fluctuations present in
the AF2 phase has been provided [6]. As the application of the magnetic field does
not involve this transition, it seems reasonable that the entropy change is smaller
in the case of Mn3Fe2Si3 even without detailed knowledge of the magnetic structure
upon application of the magnetic field. Close to the transition between AF2 and the
paramagnetic state a downward kink develops for both field directions, which is more
pronounced for the field perpendicular to [001] direction. This seems to be related to
the feature observed in the isothermal measurements in the AF2 phase.
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7. Crystal structure of Mn3Fe2Si3

7.1. Room temperature study

Fe 
Mn 
Si 

M1 

M2 

Figure 7.1.: Projection of crystal structure of Mn3Fe2Si3 in space group P63/mcm
300 K along (Left) [001]-direction (Right) [120]-direction.

Based on the refinement of the synchrotron X-ray single crystal diffraction data
at 300 K, Mn3Fe2Si3 crystallizes in hexagonal space group P63/mcm with lattice pa-
rameter of a=b=6.85336(11)Å and c=4.75556(8)Å, V=193.437(5)Å3 which is in good
agreement with an earlier study reported in the literature [20], with V=193.56Å3,
a=b=6.8538(5)Å and c=4.7579(5)Å. Atomic positions of Mn3Fe2Si3 refined from syn-
chrotron single crystal diffraction data at 300 K are presented in table 7.1 in Appendix.
According to our neutron powder refinement of Mn3Fe2Si3 at room temperature, the
M1(WP :4d) in the [M1Si6]-octahedra is occupied by 76.5(1) % Fe and 23.4(1) % Mn,
while the M2(WP :6g) site is occupied by 15.6(1) % Fe and 84.4(1) % Mn indicating
a partial ordering of Mn and Fe.

This is in agreement with Binczycka et al [20], which stated a preferential incor-
poration of Fe into the M1 site. The same tendency was observed in MnFe4Si3.
According to the structural model in P6̄ reported by Hering et al [3], M2a is occupied
by 37.6(2)% Mn and 62.8(2)% Fe; and M2b by 27.7(7)% Mn and 72.3(7) % Fe, while,
M1a/M1b sites are exclusively occupied by Fe [3]. The resulting values obtained from
the Rietveld refinement of Mn3Fe2Si3 correspond to the ideal stoichiometry resulting
from the weighed-in proportions. The stochiometry was also confirmed by chemical
analysis using (ICP-OES) (see chapter 5.1).
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7. Crystal structure of Mn3Fe2Si3

Atom (WP) x y z Uiso occ
Fe1 (4d) 0.666667 0.333333 0 0.00619(3) 0.12759
Mn1(4d) 0.666667 0.333333 0 0.00619 0.03907
Mn2(6g) 0.23281(3) 0 0.25 0.00788(4) 0.21092
Fe2 (6g) 0.23281 0 0.25 0.00788 0.03907
Si (6g) 0.59801(5) 0 0.25 0.00692(7) 0.25

Table 7.1.: Atomic coordinates and isotropic displacement parameters of Mn3Fe2Si3
at 300 K from refinements of x-ray single crystal diffraction data. Occu-
pation parameters were fixed to the values obtained from the refinement
of neutron powder data.

Si

Si’ Si” M2

M2’

M2”

M1
M1

M1

Si

Si

1 

[i] 

M2[ii] 

M2[iii] 

M2[iv] 

Si[v] 

Si[vi] Si 

Si[viii] 

Si[vii] 

Figure 7.2.: Interatomic distances in the crystal structure of Mn3Fe2Si3.

The Fe1/Mn1 (WP :4d) atom is surrounded by six Si atoms at distances of 2.4039(4) Å
(see Table 7.2) forming an octahedra with a volume of VP =17.295 Å3. The octahedral
volume was calculated with the program IVTON [70]. The [(Fe1/Mn1)Si6] octahe-
dra share common faces with their analogs forming infinite chains of composition
∞[(Fe1/Mn1)Si3] along the c axis (see Figure 7.1). The distances between the M1
(Fe1/Mn1) sites in neighbouring M1Si6 are the shortest distances observed in the
Mn3Fe2Si3 crystal structure with dM1−M1=2.3778(1) Å (see Table 7.2).

The bond angles of the [(Fe1/Mn1)Si6] octahedra are listed in Table 7.3. The bond
angles indicate that there is a distortion deviating from the ideal values of 90○ (for
the cis angles) and 180○ (for the trans angles) for a regular octahedral geometry. The
degree of octahedral distortion can be described by the angular distortion ∑ defined
by the following formula [71]:

∑ =
12
∑
i=1
∣90 − ϕi∣ (7.1)
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7.1. Room temperature study

Bond d (Å)
2×M1-M1[i] 2.3778(1)
6×M1-M2[ii]/M2[iii] 2.94629(15)
4×M2[ii]-M2[iii] 2.86352(17)
2×M2[ii]-M2[iv] 2.7636(3)
2×M2[ii]-Si 2.3958(4)
1×M2[ii]-Si[v] 2.5029(4)
2×M2[ii]-Si[vi] 2.6454(2)
6×M1-Si[vii] 2.4039(4)
2×Si[vii]-Si[viii] 2.7311(4)

Table 7.2.: Interatomic distances of Mn3Fe2Si3 in space group P63/mcm obtained
from synchrotron X-ray single crystal diffraction at 300 K (The assignment
of the interatomic distances is illustrated in figure 7.2). Symmetry code:
[i]x, y,−z − 1/2, [ii] − x + 1,−y,−z,[iii] − y + 1, x − y, z, [iv] − y + 1, x − y, z,
[v]y+1,−x+y,−z, [vi]−x+1,−y,−z, [vii]y,−x+y+1,−z, [viii]−y, x−y, z.

Si Si[i] 

M1 

Si[iii] 

Si[v] 

Si[iv] 

Si[ii] 

M1[vi] 

M1[vii] 

Figure 7.3.: Assignment of the bond angles in the crystal structure of Mn3Fe2Si3.

∑ describes the sum of all 12 cis-octahedral angles ϕi which should be ideally 90○,
i.e. ∑ presents the local angular deviation from the octahedral angle of 90○ [72]. The
calculations result in a significant degree of distortion (∑=133.374○).

The Fe2/Mn2 (WP :6g) atoms are interconnected to form a slightly distorted empty
octahedron [◻ (Fe2/Mn2)6] with distances of 2.86352(17)Å and 2.7636(3)Å for M2[ii]-
M2[iii] and M2[ii]-M2[iv], respectively(see Table 7.2). The [◻ (Fe2/Mn2)6] also share
common triangular faces and form infinite chains of composition ∞[◻(Fe2/Mn2)3]
along the c-direction. Neighbouring ∞[(Fe1/Mn1)Si3] chains share common edges
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7. Crystal structure of Mn3Fe2Si3

Bond angles (○)
Si-M1-Si[i] 97.649(9)
Si-M1-Si[ii] 97.649(9)
Si-M1-Si[iii] 69.229(5)
Si-M1-Si[iv] 98.389(12)
Si-M1-Si[v] 160.482(11)
M1-Si-M1[vi] 147.547(18)
M1-Si-M1[vii] 110.771(8)
M1-Si-M1[viii] 59.283(4)

Table 7.3.: Bond angles of Mn3Fe2Si3 in space group P63/mcm obtained from the
refinement of synchrotron single crystal diffraction data at 300 K (For as-
signment of the bond angles see figure 7.3). Symmetry code: [i]−y, x−y, z,
[ii]−x+ y + 1,−x+ 1, z, [iii]−x+ 1,−y, z − 1/2, [iv]y + 1,−x+ y + 1, z − 1/2,
[v]x−y, x, z−1/2, [vi]−x+1,−y, z+1/2, [vii]−x+1,−y,−z [viii]x, y,−z+1/2.

with each other, forming channels occupied by the chains of empty octahedra [◻
(Fe2/Mn2)6](see Figure 7.1).

The [◻(Fe2/Mn2)6] empty octahedron have a smaller volume VP =10.485(2)Å3 and
a significantly smaller angular distortion ∑=24.4168○ compared to the [(Fe1/Mn1)Si6]
octahedron. For the calculations a dummy atom at position (0,0,0) in the central point
of the empty octahedra was introduced. Silicon atoms are surrounded by four M1
atoms at equal distances of 2.4039(4)Å and by five M2 atoms at distances ranging
from 2.3958(4)-2.6454(2)Å (see Table 7.2).

7.2. Evolution of the structure as a function of
temperature

Figure 7.4 shows the reciprocal space section of the (h0l) plane reconstructed from
single crystal synchrotron XRD measurements of Mn3Fe2Si3 at 300 K and 20 K. All
reflections can be indexed assuming a hexagonal cell. All reflection observed in the
(h0l) and (0kl) plane measured at 300 K fulfil the reflection condition l = 2n. This
reflection condition is not violated even at 20 K, showing extinction rules in accordance
with space group P63/mcm down to the lowest measured temperature (see Figure
7.4). As, in addition, no splitting of reflections is observed, there is no hint towards
a structural phase transition at low temperatures, as observed for Mn5Si3 [22, 23, 2].

The lattice parameters and the unit cell volume of Mn3Fe2Si3 as a function of
temperature are shown in Figure 7.5 and 7.6, respectively. All unit cell parameters
were refined from the synchrotron single crystal diffraction measured during cooling.
Values are also listed in the appendix A.6). As can be seen in Figure 7.5, the lattice
parameter (a = b, c) and the unit cell volume decrease smoothly as the temperature
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7.2. Evolution of the structure as a function of temperature
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7. Crystal structure of Mn3Fe2Si3

decreases, with the slope decreasing towards lower temperatures. Figure 7.6 shows the
normalized values of a = b , c, c

a ratio and unit cell volume as a function of temperature
normalized to the value at 300 K. Here, it is clearly seen that the value of the c-
lattice parameter decreases more than the value of the a (b)-lattice parameter. As a
consequence the c

a ratio is also decreased with decreasing temperature. As can be seen
from Figure 7.5, and 7.6, there is no clear sign of the response of the lattice parameters
at the temperatures corresponding to the magnetic transitions AF1−AF2 and AF2−
PM (as determined from our macroscopic studies of Mn3Fe2Si3). Figure 7.7 shows the
volumetric thermal expansion α(T ) of Mn3Fe2Si3 obtained from α(T ) = [ 1

V (T )] (
dV
dT
)

[73]. α(T ) increases slightly down to 200 K, then starts to decrease with decreasing
temperature, and shows a slight response to the magnetic transitions AF1 −AF2.

The free atomic coordinate of x(Mn2/Fe2) decreases rapidly down to 125 K, then
the decrease gets less and starts to become more linear. On the other hand, the
free atomic coordinate x(Si) is within error nearly constant and only shows a slight
increase with increasing temperature (see Figure A.21 in appendix).
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1 Figure 7.5.: Unit cell volume, a (b) and c-lattice parameter of Mn3Fe2Si3 as a function
of temperature obtained from synchrotron X-ray single crystal diffrac-
tion data measured during cooling down. Temperatures of AF1-AF2 and
AF2-PM transitions are indicated by dashed lines. (Estimated standard
deviations are smaller than the symbols).

