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Abstract

A dumbbell nanoparticle (DBNP) system consists of an optically active Au seed par-
ticle on which a magnetic iron oxide nanoparticle (IONP) is heterogeneously grown.
Control and manipulation of these multi-functional hetero-structures have applica-
tions as a dual-probe for biomedical imaging, in catalysis, sensing, optics, photonics
and electronics. This thesis investigates the magnetic field-induced self-assembly in
diverse DBNPs, with different sizes of Au and IONPs coated with oleic acid and
oleylamine and dispersed in toluene. The effects of DBNPs’ complex morphology are
compared and contrasted to self-assembly studies on the IONPs’, which are single-
phase spherical counterparts. Direct comparison simplifies the understanding of broad
parameter space, including the size of the Au seed and the grown IONP, their size
distribution, the thickness of surfactant coating around the nanoparticle, concentra-
tion in a dispersion, composition, magnetic structure, and strength of the magnetic
field. A multiscale experimental approach is adopted to analyze the structure and
magnetic properties to link it to the self-assembly phenomenon. Microscopy com-
bined with local atomic structure obtained from synchrotron x-ray pair distribution
function (xPDF) is used to reveal local crystal structure, crystallinity, size and distor-
tion induced at the surface. Macroscopic magnetic measurements along with polar-
ized neutron scattering reveal the magnetic behavior. Small-angle x-ray and neutron
scattering (SAXS/SANS) measurements are exploited to observe and analyze self-
assembling patterns. Real-space analysis of such patterns is achieved through reverse
Monte Carlo (RMC) simulations. Spherical IONPs reversibly form 1D chains that
align, straighten with magnetic field. On the other hand, 1D and 2D chains are ob-
served with DBNPs in an applied magnetic field. The assemblies are classified into
three categories based on the anisotropy in the 2D scattering pattern. Moreover,
due to the unique morphology and orientation effects, the chains formed by DBNPs
within these categories have head-to-tail or side-by-side arrangement. Shape-induced
mechanisms governed by a dimensionless parameter are suggested to play a vital role
in determining assembly formation.
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Zusammenfassung

Ein „Dumbbell“-Nanopartikel (DBNP) besteht aus einem optisch aktiven Au-Keimpartikel,
auf dem magnetische Eisenoxid-Nanopartikel (IONP) heterogen gezüchtet werden.
Die Kontrolle und Manipulation dieser multifunktionalen Heterostrukturen finden
Anwendung als Doppelsonde für biomedizinische Bildgebung sowie in der Katalyse,
der Sensorik, der Optik, der Photonik und der Elektronik.

Die vorliegende Dissertation untersucht die Magnetfeld-induzierte Selbstorganisa-
tion in verschiedenen DBNPs, wobei Au-Partikel und IONPs unterschiedlicher Größe
verwendet werden, die mit Ölsäure und Oleylamin beschichtet und in Toluol dis-
pergiert werden. Die Auswirkungen der komplexen Morphologie von DBNPs werden
mit Selbstorganisationsstudien an den IONPs verglichen, die einphasige sphärische
Gegenstücke darstellen. Der direkte Vergleich vereinfacht das Verständnis des bre-
iten Parameterraums, einschließlich der Größe des Au-Keims und des gezüchteten
IONP, ihrer Verteilung, der Dicke der Tensidbeschichtung um das NP, der Konzen-
tration, der Zusammensetzung, der magnetischen Struktur und der Stärke des Mag-
netfelds. Zur Analyse des Zusammenhangs zwischen der Struktur und magnetischer
Eigenschaften und dem Selbstorganisationsphänomen wird ein mehrstufiger exper-
imenteller Ansatz gewählt. Mikroskopie kombiniert mit der aus der Synchrotron-
Röntgenpaar-Verteilungsfunktion (xPDF) ermittelten lokalen Atomstruktur wird ver-
wendet, um die lokale Kristallstruktur, die Kristallinität, die Größe und die an der
Oberfläche induzierte Verzerrung aufzudecken. Makroskopische magnetische Messun-
gen in Verbindung mit polarisierter Neutronenstreuung zeigen das magnetische Ver-
halten. Kleinwinkelröntgen- und Kleinwinkelneutronenstreuungsmessungen (SAXS/SANS)
werden ergänzend genutzt, um Muster in der Selbstorganisation zu beobachten und
zu analysieren. Die Realraumanalyse solcher Muster wird durch umgekehrte Monte-
Carlo-Simulationen (RMC) erreicht. Sphärische IONPs bilden reversible 1D-Ketten,
die sich mit einem Magnetfeld ausrichten und begradigen. Andererseits werden bei
DBNPs bei angelegtem Magnetfeld 1D- und 2D-Ketten beobachtet. Aufgrund der
Anisotropie in 2D-Streuungsmustern werden die beobachteten Ketten in drei Kate-
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gorien eingeteilt. Darüber hinaus weisen die von DBNPs gebildeten Ketten innerhalb
dieser Kategorien aufgrund ihrer einzigartigen Morphologie und Orientierungseffek-
ten „Kopf-zu-Fuß“- bzw. „Seite-an-Seite“-Anordnungen auf. Es wird vermutet, dass
forminduzierte Mechanismen, die von einem dimensionslosen Parameter bestimmt
werden, eine wichtige Rolle bei der Bestimmung der Anordnungszusammensetzung
spielen.





Acknowledgements

"This thesis indeed had one writer, but it took many wonderful people to shape the
writer and the story itself"
First and foremost, I like to acknowledge Prof. Thomas Brückel for giving me this
opportunity to take on this project, reviewing the thesis carefully and encouraging
me to find my true potential. Your insightful feedback always pushed me to sharpen
my thinking about a subject. Thank you for the courses you taught with such enthu-
siasm. It helped solidify the basics of magnetism and neutron scattering. I would like
to thank Prof. Joachim Mayer for agreeing to be my second referee and reviewing
this thesis. I am incredibly grateful to Dr. Mikhail Feygenson, who has been an ideal
mentor for me. Apart from offering valuable insights for the project, you have al-
ways supported my personal growth as a researcher by finding me new opportunities
and exciting collaborations. Thank you for your care, insight and humor. Without
Dr. Lester Barnsley, I would not have discovered my love for python. Thank you
for improving my technical skills and your bright optimism always cheered me. I
would like to thank Dr. Artem Feoktystov, who always asked the right questions
and gave me so much room for learning, experimenting, and thinking out loud. I am
also grateful to both Lester and Artem for assisting me during several experiments at
KWS-1, MLZ. This project would not have taken off without the dumbbell samples
provided by Prof. Francesco Pinieder and Dr. Elvira Fantechi, collaborators from the
University of Pisa. Your keen curiosity through scientific discussions and constant
support led to an enjoyable collaboration. I also like to thank our collaborators, Dr.
Dale Huber from Sandia National Laboratories and Dr. Sergie A. Ivanov from Los
Alamos National Laboratories, for the excellent quality and large quantity of single-
phase iron oxide samples. I would like to thank Sebastian Sievers, who collected part
of the magnetometry data on single-phase iron oxide particles. Thank you to Dr.
Sascha Ehlert for his constant help with microscopy and TGA experiments. I am
very grateful to Dr. Lisa Fruhner and Dr. Margarita Kruteva for training me in
sample preparation, collection and treatment of SAXS data. In this regard, I also

v



Acknowledgements

express my sincere gratitude to Dr. Emmanuel Kentzinger. You are always so kind
to offer me assistance, even when experiments went on up to midnight. I am grateful
to Dr. Oleg Petracic for his discussions on magnetometer data and the excitement to
discuss general challenging problems in physics. I thank Dr. Shibabrata Nandi for his
support during magnetometry measurements. I thank Dr. Asmaa Qdemat and Dr.
Wenhai Ji for their friendship, constant help with SEM measurements and introduc-
tion to lab. Special thanks to Dr. Tobias Köhler for his assistance during beamtime
experiments and several illuminating discussions. I am thankful to all the instru-
ment scientists at various beamlines worldwide, especially Dr. Antonio Cervellino
(PSI-Switzerland), Dr. Leighanne C Gallington (APS-USA), Prof. Dr. Eliot Gilbert
(ANSTO-Australia), Dr. William T Heller (SNS-Oakridge-USA) for their patience,
time, and invaluable comments during the experiment. I am indebted to several in-
spiring discussions during conferences on scattering and magnetism with Dr. Sabrina
Disch, Dr. Philipp Bender, Prof. Andreas Michels, Dr. Dirk Honecker, Dr. Dominika
Zákutná and Dr. Kathryn Krycka. I have to mention special thanks to the BornAgain
team, whose workshops on python and simulations were beneficial. I thank our other
nanoparticle group memebers Amal Nasser and Mikhail Smik for facilitating open
discussions during nanoparticle meetings or outside. Thank you, Berthold Schmitz,
for your constant assistance with the magnetometer. Special thanks to Micha Hölzle
for helping me resolve my technical problems ever so kindly and always with a smile.
I am very grateful for the generous and perfect administrative assistance from Mrs.
Barbara Daegener at every point. I express my sincere thanks to office colleagues Paul
Doege, Alexander Schwab, and Qi Ding for making a lively and fun work environment.
Special thanks to Alex for proofreading the German version of the abstract. During
my time as a Ph.D. student, I thank Dr. Annika Stellhorn, Dr. Anirban Sarkar,
Dr. Tanvi Bhatnagar-Schöffman, Dr. Patrick Schöffmann, Mathias Strothmann, Dr.
Mohammad Ait Haddouch, Dr. Marco Meixner, Dr. Kelvin Acerborn for stimulating
discussions as well as happy distraction from work to help me reset my mind. Further,
I express my special thanks to Suqin He and Venus Rai for your invaluable friendship
and the joy during stressful pandemic times. I thank my dearest friend Dr. Shyni P.
C. for proofreading and encouraging me to keep going during stressful writing times.
I am forever indebted to my brothers Vishnu, Varun and friends back home for their
humor and constant presence in my life. This would not have been possible without
the infinite patience and love from my best friend and husband, Vivek. Thanks for
staying awake during those sleepless nights to help with editing or to listen to some

vi



Acknowledgements

mad new idea. Finally, no words can express my deepest love and gratitude to my
parents. Without the inspiration, love and support you gave me, I might not be the
person I am today.

vii





Contents

Abstract i

Zusammenfassung ii

Acknowledgements v

1. Introduction 1
1.1. Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Theoretical framework 4
2.1. Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1. Atomic magnetic moment . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2. Magnetic moment due to electrons . . . . . . . . . . . . . . . . . . 7
2.1.3. Magnetism in a solid . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4. Macroscopic parameters . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.5. Types of magnetic order . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.6. Magnetic anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.6.1. Magnetocrystalline anisotropy . . . . . . . . . . . . . . . 15
2.1.6.2. Shape anisotropy . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.6.3. Surface anisotropy . . . . . . . . . . . . . . . . . . . . . . 17
2.1.6.4. Other anisotropic contributions . . . . . . . . . . . . . . 18

2.2. Nanomagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1. Magnetic nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2. Single Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3. Stoner-Wohlfarth (SW) model . . . . . . . . . . . . . . . . . . . . 22
2.2.4. Superparamagnetism (SPM) . . . . . . . . . . . . . . . . . . . . . . 24
2.2.5. Blocking temperature (TB) . . . . . . . . . . . . . . . . . . . . . . 26

2.2.5.1. Langevin function . . . . . . . . . . . . . . . . . . . . . . 26
2.3. Interparticle interactions in colloid . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1. van der Waals (vdW) forces . . . . . . . . . . . . . . . . . . . . . . 27

ix



Contents

2.3.2. Electrostatic (ES) forces . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3. Steric force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4. Magnetic forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.5. Gravitational force . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4. Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1. Elastic scattering experiment . . . . . . . . . . . . . . . . . . . . . 33
2.4.2. Scattering cross-section . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.3. Quantum scattering theory . . . . . . . . . . . . . . . . . . . . . . 35

2.4.3.1. Lippman-Schwinger equation . . . . . . . . . . . . . . . . 35
2.4.3.2. Born approximation . . . . . . . . . . . . . . . . . . . . . 37

2.4.4. Types of scattering probes: scattering length . . . . . . . . . . . . 38
2.4.4.1. Nuclear scattering length . . . . . . . . . . . . . . . . . . 39
2.4.4.2. X-ray scattering length . . . . . . . . . . . . . . . . . . . 39
2.4.4.3. Magnetic scattering . . . . . . . . . . . . . . . . . . . . . 40

2.4.5. Coherent and incoherent nuclear scattering . . . . . . . . . . . . . 40
2.5. Small-angle scattering (SAS) . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1. SAS fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.2. Form and structure factors . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.3. Behaviour at low Q: Guinier regime . . . . . . . . . . . . . . . . . 45
2.5.4. Behaviour at high Q: Porod regime . . . . . . . . . . . . . . . . . 46
2.5.5. Guinier-Porod model . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.6. Contrast variation using neutrons . . . . . . . . . . . . . . . . . . 47
2.5.7. Polarized neutrons: SANSPOL . . . . . . . . . . . . . . . . . . . . 49
2.5.8. Experimental aspects: data treatment . . . . . . . . . . . . . . . . 53

2.6. Wide angle scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6.1. Fundamentals: Bragg’s Law . . . . . . . . . . . . . . . . . . . . . . 55
2.6.2. Atomic planes and Ewald sphere . . . . . . . . . . . . . . . . . . . 56
2.6.3. Powder diffraction: Bragg peaks . . . . . . . . . . . . . . . . . . . 58
2.6.4. Total scattering experiments: Bragg and diffuse peaks . . . . . . 59
2.6.5. Experimental aspects: data treatment . . . . . . . . . . . . . . . . 60

3. Review of magnetic dumbbells nanoparticles 64
3.1. Single phase nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.1. Gold nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.2. Iron-oxide nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . 65

x



Contents

3.2. Types of dumbbell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3. Review of current synthesis methods . . . . . . . . . . . . . . . . . . . . . 67
3.4. Emergence of novel properties . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5. Previous observation of assemblies . . . . . . . . . . . . . . . . . . . . . . 69
3.6. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4. Experiments: Instruments, Methods and Simulations 73
4.1. Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2. Electron Microscope (EM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1. TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.1.1. Working principle . . . . . . . . . . . . . . . . . . . . . . 75
4.2.1.2. Sample preparation . . . . . . . . . . . . . . . . . . . . . 76

4.2.2. SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.2.1. Working principle . . . . . . . . . . . . . . . . . . . . . . 76
4.2.2.2. Sample preparations . . . . . . . . . . . . . . . . . . . . . 77

4.3. Magnetometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.1. Working principle and setup . . . . . . . . . . . . . . . . . . . . . . 77
4.3.2. Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.3. Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.4. Elemental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4. Thermogravimetric Analysis (TGA) . . . . . . . . . . . . . . . . . . . . . 80
4.5. Total scattering experiments-xPDF . . . . . . . . . . . . . . . . . . . . . . 80

4.5.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.2. Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.3. Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6. Small-angle x-ray scattering (SAXS) . . . . . . . . . . . . . . . . . . . . . 83
4.6.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6.2. Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6.3. Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7. Small-angle neutron scattering (SANS) . . . . . . . . . . . . . . . . . . . . 85
4.7.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7.2. Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7.3. Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8. Reverse Monte-Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . 87

xi



Contents

4.9. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5. Self-assembly in single phase IONPs as a reference to dumbbells 91
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2. Samples and synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3. Shape size and crystallinity . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4. Composition and local structure . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5. Magnetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6. Magnetic field induced self-assembly . . . . . . . . . . . . . . . . . . . . . 98

5.6.1. Energy calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.2. Assemblies as function of size, concentration and magnetic field 102
5.6.3. Formation of 1D chains . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6.4. Role of shell thickness . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.6.5. Magnetic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7. Reverse Monte Carlo (RMC) simulations . . . . . . . . . . . . . . . . . . 112
5.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6. Structural and Magnetic Characterization of Dumbbell Nanoparticles 116
6.1. Dumbbell geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2. Samples and synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3. Shape, size and crystallinity . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4. Composition and local structure . . . . . . . . . . . . . . . . . . . . . . . . 121
6.5. Magnetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.6. Surface ligand density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7. Self-assembly of Dumbbell Nanoparticles 133
7.1. Scattering contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2. Phase separation and macroscopic assemblies . . . . . . . . . . . . . . . . 134
7.3. Probing self-assembly : 2D visual analysis . . . . . . . . . . . . . . . . . . 135

7.3.1. 2D SAXS patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3.2. 2D SANS patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4. Types of assemblies and analysis methods . . . . . . . . . . . . . . . . . . 139
7.5. Category O: No assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.5.1. Radial analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xii



Contents

7.6. Category I: 1D chains with disorder . . . . . . . . . . . . . . . . . . . . . . 144
7.6.1. Radial analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.6.2. Sectoral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.7. Category I: 1D chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.7.1. Radial analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.7.2. Sectoral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.8. Category II: 2D chain assemblies . . . . . . . . . . . . . . . . . . . . . . . 149
7.8.1. Radial analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.8.2. Sectoral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.9. Orientation of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.10. Scattering simulation with BornAgain . . . . . . . . . . . . . . . . . . . . 156
7.11. Shape induced mechanisms involved in the assembly formation . . . . . 159

7.11.1. Energy estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.11.2. Differences between IONPs and DBNPs . . . . . . . . . . . . . . . 163

7.12. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8. Conclusion and outlook 166
8.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.2. Scope for future developments . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.3. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A. Structural parameters 174
A.1. Image analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
A.2. Total scattering refinements . . . . . . . . . . . . . . . . . . . . . . . . . . 175
A.3. SAXS refinement parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.4. SANS fits and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.5. Sector fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B. Magnetic properties 184

C. Energy calculation 186

D. Extended dumbbell analysis 188

List of Abbreviations 193

List of Symbols 194

xiii



Contents

Bibliography 198

List of Figures 220

Declaration of Authorship 235

xiv



1. Introduction

Ribosomes in a cell, swarms of ants, schools of fish, winds forming tornadoes, or the
galaxy we live in results from nature’s design process, namely, self-assembly. In such
phenomena, pre-existing parts come together to form reversible and ordered patterns
that are ubiquitous at all scales [1]. Drawing inspiration from nature, nanoparticles
(NPs) ( size < 100 nm) with controlled shape act as an individual entity for the design
and formation of complex structures. Their physical and chemical properties, such as
size, composition, surface charges, the coating around NP, geometry, etc., govern their
functionality, enabling various applications. These properties allow flexible tuning and
possibility to generate rich novel structures beyond the standard face-centered cubic
(FCC) or body-centered cubic (BCC) crystals. For instance, magnetic Iron Oxide
Nanoparticles (IONPs) containing typically magnetite (Fe3O4) NPs are potentially
detected and manipulated remotely with magnetic fields resulting in a large number of
applications such as for targeted drug delivery, contrast agents for magnetic resonance
imaging (MRI), hyperthermia, bioseparation and biosensing [2, 3, 4, 5]. Extensive
literature is now available on individual and collective properties of magnetic particles
with different shapes, composition and functionalizations [6, 7, 8, 9, 10, 11, 12].
These properties are exploited to realize the formation of 1D, 2D and 3D assemblies
in template and dispersions [7, 8, 13, 14]. In parallel, tunable optical properties of
metallic NPs such as Au or Ag are well documented due to their interaction with
light resulting from surface plasmon resonance [15]. Thus, the metallic NPs are ideal
candidates for catalysis, photo-induced hyperthermia, and imaging applications. By
the 1990s, methods for synthesizing cubes, rods and discs, commonly comprising
metals (for example, gold and silver) and metal oxides (magnetite, maghemite, and
hematite), were available.

The interest in nanoparticles has gradually shifted to multi-component nanoparti-
cles in the last two decades. There are growing appeals for developing such hybrid
NPs due to the significant benefit of combining magnetic and optical properties in a
single system. Owing to the advancements in the synthesis of various shapes (core-
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1. Introduction

shell, Janus, flower and dumbbell) and sizes, chemical and physical properties are now
tested in biomedical applications. In particular, IONPs grown heterogeneously on Au
surface results in non-centrosymmetric multi-component NPs with unique morphol-
ogy called "dumbbell nanoparticles" (DBNPs). The field of hybrid DBNPs only really
took off in the early 2000s due to seminal contributions by chemists following a robust
chemical seed-mediated growth as opposed to previous physical deposition methods
[16, 17]. Since then, a majority of the contributions in the decade aimed to improve
the synthesis of such structures and provide mechanisms to control the growth [18,
19]. In parallel, several authors have reported on the structural, magnetic and mag-
netoplasmonic behavior of such DBNPs. Novel properties were often correlated to
interfacial phenomenon arising due to shared interface between Au and IONP [20, 21,
22, 23].

Several researchers have conducted simulations using DBNPs as the basic building
blocks and have reported a myriad of potential structures [24, 25, 26]. However, in
the limited experiments that reported the formation of assemblies using DBNPs as
structural units, self-assembly was mainly achieved through selective surface modifi-
cation of the DBNPs, creating predefined soft templates or photo-activation of the
surface. Assemblies were primarily driven by electrostatic or van der Waal forces and
were observed through microscopy/imaging techniques [27, 28, 29, 30]. The magnetic
field-induced assemblies using DBNPs without any surface modification have rarely
been investigated to the best of our knowledge. Therefore, this thesis primarily aims
to address the following:

1. To demonstrate the magnetic field induced self-assembly using diverse and asym-
metric DBNPs as building blocks without additional surface modification.

2. To perform comparative studies with the spherical IONP counterparts and iden-
tify the relevant parameters using a multi-scale experimental approach.

3. To establish a correlation between the geometry of the individual DBNP and the
resulting assembled structure and identify the mechanisms involved in forming
assemblies.

1.1. Thesis outline
The thesis is divided into eight chapters. Preliminary advancements in the field
of nanoparticles and the overarching goals of this investigation are introduced in
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chapter 1. Chapter 2 sets the theoretical framework with existing theories in
nanomagnetism including useful definitions for blocking temperature, superparamag-
netism, anisotropy, etc., that is subsequently used in later chapters. The origins of
several colloidal forces involved in self-assembly are discussed. The basics of scat-
tering theory are outlined, followed by small-angle and total scattering principles.
Chapter 3 reviews in detail the literature on magnetic dumbbell nanoparticle con-
taining Au - Fe3O4 synthesis, reasons for observing novel properties, prior observation
of assemblies, and its potential applications. The multiscale experimental methods
such as electron microscopy, magnetometry and advanced scattering techniques such
as x-ray pair distribution function (xPDF), small-angle x-ray and neutron scatter-
ing (SAXS/SANS), along with Reverse Monte-Carlo (RMC) simulations used in the
characterization of structural, magnetic and self-assembly behavior are described in
chapter 4. The richness of parameter space involved in understanding the self-
assembly of DBNPs through reference studies on spherical IONPs is demonstrated
in chapter 5. The synthesis routines to obtain four diverse DBNPs are described
in chapter 6. The structural and magnetic properties of DBNPs are contrasted
and compared with IONPs to establish an ever richer parameter space indicating the
complexity of the problem being tackled. This chapter further defines and empha-
sizes the geometric parameters A1 and A2 of the DBNP that plays a crucial role in
tuning the self-assembly. Chapter 7 displays the formation of assemblies through
2D scattering patterns. Several 1D analysis methods are employed to understand,
describe and classify assemblies. The formation of assemblies is realized in terms of
geometric parameters introduced previously. Ultimately, a comprehensive conclusion
summarizes the results of this investigation in chapter 8. This chapter also sheds
light on the future developments in this project.
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This chapter will describe the framework based on the existing theories in magnetic
nanoparticles, nanomagnetism, colloidal forces and scattering theory that reflects the
field of inquiry conducted in the thesis. Therefore, this chapter serves as a blueprint
from which several hypothesis/terms/equations are borrowed to conduct own inves-
tigations in the later chapters.