Figure 7.8 shows selected interatomic distances as a function of temperature (nor-
malized to the value at 300 K) (absolute values are given in appendix A.12). Within
standard deviations, all interatomic distances decrease with decreasing temperature
with no clear sign of a response to the two magnetic transitions AF1 − AF2 and
AF2−PM . The interatomic distances between the metal atoms located on the same
sites (M1-M1, M2-M2’, M2-M2”) are significantly more reduced than the distances
between metal atoms located on different sites (M1-M2). Interatomic M1-Si and
Si-Si distances decrease in general less than M-M distances (see Figure 7.8). The
change in interatomic distances within both types of octahedra, [(Fe1/Mn1)Si6] and
[◻ (Fe2/Mn2)6], is reflected in the change of their polyhedral volumes VP . Figure
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7.2. Evolution of the structure as a function of temperature
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Figure 7.6.: Normalized a(b) , c, c

a ratio and unit cell volume of Mn3Fe2Si3 as a func-
tion of temperature (normalized to the value at 300 K), based on refine-
ments from synchrotron X-ray single crystal diffraction data measured
during cooling down. Temperatures of the AF1-AF2 and AF2-PM tran-
sitions are indicated by dashed lines
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Figure 7.7.: Volumetric thermal expansion coefficient of Mn3Fe2Si3 as a function of

temperature. Temperatures of the AF1-AF2 and AF2-PM transitions are
indicated by dashed lines

7.9 shows the normalized volumes of the unit cell Vtotal, the coordination polyhedra
VP , [(Fe1/Mn1)Si6], [◻ (Fe2/Mn2)6] and the channel occupied by [◻ (Fe2/Mn2)6] as
a function of temperature. The volumes of [(Fe1/Mn1)Si6] octahedra and the channel
where the [◻ (Fe2/Mn2)6] octahedra are incorporated decrease with decreasing tem-
perature in the same way as the unit cell volume. On the other hand, the volume of
the [◻ (Fe2/Mn2)6] octahedra has a significantly larger decrease in volume in compar-
ison to the volume of the channel where they are incorporated. This might indicate
that with decreasing temperature the complete chain of [◻ (Fe2/Mn2)6] octahedra

57



7. Crystal structure of Mn3Fe2Si3
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Figure 7.8.: Temperature dependence of selected interatomic distances of Mn3Fe2Si3
as a function of temperature, normalized to the value at 300 K, obtained
on the basis of refinements from synchrotron X-ray single crystal diffrac-
tion data measured during cooling down; Temperatures of the AF1-AF2
and AF2-PM transitions are indicated by dashed lines. The assignment
of the distances is shown in Figure 7.2.

has more space to vibrate within the channel.
Figure 7.10 shows the normalized angular distortion ∑ of [(Fe1/Mn1)Si6] and [◻

(Fe2/Mn2)6] octahedra as a function of temperature normalized to the value at 300 K.
As can be seen, the angular distortion of [◻ (Fe2/Mn2)6] octahedra shows a pro-
nounced variation compared to the behaviour of the [(Fe1/Mn1)Si6]. It is striking
that the distortion of the [◻ (Fe2/Mn2)6] octahedra increases significantly down to
125 K. At 125 K, i.e. at the temperature of the AF2−PM transition a sudden decrease
is observed which might well be related to the onset of magnetic ordering.

7.3. Comparison of the temperature dependent
behavior of the Mn5−xFexSi3 compounds (x=0, 2,
4)

As already mentioned in first chapter, the unit cell size of Mn5−xFexSi3 decreases with
increasing Fe content [20] and Mn3Fe2Si3 has a smaller unit cell volume V 300K

Mn3F e2Si3
=

193.437(5)Å3 compared to the parent compound Mn5Si3, V 300K
Mn5Si3

≈199.38Å3 [20, 2].
This change in the unit cell volume is due to a small difference of the atomic radius
between iron r(Fe)=156 pm and Manganese r(Mn)=161 pm [74].

Figure 7.12 shows comparison of c and a lattice parameter normalized at 300 K, for
the x=2 compound studied in this work with the Mn end member x=0 [20, 2] and the
Fe-rich compound x=4 [3] in the Mn5−xFexSi3 system. For MnFe4Si3, no structural
phase transition was observed in [3]. The thermal expansion shows a clear response

58



7.3. Comparison of the temperature dependent behavior of the Mn5−xFexSi3
compounds (x=0, 2, 4)
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(Fe2/Mn2)6] as a function of temperature in Mn3Fe2Si3 (Values are nor-
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Figure 7.10.: Normalized angular distortion of [(Fe1/Mn1)Si6] and [◻(Fe2/Mn2)6] oc-

tahedra as a function of temperature in Mn3Fe2Si3 (Values are normal-
ized to the volumes at 300 K). Temperatures of the AF1 − AF2 and
AF2 − PM transitions are indicated by dashed lines.

associated with the ferromagnetic ordering in MnFe4Si3 [3] (see figure 7.11 (left).
Both lattice parameters show different variations indicating strong anisotropy in the
compound. The c lattice parameter decreases with decreasing temperature, while a = b
shows a slight increase associated with a ferromagnetic ordering (see Figure 7.12) [3].
The increase of the interatomic distances M2-M2 is accompanied with ferromagnetic
coupling of spins on the sites with mixed occupancy Fe2/Mn2, this is reflected in the
increase of the [◻ (Fe2/Mn2)6] octahedra with a significantly larger decrease in the
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7. Crystal structure of Mn3Fe2Si3

volume of their host channel (see Figure 7.13), this leads to an increase in the a = b
lattice parameter [3]. In contrast to this, Mn5Si3 exhibits a structural phase transition
at TP M−AF 2 from hexagonal P63/mcm to orthorhombic Ccmm accompanied with
an increase of a and c lattice parameters and a decrease in the b-lattice parameter
(see Figure 7.12) [22, 2]. The Mn5Si3 structural phase transition at TP M−AF 2 from
hexagonal P63/mcm to orthorhombic Ccmm is also associated with a sudden decrease
of the thermal expansion, which then notably increases at TAF 2−AF 1.

In difference to these two compounds, the lattice parameter of Mn3Fe2Si3 decrease
smoothly as the temperature decreases with no clear sign of a structural phase tran-
sition nor with any indication of a clear response of the lattice parameter to the
magnetic transitions (see Figure 7.4). On the other hand the thermal expansion
shows a slight response associated to AF1 − AF2 transition. The concave shape of
α(T ) in the temperature region [121-300] K might be associated to the short range
magnetic correlations observed in our macroscopic studies of Mn3Fe2Si3 (see chapter
6).

0 50 100 150 200 250 300 350 400 450
-1

0

1

2

3

4

Temperature (K)

MnFe4Si3


(T

) 

 1

0
-5

1 

0 50 100 150 200 250 300

-10

-5

0

5

Temperature (K)

Mn5Si3


(T

) 

 1

0
-5

1 Figure 7.11.: Volumetric thermal expansion coefficient as a function of temperature
of (left) MnFe4Si3 [3] and (right) Mn5Si3 [2]. Dashed lines indicate (left)
the temperatures of the FM-PM transition in MnFe4Si3 and (right) the
AF1 −AF2 and AF2 − PM transition in Mn5Si3

According to the literature [2, 22], the orthorhombic distortion which accompanies
the formation of the AF2 structure in Mn5Si3 results in a shortening of the distances
between antiferromagnetically coupled M2-M2 atoms. This leads to a significant
decrease in the volume of [◻(M2)6] octahedra compared to the volume of the channel
where they are incorporated and the [(M1)Si6] octahedra volume (see Figure 7.13).
This is somewhat similar to what we observe in our compound Mn3Fe2Si3 at AF2 −
PM . However, the unit cell and polyhedral volumes in Mn3Fe2Si3 continue to decrease
smoothly down to the temperatures corresponding to the stability field of AF1 with
no clear sign of a response to the magnetic transitions AF1 −AF2 (see Figure 7.9).
In contrast to this, an expansion of the c-lattice parameter was observed in Mn5Si3
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7.3. Comparison of the temperature dependent behavior of the Mn5−xFexSi3
compounds (x=0, 2, 4)
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[(M1)Si6], [◻(M2)6] and channel occupied by [◻ (M2)6] as a function of
temperature in (left) MnFe4Si3 (Values are normalized to the volumes at
425 K)[3] and (right) Mn5Si3 (Values are normalized to the volumes at
300 K) [2]. Dashed lines indicate (left) the temperatures of the FM-PM
transition in MnFe4Si3 and (right) the AF1-AF2 and AF2-PM transition
in Mn5Si3

at the AF2−AF1 transition which leads to a larger M1-M1 distance ( = 0.5 c) in the
AF1 phase, this way enabling the ordering of the moments on the M1 site, which is
suppressed by the smaller M1-M1 distance in the AF2 phase [22, 75]. On transition to
the AF1 phase, the distance between the M1 and M2 system are shortened, while the
M2-M2 distances expand. As a consequence the volume of [◻ (Fe2/Mn2)6] octahedra
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7. Crystal structure of Mn3Fe2Si3

also expand (see Figure 7.13).
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Figure 7.14.: Distance distortion ∆ of [(M1)Si6] and [◻ (M2)6] octahedra as a func-

tion of temperature in Mn5Si3 (Values are normalized to the volumes at
300 K) [2]. Temperatures of the AF1-AF2 and AF2-PM transitions are
indicated by dashed lines.
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Figure 7.15.: Normalized angular distortion of [(M1)Si6] and [◻ (M2)6] octahedra as

a function of temperature in (left) MnFe4Si3 (Values are normalized to
the volumes at 425 K)[3] and (right) Mn5Si3 (Values are normalized to
the volumes at 300 K) [2]. Dashed lines indicate (left) the temperatures
of the FM-PM transition in MnFe4Si3 and (right) the AF1-AF2 and
AF2-PM transition in Mn5Si3

In difference to Mn3Fe2Si3 and MnFe4Si3 where all six Mn-Si distances in the oc-
tahedra are equal at all temperatures, in Mn5Si3 a sudden increase of the distance
distortion parameter ∆[◻ (M2)6] octahedra was observed at the temperature of the
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7.3. Comparison of the temperature dependent behavior of the Mn5−xFexSi3
compounds (x=0, 2, 4)

magnetostructural transition (PM −AF2) and ∆[(M1)Si6] increases even further at
the temperature of the AF2 −AF1 transition (see Figure 7.14).

Figure 7.15 shows the normalized angular distortion ∑ of [(M1)Si6] and [◻ (M2)6]
octahedra as a function of temperature normalized to the value (left) at 425 K for
MnFe4Si3 and (right) at 300 K for Mn5Si3. As can be seen in figure 7.15, in both com-
pounds, the angular distortion of the [◻(M2)6] octahedra shows a more pronounced
variation compared to the behaviour of the [(M1)Si6] octahedra, with a sudden change
at the temperature corresponding to the magnetic ordering. This was also observed
for Mn3Fe2Si3 and this presumably indicates the close relation of the angular distor-
tion to the magnetic ordering.
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8. Magnetic structures of Mn3Fe2Si3

8.1. Magnetic scattering in Mn3Fe2Si3 as seen by
single crystal neutron scattering

In Figure 8.1 we present elastic scattering maps recorded at the TOF spectrometer
MERLIN at 5 K and at 125 K with Ei=21 meV.

Figure 8.1.: (a) The reciprocal lattices of the three orthorhombic twin individuals.
Elastic scattering map of the (hk0) plane measured on Merlin at T=5 K
(b) and at T=125 K (c), with Ei=21 meV. The colour code refers to the
three different twins. A logarithmic scale was used for the colour axis.
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8.1. Magnetic scattering in Mn3Fe2Si3 as seen by single crystal neutron scattering

At high temperature, all peaks can be indexed using the orthohexagonal setting
corresponding to space group Ccmm. Powder rings originate from the sample en-
vironment. When the temperature is reduced to 5 K additional reflections appear.
They are more than an order of magnitude weaker in intensity and also have a de-
creasing intensity for increasing momentum transfer as expected for magnetic Bragg
peaks due to the magnetic form factor. Taking the orthohexagonal setting as a basis
for indexation, the new reflections can be sorted into two groups: the first group of
reflections can be indexed with integer values of (hkl) with h + k = 2n + 1 indicating
the loss of the C-centering. Using the same basis vectors a∗ and b∗, the second group
of reflections fall onto reflection positions with half-integer values. All reflections can
be explained by the formation of three different twin domains which are formed due
to the symmetry reduction at the phase transition from hexagonal to orthorhombic;
their lattices are related by the 3-fold axis of the hexagonal system (see Figure 8.1 (a)).
All observed magnetic reflections can then be indexed with a magnetic propagation
vector of (010) referring to the basis of one of the twin domains.

Figure 8.2.: Elastic scattering map of the (hk0) plane measured on Merlin at low
Q values with (a) T=5 K, (b) at T=125 K, Ei=13 meV. The colour code
refers to the three different orthorhombic twins used to index the reflec-
tions. A linear scale was used for the colour axis.
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8. Magnetic structures of Mn3Fe2Si3

Figure 8.2 shows the low Q region in the (hk0) plane at 5 K and 125 K with
Ei=13 meV. The three orthorhombic twin individuals used to index the reflections
are shown in 8.2.b). At 5 K we observe rather well defined peaks (0-10) for all three
twin individuals. Additionally there seem to be diffuse satellite-like reflections along
the [010] direction, which are only observed at these very low angles.

This was also observed in the equivalent magnetic reflections (010) that belong to
the second and third twin individual (see Figure 8.2.a). At 125 K, i.e. 5 K above the
transition temperature as identified from the macroscopic measurements, we observe
still diffuse intensity around the (0-10) positions, most likely indicating the presence
of short range magnetic correlations. This observation is in good agreement with
the increased response of M

B for small applied field in the temperature range between
120 K and 270 K. (see chapter 6.3).

The temperature dependence of integrated intensities of two different magnetic
reflections from two different twin individuals are shown in Figure 8.3. It is obvious
that the reflection (14̄0), which belongs to twin individual I, appears already below
125 K, while the intensity of the second reflection (120), belonging to another twin
individual ((0.5,2.5,0), if indexed in the basis of twin individual I), increases only
below 70 K.
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Figure 8.3.: Temperature dependence of magnetic (14̄0) and (120) Bragg peak inten-
sities from two different twin individuals from data taken of E4 of BER II.
Note that the reflections are indexed with respect to the orthohexagonal
basis of the respective twin domain to which they belong.