2.1. Magnetism

In section 2.1 and 2.2, we recall some standard facts in magnetism and nanomagnetism
adopted from several books [9, 31, 32, 33, 34]. The subject of magnetism is discussed
from a classical and quantum mechanical view point.

2.1.1. Atomic magnetic moment

The elementary object in solid state magnetism is the magnetic moment. Classically,
this is viewed as a circulating electric current I, in an oriented elementary loop of
area ∣dA⃗∣ (see Fig. 2.1 (a)). Then the magnetic moment is written as

dµ⃗ = IdA⃗ (2.1)

where the unit is Am2. Analogous to electric dipole consisting of two charges separated
by a distance, the magnetic dipole can be considered as two magnetic monopoles
separated by distance pointed in direction of vector dA⃗. The direction of vector is
normal to the area of the loop and determined by the right hand cork-screw rule.
In atoms, according to the Bohr’s model, electrons revolve in circular orbits under
the influence of Coulomb potential (Fig. 2.1 (b)). An electron revolving around the
nucleus is equivalent to circulating current in a direction opposite to the motion of
the negatively charged electron. If the speed of the electron is ∣v⃗∣, then its period
of rotation is τ = 2π∣r⃗∣

∣v⃗∣ where ∣r⃗∣ is the radius of the orbit. The equivalent current is
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2.1. Magnetism

I = −e/τ , where e is the charge of electron (-1.6022 ×10−19 C). The magnetic moment
due to this orbital motion is given by µ⃗ℓ = −1

2er⃗ × v⃗ and is modified as

µ⃗ℓ = −
e

2me

ℓ⃗ = γℓ⃗ (2.2)

where angular momentum ℓ⃗ =mer⃗ × v⃗ , me is the mass of electron (9.109 × 10−31 kg)
and γ is gyromagnetic ratio. For orbital motion of electron, the minus sign means
the µ⃗ and ℓ⃗ are in opposite direction. The Bohr’s model is a simplified version of
quantum mechanical description of an atom. The theory of magnetism is connected

Figure 2.1.: (a) The current carrying loop with moment µ⃗ in direction of dA⃗. (b) The
Bohr’s atom where the electron moves in a circular orbit where its ℓ⃗ and
µ⃗ are in opposite directions and (c) the spin-orbit interaction from the
viewpoint of electron.

to the angular momentum of an elementary particle. So quantum theory of magnetism
is linked to the quantization of angular momentum. The orbital angular moment is
quantized in units of h̵ in such a way that the component of µ⃗ℓ in some particular
direction (chosen as z direction in Cartesian coordinates) is given by

µz
ℓ = −

e

2me

mℓh̵; mℓ = 0,±1,±2 (2.3)

where mℓ is the orbital magnetic quantum number. The unit of electronic magnetism
is given by Bohr magneton defined as µB = eh̵

2me
, where 1 µB = 9.274 × 10−24 Am2

and the z-component is an integer number of Bohr magneton. The difference in the
classical orbit and quantum mechanical stationary state is that the classical motion
will cease as a result of radiation loss. The eqn. (2.3) is expressed in terms of g-factor
which is the ratio of the magnetic moment (in units of µB) to angular momentum (in
units of h̵):

∣µ⃗ℓ∣/µB = g∣ℓ⃗∣/h̵ (2.4)
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in vector notation. Here, the z-component of angular momentum is mℓh̵ and thus
g-factor is 1 for orbital motion of electron. Electrons posses an intrinsic spin angular
momentum s⃗ with spin quantum number. The associated moment is intrinsic to the
electron without any orbital motion. Electron is a point particle with radius < 10−20

m which is smaller than the classical radius (2.8 × 10−15 m). Hence, the spin of an
electron which is often imagined as spinning top is misleading. The inbuilt angular
momentum is a consequence of the relativistic quantum mechanics. Similar to the
orbital angular moment, the associated spin magnetic moment is

µ⃗s = −
e

me

s⃗ (2.5)

where the component of s⃗ along any axis is 1
2 h̵ for an electron. The associated

component of spin magnetic moment is given by

µz
s = −2

e

2me

msh̵; ms = ±
1
2 (2.6)

where ms is the spin quantum number. The spin angular momentum is twice as
efficient as orbital angular momentum in creating magnetic moments. The g-factor
for intrinsic spin of the electron is 2.002. The electron has two spin states depicted
as ∣↑⟩ and ∣↓⟩ that are degenerate in zero magnetic field. The energy of an electron in
the presence of a magnetic field B⃗ is

E = gµBmsB (2.7)

and this energy that splits electronic levels by an amount gµBB is called Zeeman
energy. On an atomic scale, the intrinsic magnetic moments are associated with spin
of each electron and contribution of orbital motion around the nucleus. The nucleus
itself may possess spin, but the nuclear moments are three orders of magnitude smaller
than those associated with electron because the magnetic moments of particle scales as
1/mass. The interaction of electron spin and motion gives rise to spin-orbit coupling
(SOC). From the electron’s point of view, the nucleus revolves with speed ∣v⃗∣. The
motion is equivalent to current loop which creates a magnetic field. The spin-orbit
interaction is due to this magnetic field B⃗so acting on the intrinsic moment of electron
(see Fig. 2.1 (c)). Interaction energy Eso = −µBBso can be written as

Eso ≈ −
µoµ2

BZ
4

4πa3
o

(2.8)
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where µo is magnetic permeability, Z is atomic number and ao is Bohr radius. The
dependence of Z on the spin-orbit interaction indicates a weak perturbation for light
elements that becomes more important for heavy elements. Including a relativistic
correction the eqn.(2.8) is modified by factor 2. The Hamiltonian for interaction of a
single electron SOC is given by

Hsoc = esoℓ̂.ŝ (2.9)

where eso is the SOC energy, ℓ̂ and ŝ are the dimensionless operators. In quantum
mechanics the physical observables such as angular momentum are represented by
differential or matrix operators. The eqns (2.3) and (2.5) in quantum mechanics
means that the matrix elements of the operators for µ̂ and ℓ̂ or ŝ are proportional. In
general, the total magnetic moment of an electron is the vector sum of the spin and
orbital angular magnetic moments and written in operator form is

µ̂ = −µB

h̵
(ℓ̂ + 2ŝ) (2.10)

The physical quantities that commute can be measured simultaneously. The three
components of the angular momentum do not commute, meaning that a precise mea-
surement of z-component will result in indeterminate x and y components. The
eigenvalues of ŝz and l̂z are msh̵ and mℓh̵, respectively. The square of the angular
momentum commutes with component of angular momentum:

[ŝ2, ŝz] = [ℓ̂2, ℓ̂z] = 0 (2.11)

where the eigenvalues of ŝ2 and ℓ̂2 are s(s + 1)h̵2 and ℓ(ℓ + 1)h̵2, respectively.

2.1.2. Magnetic moment due to electrons

There are two limit cases to understand electronic magnetism in solids. One is the
localized limit where there is a strong correlation between electron and the ion cores
through Coulomb repulsion. Other is the delocalized limit, where electrons confined
in a solid weakly interact with the nuclear charge. In the localized limit, the energies
of a single electron in a central potential are calculated using hydrogen atom as a
model system. The Hamiltonian for a single electron system is given by

He = −
h̵2

2m∇
2 − Ze2

4πϵor
(2.12)
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where p̂ = −ih̵∇ and ϵo is the permittivity. The Schrödinger equation for energy
levels of the atom is Hψi = ϵiψi, where ϵi and ψi are the energy eigenvalues and the
corresponding wave functions. The three quantum numbers n, ℓ and mℓ are required
to define the wavefunction ψi which describes the spatial distribution and energy
levels of an electron. The fourth quantum number s summarizes the spin angular
momentum. A total of four quantum numbers are required to specify completely the
state of an electron when bound to an atom. Pauli’s exclusion principle clearly states
that two fermions (electrons) cannot have the same four quantum numbers within a
quantum system simultaneously. Here n is the principle quantum number that takes
integer values to defines energy levels and ℓ takes values 0,1,..(n-1) which describes
the shape of the orbital. There are (2ℓ+1) values for mℓ which goes from 0,±1,...±ℓ.
When more than one electron is present, Coulomb repulsion is added to the eqn.
(2.12) to obtain

Hee = −∑
i

( h̵
2

2m∇
2 − Ze2

4πϵo∣r⃗i∣
) +∑

i<j

e2

4πϵo∣r⃗i − r⃗j ∣
(2.13)

where ∣r⃗i−r⃗j ∣ is the distance between the electrons. When several electrons are present
on the same atom, at most two electrons with opposite spins can pair in the same
orbital. Usually magnetic ions follow L-S coupling scheme where individual spin and
orbital angular momentum add to give resultant quantum numbers:

S =∑
i

si ,Ms =∑
i

msi , L =∑
i

ℓi ,Mℓ =∑
i

mℓi. (2.14)

When the SOC is strong, the ℓi and si for each electron result in j which is then
coupled to total angular momentum. This is the j-j coupling scheme. The Hund’s
rule prescribes steps to determine the lowest energy state in multielectron atom or
ion. Hund’s rule are as follows: (i) maximize S for configuration, (ii) maximize L
consistent with S and (iii) then couple L and S to form J, J = L-S ( if shell is less
than half filled) and J = L+S if shell is more than half filled. When it is exactly half,
L = 0 and J = S. The general notation for ground state is 2S+1XJ . According to this
rule, S = 1, L = 1 and J = 0 for example in carbon C = 1s22s22p2, which results in
non-magnetic ground state since MJ = 0. The electronic configuration of the magnetic
ion Fe3+ is 3d5 where S = 5/2, L = 0 and J = 5/2, thus the ground state is 6S5/2. SOC
is the origin of magnetic effects like magnetocrystalline anisotropy, magnetostriction
and anisotropic magnetoresistance. The multi-electron Hamiltonian adapted from the
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single electron eqn. (2.9) is
Hsoc =

Λ
h̵2 L̂.Ŝ (2.15)

where Λ = ± λ
2S and here Λ > 0 for first half of 3d and 4f series and Λ < 0 for second

half of the series. By analogy with eqn. (2.10), the magnetic moment of atom is

µ̂ = −µB

h̵
(L̂ + 2Ŝ) (2.16)

Writing the eqn. (2.4) in the operator form to calculate the Lande g-factor for mul-
tielectron atom or ion using total angular momentum Ĵ we get

g = −(µ̂.Ĵ/µB)
(Ĵ2/h̵)

= µ̂.Ĵ

J(J + 1)µBh̵
(2.17)

The numerator of the right hand term is simplified using the eigenvalues as shown
below,

µ̂.Ĵ = −µB

h̵
[(L̂ + 2Ŝ).(L̂ + Ŝ)]

= −µB

h̵
[(L̂2 + 3L̂.Ŝ + 2Ŝ2)]

= −µB

h̵
[(L̂2 + 2Ŝ2) + 3

2(Ĵ
2 − L̂2 − Ŝ2)]

= −µB

h̵
[32J(J + 1) − 1

2L(L + 1) + 1
2S(S + 1)]

The Lande g-factor can now be written in the most familiar form

g = 3
2 +
[S(S + 1) −L(L + 1)]

2J(J + 1) . (2.18)

In the localized limit, the transfer of electrons from one ion site to another is negligible.
In the delocalized model, the electronic magnetism occurs due to wave like extended
states which forms energy bands. The number of electrons that transfer from one
band to another depends on Fermi integral and obey Fermi-Dirac statistics. The
delocalized model can be applied to 3d and 4d metals.
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2. Theoretical framework

2.1.3. Magnetism in a solid

Further, when atoms are brought together in a solid, the magnetism depends on
crystal structure and composition. Electrons in filled shells have paired spin and no
net orbital moment. Only unpaired spins usually in the outermost shells contribute
to the atomic moments. The hydrogen molecule, where neighbouring atoms each
have a single electron, is chosen as the model system. In two neighbouring atoms,
Coulomb repulsion in conjunction with Pauli’s exclusion principle forbids the two
electrons to enter into same quantum state. There is an energy difference between
∣↑i↑j⟩ and ∣↑i↓j⟩ configuration of spins of neighbouring atoms i and j. Since electrons
are indistinguishable ∣Ψ(1, 2)∣2 = ∣Ψ(2, 1)∣2, the only solution for total wavefunction of
two electrons must be anti-symmetric

Ψ(1,2) = −Ψ(2,1). (2.19)

The total wavefunction Ψ is the product of spatial Φ(r⃗1, r⃗2) and spin wavefunction
χ(s⃗1, s⃗2). The simplest model is the hydrogen molecule with two atoms each with 1
electron. The Schrödinger equation is now H(r⃗1, r⃗2)Ψ(r⃗1, r⃗2) = ϵΨ(r⃗1, r⃗2) neglecting
e-e interaction. The two molecular orbits consist of a spatially bonding orbital ϕs

with electronic charge between the atom and spatially anti-symmetric anti-bonding
orbital ϕa having a nodal plane and no charge midway given by

ϕs =
1√
2
(ψ1 +ψ2) ;ϕa =

1√
2
(ψ1 − ψ2) (2.20)

where ψ1 and ψ2 are spatial components of individual electron 1 and 2. The ψ1(r⃗1)
and ψ1(r⃗2) are solutions to Schrödinger equation. The symmetric and anti-symmetric

Figure 2.2.: (a) Spatially symmetric and (b) anti-symmetric wave function. (c) Split-
ting of spin-singlet and triplet states for H2 molecule.
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spin function are spin triplet and spin singlet states:

S = 1 ;Ms = 1,0,−1

χs = ∣↑1, ↑2⟩ ; 1√
2
(∣↑1, ↓2⟩ + ∣↓1, ↑2⟩) ; ∣↓1, ↓2⟩

S = 0 ;Ms = 0

χa =
1√
2
[∣↑1, ↓2⟩ − ∣↓1, ↑2⟩]

According to the eqn. (2.19), the total anti-symmetric wavefunction is the product
of the symmetric space and anti-symmetric spin functions or vice-versa:

ψI = ϕs(1,2)χa(1,2) (2.21)

ψII = ϕa(1,2)χs(1,2). (2.22)

Energy of two states are

ϵI,II = ∫ ϕ∗sa(r⃗1, r⃗2)H(r⃗1, r⃗2)ϕsa(r⃗1, r⃗2)dr3
1dr

3
2 (2.23)

where ϵI < ϵII for hydrogen molecule H2, meaning the bonding orbitals (spin singlet)
lies below anti-bonding orbitals (spin triplet). The energy can be written as

H = −2J ŝi.ŝj (2.24)

where the exchange integral J = (ϵI − ϵII)/2. Heisenberg generalized it to many
electron atomic spins Ŝ1 and Ŝ2 in the well known equation,

H = −2J Ŝ1.Ŝ2 (2.25)

where Ŝ1, Ŝ2 are dimensionless spin operators and J has the units of energy. When
J > 0, the spins are parallel resulting in ferromagnetic (FM) type interaction. For
J < 0, anti-parallel arrangement of spins result in anti-ferromagnetic (AF) and ferri-
magnetic type (FiM) interaction (see Fig. 2.3). For a lattice, the H is generalized to
sum over all neighbouring pair of atoms on lattice sites i, j:

H = −2∑
i>j
Ji,jŜi.Ŝj (2.26)
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Figure 2.3.: The sign of exchange integral J resulting in various interactions in a solid

2.1.4. Macroscopic parameters

At this point one can define the macroscopic parameters M⃗ , χ, B⃗ and H⃗ using
magnetostatics. Magnetostatics describes the magnetic forces and energies due to
distribution of magnetic material through classical physics formalisms. Magnetiza-
tion (M⃗) is defined as the sum of the individual moments over the entire sample
volume V , given by

M⃗ = ∑i µ⃗i

V
(2.27)

with unit A/m. In magnetostatics the magnetic moment is derived as shown in eqn.
(2.1) and M⃗ of a solid varies smoothly on mesoscopic scale in a continuous medium
approximation. Magnetic field (B⃗) generated due to small current carrying elements
is calculated using Biot-Savart’s law. The source of B⃗-field is current either gener-
ated from moving charges, electric current flowing through conductors or magnetic
moments. Maxwell’s equations states that this B⃗-field is divergenceless (∇⃗.B⃗ = 0).
The magnetic field lines form continuous loops and the net flux of B⃗ across any closed
surface is zero (Gauss’s theorem). Alternative name for the magnetic field is mag-
netic flux density or magnetic induction and the unit is Tesla. The B⃗- field from a far
away source varies as ∼ 1/r3. However, for experiments with magnetic field one would
require uniform fields in some limited space. Certain structures of current carrying
conductors such as inside of infinitely long solenoid, Helmholtz coils or a configura-
tion of permanent magnets (Halbach cylinder) can create such uniform fields. The H⃗-
field is an auxiliary field that is also known as magnetic field strength or magnetizing
force. In a medium with magnetization M⃗ , fundamental field B⃗ and internal field H⃗i

are related as
B⃗ = µo(H⃗i + M⃗) (2.28)
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where µo = 4π × 10−7H/m. In free space M⃗ = 0 then B⃗ = µoH⃗. The unit of H⃗i is A/m
and the unit of conversion is 1 T ∼ 795 kA/m. Demagnetizing field H⃗d depends on
the shape of the magnetized material and is given by

H⃗di = −NijM⃗i i, j = x, y, z, (2.29)

where Nij is the demagnetizing tensor. The tensor is generally represented by sym-
metric 3 × 3 matrix. The principle components of N also known as demagnetizing
factors in diagonal form is (Nxx,Nyy,Nzz). External field acting on a sample is H⃗
called the applied field. The sample itself does not affect the H⃗. The internal field in
the sample is given by

H⃗i = H⃗ + H⃗d (2.30)

which is the sum of external field and demagnetizing field. The response of linear,
isotropic and homogeneous magnetic material in a applied field is characterized by
magnetic susceptibility given by

M⃗ = χ′H⃗ (2.31)

where χ′ is the external susceptibility. The magnetization related to internal field Hi

using eqn. (2.30) by
M⃗ = χH⃗i (2.32)

where 1/χ = 1/χ′ −N .

2.1.5. Types of magnetic order

The magnetic response of material that do not order in an applied magnetic field is
either paramagnetic and diamagnetic. Susceptibility of many paramagnets is given
by

χ = CT (2.33)

which is the Curie law (Fig. 2.4 (a)). The susceptibility for some metallic param-
agnets, given by Pauli susceptibility (χ > 0) and almost all diamagnets (χ < 0) is
independent of temperature (Fig. 2.4 (b)). As discussed in previous section, FM
order is a result of the parallel alignment of magnetic moment of individual atoms
which results in the spontaneous magnetization Ms. At temperatures above Curie
temperature TC, the FM order collapses and the material becomes paramagnetic
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where the atomic moments experience random thermal fluctuations. Above TC, it
follows Curie-Weiss law given by

χ = C

T −TC
(2.34)

where C is the Curie constant (Fig. 2.4 (c)). In an AF material, the atomic moments
result in Ms = 0 due to two equivalent but oppositely oriented sub-lattices (M⃗A =
−M⃗B). The transition temperature where the moments begin to order is the Néel
temperature TN. If magnetic sub-lattices are oppositely oriented but are inequivalent
( M⃗A ≠ −M⃗B) then there is a net spontaneous magnetization. Such ordering is present
in FiM materials.

Figure 2.4.: Types of magnetic materials: temperature dependent susceptibility (red)
and magnetization (black) curves for (a) an ideal paramagnet, (b) Pauli
paramagnet and diamagnets, (c) ferromagnet, (d) antiferromagnet and
(e) ferrimagnet ; adapted from [35].

2.1.6. Magnetic anisotropy

Magnetic anisotropy means FM or AF axis of a sample lie along a fixed direction.
The tendency of M⃗ to easily align along a preferred axis would define the easy axis
of magnetization. This tendency to align is associated to the total anisotropy energy
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which can be written as
Ea =KeffV sin

2θ (2.35)

where θ is the angle between M⃗ and anisotropy axis and Keff is the anisotropy
constant with units of J/m3. The anisotropy depends on the temperature and tends
to 0 at TC, if there is no applied field. The main sources of anisotropy are related to
(a) crystal structure, (b) sample shape and (c) atomic and microscale structure. The
terms that contribute to Keff are listed in the table 2.1 [32, 31].

Table 2.1.: Different axial anisotropy constants and mechanisms
Anisotropy Mechanism Uniaxial constant
Crystalline Crystal field K1
Shape Magnetostatic Ksh

Néel Surface Ks

Induced Magnetoelastic, chemical Ki

2.1.6.1. Magnetocrystalline anisotropy

Magnetization of 3D FM crystals approach saturation at different fields when mag-
netized in different directions. The origin of such anisotropy is associated with the
SOC interaction of orbital containing magnetic electron with potential created at
atomic site by rest of crystal. The crystal field tends to stabilize the SOC so that the
orbital and the moment is aligned along a particular crystallographic direction. In
Fe, the cube edges <100> are easy directions, while cube diagonals <111> are hard
directions and for Ni, it is the other way round. On the other hand Co has unique
hexagonal easy axis [001]. Note <> denotes set of equivalent directions and [] a single
direction. Expressions for magnetoscrystalline anisotropy energy (EMCA) of different
crystal symmetries are [31, 32] ;

• Hexagonal: Emca = [K1sin2θ +K2sin4θ +K3sin6θcos6ϕ]V

• Tetragonal: Emca = [K1sin2θ +K2sin4θ +K3sin4θsin2ϕ]V

• Cubic: Emca = [K1(α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) +K2(α2

1α
2
2α

2
3)]V

where αi are directional cosines of magnetization, α1 = sinθcosϕ, α2 = sinθsinϕ and
α3 = cosθ. The anisotropy of a crystal system with a unique axis of high symmetry
is called uniaxial anisotropy. In uniaxial crystals Emca = [K1sin2θ +K2sin4θ]V ,
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2. Theoretical framework

for large ∣K1∣ the sample has an easy axis when K1 > 0, easy plane perpendicular
to symmetry axis when K1 < 0 and conical in case of intermediate values of the
constants. For most magnetization models used in nanoparticles, uniaxial anisotropy
is considered by ignoring the higher order terms and is equivalent to K1sin2θ. The
type of crystal system is considered for calculating the K2.