8.2. Determination of the magnetic structures of
Mn3Fe2Si3 from neutron powder diffraction data

Figure 8.4 shows different d(Å) regions of Mn3Fe2Si3 neutron powder diffraction dia-
grams obtained on POWGEN at different temperatures using large wavelength band-
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8.2. Determination of the magnetic structures of Mn3Fe2Si3 from neutron powder
diffraction data

width of 2.665Å (the patterns obtained with short wavelength bandwidth are shown
in Figure A.24 in Appendix).

The space group describing the symmetry of Mn3Fe2Si3 is P63mcm. No structural
phase transition was observed in Mn3Fe2Si3 at low temperatures according to our
synchrotron data (see chapter 7). This is also in accordance with the refinement of
the nuclear structure using the neutron powder diffraction data.

Starting from the nuclear structure and assuming one magnetic propagation vector
k = (1

2
1
20) referred to the hexagonal cell (space group: P63mcm) and in accordance

with the twin model described above we obtained the same eight models derived
from the Ccmm space group of the parent structure and the propagation vector
k = (010) (see chapter A.1.2.6). Therefore, in the following the nuclear structure of
Mn3Fe2Si3 will be described in the orthohexagonal setting corresponding to the Ccmm
cell (subgroup of P63mcm) which was also chosen in the literature for the description
of the parent compound Mn5Si3 [2, 22, 23]). The use of the orthorhombic subgroup
Ccmm implies that the Fe2/Mn2 site from the hexagonal setting is described by a
splitted wyckoff position Fe21/Mn21 and the Fe22/Mn22 sites in the orthorhombic
space group 1.

Agreement factors for the refinement of the nuclear structure are shown in table
A.13 in the Appendix. Results of the nuclear structure refinement performed on the
powder diffraction data taken at 20 K, 50 K, 90 K and 105 K are presented in Table
8.1.

Space group: Ccmm,
Fe1/Mn1 occupy WP 8(e) (-1

2 ,−
1
6 ,0)

Fe21/Mn21 and Si1 occupy WP 4(c) (x1,0, 1
4)

Fe22/Mn22 and Si2 occupy WP 8(g) (x2, y2,
1
4)

with x2 =
x1
2 and y2 ≈ x2

T a b c x1(Fe21/Mn21) x1(Si1) Uiso

105 K 6.8429 (1)Å 11.8523Å 4.7450(1)Å -0.2260(5) -0.5980(2) 0.0024(1)
90 K 6.8421 (1)Å 11.8509Å 4.7441(1)Å -0.2258(5) -0.5981(3) 0.0024(1)
50 K 6.8405 (1)Å 11.8482Å 4.7427(1)Å -0.2261(5) -0.5979(3) 0.0022(1)
20 K 6.8395 (2)Å 11.8464Å 4.7423(1)Å -0.2261(5) -0.5981(4) 0.0022(1)

Table 8.1.: Unit cell parameters, atomic coordinates and isotropic displacement pa-
rameters of Mn3Fe2Si3 for 105 K, 90 K, 50 K and 20 K. All parameters were
restricted to obey the higher hexagonal symmetry P63/mcm.

The neutron powder diffraction diagrams of Mn3Fe2Si3 show the appearance of new
Bragg peaks of magnetic origin at 105 K close to d-values of 2.10 Å, 2.15 Å, 3 Å and
11.75 Å. At 50 K additional magnetic peaks exist close to 2.6 Å, 3.1 Å and 4.5Å (see
Figure 8.4). In agreement with the observation of neutron single crystal diffraction

1It should be pointed out here that in all the subsequent refinements the nuclear structure was
restricted to obey the higher hexagonal symmetry with the help of local symmetry operations.
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Figure 8.4.: Mn3Fe2Si3 neutron powder diffraction obtained on POWGEN at different
temperatures for a center wavelength of 2.665 Å. The d(Å) regions with
the strongest magnetic Bragg reflections indexed using the Ccmm space
group are shown.

measured at E4 of BER II, the integrated intensity of the magnetic (120) reflection
appears only at temperatures lower than TN1 ≈70 K (see Figure 8.3).

These magnetic peaks are more than an order of magnitude weaker in intensity
compared to the nuclear Bragg peaks ( see Figure A.23 in Appendix), and they have
reflection positions violating the extinction rules for the C-centering (hkl ∶ h + k =
2n + 1) (see Figure 8.4). They can be indexed with a magnetic propagation vector
(010) along the orthohexagonal b direction, as already observed in the single crystal
elastic scattering maps recorded at the TOF spectrometer MERLIN.

In order to determine the magnetic structure from neutron diffraction of Mn3Fe2Si3
we used the concept of Shubnikov groups (magnetic space groups) (see chapter 3.4.1.1),
which combine the crystal symmetry with the time reversal operation. In order to
generate all possible magnetic structures that are compatible with the parent nuclear
structure (Ccmm space group), we have used the mathematical derivation of the grey,
black and white space groups implemented in the Jana program [76]. In this case,
the corresponding grey group of Ccmm which includes the time inversion is Ccmm1′.
The symmetry of a magnetically ordered phase is then described by a subgroup of
this parent group. Table 8.2 summarizes the maximal magnetic space groups (MGS)
for the parent space group Ccmm and the propagation vector (010), and the allowed
magnetic moment directions for the different magnetic models. Only eight maximal
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8.2. Determination of the magnetic structures of Mn3Fe2Si3 from neutron powder
diffraction data

magnetic symmetries for magnetic ordering are possible.
The moments on the Fe1/Mn1 sites are restricted to lie either in the a, c plane or

they have to be parallel to b. For the Fe21/Mn21 and Fe22/Mn22 sites, four of the
models restrict the spins to lie in the a, b-plane, while in the other four models only
components along c are allowed (see Table 8.2).

Shubnikov space groups Allowed magnetic moments (Mx,y,z)
Fe1/Mn1 Fe21/Mn21 Fe22/Mn22

P[C]cmm (0,My,0) (0,0,0) (0,0,Mz)
P[C]nam (Mx,0,Mz) (0,0,Mz) (0,0,Mz)
P[C]nmn (0,My,0) (0,My,0) (Mx,My,0)
P[C]can (Mx,0,Mz) (Mx,0,0) (Mx,My,0)
P[C]nan (0,My,0) (Mx,0,0) (Mx,My,0)
P[C]cmn (Mx,0,Mz) (0,My,0) (Mx,My,0)
P[C]cam (0,My,0) (0,0,Mz) (0,0,Mz)
P[C]nmm (Mx,0,Mz) (0,0,0) (0,0,Mz)

Table 8.2.: The resulting magnetic models and the allowed directions of the magnetic
moments (based on the symmetry Ccmm of the nuclear structure).

The different magnetic models were refined using the Jana program[76]. The
wR(obs/all) and R(obs/all) values obtained from refinements of the neutron pow-
der diffraction data measured at different temperatures using the large wavelength
bandwidth are shown in Table 8.4 and 8.3 Corresponding values obtained from re-
finements using the short wavelength bandwidth are shown in Tables A.15, A.14 in
appendix).

R(obs/all)
T (K) P[C]cmm P[C]nam P[C]nmn P[C]can P[C]nan P[C]cmn P[C]cam P[C]nmm

105 35.87/
78.23

23.64/
63.74

34.34/
70.94

22.52/
43.16

6.04/
10.19

10.09/
39.20

23.48/
36.20

46.27/
67.61

90 46.96/
71.14

37.02/
48.90

40.97/
77.45

28.02/
36.16

6.02/
7.01

11.54/
43.30

28.06/
40.04

52.22/
51.92

50 36.65/
40.51

32.27/
47.48

46.82/
52.87

34.53/
36.90

9.91/
13.09

24.25/
34.18

28.74/
32.01

40.06/
40.03

20 25.04/
26.97

26.53/
49.03

37.72/
47.65

30.83/
30.44

14.87/
19.13

30.03/
50.56

35.03/
41.74

37.87/
41.47

Table 8.3.: R(obs/all) factors for magnetic Bragg reflections of Mn3Fe2Si3 based on
the neutron powder data measured on POWGEN at different temperatures
for a center wavelength of 2.665 Å.

The model in magnetic space group P [C]nan appears to be most reasonable from
the eight refined models, as it results in the best agreement factors. Figure 8.5 and
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8. Magnetic structures of Mn3Fe2Si3

wR(obs/all)
T (K) P[C]cmm P[C]nam P[C]nmn P[C]can P[C]nan P[C]cmn P[C]cam P[C]nmm

105 28.49/
34.41

21.25/
36.16

27.16/
31.50

19.87/
25.82

6.37/
6.82

10.60/
17.44

19.27/
20.53

34.98/
38.89

90 36.87/
36.94

28.20/
28.89

31.21/
36.06

24.84/
26.48

5.46/
5.61

11.18/
17.87

22.49/
27.96

54.06/
54.08

50 35.02/
35.12

27.25/
28.97

36.09/
36.39

32.25/
32.32

9.41/
9.51

15.49/
16.41

18.69/
19.04

34.83/
34.82

20 25.09/
25.28

24.57/
26.37

34.86/
35.97

32.71/
32.77

16.42/
16.80

19.65/
21.87

26.67/
27.08

30.80/
30.88

Table 8.4.: wR(obs/all) factors for magnetic Bragg reflections of Mn3Fe2Si3based on
the neutron powder data measured on POWGEN at different temperatures
for a center wavelength of 2.665 Å.

8.6 shows the Rietveld refinement corresponding to this magnetic space group in the
2-6 Å region at 20 K and 90 K (The other temperatures can be found in Figure A.25
and A.26 in Appendix).

At TAF 1−AF 2 ≈70 K <T<TAF 2−P M ≈120 K, the model in magnetic space group
P [C]nan fits the measured neutron diffraction pattern very well: almost all calcu-
lated magnetic peaks have intensities close to the observed ones, with the exception
of the (010) reflection (see Figure 8.7a). The peak (010) is observed as a broad peak
at 20 K and gets broader with increasing temperature until it disappears completely
above temperatures higher than TAF 2−P M ≈120 K. The (010) peak broadening is in
accordance with the diffuse appearance of this reflection in the single crystal elastic
scattering maps recorded at the TOF spectrometer MERLIN 8.2.

Below TAF 1−AF 2 ≈70 K, the broad peak (010) is still calculated to zero, in addition
the intensities of the newly arising magnetic reflections are underestimated. In par-
ticular, the (230) which is weak, yet clearly visible has an intensity calculated to zero
(see Figure 8.7b). These discrepancies indicate that the chosen magnetic model is not
correct for temperatures below the TAF 1−AF 2 ≈70 K transition. To improve the qual-
ity of the refinement of the neutron diffraction data at these lower temperature, we
had to lower the magnetic symmetry. For this, the nuclear structure was transformed
to the different maximal translationengleiche subgroups of Ccmm. The symmetry of
the nuclear structure was still restricted to hexagonal with the help of local symme-
try operators. Different models using the magnetic space groups were then derived
(see Table A.3) and refined. Based on the agreement factors, the model in magnetic
space group P [C]2221 (derived from the C2221 space group) appears to be the best
of the the forty refined models (see Table A.16 and A.17 in appendix). The Rietveld
refinement of this model is shown in Figure 8.8 and Figure A.27.
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8. Magnetic structures of Mn3Fe2Si3
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Figure 8.7.: Part of the Rietveld refinement of the Mn3Fe2Si3 neutron powder data
obtained on POWGEN at (a) 90 K and (b) 20 K for a center wavelength
of 2.665 Å. Gray tick marks indicate the positions of the magnetic re-
flections. The difference curve is shown below on the same scale. Only
the d(Å) regions with the magnetic Bragg reflections are shown. The
magnetic space group model used for the fitting is P [C]nan.
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Figure 8.8.: Rietveld refinement of the Mn3Fe2Si3 neutron powder data obtained on
POWGEN at 20 K for a center wavelength of 2.665 Å. Gray tick marks
indicate the positions of the magnetic reflections. The difference curve is
shown below on the same scale. Only the d(Å) regions with the magnetic
Bragg reflections are shown. The magnetic space group model used for
the fitting is P [C]2221.

8.3. Magnetic structures of Mn3Fe2Si3
The refinement of the magnetic structures of Mn3Fe2Si3 based on the neutron diffrac-
tion data at 105 K, 90 K, 50 K and 20 K, show two different antiferromagnetic struc-
tures in the temperature ranges that correspond to the AF2 (TAF 1−AF 2 ≈70 K<T<
TAF 2−P M ≈ 120 K) and AF1 (T<TAF 1−AF 2 ≈70 K) phases determined by heat capacity
and magnetization data (see chapter 6).