2.1.6.2. Shape anisotropy

The magnetostatic energy Em is given by

Em = −
1
2µ0∫

V
H⃗d.M⃗dV (2.36)

where demagnetizing field H⃗d is obtained from eqn. (2.29). This magnetostatic energy
of the ellipsoid in terms of diagonal demagnetizing factors and components of M⃗ is
given by [32, 31]

Em =
1
2µoV (NxxM

2
x +NyyM

2
y +NzzM

2
z ) (2.37)

where Nxx+Nyy +Nzz = 1, it follows that N∣∣+2N⊥ = 1. The total energy is then given
by

Em =
1
2µoVM

2
s (N⊥sin2θ +N∣∣cos2θ) (2.38)

where θ is the angle between M⃗ and rotation symmetry axis of the ellipsoid and Ms

is the saturation magnetization. The shape anisotropy energy Esh related to energy

Figure 2.5.: Magnetization along (a) the long axis in a prolate and (b) short axis in
oblate shaped ellipsoids with aspect ratio c/a.

difference ∆Em = Ehard−Eeasy, when the ellipsoid is magnetized along the easy (θ = 0○)
and hard directions (θ = 90○), is written as

Esh =
1
2µoVM

2
s (N⊥ −N∣∣) (2.39)
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2.1. Magnetism

For a prolate ellipsoid where c > a = b with aspect ratio A = c/a, the magnetization is
aligned along the long axis (see Fig. 2.5 (a)), N⊥ = Na = Nb = 1

2(1 −Nc) and N∣∣ = Nc.
Here, Nc is given by [36, 32, 37]

Nc =
1

A2 − 1 [
A

2(A2 − 1)1/2 × ln(
A + (A2 − 1)1/2
A − (A2 − 1)1/2) − 1] (2.40)

For an oblate ellipsoid or disc shaped ellipsoid where c = b > a and magnetization is
along the short axis as displayed in Fig. 2.5 (b). The demagnetizing factor along the
small axis Na is

Na =
A2

A2 − 1 [1 −
1

(A2 − 1)1/2 × arcsin(
A2 − 1)1/2

A )] (2.41)

where N⊥ = Nc = Nb = 1
2(1 − Na) and N∣∣ = Na Then, rewriting equation (2.39) in

terms of effective demagnetizing factor Neff , where N∣∣ = 1 −Neff and N⊥ = Neff/2,
the shape anisotropy constant is

Ksh =
1
4µoM

2
s (1 − 3Neff) (2.42)

and this is zero for a sphere when Neff = 1/3. Hence spherical particles as expected
have negligible contribution from shape anisotropic energy. Non-ellipsoidal particles
are approximately described by effective demagnetizing factor. Shape anisotropy is
only effective in samples that are small like nanoparticles and do not break into
domains [31].

2.1.6.3. Surface anisotropy

Due to the broken translation symmetry at the surface of small magnetic particles,
the total exchange interaction is less for surface atoms than the bulk. Since at the
surface, some neighbouring atoms are missing, the total dipole electric field is non zero
and is directed normal to the surface. The effective anisotropy for spherical particles
usually exhibits the following dependence

Keff =KV +
6Ks

D (2.43)

where KV is the anisotropy of macroscopic sample and Ks is surface anisotropy of
particles with diameter D. Surface anisotropy can influence the spin configuration of
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2. Theoretical framework

FM particles as shown in Fig. 2.6. The spin configurations determined numerically by
atomic scale Monte-Carlo simulation with simulated anneal are classified into throt-
tled (Fig. 2.6 (b)), hedgehog (Fig. 2.6 (c)) and artichoke (Fig. 2.6 (d)) categories.
The common picture from many studies is the presence of a region with spin disorder

Figure 2.6.: Magnetic spin configurations in FM nanoparticles simulated with (a) no
surface anisotropy, (b) and (c) with perpendicular surface anisotropy of
increasing strength and (d) in-plane surface anisotropy. Reprinted (ab-
stract/excerpt/figure) with permission from [38] ©(2008) by the American
Physical Society.

similar to a spin glass where surface spins are magnetically coupled to the ordered
spins in the core of a particle. The particles with FM core and AF shell structure
could display the exchange bias phenomenon.

2.1.6.4. Other anisotropic contributions

Elastic energy of magnetic solid contributes to the magnetic anisotropy due to inter-
action between M⃗ and strains which is given by

Eme = [B1(α2
1ϵxx + α2

2ϵyy + α2
3ϵzz) +B2(α1α2ϵxy + α1α2ϵyz + α1α2ϵxz)]V (2.44)

where B-factors are magnetoelastic coupling constants, αi are the direction cosines
and ϵi are strain components. Magnetoelastic energy increases anisotropy energy
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2.2. Nanomagnetism

when subjected to stress. Magnetostriction is due to change in M⃗ that is related
to the variation in dimension of solid. Other causes of induced anisotropy includes
deposition, annealing in a magnetic field and chemical treatments.

2.2. Nanomagnetism

2.2.1. Magnetic nanoparticles

A nano-object is a physical object differing in properties from corresponding bulk and
have at least one dimension in the nanometer regime. A nanoparticle (NP) is a quasi
zero dimensional nano object in which all characteristic linear dimensions are in the
nanometer range. Nanorods and nanowires are quasi 1D nano objects. Nanodisks and
thin film hetero structures all fall in the 2D category [32]. Magnetic characteristics
of atoms containing up to tens of atom are calculated using quantum methods. In
macroscopic objects, the number of atoms are very large up to ∼ 1023, in which case
one would additionally use statistics and thermodynamic descriptions. Therefore, the
NPs that contain up to ∼ 105 atoms are a bridge between bulk materials and single
atoms. Quantum dots are examples of NPs with discreet energy levels. In other cases,
NPs are treated using micromagnetic approach. In micromagnetism, magnetic sample
is described as a continuous medium of small volume elements with magnetization M⃗ .
The volume element is larger than atomic dimension but smaller than the sample.
Each volume element reaches a thermodynamic equilibrium in time much shorter
than it takes the whole sample to reach equilibrium. NPs are treated as continuous
medium of small size with deviation from bulk by taking into account the finite size
effects. The magnetization at every point of the sample is obtained by minimization
of the total energy given by

E = Eex +Em +Ea +Ez (2.45)

where Eex is the exchange energy (related to J ), Em is the magnetostatic energy
(related to stray fields and shape), Ea is the anisotropy energy (includes MCA, shape
anisotropy), and Ez is the Zeeman energy due to applied field.
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2. Theoretical framework

2.2.2. Single Domain

Magnetic domain structure in a bulk FM is a result of minimizing the magnetostatic
energy. Magnetic domains are regions containing magnetic moments aligned in the
same direction. Each domain can be represented by a single magnetization vector
accounting for all its magnetic moments per volume (Fig. 2.7(a)) They are separated

Figure 2.7.: Effect of size on magnetic properties of magnetic material: (a) mul-
tidomain bulk FM, (b) ferromagnetic sphere (c) single domain and (d)
superparamagnet.

from each other through a domain wall. The domain structure is eliminated by a large
enough applied magnetic field to reveal the underlying spontaneous magnetization of
a FM. Macroscopic FM has a well defined TC based on composition above which it is
paramagnetic. As the specimen approaches nanosize, the magnetic correlation length
diverges at TC, hence correlated fluctuating moments are influenced by finite size effect
of the specimen. Surface effects are due to lack of translational symmetry and reduced
coordination number of surface spins. Decreasing size of a specimen will increase the
ratio of surface spins to the total number of spins. The surface has different magnetic
behaviour with respect to core and the competition between them can define the
magnetic properties. Let us start with bulk single spherical sample of FM (or AF)
at temperature lower than the ordering temperature TC (or TN)(Fig. 2.7 (b)). Each
step in size reduction is a thermodynamic process. As the size of specimen decreases
and becomes comparable to domain size, the domain configuration is significantly
modified. There is a specimen critical size, DSD, below which it is favourable to not
have domain boundaries (Fig. 2.7 (c)). The uniformly magnetized core carries a
magnetic super moment frozen in magnetocrystalline easy direction. At D > DSD,
one could magnetize and demagnetize the particle under applied magnetic field by
simply moving domain wall with a low energy barrier. When D < DSD, only way to
change the magnetization of the sample containing spatially fixed single domain is
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2.2. Nanomagnetism

by overcoming the magnetocrystalline field. The single domain state further depends
strongly on the magnetic anisotropy of the specimen. For systems with low anisotropy,
as shown in the Fig. 2.8 (a), the configuration inside results in closed rings so the
total moment is zero. If crystalline anisotropy is large, as shown in cubic crystals
(Fig. 2.8 (b)) most of the moments lie along the easy direction. In strongly uniaxial
crystals, single domain particles has uniform magnetization along the unique easy axis
(Fig. 2.8 (c)). Therefore, finite size, shape and surface affects the spin configuration

Figure 2.8.: Magnetization in small NP with (a) low anisotropy (b) high anisotropy
in cubic crystal and (c) uniaxial system.

of the particle. The thermal energy is comparable to the anisotropy energy for single
domain particles at a critical volume. In this condition, the particles behave as
superparamagnets, a name derived from behaviour of atomic spins (paramagnets) but
here with much larger moments. The magnetization curve of single domain particles
with stationary, uniform magnetization is described by Stoner-Wohlfarth (SW) model.
In the SW regime, individual atomic moments turn in homogeneous coherent fashion
with magnetic field, whereby the magnetization of the whole domain remains parallel
to the field. The Néel rotation governs the restructuring of electronic spin states to
allow the magnetic moments to reorient irrespective of the orientation of the whole
particle (Fig. 2.9 (a)). On the other hand, when the particles are free to rotate like in
a fluid, the particles itself may undergo alignment called Brownian rotation (Fig. 2.9
(b)). The theory of Rosensweig is used to decouple the mechanisms based on their
relaxation times [39]. The Néel relaxation is

τn = τo exp(KeffV

kBT ) (2.46)
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Figure 2.9.: The initial state of the magnetic moment is the ellipsoid with magnetic
moment (black arrow) pointing along the long axis. (a) Néel rotation,
when the magnetic moment rotates in the ellipsoid and (b) Brownian
rotation where the particle itself rotates.

and Brownian relaxation is given by

τb =
3ηVH

kBT (2.47)

where τo, VH and η is the attempt time, hydrodynamic volume and viscosity of the
solvent, respectively [40].

2.2.3. Stoner-Wohlfarth (SW) model

In the SW model, FM NP is represented by a single domain ellipsoid . The uniaxial
ellipsoid has magnetization M⃗ that forms an angle θ with easy anisotropy axis (z-
axis). The applied field H⃗ forms an angle ψ with the easy axis (Fig. 2.10) [32, 33]. SW
- model consists of simpler micromagnetic approach which neglects exchange term in
total energy function (eqn. (2.45)). This treatment is often referred as a macrospin
model which assumes coherent reversal of individual atomic magnetic moments so
that they behave as a single macroscopic moment. The energy of the ellipsoid is then
[32]

E = [K1sin
2θ − 1

2µoM
2
s (N⊥sin2θ +N∣∣cos2θ) − µoMsHcos(ψ − θ)]V (2.48)

E = [Keffsin
2θ − µoMsHcos(ψ − θ)]V (2.49)

where Keff is the effective anisotropy. The origin of this anisotropy maybe mag-
netocrystalline (K1), shape (Ksh) and surface (Ks) related. When magnetic field is
applied to a FM there is a change in magnetization. The locus of M⃗ projected along
the direction of applied field H⃗ is plotted as M(H) hysteresis loop. The main charac-
teristics of the hysteresis loop are Ms (saturation magnetization where all moments
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2.2. Nanomagnetism

Figure 2.10.: Single domain ellipsoidal particle in a magnetic field H⃗ with relevant
angles between this field, anisotropy z-axis and magnetization M⃗ .

are aligned in common direction), Mr (remanent magnetization is the leftover magne-
tization when H = 0) and Hc (coercive field at which M = 0). The moment will select
a direction where total energy given by eqn. (2.49) is minimized. The orientation may
occur smoothly (rotation) or suddenly (switching) that will result in discontinuous
M at same value of H. We additionally define anisotropy field HA = 2Keff/(µoMs)
and factor h = H

HA
. The energy minimum condition is given by

⎛
⎝
∂E

∂θ

⎞
⎠

θ=θ∗

= 0 and
⎛
⎝
∂2E

∂θ2

⎞
⎠

θ=θ∗

> 0 (2.50)

and normalizing the magnetization to saturation we define m⃗ = M⃗
Ms

yields

[sinθcosθ + hsin(θ − ψ)]θ=θ∗ = 0 and [cos(2θ) + hcos(θ − ψ)] ≥ 0 (2.51)

To present the possible solution, we define two components
(i) longitudinal magnetization, is the projection of M⃗ along H⃗, m∣∣ = cos(θ − ψ).
(ii) transverse magnetization, projection of M⃗ perpendicular to H⃗, m⊥ = sin(θ − ψ)
The minimum is analytically derived from eqn. (2.51) for ψ = 0 and ψ = π

2 ;
(i) At ψ = 0, θ∗ = cos−1(−h) when h ≤ 1 otherwise θ∗ = 0, π yield square hysteresis in
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Figure 2.11.: (a) Longitudinal and (b) transverse hysteresis loops for various angles
ψ of the field h = H/HA with the anisotropy axis; reprinted with per-
mission [41].

Fig. 2.11 (a) and a line in m⊥ Fig. 2.11 (b).
(ii) At ψ = π

2 , θ∗ = sin−1(−h) when h ≤ 1 otherwise θ∗ = π/2 yield m∣∣ = h in Fig. 2.11
(a) and circle for m⊥ = ±

√
1 − h2 in Fig. 2.11 (b)

Model demonstrated how anisotropy energy affects the system hysteresis even without
any domain walls. SW-model allows computation of the height of barrier due to
anisotropic energy. From the minimization conditions in eqn. (2.50) and (2.51) for
ψ = 0, there are three solutions given by θ = 0, θ = π and θ = cos−1(H/HA). The third
value corresponds to the maximum of the energy barrier. Since cos(H/HA) ≤ 1, this
expression gives minimum field that allows inversion of magnetization. The energy
barrier is derived as ∆E = Emax −E(θ = 0) is

∆E =KeffV (1 −
H

HA

)
2

(2.52)

and the barrier height is proportional to KeffV (Fig. 2.12 (a)) and disappears when
H =HA (Fig. 2.12 (b-c)).

2.2.4. Superparamagnetism (SPM)

As given by the SW model, single domain magnetic particle has two energy minima
separated by a barrier EB = KeffV . The transition from one minimum to another
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2.2. Nanomagnetism

Figure 2.12.: (a) The energy barrier of the single domain ellipsoid at H = 0 for a spin
flip. Switching of magnetization of a single domain ellipsoid particles
across the energy barrier under the action of an external magnetic field
H (b) pointing upward and (c) pointing downward; adapted from [41].

is thermally activated, and the probability is high when energy is comparable to or
larger than KeffV . In an ensemble of magnetized particles at temperature T ≠ 0, set
H = 0 at instant t = 0, magnetization will evolve with time. Néel proposed that the
relaxation of this moment is determined by attempt frequency (τ−1

o ) and Boltzmann
probability (exp(−EB/kBT)) that the particle has the thermal energy necessary to
surmount the barrier. The relaxation time from Néel- Arrhenius equation (2.46) can
be simplified as

ln(τn) = ln(τo) +
KeffV

kBT . (2.53)

With macroscopic techniques involving direct measurement of M⃗ , there is an associ-
ated measuring time tm. If the relaxation time τ is shorter than tm, then the measured
magnetization of NP is zero and particles are in superparamagnetic (SPM) regime.
If the opposite occurs (τ > tm), particles are in blocked state and non-zero instanta-
neous magnetization is measured. In most cases, the measuring time is fixed for a
measurement, while the sample volume and temperature can be varied to change the
energy barrier. Hence, we rearrange eqn. (2.53), to obtain a critical volume

V = kBT
Keff ln ( τn

τo
)

(2.54)

The critical volume for a given temperature with tm = 100s and τo = 10−9s is given by

V SP M
cr = 25kBT

Keff

(2.55)
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2.2.5. Blocking temperature (TB)

Conversely to eqn. (2.55), there is a temperature for a given volume where FM
behaviour is observed which is given by

TB ≈
KeffV

25kB

(2.56)

and this temperature TB is called the blocking temperature. The blocking temper-
ature is not uniquely defined and depends on the time scale of measurement, volume
and composition of the particle. Thus measurement of TB will help identify the size
of the NP.

2.2.5.1. Langevin function

The temperature dependence of the magnetization on an assembly of particles in
SPM regime is described by Langevin function. This is the classical analogue of
Brillouin function that describes paramagnetism. Hence, the derivation follows the
expression of magnetization for ensemble of paramagnetic atoms with difference being
that the angular momentum is not quantized here. The projection of moment along
the z-direction is given by

µz = µcosθ (2.57)

where θ may take any angle between 0 and π. Taking averages of θ, the expression
of magnetic moment projected along z-axis is

< µz >T= µL(x) (2.58)

where x = µB
kBT and L(x) is the Langevin function, given by

L(x) = cothx − 1
x

(2.59)

2.3. Interparticle interactions in colloid

Self-assembly is a process in which components either separated or linked, sponta-
neously form ordered aggregates. From a living cells containing complex structures
to formation of liquid crystal, concepts of self-assembly developed initially for molec-
ular components are both scientifically and technologically important [1]. There are
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primarily three size ranges for which self-assembly is important (i) molecular system,
(ii) nanoscale system (colloids and nanowires) and (iii) meso to macroscale objects.
Rules for self-assembly in each range though similar may not be identical. Chemists
have a great control over structures of molecules but little control over the character-
istic atoms. By contrast it is possible to choose wide range of interactions: van der
Waals, ionic, steric, entropic, magnetic, electrostatic and other forces using compo-
nents larger than molecules. Non molecules are therefore more flexible when it comes
to designing larger structures than molecular system. In this section, we discuss the
dominant forces present in colloidal systems which will be the focus of our study in
later chapters.

2.3.1. van der Waals (vdW) forces

The van der Waals interactions are ubiquitous attractive forces present between any
two physical bodies. In any atom or molecule, random and incessant fluctuation of
charges result in an arbitrary electric dipole that induce electric displacement in neigh-
bouring atoms leading to dipole-dipole interactions. In general, these vdW interaction
energy between atoms and molecules is given by [42, 43]

EvdW = −
CvdW

r6 (2.60)

where, r is the distance between the atoms or molecules and CvdW is the constant
characterizing the interacting species. The constant depends on three distinct inter-
actions namely: [42, 43]

• Keesom force, or the orientation force, appears between two permanent dipoles.
This is an attractive dipole-dipole interaction over various rotational orienta-
tions of dipoles.

• Debye force or the induction force, is present between permanent reordering
dipole and induced dipole due to polarizability of atoms and molecules. Both
Debye and Keesom forces involve at least one permanent dipoles.

• London dispersion forces are attractive forces generated by transient dipoles
of polarizable bodies.

The simplistic Hamaker integral approximation of these vDW forces in larger systems
such as nanoparticles consisting of tens to hundreds of atoms assumes a pairwise
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summation of all such molecular interactions. Following this, the integration in case
of two spheres show interaction energy falls as r−6 when separation distance is much
larger than particle size (s >> a). For a large particle, at short separation distance
(s << a), the decay follows as r−1 behavior. The vdW energy in case of sphere is [42,
44]

EvdW = −
A132

3 [ a2

s(s − 4a) +
a2

(2s + a)2 +
1
2 ln s(s − 4a)
(2s + a)2 ] (2.61)

where A132 is the Hamaker constant depends on density and polarizability of inter-
action for material 1 and 2 interacting over medium 3. Here, A102 and A1w2 refer
to vdW interaction across vacuum and water respectively. For, s << a the energy
of the sphere can be approximated to EvdW = −A132

a
12s . For iron oxides, comparing

densities of magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3) gives
Amaghemite < Amagnetite < Ahematite in vacuum. The Hamaker constants for iron oxide
(magnetite) in toluene interacting with gold is calculated to be 16 × 10−21 J [45]. In
this approximation, many body effect is neglected and further accounted in advanced
more precise theories like Dzyaloshinskii-Lifshitz-Pitaevskii (DLP) and discrete cou-
pled dipole method (CDM) [46, 47, 48]. These many body effects are more prevalent
in nanoparticles. In discrete coupled method NP is modelled as discrete array of
transient dipoles given by dipole moment pi = αiEi where αi is the frequency de-
pendent polarizability and Ei is the local electric field due to neighbouring dipoles.
Set of frequency modes and free energy of the system is obtained by solving set of
self-consistent equations for N such dipoles. CDM is computationally more demand-
ing with advantage for calculating vdW for small anisotropic particles. In symmetric
particles, the first order approximation remains valid.

2.3.2. Electrostatic (ES) forces

Unlike vdW forces which are primarily attractive, electrostatic forces (ES) can be
attractive, repulsive and directional. The magnitude of energy due to vdW forces
range from few to 100 kBT in nanoscopic components. While in some cases they can
be harnessed to form assemblies, most times this undesired attraction in nanoparti-
cles result in flocculation or precipitation. Repulsive surface forces coexist with vdW
forces to stabilize the colloidal dispersion against precipitation [42, 49]. The surface
of the particle acquires a charge when immersed in polar fluid through several mech-
anisms such as disassociation of surface groups or specific absorption. The surface
charge is balanced by an excess of counter-ions and depletion region of co-ions in the
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Figure 2.13.: Sketch showing overlap of ionic clouds around positively charged parti-
cles (blue spheres). The surface charge is balanced by excess of counte-
rions (red spheres) with depletion of co-ions (green region). This electric
double layer is formed when particles are dispersed in a polar solvent.

surrounding volume of the particle. This is called the electric double layer (EDL) as
shown in the Fig. 2.13. The interaction length scales of the potential is associated
with thickness of the double layer that is given by the Debye length κ−1 which decays
with distance r. ES interactions depend on the surface charge, dielectric constant of
solvent and ionic strength. In a polar solvent, the pair interaction energy depends on
ionic concentration and osmotic pressure when EDL overlap rather than Coulombic
interaction. The ES for large separation distance (s > κ−1) is [42, 49, 50]

EES =
64πaCoNAkBTΓ2

κ2 e−κs (2.62)

where Γ is the reduced surface potential. The DLVO theory (named after Boris
Derjaguin and Lev Landau, Evert Verwey and Theodoor Overbeek) describes colloidal
stability of charged particles assuming vdW and ES forces as additive [50, 51]. The
DLVO pair interaction energy for two spheres is

EES+vdW
DLV O = a(64πaCoNAkBTΓ2

κ2 e−κs − A

12s) (2.63)

which have two minima separated by a barrier. At ionic concentration, thickness
of EDL is small and DLVO is dominated by vdW interaction. The stability of sus-
pensions are strongly affected by the changes in ionic strength, hence for a more
robust stabilization nanoscale interactions like steric interactions are needed which
are outside the scope of DLVO theory.
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2.3.3. Steric force

Steric interactions arise when large molecules adsorbed on the surface of particles pre-
vent direct interparticle contact. Similar to ES repulsions that complement attractive
vdW forces through charge stabilization, these forces also prevent uncontrolled aggre-
gation of the particles. Polymers and surfactants with good affinity to both solvent
and particle are commonly used for stabilization. Usually in metal oxide, the hydroxyl
group tether to surface through hydrogen bonding, ES interaction or acid base inter-
action. The length scale of interaction corresponds to the thickness of the layer, which
relates to molecular weight and conformation of chains. The individual segment of the
polymer chain can assume a random coil shape with radius of gyration Rg = ℓm

√
N
6 ,

where N is the number of monomer segments and ℓm is length of each monomer
unit [52, 53]. When effective size of polymer is larger than Rg then polymer-solvent
interactions are favoured. In poor solvents, where polymer-polymer interactions are
favoured, size of the polymer is smaller than Rg. At this point, we can define two
regimes [54]: (i) adsorption layer is observed when surface of the particle preferred
the polymer and (ii) depletion layer is formed at vicinity of the surface when surface
prefers the solvent over polymer. Additionally, high coverage of particle surface in-
creases the thickness of adsorbed layer. The combined effect of solvent conditions and
surface coverage results in equilibrium thickness given by

teq = N(ζℓ5
m)1/3 (2.64)

where ζ is the surface coverage density. There are several ways to bind the polymer to
the surface of the particle: (i) surface adsorption and (ii) grafting the polymers on the
surface [55]. The steric pair interaction energy is approximately given by exponential
decay when teq/2 < s < 2teq [52]

Esteric =
100
π
teqζ

3/2kBTe−π( s
teq
−1) (2.65)

For nanoparticles coated with long ligand and with curved geometries the steric re-
pulsion energy can also be written as [42]

Esteric =
2πa1a2

a1 + a2
(−ln(u) − 9

5(1 − u) +
1
3(1 − u

3) − 1
30(1 − u

6)) (2.66)

where u = r−a1−a2
2ho

, ζ is the surface charge density and ho = N (12ζℓ5w
π2 )

1/3
.
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Figure 2.14.: Steric repulsion caused by surfactants or polymers on the surface: (a)
when particles have a separation distance larger than twice thickness
of surfactant layer s > 2t, no repulsion interaction exist and (b) when
surfactants are interdigitated s < 2t results in steric repulsion.