The magnetic space group P [C]nan, which describes the magnetic symmetry of
the AF2 phase, allows alignment of magnetic moment along the [010] direction for
Mn1/Fe1, along [100] for Fe21/Mn21 and in the a, b plane for Fe22/Mn22, respectively,
while no components parallel to the c axis are allowed (see Table 8.2). The magnetic
space group P [C]2221 describes the symmetry of the magnetic structure of the AF1
phase. Wyckoff positions occupied by Fe1/Mn1 in Ccmm split into two independent
Wyckoff positions Fe11/Mn11 and Fe12/Mn12 in C2221. In this magnetic space
group alignment of magnetic moment along the [010] direction for Fe11/Mn11 and
Fe12/Mn12 sites, along [100] for Fe21/Mn21 and components along all three directions
are allowed for Fe22/Mn22. The refined components of the magnetic moments (µB)
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8.3. Magnetic structures of Mn3Fe2Si3

along the respective directions as obtained from the Rietveld refinement using the
magnetic space group P [C]nan and P [C]2221 are listed in Table 8.5 and 8.6.

Atom Mx (µB) My (µB) Mz (µB)
105 K
Fe1/Mn1 0 0.69(6) 0
Fe21/Mn21 0.03(30) 0 0
Fe22/Mn22 0.08(22) -0.65(6) 0
90 K
Fe1/Mn1 0 0.82(6) 0
Fe21/Mn21 0.01(27) 0 0
Fe22/Mn22 0.11(20) -0.75(6) 0

Table 8.5.: Refined magnetic moments of Fe/Mn ions in the magnetic space group
P [C]nan for the AF2 structure at 105 and 90 K. Mx, My and Mz are the
projections of the magnetic moment along the [100], [010] and [001].

Atom Mx (µB) My (µB) Mz (µB)
50 K
Fe11/Mn11 0 0.88(7) 0
Fe12/Mn12 0 -0.79(8) 0
Fe21/Mn21 0.01(60) 0 0
Fe22/Mn22 0.13(41) -0.75(2) -0.45(3)
20 K
Fe11/Mn11 0 0.89(6) 0
Fe12/Mn12 0 -0.82(7) 0
Fe21/Mn21 0.04(50) 0 0
Fe22/Mn22 0.12(76) -0.78(3) -0.67(3)

Table 8.6.: Refined magnetic moments of Fe/Mn ions in the magnetic space group
P [C]2221 for the AF1 structure at 50 and 20 K. Mx, My and Mz are the
projections of the magnetic moment along the [100], [010] and [001].

At 105 K and 90 K, all refined Mx components are zero within error. Taking this
into account the AF2 structure is co-linear with all the spins aligned parallel to the
b-axis. Both the Fe1/Mn1 and Fe22/Mn22 sites have refined magnetic moments of
similar size directed parallel and antiparallel to the b-axis (0.70(7)µB and 0.66(7)µB,
respectively (see Figure 8.9a). Within their standard deviations, the Fe21/Mn21 sites
have no significant ordered moment. Thus of the Fe/Mn sites forming the empty
octahedra, only two thirds of the sites carry an ordered moment in the AF2 phase.
Within one octahedra, the atoms on the same height z have their spins aligned in an
antiparallel way.
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8. Magnetic structures of Mn3Fe2Si3

At 90 K, the observed magnetic ordering of the AF2 phase is very similar to the
structure at 105 K (see Figure 8.9b) and only the magnitude of the refined magnetic
moments on Fe1/Mn1 and Fe22/Mn22 are slightly increased, with ≈0.82(8)µB and
≈0.76(8)µB, respectively.

At temperatures below TAF 1−AF 2 ≈70 K, the magnetic structure changes from the
co-linear AF2 (MSG: P [C]nan) to a non-co-linear AF1 phase (MSG: P [C]2221).

At 50 K, (Fe11/Mn11 and Fe12/Mn12) sites, which result from the splitting of
the Fe1/Mn1 site due to the lowering of the symmetry, are no longer magnetically
equivalent. However, they still have refined magnetic moments of similar size directed
parallel and antiparallel to the b-axis (0.88(7)µB and 0.79(8)µB, respectively (see
Figure 8.10a and 8.11a). As can be seen in Table 8.6, these magnetic moments
basically do not change when the temperature is lowered to 20 K (see Figure 8.10b
and 8.11b). Similar to what is observed in the AF2 phase, the Fe21/Mn21 sites have
no significant ordered moment in the AF1 phase.

The most significant difference between the AF2 and the AF1 phase is that the
magnetic moments on the Fe22/Mn22 sites acquire a component in c-direction and
align in the b, c-plane. It is this re-alignment of the spins on the Fe22/Mn22 sites
in the b,c-plane which breaks the centrosymmetry of the magnetic structure. The
spins on these sites form an angle of ≈ 30○ at 50 K and ≈ 40○ at 20 K with the b axis
(see Figure 8.11a and 8.11b). The magnitude of the Fe22/Mn22 magnetic moment is
≈0.8(3)µB and ≈1.0(5)µB at 50 K and 20 K, respectively.

No abrupt change is observed in the Mn2-Mn2 distances at the two magnetic tran-
sitions as demonstrated by the results of the structure determination based on the
synchrotron single crystal diffraction data and they decrease quite smoothly in the
whole measured temperature range (see Figure 7.8 in chapter 7). The PM-AF2 tran-
sitions, however, is accompanied with a significant decrease in the angular distortion
of the [◻ (Fe2/Mn2)6] octahedra (see Figure 7.10).
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8.3. Magnetic structures of Mn3Fe2Si3
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Figure 8.9.: Magnetic structure of Mn3Fe2Si3 for magnetic space group P [C]nan ex-
tracted from refinement performed on diffraction pattern taken at (a)
105 K and (b) 90 K. Note that the refined value of Mx for Fe21/Mn21
and Fe22/Mn22 is smaller than its respective standard deviation. For
the drawing, this value was therefore set to zero.
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Figure 8.10.: Magnetic structure of Mn3Fe2Si3 for magnetic space group P [C]2221
extracted from refinement performed on diffraction pattern taken at (a)
50 K and (b) 20 K. Note that the refined value of Mx for Fe21/Mn21
and Fe22/Mn22 is basically identical to its standard deviation. For the
drawing, this value was therefore set to zero.

78
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Figure 8.11.: Projection along a-direction of Mn3Fe2Si3 magnetic structure for mag-
netic space group P [C]2221 extracted from refinement performed on
diffraction pattern taken at (a) 50 K and (b) 20 K. Note that the refined
value of Mx for Fe21/Mn21 and Fe22/Mn22 is basically identical to its
standard deviation. For the drawing, this value was therefore set to
zero.
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8. Magnetic structures of Mn3Fe2Si3

8.4. Comparison to other magnetic structures in the
system Mn5−xFexSi3

Within the Mn5−xFexSi3 system, the Mn-rich compounds exhibit antiferromagnetic
(AF) order at temperatures below 125 K, while the Fe-rich compounds show predom-
inantly ferromagnetic (FM) order at comparably high temperature [4]. Up to now,
only the magnetic structures of MnFe4Si3 and Mn5Si3 have been characterized in
detail.

The compound MnFe4Si3 with x = 4 has a ferromagnetic structure where only the
sites with mixed occupancy of Fe/Mn (M2) carry an ordered magnetic moment aligned
in the a, b plane of approximately 1.5(2)µB [3]. At the temperature of magnetic
ordering the interatomic distances between the M2 atoms are increased, which in
turn leads to a significant increase of the a lattice parameter and an increase in the
volumetric thermal expansion α(T ) (see Figure 7.11 in Chapter 7). As for the sites
(M1), the refined moment was smaller than the standard deviation [3].

As for the compound Mn5Si3 with x = 0, it exhibits a structural phase transition
from hexagonal to orthorhombic which coincides with the PM − AF2 transition [2,
22]. In the AF2 phase, the magnetic moments on the M22 position point almost
antiparallel to each other along the b-axis and are slightly tilted away from the b-axis
down to 60 K [2].

The magnitude of the magnetic moments on the M22 at 90 K is 1.48(1)µB and it
is slightly reduced with decreasing temperature. Neither the M1 and M21 sites carry
an ordered magnetic moment in this phase [2, 22].

In Mn3Fe2Si3 both sites M1 and M2 (orthohexagonal setting: M21 and M22) have
mixed occupancy of Fe/Mn, where Fe preferentially occupies the M1 site and Mn
is mainly incorporated in the M2 site. The structural phase transition to an or-
thorhombic phase is not observed in the studied temperature range. In the AF2
phase of Mn3Fe2Si3 the spins on the M22 atoms are aligned parallel to b, yet the
magnetic moments are smaller (≈0.76(8)µB) than in the AF2 phase of Mn5Si3. In
difference to the AF2 phase of Mn5Si3, the M1 sites of Mn3Fe2Si3 have an ordered
moment of ≈0.82(8)µB that is also directed along b.

The magnetic structure of Mn5Si3 in the low temperature AF1 phase is character-
ized by a monoclinic spin arrangement, where the moments on the M22 sites with
µ ≈2.9µB form a complex non-collinear structure [23], while there is still no ordered
moment observed on the M21 site. M1 carries a smaller magnetic moment, which is
approximately parallel to the vector sum of the moments on the four neighbouring
M22 sites [23]. The AF1 phase of Mn3Fe2Si3 is characterized by an orthorhombic spin
arrangement, with no ordered moment on the M21 site. In Mn3Fe2Si3, the M1 (M11
and M12) moments align parallel and antiparallel along the b-axis with similar size of
about ≈0.8µB. At the AF2−AF1 transition, the spins on the M22 sites of Mn3Fe2Si3
are canted from the b-direction and oriented in the b, c-plane with a magnitude of
≈1.0(5)µB, resulting in a non-colinear antiferromagnetic structure in the AF1 phase
(see Figure 8.11a and 8.11b).
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8.4. Comparison to other magnetic structures in the system Mn5−xFexSi3

It has been found that the stability of an ordered magnetic moment on manganese
atoms in a variety of intermetallic compounds such as Laves phases is related to the
interatomic distances between Mn atoms which are influenced by thermal expansion,
chemical substitution and pressure [78, 77]. The studies on Laves phases indicate
that below a critical distance between Mn atoms ≈ 2.67 Å, the Mn atoms do no longer
develop a static ordered magnetic moment [78, 79].

The appearance of an ordered moment on the M1 site in the AF1 phase of Mn5Si3 is
an example of a similar effect as the one observed in Laves phases, where, the ordering
on M1 site is accompanied with an increase of the volumetric thermal expansion
α(T ) at the AF2 −AF1 transition (see Figure 7.11 in Chapter 7), which leads to an
increase in the M1-M1 distance (dM1−M1=c/2=2.41Å) [23]. This also could be related
to the sudden change in the bond length distortion of the [(M1)Si6] octahedra at the
temperature of the AF2 −AF1 transition (see Figure in chapter 7).

In difference to this, all magnetic moment in Mn3Fe2Si3 are stable in both phases,
the change in volumetric thermal expansion α(T ) looks less striking with only a slight
increase at the AF1-AF2 transition (see Figure 7.7 in Chapter 7) and there is no
significant sign of a bond length distortion in the [(M1)Si6] and [◻ (M2)6] octahedra
at all measured temperatures. However, all three compounds Mn5−xFexSi3 (x=0, 2, 4)
show an angular distortion variation at PM -AF2 which is significant in the [◻ (M2)6]
octahedra when compared to the [(M1)Si6] octahedra (see Figure 7.15 in chapter 7).
In particular, a sudden decrease in angular distortion in the [◻ (M2)6] octahedra
at the PM to AF2 transition in Mn3Fe2Si3 is noteworthy. In Mn5Si3 the angular
distortion of both octahedra is clearly changing at the AF2 −AF1 transition.

Similar to the Mn based Laves compounds, the Fe based Laves compounds show a
dependence of the Fe magnetic moment formation on the Fe–Fe distance [80]. As the
atomic radius of Fe is smaller than Mn, the critical distance for Fe is as well smaller
[81, 82, 78].

This suggest that the stability of the ordered magnetic moment on the M1 site
of Mn3Fe2Si3 in the AF2 and AF1 phase is due to the fact that the interatomic
separation between M1-M1 atoms (dM1−M1 ≈2.368Å) is already above the critical
value dC

F e−F e in both phases (see Table A.12 in appendix). The effect is related to the
overall shrinkage of the unit cell resulting from the substitution of the smaller Fe on
the M1 site. According to a study done on several groups of Fe compounds in the
Laves phase [80], it has been found that the Fe magnetic moment decreases with the
reduction of the Fe-Fe distance. This might be related to the fact that the refined
magnetic moment on M1 site of MnFe4Si3 [3] is tiny, as here the M1-M1 distance is
further reduced (dx=4

M1−M1 ≈2.359(2)Å) due to the complete substitution of Mn with Fe
on the M1 site.
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9. Summary
Mn3Fe2Si3 crystallizes in hexagonal space group P63/mcm at all temperatures down
to 5 K and a structural transition to an orthorhombic phase, which occurs in the par-
ent compound Mn5Si3 [22, 2], was not observed. Two symmetrically independent sites
with significantly different chemical surroundings exist for the paramagnetic ions, the
M1(WP :4d) and the M2(WP :6g) sites, respectively. Fe preferentially occupies the
M1(WP :4d) site and is octahedrally coordinated by Si, while Mn is mainly incor-
porated on the M2(WP :6g) site and forms the corners of en empty octahedron. As
the atomic radius of Fe (r(Fe)=156 pm) is smaller than Mn (r(Mn)=161 pm) [74],
the incorporation of Fe leads to an overall shrinkage of the Mn3Fe2Si3 unit cell and a
decrease of its interatomic distances when compared to the parent compound Mn5Si3
[2].

Mn3Fe2Si3 undergoes a sequence of magnetic phase transitions from a paramagnetic
PM phase to two distinct antiferromagnetic phases AF2 and AF1 with decreasing
temperature. Based on the refinement of neutron powder data, the AF2 magnetic
structure was determined to be co-linear with the spins on the M1 sites and on two
thirds of the M2 sites aligned parallel and antiparallel to the b-axis. The refined
magnetic moments on the two sites are of similar size. For the remaining one third
of the M2 sites, no significant ordered magnetic moment was determined from the
neutron powder data.

At the AF2 −AF1 transition the magnetic structure changes from the centrosym-
metric co-linear AF2 phase to the non-co-linear, non-centrosymmetric AF1 phase.
The most significant difference between the AF2 and the AF1 phase is that the spins
on the M2 sites which carry an ordered magnetic moment acquire a component in the
c-direction and re-align in the b, c-plane. This re-alignment of the spins breaks the
centrosymmetry of the magnetic structure.

The ordered magnetic moment on the M1 site is stable in both the AF1 and AF2
phase, in contrast to what is observed for the parent compound Mn5Si3, where the
ordered moment on the M1 site only appears in the AF1 phase. The appearance
of this ordered moment in Mn5Si3 has been attributed to the fact that the critical
M1-M1 distance, which was given as (dM1−M1=c/2=2.41Å)[23], has been exceeded.

In Mn3Fe2Si3 the preferential substitution of Mn with Fe leads evidently to a re-
duction of the critical distance for the formation of an ordered moment on the 4d site
and allows an ordered moment on this site already in the AF2 phase.

Different from the phase diagram for the series published by Songlin et al. [4]
based on powder data, our macroscopic measurements on single crystalline Mn3Fe2Si3
show an increased transition temperature not only for the AF2 to PM , but also
for the AF1 to AF2 transition. Comparing the macroscopic response of Mn3Fe2Si3
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and Mn5Si3, we note the missing strong increase of the magnetization at high field
found in Mn5Si3 [25]. Based on the comparison of the magnetic structures in both
compounds, we attribute this increase in Mn5Si3 to the loss of AF order on the 4d
site when undergoing the transition from AF1 to AF2.

For Mn3Fe2Si3 the ratio ∣f ∣ = ∣θCW ∣
TN

, was calculated to be much less than one. This
can be explained within the mean field approximation for two sublattices with FM
intra-sublattice interaction. On the other hand the increased response of the low
field M

B , in particular for the field applied perpendicular to [001] direction above the
ordering temperature at 120 K, can be interpreted as a trace of FM order, which
develops towards the Fe rich side of the phase diagram [4].

Like the end member Mn5Si3 [4], Mn3Fe2Si3 features an inverse MCE. However,
the size of the effect is significantly reduced compared to Mn5Si3. For comparable
field changes the entropy change is reduced by a factor ∼10 [4]. We attribute the
much smaller gain in entropy through the transition to the persistent order on the
M1 site in Mn3Fe2Si3, which does not contribute to the magnetic entropy change. We
conclude therefore, that in particular the M1 site moments contribute to the strong
inverse MCE observed in Mn5Si3 [4].
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A.1. Data processing

A.1.1. Structural refinement from neutron powder data (Ambient
temperature)

Structural refinement of Mn3Fe2Si3 at ambient temperature was performed with the
program JANA2006 [76] which can handle a wide range of data formats including
time-of-flight data in the GSAS format. The starting parameters for the crystal
structure model were taken from [20]. An Instrument Parameter File containing
information about the POWGEN diffractometer was provided by the beamline staff.
Then, we performed Le Bail fitting to determine the zero shift, the profile shape
function, background and cell parameters. Afterwards, a Rietveld refinement was
performed in which the scale factor, atomic positions, atomic occupations, and atomic
displacement parameters (ADP) were refined.

A.1.1.1. Le Bail refinement of time-of flight data

For a time-of-flight neutron diffraction measurement, the three parametersDIFC,DIFA
and ZERO relate the d-spacing of a specific powder line to its time of flight, as follows:

t =DIFC ∗ d +DIFA ∗ d2 +ZERO, (A.1)

where ZERO is the zero shift and DIFC and DIFA are coefficients for a specific
bank on a time of flight diffractometer.

As for the peak shape, we described it with a convolution between a Pseudo-Voigt
(PV) function and a back-to-back exponential[83]:

Ω(x) =
+∞

∫
−∞

PV (x − t)E(t)dt, (A.2)

The parameter x is the location of the peak, where the exponentially modelled
neutron pulse goes from being exponentially rising to exponentially decaying. The
back-to-back exponential function is expressed by the parameters α and β describing
the exponential rising and the exponential decay constant of neutron pulse as follows
[83]:
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E(t) =
αβ

(α + β)
eα t t ≤ 0

E(t) =
αβ

(α + β)
eα t t > 0,

(A.3)

According to the GSAS manual [83], the profile coefficients α and β can be defined
by:

α = alpha0 + alpha1
d

β = beta0 + beta1
d4 ,

(A.4)

The Pseudo-Voigt function (PV ) is a linear combination of Gaussian (G) and
Lorentzian (L) functions [84]:

pV (x) = ηL(x) + (1 − η)G(x), (A.5)
where η is a mixing factor. In the case of neutron TOF-data, the Gaussian (σG)

and Lorentzian (γL) components of the Pseudo-Voigt function have the following
dependence with d-spacing[83]:

σ2
G = σ

2
0 + (σ

2
1 +DST2(1 − ξ)2)d2 + (σ2

2 +Gsize)d
4) (A.6)

γG = γ0 + (γ1 + ξ
√

8ln2DST2)d + (γ2 + F (sz)d
2) (A.7)

WhereGsize is a Gaussian size parameter, DST2 is the contribution of the anisotropic
strain, ξ is the Lorentzian strain fraction and F(SZ) represents a Lorentzian anisotropic
size contribution. (σ0) Sig0, (σ1) Sig1, (σ2) Sig2 and (γ0) Gam0, (γ1) Gam1, (γ2)
Gam2, present the variance parameter of the Gaussian and Lorentzian component of
the psuedo-voigt function, respectively.

The Le Bail refinement strategy used is the following. The background was de-
scribed by 10 terms of Legendre polynomial combined with 70 background points
assigned manually. The lattice parameters, DIFA and the peak shape parameters
Sig0, Sig1, Sig2, Gam0, Gam1, Gam2, alpha0, beta0 were carefully refined, while
ZERO , DIFC and alpha1, beta1 are instrument dependent and were fixed to the
values taken from the instrument parameter file provided by the instrument scien-
tist. In order to get a realistic standard deviation on the lattice parameter, Berar’s
correction [85] was applied.

Only the instrumental contribution to the peak shape and width were considered
in the profile fitting, while, the additional sample effects such as strain, stress or size
effects were neglected.

A.1.1.2. Rietveld refinement

After the LeBail refinement, we used the Rietveld refinement [86, 87] to extract in-
formation about the Mn3Fe2Si3 structure.
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Molecular formula Mn3Fe2Si3
Molecular weight (g/mol) 360.77

ρcalc (g/cm−3) 6.18(7)
Z 2

Space group P63/mcm (193)
a(Å)
c(Å)
V (Å3)

6.85763(18)
4.75799(15)
193.77(1)

Rp

wRp

Robs

wRobs

GOF

3.46
2.39
2.06
3.04
2.53

CWL(Å) 0.8
d-spacing coverage(Å) 0.1340-8.200

Table A.1.: Lattice parameter, unit cell volume and final agreement factors from the
Rietveld refinement of Mn3Fe2Si3 at 300 K
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      0 
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1.0 2.0 3.0 4.0 5.0 6.0 7.0 
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0.6 0.8 1.0 1.2 

wRp=1.87 
   Rp=2.84 

Figure A.1.: LeBail refinement of the ToF neutron powder diffraction data taken on
Mn3Fe2Si3 at 300 K.

Initially, only the scale factor was refined. Then, the atomic positions, the ADP and
the occupancy parameters were subsequently added to the refinement. Based on the
starting model which was taken from [20], we considered that both the 4d and 6g sites
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are occupied by Mn and Fe. The ADPs and coordinates were kept identical for the
pair of atoms located on the same site and for each of the sites the sum of occupancies
was restricted to the ideal value. As the resulting values corresponded within their
standard deviations to the ideal stoichiometry, the occupancies were restricted to the
ideal proportions 3 Mn and 2 Fe. This did not lead to a significant change in the
overall agreement factors.

In the final refinement stage, the value of the intensity, was corrected for the effects
of sample absorption, using [83]:

Ak = exp[−µRd], (A.8)

where µR is a refinable parameter and presents the product of the radius of the
cylindrical sample and its linear absorption coefficient.

Finally, a correction for preferred orientation according to March-Dollase was ap-
plied [83]:

Pk =
1
Mp

Mp

∑
K=1
[P12cos2αk + P1−1sin2αk]

−3
2 , (A.9)

where P1 is a refinable parameter, and αk is the angle between the preferred ori-
entation axis ([001] in this case) and the reflection vector Pk. Mp is the multiplicity
of a reflection.

Final agreement factors are given in table A.1. Structural parameters are provided
in table A.2. The quality of a Rietveld refinement can be judged by the following
criteria:

a) The profile fit which can be evaluated visually by looking at the plot of the
observed and calculated patterns

b) This can be also expressed numerically with quantities related to the least-square
process employed in the Rietveld method. These quantities are as follows [88]:

Rp =
∑i ∣yi(obs) − yi(cal)∣

∑i yi(obs)
, (A.10)

wRp = (
∑iwi[yi(obs) − yi(cal)]2

∑iwi[yi(obs)]2
)

1
2

, (A.11)

Rexp = (
N − P

∑iwi[yi(obs)]2
)

1
2

, (A.12)

GOF = (
wRp

Rexp

)

2

, (A.13)

where Rp, wRp, Rexp are the profile, weighted profile, and expected R factors, GOF
is the goodness of fit, respectively. yi(obs), yi(cal) are the observed and calculated
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intensity at the point i,respectively. The weights wi are taken from the experimen-
tal errors. P is the number of least-squares parameters and N is the number of
observations.

c) Reasonable inter-atomic distances, bond angles and atomic displacement param-
eters

2000 

1500 

1000 

  500 

      0 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 
d 

TOF 

0.6 0.8 1.0 1.2 

wRp=2.38 
   Rp=3.43 

Figure A.2.: Rietveld refinement of neutron TOF powder diffraction pattern of
Mn3Fe2Si3 at 300 K.

Atom (WP) x y z Uiso occ
Fe1 (4d) 0.666667 0.333333 0 0.0047(2) 0.1275(7)
Mn1 (4d) 0.666667 0.333333 0 0.0047 0.0390
Mn2 (6g) 0.2263(4) 0 0.25 0.0017(4) 0.2109
Fe2 (6g) 0.2263(4) 0 0.25 0.0017 0.0390
Si (6g) 0.5980(2) 0 0.25 0.0049(3) 0.25

Table A.2.: Atomic coordinates, isotropic displacement parameters and occupation
factors of Mn3Fe2Si3 at 300 K, from refinements of neutron powder
diffraction data.
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A.1.2. Processing of single crystal x-ray data
A.1.2.1. Conversion of the synchrotron data

The processing of the synchrotron data in the current thesis was done with the
CrysAlisP ro software [89]. The measured images in the tiff format were renamed
and converted to the Esperanto format using this software. Initial values for x0 and
y0 describing the position of the primary beam on the measured frames, as well as an
initial value for the detector distance were extracted using a calibration measurement
on corundum. At all temperatures, the runs corresponding to the ϕ scans (see Table
5.4) were initially combined together using CrysAlisP ro.