2.3.4. Magnetic forces

Figure 2.15.: Magnetic dipolar interactions between magnetic nanoparticles: (a)
schematic of random orientation of magnetic moments (represented by
white arrows) in weakly interacting spherical magnetic nanoparticles
when no field is applied and in (b) chain like aggregates are formed
when field is applied.(c) The attraction (blue) and repulsive region (red)
in between dipoles based on the position of the dipoles; adapted from
[42]

As seen in the section 2.2, the magnetic properties are size dependent for MNPs.
These properties further affects the interactions that drives the formation of assem-
blies. At T > TB, MNPs exhibit SPM and weak interactions. At T < TB, the in-
teractions between MNPs are significant. When interactions are strong, the blocking
process for individual particles are no longer independent. Dipole-dipole interactions
are long range forces of a large magnitude. When there is no direct contact between
MNPs, exchange interactions can be neglected. A single spherical magnetic particle
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of radius a with magnetization M⃗ has a magnetic moment (using equation (2.27))

µ⃗ = M⃗V (2.67)

where V = 4
3πa

3. The field generated from this moment is given by

B⃗ = µoH⃗ =
3(µ⃗.r̂)r̂ − µ⃗

4πr3 (2.68)

where r̂ = r⃗/r is unit vector. The Zeeman energy of such a dipole particle in the field
B⃗ is

Ez = −µoµ⃗.H⃗ (2.69)

such that dipole experiences a force F = ∇(µ⃗.H⃗). The dipole-dipole energy between
two spheres with magnetic moment µ1 and µ2 is [53, 42]

Edd =
µo

4πr3 [µ⃗1µ⃗2 − 3(µ⃗1.r̂)(µ⃗2.r̂)] . (2.70)

This is the energy required to bring magnetic dipoles µ⃗1 and µ⃗2 from infinity to a
separation distance r⃗. The schematic of interactions in an applied field are outlined
in the Fig. 2.15. This energy can be attractive or repulsive based on the position
of vectors. For instance, when the dipoles are aligned in a line, µ⃗1.µ⃗2 = µ2 and
µ⃗1.r̂ = µ⃗2.r̂ = µ results in an attractive energy Edd = −µoµ2

2πr3 . In case of dipoles aligned
in a side by side configuration, µ⃗1.µ⃗2 = µ2 and µ⃗1.r̂ = µ⃗1.r̂ = 0, the repulsive energy is
Edd = µoµ2

4πr3 . Energy scales with the volume of the particles and long range interaction
decay as r−3. Multipole expansions maybe required to describe interactions from
anisotropic particles.

2.3.5. Gravitational force

Colloidal particle in dispersion can undergo a gravitational drift combined with Brow-
nian forces [56]. Brownian diffusive forces are inherent in the system and result from
factors such as viscosity of the fluid. The force of gravity on the system depends on
the density of the particle in the dispersion.
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2.4. Scattering

2.4. Scattering

Almost all our knowledge in the atomic and nuclear physics have been discovered
through scattering experiments. Most prominent examples include Rutherford’s dis-
covery of nucleus and discovery of subatomic quarks. A typical scattering experiment
consists of a source emitting monochromatic radiation in form of a plane wave with
a wave vector k⃗ [57]. Incident wave interacts with matter either elastically (energy
conserved), inelastically (no energy conservation) or absorption occurs. Scattering
is a quantum mechanical phenomenon which involves interaction of radiation with
matter.

2.4.1. Elastic scattering experiment

In an idealized scattering experiment, scattering of x-ray photon or a neutron by
a sample is characterized by change of momentum and energy. The particles with
incident wavevector k⃗, and energy h̵ωi on interaction with sample results in k⃗ ′ and
energy h̵ωf . The momentum transfer is then expressed as

h̵k⃗′ − h̵k⃗ = h̵Q⃗ (2.71)

where Q⃗ is the scattering vector given by Q⃗ = k⃗′ − k⃗. Similarly, energy transfer is

E = h̵ω where ω = ωf − ωi (2.72)

The scattering experiment measures the proportion of incident particles emerging
with a given energy and momentum transfer which is encoded in 4-D function S(Q⃗, ω)
[57]. When there is no exchange of energy, this is encoded in the scattering function
S(Q⃗,0) = S(Q⃗). Thesis will focus mainly on this special case of elastic scattering
where E = 0. The elastic scattering experiment in the Fraunhofer approximation
is shown in the Fig. 2.16. Here, the size of the sample is assumed much smaller
than sample-to-source and sample-to-detector distance. Additionally, the source is
monochromatic with wavelength λ [58, 59]. Then the incident wave on sample (k⃗)
and scattered wave (k⃗′) incident on the detector are considered as plane waves. In
case of x-rays, photons are massless, the dispersion relation is c = ω/k where c is the
speed of light. Then, zero energy transfer condition implies E = h̵c∣k⃗′∣ − h̵c∣k⃗∣ = 0.
Similarly, for a neutron of mass mn, the energy transfer is given by the kinetic energy
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Figure 2.16.: The sketch of the elastic scattering process in the Fraunhofer approxi-
mation with a monochromatic source; the sketch is adapted from [58]

E = ∣h̵k⃗′∣2
2mn
− ∣h̵k⃗∣2

2mn
= 0. Then we arrive at the condition for elastic scattering where

∣k⃗∣ = ∣k⃗′∣ = 2π
λ
. (2.73)

From the vector diagram and geometry, ∣Q⃗∣ can be deduced as

∣Q⃗∣ =
√
k2 + k′2 − 2kk′cos2θ → ∣Q⃗∣ = 4πsinθ

λ
(2.74)

where 2θ is the angle between k⃗ and k⃗′.

2.4.2. Scattering cross-section

The incoming neutrons/x-rays form a steady stream of particles, the incident flux j1

is specified as the number of particles per unit time across a unit area normal to the
direction of incidence. The rate of arrival of particles (number of particles per unit
time) in the direction of (θ, ϕ) into a detector that subtends a small solid angle dΩ at
sample is NdΩ. The differential cross section is defined as the ratio of the number of
particles scattered into direction (θ, ϕ) per unit solid angle, to incident flux [57, 58]

dσ

dΩ =
N

j1
(2.75)
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and from the differential the total scattering cross section is obtained by integrating
all solid angles

σ =
4π

∫
0

dσ

dΩdΩ (2.76)

2.4.3. Quantum scattering theory

As shown in the Fraunhofer approximation (Fig. 2.16 (b)), there is a monochro-
matic source with plane waves impinging on a fixed scattering point, with local-
ized potential V(r⃗). The aim is to solve the time dependent Schrödinger equation
ih̵∂Ψ(r⃗,t)

∂t = [− h̵2

2m∇2 +V(r⃗)]Ψ(r⃗, t) for all incoming particles represented by the wave
function Ψ(r⃗, t). In the case of pure elastic scattering, the plane waves maybe writ-
ten as Ψ(r⃗, t) = ψ(r⃗)e−iEt

h̵ . Therefore, we now seek solutions of time independent
Schrödinger equation

Eψ(r⃗) = [ − h̵2

2m∇
2 +V(r⃗)]ψ(r⃗). (2.77)

Under the action of plane waves on the scattering center, the center becomes a source
of spherical standing waves (Huygens principle). The spatial part of the total wave-
function is then the superposition of the plane waves representing beam and spherical
waves representing the scattered particles. The asymptotic form of the scattering
solution thus becomes

ψ(r⃗) = eik⃗.r⃗ + f(θ, ϕ)e
ikr

r
(2.78)

where f(θ, ϕ) is the scattering amplitude. The flow of scattered particles is given by
the probability current which is used to compute the outgoing flux and using this in
eqn. (2.75), the differential cross-section is then computed as

dσ

dΩ = ∣f(θ, ϕ)∣
2. (2.79)

2.4.3.1. Lippman-Schwinger equation

In a scattering problem, the Schrödinger equation is solved with a boundary condition
that the wavefunction is plane wave at large distance from scattering center. Using
E = h̵2k2

2m , the eqn.(2.77) is rewritten as [60, 61]

(∇2 + k2)ψ(r⃗) = U(r⃗)ψ(r⃗) (2.80)
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where U(r⃗) = 2m
h̵2 V(r⃗). The solution then contains

ψ(r⃗) = ψGS(r⃗) +ψP S(r⃗) (2.81)

where ψGS(r⃗) is the general solution of the corresponding homogeneous Helmholtz
equation (∇2+k2)ψGS(r⃗) = 0 and ψP S(r⃗) is the particular solution of in-homogeneous
equation. Such a solution can be found with the Green’s function method. The Green
function Go(r⃗, r⃗ ′) in the solution of (∇2 + k2)Go(r⃗, r⃗ ′) = δ(r⃗, r⃗ ′) is given by

Go(r⃗, r⃗ ′) =
1

4π∣r⃗ − r⃗ ′∣e
ik∣r⃗−r⃗ ′∣ (2.82)

Particular solution is hence,

ψP S(r⃗) = ∫ Go(r⃗, r⃗ ′)U(r⃗ ′)ψ(r⃗ ′)d3r′ (2.83)

and finally the eqn. (2.81) is written as

ψ(r⃗) = ψGS(r⃗) +
1

4π
2m
h̵2 ∫

d3r′

∣r⃗ − r⃗′∣e
ik∣r⃗−r⃗′∣V(r⃗′)ψ(r⃗′) (2.84)

which is the integral form of the Schrödinger equation known as Lippmann-Schwinger
equation. The scattering is elastic where k⃗′ = k(r⃗)/r and V(r⃗)→ 0 at large distances.

Figure 2.17.: (a) Scattering geometry for calculation of the far field limit at the de-
tector. (b) Diagrammatic form of multiple scattering effects included in
the Born approximation.

The integral in eqn. (2.84) gets significant contribution where ∣r⃗′∣ << ∣r⃗∣ and V (r⃗′) is
different from zero. Under this assumption,

∣r⃗− r⃗′∣ = (r2 + r′2 −2r⃗.r⃗′)1/2 = r (1 + ( r
r′
)

2
− 2 r⃗.r⃗

′

r2 )
1/2

∼ r(1− 2r⃗.r⃗′
r2 )

1/2
∼ r− r⃗.r⃗

′

r
(2.85)
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implies 1
∣r⃗−r⃗′∣ ∼ 1

r and when used in eqn. (2.84) becomes

ψ(r⃗) = ψGS(r⃗) +
m

4πh̵2
eikr

r ∫ e−
ik
r

r⃗.r⃗′V(r⃗′)ψ(r⃗′)d3r′. (2.86)

As r → ∞, the second term goes to zero. So the boundary condition of having a
incoming plane wave at large distance can be satisfied by choosing the solution of
homogeneous Helmholtz equation as ψGS(r⃗) = eik⃗.r⃗. The solution of eqn.(2.86) is
written in form of (2.78) where

f(θ, ϕ) = m

4πh̵2 ∫ e−ik⃗′.r⃗′V(r⃗′)ψ(r⃗′)d3r′ (2.87)

2.4.3.2. Born approximation

The Lippmann-Schwinger equation provides the integral form of f(θ,ϕ). In the zeroth
order where V(r⃗) = 0, the scattering function translates to unperturbed plane wave.