A.1.2.2. Indexing and determination of detector parameters.

Prior to data processing, all the frames were checked visually, to make sure that they
are not corrupted. Then, a peak hunting procedure was started using the peak hunting
option of CrysAlisP ro. The program automatically searches through all frames for
pixels above a threshold level. For the search, the default, with 1000 for the threshold
for peak intensities and 20 for the average intensity in a 7x7 pixel area was used [89].

Once the peak hunting was done, the distribution of reflections was checked with the
reciprocal lattice viewer. Then, the orientation matrix (UB-matrix) was determined
based on the positions of the peaks using an algorithm implemented into CrysAlisP ro

[89]. This matrix describes the orientation of the reciprocal axes with respect to a
reference system of the diffractometer.

Afterwards, in order to get an accurate orientation matrix, we refined the lattice
parameter restricted according to the hexagonal symmetry together with the sample-
to-detector distance d and the values of x0, y0 describing the position of the primary
beam. Additional values describing goniometer offsets and detector inclination were
also refined.

Special care was taken that all runs at a specific temperature had the same ori-
entation matrix to ensure that the data could be easily combined afterwards. Data
at other temperatures were treated in an analogous way, however, refined instrument
parameters obtained at room temperature were kept fixed and used for all other tem-
peratures. This is important to ensure consistency of the unit cell parameters at all
temperatures.

A.1.2.3. Data integration and finalization

Once the orientation matrix was refined, we started the data reduction by integrating
the runs individually. During the integration of each run a proper mask was applied to
the beam stop and to the shadowed region caused by the cryostat. For the definition
of the individual runs see Table 5.4. The data reduction was done by assuming P1
as symmetry in the integration.

The program predicts the positions of the reflections based on the UB-matrix,
then it reconstructs reflections with split profiles over several frames. The integrated
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intensity is then deduced based upon the reflection shape and the background [89].
After the data integration, a frame scaling of data from different runs was done via

common reflections in the individual data sets. Four frames were used by default for
a single scale factor. Then, the absorption correction was applied empirically by the
Scale3 Abspack program implemented in CrysAlisPro [89].

A.1.2.4. Space Group Determination

The files containing the integrated intensities of reflections hkl as well as their stan-
dard deviation were used in Jana2006 for structure refinement.

After we imported the data corresponding to the different runs into Jana2006, they
were first scaled together using common reflections. Only common reflections with
an overall intensity F 2(obs)/σ(I) above 3% were chosen.

To determine the space group symmetry, first the crystal systems are chosen which
are in accordance with the supplied unit cell parameters within their accuracy limits.

The overall quality of the data collection was inspected by checking Rint values
after data reduction. The Rint describes the quality of merging intensities of the
symmetry-equivalent reflections assuming a certain Laue group, and also helps in the
determination of the space group symmetry. The Rint is defined as follows [90]:

Rint =
∑i∑j ∣F

2
i,j(obs) − ⟨F

2
i (obs)⟩∣

∑i∑j ∣F
2
i,j(obs)∣

, (A.14)

where F 2(obs) is the intensity of an individual reflection corrected for Lorentz-polarization,
⟨F 2(obs)⟩ is the average value over all measured symmetry equivalent reflections in the
chosen Laue group. The first summation includes all independent reflections i, and
the second summation runs over all symmetry equivalent reflections j corresponding
to the i − th independent reflection [90].

The higher the symmetry, the more reflections are merged. This is reflected in
the so-called Redundancy which can be calculated by dividing the total number of
measured reflections by the number of reflections after symmetry averaging.

For all the possible Laue symmetries which are in accordance with the lattice pa-
rameter, the program averages the reflection intensities and calculates the internal
R-values.

Then, the Laue symmetry was selected from the Laue classes suggested by the
program. The basis for this choice was a low Rint and a high redundancy. On the
basis of this criteria the Laue class was chosen as 6/mmm. In the last step, all space
groups in accordance with the Laue symmetry were compared and their extinction
rules were checked.

The following extinction rules were fulfilled at all temperatures:

h0l,0kl ∶ l ≠ 2n
00l ∶ l ≠ 2n,

(A.15)
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leading to the two possible space groups P63/mcm or P63cm. Before starting the
structural refinement we used the ’manual culling option’ in Jana2006 [91] to identify
and reject eventual outliers on the basis of the intensities of symmetry equivalent
reflections (see Table A.7). In order to confirm whether a reflection is an outlier or
not, we checked it on the original frame. At all temperatures, only very few reflections
(<10) that were integrated close to the shadowed region of the detector had to be
rejected.

A.1.2.5. Structure refinement

The starting structural model used for the single crystal refinement at all temperatures
was taken from the data refinement of the neutron powder data at room temperature
described above. We started structural refinement by refining only the scale factor.
Then, the atomic positions and the isotropic as well as anisotropic ADPs were sub-
sequently refined. The occupancies for the Mn and Fe sites were fixed to the values
obtained from the Rietveld refinement of the neutron powder data.

The agreement factor between the calculated model and the observed experimental
data for single-crystal refinements is similar to the one reported for powder refine-
ments. It is based on the agreement between the observed and calculated structure
factors, Fhkl.

R =
∑hkl ∣∣Fhkl(obs)∣ − Fhkl(cal)∣∣

∑hkl ∣Fhkl(obs)∣
, (A.16)

wR =
∑hklwhkl∣∣Fhkl(obs)∣ − ∣Fhkl(cal)∣∣

∑hklwhkl∣Fhkl(obs)∣
, (A.17)

where whkl is the weighting factor derived for each measured reflection based on its
standard uncertainty. whkl is usually based on counting statistics and it is defined by
expression [92]:

whkl =
1

σ2
hkl(∣Fhkl(obs)∣) + (uFhkl(obs))2

, (A.18)

σ2
hkl is the variance and u is the instability factor. For the refinements, we used

the default instability factor 0.01. The 300 K data refinement using P63cm didn’t
show a significantly better R-values compared to the higher-symmetry space group
P63/mcm. On the basis of this results the centrosymmetric space group P63/mcm
was preferred.

Further details concerning the refinement as well as atomic coordinates and dis-
placement parameters are given in tables A.8, A.7, 7.1, A.9, A.10 and A.11.

A.1.2.6. Magnetic structure refinement

Below transition temperature between AF2 and PM , TAF 2−P M , additional reflections
were observed in the neutron diffraction pattern of Mn3Fe2Si3. These reflections are
due to the ordering of the magnetic moments of the magnetic ions.
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Figure A.3 shows maximal magnetic symmetries for a magnetic phase with prop-
agation vector k = (1

2 ,
1
2 ,0) and parent space group P63/mcm. The graph was ob-

tained using the k-SUBGROUPSMAG tool of the Bilbao Crystallographic Server [93].
Starting from the nuclear structure and the magnetic propagation vector k = (1

2 ,
1
2 ,0)

referred to the hexagonal cell (space group: P63/mcm) we obtained the same eight
models as derived on the basis of the orthohexagonal setting of the parent structure
with space group Ccmm and the propagation vector k = (0,1,0) (See Chapter 3.4.1.3).
The mathematical derivation of Shubnikov groups related to the space group of the
parent structure is also implemented in the Jana program [76].

As already explained in Chapter 3.4.1.3, the most likely magnetic structures of
Mn3Fe2Si3 below TAF 2−P M , crystallize in one of the Shubnikov groups derived from
the space group of the parent structure.

Figure A.3.: Possible magnetic symmetries for a magnetic phase with propagation
vector k = (1

2 ,
1
2 ,0) and parent space group P63/mcm. The graph was

obtained using k-SUBGROUPSMAG tool of the Bilbao Crystallographic
Server.

The magnetic structure refinement of Mn3Fe2Si3 was started by importing the par-
ent structure at the desired temperature below TAF 2−P M , defining the magnetic atoms,
magnetic form factors and propagation vector.The profile and the structure param-
eters of the parent structure with the exception of the background parameters were
fixed to the values obtained by the LeBail and Rietveld refinement of the nuclear
structure.

For each selected magnetic symmetry, the magnetic ions occupying the same site
were restricted to having identical magnetic moments. Then, the magnetic moments
were refined using the selected magnetic symmetry as defined by the specific Shub-
nikov space group. A polynomial background was also refined and combined with the
manual background. Finally, the magnetic space group which led to the magnetic
model that best fitted the measured neutron diffraction pattern was chosen as the
correct one.

Below TAF 1−AF 2 at 50 and 20 K, additional magnetic reflections are observed in
the neutron powder diffraction diagrams. For some of them significant discrepancies
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between observed and calculated intensities are observed, indicating that the chosen
model is not correct for the low temperature AF1 phase. To obtain a more satisfac-
tory fit we had to lower the magnetic symmetry. This was achieved by deriving the
maximal translationengleiche subgroups of Ccmm for the description of the nuclear
structure (See Table A.3) using Jana [76]. The symmetry of the nuclear structure was
still restricted to Ccmm with the help of local symmetry operators. Different mag-
netic space groups based on the maximal translationengleiche subgroups of Ccmm
were then derived (See Table A.3) and refined.

N.I.S.G Cc2m
M.S.G P[C]c2m P[C]n2n P[C]c21n P[C]n21m P[C]c2m P[C]n2n P[C]c21n P[C]n21m
N.I.S.G C2mm
M.S.G P[C]2mm P[C]2an P[C]21am P[C]21mn
N.I.S.G Cmc21
M.S.G P[C]cm21 P[C]na21 P[C]nm21 P[C]ca21
N.I.S.G C2221
M.S.G P[C]2221 P[C]212121 P[C]22121 P[C]21221
N.I.S.G C2/c
M.S.G P[C]-1 P[C]-1 P[C]-1 P[C]-1
N.I.S.G C2/m
M.S.G P[C]2/m P[C]21/a P[C]2/a P[C]21/m
N.I.S.G C21/m
M.S.G P[C]21/m P[C]21/n P[C]21/n P[C]21/m

Table A.3.: Magnetic space groups M.S.G derived from each non-isomorphic sub-
group N.I.S.G of Ccmm. All magnetic space groups correspond to the
setting of a C-centered cell of the nuclear structure.

A.1.3. Extraction of Merlin data
A.1.3.1. Converting I(t, x, y,ψ) to S(Q⃗, ω)

During the so called Horace scan the instrument records the intensity as function of
time-of-flight t between the sample and the detector pixel (x, y) into a .nxspe file for
each setting of the angle ψ, which describes the rotation around the vertical axis, and
for each initial energy Ei, i.e. we recorded 5 .nxspe files per angle setting. All files for
a given Ei are then converted into S(Q⃗, ω), transforming the time-of-flight into energy
transfer h̵ω and using the pixel information to calculate the momentum transfer Q⃗.
As the energy transfer is a quadratic function of the time-of-flight t the transformation
from measured intensity into the scattering function involves a multiplication by a
factor t4, which can lead to a overestimation of the background for large t, i.e. large
energy transfer from the neutron to the sample.

This procedure of the conversion is rather time consuming even on a powerful com-
puter and takes up to several hours depending on the number of files to be combined.
In the end we had acquired 5 .sqw files containing S(Q⃗, ω) for each initial energy
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Ei. The largest Ei covers the largest reciprocal lattice volume albeit with the most
relaxed resolution of momentum and energy transfer.

Similar to creating the UB matrix at a single crystal diffractometer, the spectrom-
eter coordinate system has to be aligned to the crystal coordinate system. For that
we created a list of reflections based on the preliminary alignment and the ambient
temperature lattice parameter in the orthohexagonal setting. After we determined
the peak positions for this list the software calculates the goniometer angles GS,GL

and the offset of the ψ, dψ and refines the lattice parameters to transform from the
starting coordinate system to the actual crystal orientation, see Fig. A.4. Since we
intended to refine 6 parameters and keep the lattice angles fixed, our list contained
22 reflections.

D dΨ 

Figure A.4.: Diagram describing virtual goniometer angles. GL and GS describe the
settings of the large and small goniometers, Ω is the offset of the axis
of the small goniometer Gs with respect to the vector v and Dψ specify
the offset in ψ, taken from [64].

A.1.3.2. Data visualisation

Once the .sqw files had been created for all Ei at 5 K and 125 K, we used Horace
[64] to visualize and analyze the data. So, in order to make and view cuts and slices,
we needed to define the filename of the sqω file and the projection axes for our data
visualization u=[1,0,0] and v=[0,0,1](we can also choose projection axes irrespective
of the orientation of the sample). In general, cuts with Horace are made by specifying
axes of each component of Q and energy as either plot with axis range and step size or
integration axes. This way Horace provides complete flexibility to plot 3D volumes,
2D slices and 1D cuts along specified trajectories in (Q,ω)-space.

Table A.4 lists input details about the Ei integration range, the Ql integration
range (perpendicular to the plot plane) and the plot axis Qh and Qk between given
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limits with a given minimum possible step size, used to cut 2D elastic slices of (hk0)
planes at different Ei (See Figures A.14, A.15, A.16 and A.17).

Ei (meV) [lower bound, upper bound] [low, step,high]
E Ql Qh Qk

9 [-1,1] [-0.1,0.1] [-1.5,0.03,1.5] [-8,0.03,2]
13 [-1,1] [-0.1,0.1] [-2,0.03,1.5] [-9,0.03,3]
21 [-2,2] [-0.1,0.1] [-2.5,0.05,2] [-11.5,0.05,2.5]
40 [-3,3] [-0.1,0.1] [-3,0.05,3] [-16,0.05,3]
108 [-5,5] [-0.1,0.1] [-4,0.1,3.6] [-25.5,0.1,5]

Table A.4.: Input details for hk0-slices at different Ei integrated over the full elastic
line

The minimum the momentum transfer step size listed in Table A.4 have been
specified during the data manipulation. If a smaller momentum transfer step size is
chosen, one observes artefact described by the white breaks in the low Qk regions i.e.
the step size within Horace is much wider than the chosen one (see Figure A.5).

Considering the calculation of integrated intensities, as already mentioned in section
5.5.1 the measurement was done with large angular steps. Therefore, we cannot be
sure that we have collected the integrated peak intensity. Figure A.6 shows a 1D-cut
along the (Qh,-2,0) axis. Only two data points above the FWHM were observed in
the magnetic peak (-1,-2,0) indexed in the orthohexagonal setting. This is similar
for all measured magnetic peaks and the number of data points is not sufficient to
determine the integrated intensities reliably.

A.1.4. Extraction of integrated intensity from HZB data
The extraction of integrated intensity has been performed using the LAMP program
(Large Array Manipulation Program) [94]. After launching LAMP, the appropriate
instrument calibration file provided by the instrument scientist was loaded into LAMP.
Then, the collected data for an individual reflection (*.NeXus format) were imported
by selecting the corresponding run number and plotted.

Each Bragg reflection was measured by performing an ω scan with fixed 2θ over
about 4.1 ○ in steps of 0.1 ○. Detector images were taken for every point in the scan
( see Figure A.12). With the help of a macro written by the instrument scientist, all
spectra were summed up and stored into a new workspace (See Figure A.13). The
two dimensional Bragg peaks were integrated over the x and y axes of the detector
and plotted as a function of ω using LAMP. The extracted one-dimensional peaks
were then fitted using a Gaussian function plus linear background ( see figure A.7).
The high background level limits the reliability of the determination of integrated
intensities as the transition temperature was approached.
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Figure A.5.: Elastic scattering maps of the (hk0) plane measured on Merlin at T=125
K with Ei=108 meV, by integrating in the energy range between -5 meV
and 5 meV and integrating (0,0, l) between -0.1 and 0.1, with different
momentum transfer step size for the (h,0,0) and (0, k,0) axis (a) h=[-
2,0.05,13], k =[-10.5,0.05,8], (b) h=[-2,0.1,13], k=[-10.5,0.1,8].

A.1.5. Processing of macroscopic data

A.1.5.1. Magnetization data

As described in section 5 the data at the Quantum Design systems were typically
collected in sweep mode. Therefore the individual scans of field- or temperature-
series did not share the same abscissa values, which is needed, when we treat data from
different scans. The calculation of the numerical derivatives from sweep measurements
yields a very noisy signal due to the small step size of the x-values (See Figure A.8).

To account for that, the temperature and magnetic field dependent magnetization
data were re-binned using a linear interpolation algorithm before performing the nu-
merical differentiation. The linear interpolation was done first by reducing the 1D
data-set size to a tenth of its original size. Then a data point was estimated by con-
structing a line between two neighboring data points. The derivative calculation was
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Figure A.6.: 1D-cut along the (Qh,-2,0) axis at 5K and Ei=21 meV, with E=[-2,2],
Ql=[-0.1,0.1], Qk=[-2.1,-1.9] and Qh=[-1.525,0.05,-0.475,]. [low,high] for
integration between two limits, [low,step,high] for a plot axis between
given limits with a given step size.

66 67 68 69 70
1800

2000

2200

2400

2600

2800

3000

30K

In
te

n
s
it
y



 (1.5 1 0)

 Gaussain fit

1 

66 67 68 69 70
2250

2300

2350

2400

2450

2500

2550  (1.5 1 0)

 Gaussain fit



In
te

n
s
it
y

121K

1 Figure A.7.: Gaussian fitting of the magnetic peak (1.5 1 0) measured at 30 K and
121 K.

then done by taking the average of the slopes between the point and its two closest
neighbors using the central difference approximation.

As for the magnetic field dependent magnetization derivative, the re-binned data
measured when the field is in sweep mode is consistent with the raw data measured
with smaller steps at the same temperatures when the field is in driven mode (see
Figure A.9a). The critical field is determined by fitting a Gaussian peak shape on a
sloping background. We use the peak width (FWHM) as a measure for the width of
the metamagnetic transition (see Figure A.9b).

A python script was built to extract isofield data from the isothermal measure-
ments. An array was created, which contained all the temperatures measured for the
construction of the file names. Four columns of the field dependent measurements
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Figure A.8.: dM/dH curve calculated from raw data measured when the field is in
sweep mode.
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Figure A.9.: (a) a comparison between dM/dH curves (blue) calculated from raw data
measured when the field is in driven mode and (black) data measured
in sweep mode and smoothed using linear interpolation; the base line
(red line) is used to substract the dM/dH data ; (b) Gaussian fit of the
subtracted dM/dH.

from the data files were loaded. These were the temperature, the applied field, the
magnetization and the error on the magnetization. Then the data was interpolated
to fixed field values (from 0 to 7.9 T) and arranged in a temperature x field ma-
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trix. The interpolation using Python was done using the PCHIP algorithm which
stands for Piecewise Cubic Hermite Interpolating Polynomial. This interpolator pre-
serves monotonicity in the interpolation data and does not overshoot if the data is
not smooth, which guarantees a calculation of continuous first derivatives. The en-
tropy change −∆Siso was calculated using the formulae presented in Eq. 3.19. The
calculation was done by taking the numerical temperature derivative of the isofield
magnetization curves and taking the sum over the discrete field settings that were
measured (see Figure A.18).

A.1.5.2. Heat capacity

In the case of magnetic materials, the total heat capacity at constant pressure Cp, can
be divided into three constituents, namely, the lattice heat capacity Cl, the electronic
heat capacity Ce and the magnetic heat capacity Cm :

Cp = Cp,l +Cp,e +Cp,m (A.19)

The lattice contribution is estimated with the Debye model. In the framework of
the Debye model, the acoustic modes give the dominant contribution to the heat
capacity. Debye assumed a linear dispersion relation for the lattice vibration up to
the cut-off frequency ωD. This yields a density of states of D(ω) = V ω2

2π2ν3 up to ωD.
This leads to the following expression for the Debye specific heat [27]:

Cv = 9NR( T
θD

)

3
θD
T

∫
0

x4ex

(ex − 1)2dx (A.20)

Where N is the number of atoms in the unit cell, R = 8.314J mol−1K−1 is the ideal
gas constant and θD =

h̵ωD

KB
is the Debye temperature [27].

Besides the lattice contribution to the total specific heat A.19, the electronic contri-
bution of the conduction electron subsystem has to be considered. The small fraction
of electrons filling the band up to the Fermi level can be excited thermally (defined
by Fermi-Dirac statistics) and make a small contribution to the heat capacity. This
electronic contribution to heat capacity is proportional to T at any temperature and
may become a dominant term at very low temperatures. The electronic heat capacity
for the Fermi gas model is given by [27]:

Cv,e = [
π2NK2

B

2EF

]T = γeT, (A.21)

where EF is the Fermi energy and γe is the Sommerfeld coefficient.
So, below 10 K, the heat capacity of the non magnetic isostructural reference com-

pound Ti5Si3 was fitted to the equation sum of the lattice Cl and the electronic contri-
bution Ce. The electronic contribution was estimated to be γe = 15.4(4)mJ mol−1K−2

and ΘD=547(5) K.
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Then, the magnetic contribution Cm to the total specific heat of Mn3Fe2Si3, was
estimated by subtracting the interpolated nonmagnetic isostructural reference com-
pound Ti5Si3 curve from that of Mn3Fe2Si3. For this, the Ti5Si3 curve was scaled
with the factor of 0.9473 to account for the different Debye temperature due to the
different molar mass of the compounds [95]:

θD(Mn3Fe2Si3)

θD(Ti5Si3)
= [

M(Ti5Si3)

M(Mn3Fe2Si3)
]

1
2

(A.22)

A.2. Graphs
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Figure A.10.: The transformation from the hexagonal to the corresponding ortho-
hexagonal coordinates in the real space.
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(aort3*, bort3*, cort3*)=(ahex*-1/2bhex*, 1/2bhex*, chex*) 

(aort1*, bort1*, cort1*)=(-1/2ahex *+bhex*, -1/2ahex*,  chex*) 
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Figure A.11.: The transformation from the hexagonal to the corresponding ortho-
hexagonal coordinates in the reciprocal space.

Figure A.12.: LAMP window: Detector images of the magnetic reflection (1.5 1 0)
measured at 20 K.
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Figure A.13.: LAMP window: Detector image of the magnetic reflection (1.5 1 0)
measured at 20 K.

(b) 

(a) 

5 K 

125 K 

Figure A.14.: Elastic scattering maps of the (hk0) plane measured on Merlin at
T=125 K with Ei=9 meV, by integrating energy between -1 meV
and 1 meV and integrating (0,0, l) between -0.1 and 0.1, with h=[-
1.5,0.03,1.5], k =[-8,0.03,2]
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(b) 

(a) 

5 K 

125 K 

Figure A.15.: Elastic scattering maps of the (hk0) plane measured on Merlin at
T=125 K with Ei=13 meV, by integrating energy between -1 meV
and 1 meV and integrating (0,0, l) between -0.1 and 0.1, with h=[-
1.5,0.03,2], k =[-9,0.03,2]
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(b) 

(a) 

5 K 

125 K 

Figure A.16.: Elastic scattering maps of the (hk0) plane measured on Merlin at
T=125 K with Ei=40 meV, by integrating energy between -3 meV
and 3 meV and integrating (0,0, l) between -0.1 and 0.1, with h=[-
2.5,0.05,4], k=[-16,0.05,3]
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(b) 

(a) 

5 K 

125 K 

Figure A.17.: Elastic scattering maps of the (hk0) plane measured on Merlin at
T=125 K with Ei=108 meV, by integrating energy between -3 meV and
3 meV and integrating (0,0, l) between -0.1 and 0.1, with h=[-3.5,0.1,4],
k=[-25.5,0.1,1.5]

114



A.2. Graphs

Figure A.18.: Python scripts used to calculate −∆Siso for H�[001].
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Figure A.19.: Temperature dependence of total heat capacity of Mn5Si3 at different
fields with H⃗ ∣∣[001] up to 150 K. Data taken from [65]
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Figure A.20.: Temperature dependence of the bond angles in the crystal structure of
Mn3Fe2Si3.
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Figure A.21.: Temperature dependence of the x(Mn2/Fe2) and x(Si) atomic coordi-
nates in Mn3Fe2Si3.
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Figure A.22.: Temperature dependence of Anisotropic displacement parameters of
(Mn1/Fe1), (Mn2/Fe2) and Si in Mn3Fe2Si3.
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Figure A.24.: Mn3Fe2Si3 neutron powder diffraction obtained on POWGEN at differ-
ent temperatures for a center wavelength of 0.8 Å. The multiple axis
breaks present the d(Å) regions with the strongest magnetic Bragg re-
flections indexed using Ccmm space group.
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Figure A.27.: Mn3Fe2Si3 neutron powder pattern obtained on POWGEN at 50 K for
a center wavelength of 2.665 Å. Gray tick marks indicate the positions
of the magnetic reflections. The difference curve is shown below on the
same scale. The multiple axis breaks present the d(Å) regions with
the strongest refined magnetic Bragg reflections indexed using Ccmm
space group. The magnetic space group model used for the fitting is
P [C]2221.
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A.3. Tables

a determined after the calibration on corundum; b pro-
vided by beamline scientist; c Scan information details
for each run are presented in Table 5.4

Input format ∗.mccd
Rotation ○ / Mirror 90 / Disabled
pixel size (mm) 0.0790
x0, y0 a 1006, 1020
synchrotron / lambda (Å)b Enabled / 0.4428
Polarisation factor (Plofact) 0.02
monochromator MIRROR/SYNCROTRON
Detector distance (mm)a 80
Scan info c Enabled
Use frames in inverse order Enabled

Table A.5.: Parameters for the conversion data images collected at the synchrotron
P24 beamline (EH2) to Esperanto format.

T (K) a (Å) c (Å) V (Å3)
300 6.85336(11) 4.75556(8) 193.437(5)
250 6.84914(10) 4.75173(7) 193.043(5)
200 6.84389(9) 4.74742(6) 192.573(4)
150 6.83953(10) 4.74247(7) 192.127(5)
125 6.83762(10) 4.74089(6) 191.955(5)
100 6.83591(10) 4.73887(6) 191.777(5)
80 6.83547(13) 4.73789(7) 191.713(6)
60 6.83486(12) 4.73785(7) 191.678(5)
40 6.83426(19) 4.73694(11) 191.607(9)
20 6.8341(2) 4.73711(10) 191.606(9)

Table A.6.: Lattice parameter and unit cell volume of Mn3Fe2Si3 from LeBail refine-
ments of X-ray powder diffraction data.
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A.3. Tables

T(K) Tmin Tmax
300 0.059 1
250 0.313 1
200 0.459 1
150 0.423 1
125 0.35 1
100 0.356 1
80 0.487 1
60 0.435 1
40 0.249 1
20 0.314 1

Table A.8.: Empirical absorption correction of Mn3Fe2Si3 using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm [89].

T (K) x(Mn2/Fe2) x(Si) Uiso(Mn1/Fe1) Uiso(Mn2/Fe2) Uiso(Si)
300 0.23281(3) 0.59801(5) 0.00619(3) 0.00788(4) 0.00692(7)
250 0.23271(3) 0.59804(5) 0.00573(3) 0.00718(4) 0.00645(7)
200 0.23258(2) 0.59805(5) 0.00479(2) 0.00594(3) 0.00549(7)
150 0.23249(2) 0.59808(4) 0.00427(2) 0.00517(3) 0.00501(6)
125 0.23248(3) 0.59805(6) 0.00390(2) 0.00467(3) 0.00460(7)
100 0.23249(2) 0.59806(5) 0.00356(2) 0.00420(3) 0.00429(7)
80 0.23246(2) 0.59809(5) 0.00361(20 0.00419(3) 0.00436(7)
60 0.23246(3) 0.59812(5) 0.00359(2) 0.00410(3) 0.00437(7)
40 0.23246(3) 0.59806(7) 0.00379(3) 0.00415(4) 0.00441(9)
20 0.23246(3) 0.59810(7) 0.00409(3) 0.00449(4) 0.00482(9)

Table A.9.: Atomic coordinates, isotropic displacement parameters of Mn3Fe2Si3 from
the refinements of x-ray single crystal diffraction data in P63/mcm.
Mn1/Fe1 and Si1 occupy WP 6g (x 0 1/4) and Fe2 occupies WP 4d
(2/3 1/3 0).
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A.3. Tables

T [K] (Si)
U11 U22 U33 U12

300 0.00630(9) 0.00572(12) 0.00852(12 0.00286
250 0.00594(8) 0.0056(1) 0.0076(1) 0.00284
200 0.00518(7) 0.0048(1) 0.00637(9) 0.00243
150 0.00477(7) 0.00451(9) 0.00557(9) 0.00225
125 0.00450(8) 0.0041(1) 0.00491(9) 0.00209
100 0.00431(8) 0.0040(1) 0.00439(9) 0.00200
80 0.00440(8) 0.0041(1) 0.0043(1) 0.00206
60 0.00464(9) 0.0044(1) 0.0039(1) 0.00220
40 0.0048(1) 0.0043(1) 0.0038(1) 0.00216
20 0.0053(1) 0.0052(1) 0.0037(1) 0.00260

Table A.11.: Anisotropic displacement parameters of (Si) in Mn3Fe2Si3 from the re-
finements of x-ray single crystal diffraction data in P63/mcm.
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A.3. Tables

T (K) wR(obs/all) R(obs/all)
105 3.13/3.14 2.26/2.27
90 3.54/ 3.55 2.51/ 2.52
50 3.76/3.77 2.70/2.71
20 3.48/3.49 2.54/2.55

Table A.13.: R(obs/all) and wR(obs/all) factors for nuclear reflections of Mn3Fe2Si3
based on the neutron powder data measured on POWGEN at different
temperatures for a center wavelength of 0.8 Å.

R(obs/all)
T (K) P[C]cmm P[C]nam P[C]nmn P[C]can P[C]nan P[C]cmn P[C]cam P[C]nmm

105 13.51/
30.18

7.41/
24.87

11.17/
23.44

13.37/
29.89

7.39/
16.35

10.61/
19.91

10.92/
27.64

8.82/
18.32

90 12.61/
30.90

11.20/
25.38

12.28/
24.24

11.52/
22.74

5.56/
13.71

9.47/
16.47

7.87/
19.23

9.25/
17.72

50 14.02/
24.18

9.56/
18.71

12.91/
21.91

11.55/
18.79

6.22/
11.27

8.47/
14.62

12.03/
20.69

10.42/
15.99

20 15.03/
22.19

12.45/
20.46

15.34/
21.06

13.82/
20.64

9.64/
13.51

11.03/
16.18

13.13/
20.45

11.72/
16.84

Table A.14.: R(obs/all) factors for magnetic Bragg reflections of Mn3Fe2Si3 based on
the neutron powder data measured on POWGEN at different tempera-
tures for a center wavelength of 0.8 Å.

wR(obs/all)
T (K) P[C]cmm P[C]nam P[C]nmn P[C]can P[C]nan P[C]cmn P[C]cam P[C]nmm

105 4.51/
5.07

3.97/
4.49

3.75/
4.23

4.05/
4.58

4.80/
5.06

4.11/
4.38

4.21/
4.78

3.79/
4.16

90 4.55/
5.00

4.47/
4.84

4.05/
4.44

4.41/
4.71

4.74/
4.94

4.01/
4.23

4.10/
4.42

4.49/
4.74

50 4.33/
4.61

4.16/
4.36

4.17/
4.40

4.42/
4.61

4.14/
4.29

4.94/
5.09

4.74/
4.93

4.52/
4.71

20 4.37/
4.58

4.17/
4.34

4.34/
4.49

4.44/
4.61

4.10/
4.23

4.14/
4.26

4.40/
4.59

4.17/
4.41

Table A.15.: wR(obs/all) factors for magnetic Bragg reflections of Mn3Fe2Si3 based
on the neutron powder data measured on POWGEN at different tem-
peratures for a center wavelength of 0.8 Å.
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A. Appendix

N.I.S.G Ama2
M.S.G P[C]c2m P[C]n2n P[C]c21n P[C]n21m P[C]c2m P[C]n2n P[C]c21n P[C]n21m

R(obs/all) 18.77/
21.10

6.39/
8.03

31.01/
37.91

21.89/
34.46

18.25/
20.71

8.27/
9.40

30.79/
36.69

21.31/
36.05

wR(obs/all) 20.77/
20.88

9.04/
9.18

42.12/
42.35

22.52/
24.09

20.14/
20.25

10.96/
11.00

38.41/
38.67

22.32/
23.23

N.P 6 9 11 8 6 9 11 8
N.I.S.G Amm2
M.S.G P[C]2mm P[C]2an P[C]21am P[C]21mn

R(obs/all) 24.95/ 28.11 6.02/ 7.99 29.32/ 38.13 24.55/ 42.30
wR(obs/all) 24.60/ 24.70 6.51/ 6.59 24.67/ 25.37 17.56/ 19.75

N.P 6 10 8 10
N.I.S.G Cmc2
M.S.G P[C]cm21 P[C]na21 P[C]nm21 P[C]ca21

R(obs/all) 20.31/26.16 13.71/15.96 26.04/40.36 23.08/32.57
wR(obs/all) 20.46/20.88 13.87/13.98 24.61/26.81 24.20/24.85

N.P 8 9 8 9
N.I.S.G C2221
M.S.G P[C]2221 P[C]212121 P[C]22121 P[C]21221

R(obs/all) 2.64/4.59 21.48/31.12 23.73/25.77 21.68/29.76
wR(obs/all) 2.76/3.03 20.68/21.65 23.18/23.20 15.33/16.20

N.P 7 10 9 8
N.I.S.G C2/c
M.S.G P[C]-1 P[C]-1 P[C]-1 P[C]-1

R(obs/all) 48.14/50.77 45.62/49.52 13.67/17.11 12.62/15.72
wR(obs/all) 57.91/57.96 54.11/54.18 13.97/14.15 12.60/ 12.75

N.P 16 16 16 16
N.I.S.G C2/m
M.S.G P[C]2/m P[C]21/a P[C]2/a P[C]21/m

R(obs/all) 20.72/35.52 21.47/29.51 13.45/18.10 26.69/33.01
wR(obs/all) 18.83/20.14 23.76/24.41 14.53/14.86 17.77/18.09

N.P 7 10 8 9
N.I.S.G C21/m
M.S.G P[C]21/m P[C]21/n P[C]21/n P[C]21/m

R(obs/all) 18.62/25.38 7.71/12.68 21.03/24.82 66.81/65.19
wR(obs/all) 19.15/19.73 6.69/7.09 22.73/23.24 59.15/59.12

N.P 7 10 10 7

Table A.16.: R(obs/all) and wR(obs/all) factors for magnetic Bragg reflections of
Mn3Fe2Si3 based on the neutron powder data measured on POWGEN
at different 20 K for a center wavelength of 2.665 Å. N.I.S.G: non-
isomorphic subgroups of Ccmm, M.S.G: magnetic space group derived
from N.I.S.G, N.P: number of paremeters.
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A.3. Tables

N.I.S.G Ama2
M.S.G P[C]c2m P[C]n2n P[C]c21n P[C]n21m P[C]c2m P[C]n2n P[C]c21n P[C]n21m

R(obs/all) 29.92/
31.94

10.80/
17.66

30.56/
32.61

24.06/
39.07

27.18/
29.45

11.84/
13.48

28.10/
33.05

24.17/
39.11

wR(obs/all) 27.85/
27.91

11.12/
11.45

29.95/
30.06

24.08/
25.74

26.54/
26.61

10.45/
10.51

28.00/
28.39

24.15/
25.81

N.P 6 9 11 8 6 9 11 8
N.I.S.G Amm2
M.S.G P[C]2mm P[C]2an P[C]21am P[C]21mn

R(obs/all) 35.32/38.75 66.66/67.37 20.97/32.60 26.76/43.21
wR(obs/all) 32.11/32.20 49.14/49.61 20.67/21.79 22.64/24.35

N.P 6 10 8 10
N.I.S.G Cmc2
M.S.G P[C]cm21 P[C]na21 P[C]nm21 P[C]ca21

R(obs/all) 28.96/37.65 7.27/13.37 29.51/51.42 32.02/36.60
wR(obs/all) 26.98/27.48 6.29/7.13 23.76/25.75 29.75/29.87

N.P 8 9 8 9
N.I.S.G C2221
M.S.G P[C]2221 P[C]212121 P[C]22121 P[C]21221

R(obs/all) 4.34/5.79 21.22/34.68 33.62/36.40 21.56/32.33
wR(obs/all) 5.84/5.94 19.32/21.20 34.58/34.63 21.07/22.24

N.P 7 10 9 8
N.I.S.G C2/c
M.S.G P[C]-1 P[C]-1 P[C]-1 P[C]-1

R(obs/all) 29.52/46.38 32.70/50.14 14.47/19.73 13.58/18.84
wR(obs/all) 27.86/28.84 30.99/31.88 15.44/15.58 11.96/12.15

N.P 16 16 16 16
N.I.S.G C2/m
M.S.G P[C]2/m P[C]21/a P[C]2/a P[C]21/m

R(obs/all) 29.83/48.27 22.67/34.01 12.59/17.33 23.72/39.47
wR(obs/all) 23.83/25.12 22.81/23.76 12.29/12.41 18.38/19.83

N.P 7 10 8 9
N.I.S.G C21/m
M.S.G P[C]21/m P[C]21/n P[C]21/n P[C]21/m

R(obs/all) 25.81/34.13 10.00/15.02 23.21/33.23 26.53/30.08
wR(obs/all) 24.17/24.87 10.88/11.04 23.58/24.33 21.48/21.63

N.P 7 10 10 7

Table A.17.: R(obs/all) and wR(obs/all) factors for magnetic Bragg reflections of
Mn3Fe2Si3 based on the neutron powder data measured on POWGEN
at different 50 K for a center wavelength of 2.665 Å. N.I.S.G: non-
isomorphic subgroups of Ccmm, M.S.G: magnetic space group derived
from N.I.S.G, N.P: number of paremeters.
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