ψ0(r⃗) = ψGS(r⃗) = eik⃗.r⃗ (2.88)

Considering weak interaction, the total wavefunction ψ(r⃗) differs slightly from incom-
ing wavefunction ψ0(r⃗). So for a first order approximation, we replace ψ(r⃗) in eqn.
(2.84) with ψo(r⃗) to obtain

ψ1(r⃗) = ψ0(r⃗) +
1

4π
2m
h̵2 ∫

d3r′

∣r⃗ − r⃗′∣e
ik∣r⃗−r⃗′∣V(r⃗′)ψ0(r⃗′) (2.89)

which is the first order Born approximation. At large distance using eqn. (2.85)
we obtain,

ψ(r⃗) = eik⃗.r⃗ + 2m
4πh̵2

1
r
eikr ∫ e−ik⃗′r⃗′V(r⃗′)eik⃗.r⃗′d3r′ (2.90)

with scattering amplitude

f(θ, ϕ) = m

4πh̵2 ∫ eiQ⃗.r⃗′V(r⃗′)d3r′ (2.91)

where h̵Q⃗ = h̵(k⃗ − k⃗′). The scattering amplitude f(θ, ϕ) = A(Q⃗) is the Fourier trans-
form of the interaction potential. Then we rewrite the first order Born approximation
as

ψ1(r⃗) = ψ0(r⃗) +∫ Go(r⃗, r⃗′)U(r⃗′)ψ0(r⃗′)d3r′ (2.92)
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using eqn. (2.83), (2.88) and (2.90). Then second order approximation is written as

ψ2(r⃗) = ψ0(r⃗) +∫ Go(r⃗, r⃗′)U(r⃗′)ψ1(r⃗′)d3r′ (2.93)

Physically it means that the incoming particle will undergo a sequence of multiple
scattering events from the potential as shown in the Fig. 2.17 (b) and total wave-
function is represented as

ψ(r⃗) = ψ0(r⃗) +ψ1(r⃗) +ψ2(r⃗) + ... (2.94)

where the first term is the unperturbed plane wave in a single scattering event followed
by higher order scattering terms.

2.4.4. Types of scattering probes: scattering length

The interaction mechanisms in a scattering experiment depends on the charge, spin
and energy of the incoming particles. Electrons cannot penetrate deep into the sample

Figure 2.18.: Various interactions mechanisms between atoms and incident radiation;
adapted from [62].

due to repulsion from orbital electrons. Therefore electrons are useful surface probes.
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2.4. Scattering

X-ray photons have no charge, but as an electromagnetic wave, has oscillating electric
and magnetic field which interacts with orbital electrons. X-rays penetrate deeper
than electrons. Neutrons are neutral particles and interacts via strong nuclear force
that allow penetration deeper into the sample than x-rays and electrons. If atoms
are magnetic, the magnetic moment due to unpaired electrons can scatter neutrons
through spin dipole-dipole interactions. The interactions due to different scattering
probes are schematically represented in Fig. 2.18. From the first Born approximation,
the scattering amplitude from eqn (2.91) is

A(Q⃗) = m

4πh̵2 ∫ eiQ⃗.r⃗′V(r⃗′)d3r′ = F[V(r⃗)] (2.95)

which is the Fourier transform of the potential V(r⃗). This amplitude is different for
neutrons and x-rays due to differences in their inherent properties.

2.4.4.1. Nuclear scattering length

In case of neutron scattering, the scattering amplitude A(Q⃗) is equal to −b, where the
constant b is called the scattering length and has units of length. The scattering length
is invariant with wavelength and scattering angle θ. Neutron scattering lengths can
be negative or positive, depending on the phase shifts the neutron experiences upon
scattering from the nucleus. The scattering length b depends on details of the nuclear
structure and can vary strongly from one isotope to the other. It also depends on the
combined spin of the nucleus and the neutron, which can take the values b+ = I + 1

2 or
b− = I − 1

2 .

2.4.4.2. X-ray scattering length

The characteristic scattering amplitude for x-ray scattering by an atom is different
from neutron because of relevant long range electromagnetic interactions with orbital
electron. We assume a situation where λ does not correspond to resonant energies for
absorption. The scattering length b is real number which diminishes monotonically
with increasing θ and decreasing atomic number Z. Strength of scattering depends
on number of orbital electrons. In contrast to invariant nuclear scattering length, in
x-rays there is a fall off with scattering vector Q and is known as the atomic form
factor. Here, b = Zg(Q)re where Z is the atomic number, g(Q) is the decay function
which varies from 1 to zero as Q→∞ and re is Thomson scattering scattering length
(re = 2.8 × 10−15m).

39



2. Theoretical framework

2.4.4.3. Magnetic scattering

Neutrons like electrons possess magnetic dipole moment µn = −1.193µN , where µN (=
5.051 × 10−27 J/T). In addition to nuclear scattering, the neutron is deflected through
magnetic interaction between dipole moment and constituents of sample. The main
source of magnetism in sample are the unpaired electrons. The magnetic scattering
of neutrons is ion specific and has a form factor just like x-rays. However, it does not
decrease monotonically with atomic number. The anisotropy in interaction is due to
dipole-dipole interactions of neutron spin with magnetic moment (Fig.2.19). Only the
component of magnetization M perpendicular to Q⃗ can be observed in a scattering
experiment.

Figure 2.19.: Schematic illustration of dipolar field and the scattering vector Q⃗. (a)
For M⃗ ⊥ Q⃗, magnetic dipole interaction show constructive interference
and (b) M⃗ ∣∣Q⃗ results in destructive interference; adapted from

2.4.5. Coherent and incoherent nuclear scattering

In a assembly of N nuclei, where ith nucleus at position Ri with scattering length bi,
the incident wave is ψi = ei.k⃗.R⃗i . The scattering potential can be written as V(r⃗) =
2πh̵2

mn
∑i biδ(r⃗ − R⃗i). The scattering amplitude is

A(Q⃗) =∑
i

bie
iQ⃗.R⃗i (2.96)

which is the Fourier transform of the potential. Different isotopes with random nu-
clear spin orientations are distributed randomly over all sites of sample. Hence the
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differential cross-section is calculated as

dσ

dΩ = ∣A(Q⃗)∣
2 = ⟨∑

i

bie
iQ⃗.R⃗i .∑

j

b∗j e
−iQ⃗.R⃗j⟩. (2.97)

which is the average taken over the random distribution of scattering lengths. The
expectation value of the product of scattering lengths on different sites have two case

⟨bibj⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨b⟩⟨b⟩ = ⟨b⟩2, i ≠ j
⟨b2⟩ = ⟨b⟩2 + ⟨(b − ⟨b⟩)2⟩, i = j

In the case 1, for different site the scattering length are uncorrelated. For a case
i = j, there is an additional term arising from correlation associated with the mean
quadratic deviation from the average. There eqn. (2.97) becomes

dσ

dΩ = ⟨b⟩
2∣∑

i

eiQ⃗.R⃗i ∣
2
+N⟨(b − ⟨b⟩)2⟩ (2.98)

where the first term is the coherent scattering which contains the phase factors and
result from coherent superposition of the scattering from scatterers. The second
term is the incoherent scattering differential cross section which is proportional to N ,
the number of atoms. The term corresponds to scattering from single atoms which
superimpose incoherently.

2.5. Small-angle scattering (SAS)

In the elastic scattering regime, small-angle scattering (SAS) experiments are con-
ducted at small scattering angles (θ ≤ 10○). This will enable study of structure and
interaction in systems of the order of 10-1000 Å.

2.5.1. SAS fundamentals

The simplest SAS setup consists of a source of x-rays or neutrons, a set of optical
elements that defines the beam energy, the beam geometry, collimation and 2D posi-
tion detector as shown in the Fig. 2.20. The sample is placed in the incident beam
and scattering profile is recorded on the 2D detector. The measured intensity for a
sample of volume V is

I = 1
V

dσ

dΩ =
d∑
dΩ (2.99)
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Figure 2.20.: Transmission geometry set-up for small-angle scattering (SAS).

where d∑
dΩ is the macroscopic cross-section and has units of cm−1. The scattered

intensity is directly related to the structure of the sample. The local interaction as
discussed previously depends on kind of beam and is characterized by the scattering
length bi. The density of scattering lengths can be written as ρ(r⃗) = ∑ρi(r⃗)bi where
ρi(r⃗) is the local density of scatters. SAS experiments probe structure of particles on
length scales of tens to hundreds of atoms and we cannot distinguish exact position
of atom within the sample. The scattering length density (SLD) is defined as

ρ(r⃗) = ∑i bi

V
, (2.100)

which is the sum of all scattering length bi within a volume element V . Then we can
write eqn. (2.96) in general form as

A(Q⃗) = ∫
V
ρ(r⃗)eiQ⃗.r⃗d3r (2.101)

for a sample volume V . In a real experiment, the Fourier transform of potential is not
directly accessible. The measured intensity corresponds to the squared amplitude in
which case the phase information is lost. The macroscopic cross-section is given by;

d∑
dΩ =

1
V
∣∫

V
ρ(r⃗)eiQ⃗.r⃗d3r∣

2
(2.102)
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2.5.2. Form and structure factors

Consider a particle of in-homogeneous density ρ(r⃗). For a given orientation, the
scattering amplitude of a particle is [63]

a(Q⃗) = ∫
Vp

ρ(r⃗)eiQ⃗.r⃗d3r = F (Q⃗) (2.103)

and yields intensity,

Ip(Q⃗) = a(Q⃗)a∗(Q⃗) = ∣F (Q⃗)∣2 = V 2
p P (Q⃗). (2.104)

Here, the P (Q⃗) is called the particle form-factor given by

P (Q⃗) = 1
V 2

p
∬
Vp

ρ(u⃗)ρ(v⃗)eiQ⃗.(u⃗−v⃗)d3ud3v. (2.105)

This accounts for the spatial extent of the scatterer. Another way to represent the
form-factor is through the correlation function Γ(r⃗) which is the convolution of the
real space SLD with itself where Γ(r⃗) = 1

Vp ∫Vp
ρ(r⃗′)ρ(r⃗′ + r⃗)d3r′ = 1

Vp
PP at(r⃗) where,

PP at(r⃗) is Patterson function of particle. Therefore, it follows

P (Q⃗) = 1
Vp
∫

Vp

Γ(r⃗)eiQ⃗.r⃗d3r. (2.106)

The integral is taken over relative separations between two points in the particles.
Averaging over all orientations, the Γ(r⃗) = ⟨Γ(r⃗)⟩Ω. Similarly, P (Q) = ⟨P (Q⃗)⟩Ω and
can be written as

P (Q) = 1
Vp
∫
Vp

( 1
4π ∫Ω

Γ(r⃗)dΩ)eiQ⃗.r⃗d3r (2.107)

consequently, the Fourier transform reduces to one dimensional scalar integral given
by

P (Q) = 1
Vp

D

∫
0

4πr2Γ(r)sin(Qr)
Qr

dr (2.108)

where D is the maximum point-point distance in the particle. The intensity per unit
volume of a suspension containing N identical particles is

I(Q⃗) = N
V
V 2

p P (Q⃗) (2.109)
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where V is volume of total system. Study of form-factors are important in colloidal
systems where objects can be anisotropic or composite and in general, are studied in
dilute suspensions. For disoriented anisotropic objects, the form-factor can be first
calculated in one of the two ways: (i) calculate the modulus of Fourier transform
of the SLD function using eqn.(2.105) or (ii) perform Fourier transform on the cor-
relation function using eqn.(2.106) and then average it over the different available
orientations. When N particles scatter independently, eqn. (2.109) can be applied.
In the case of identical correlated particles, for a given set positions, the total intensity
is I(Q⃗) = A(Q⃗)A∗(Q⃗)

V . When particles are undergoing Brownian diffusion, the intensity
is changing for each configuration and is measured as average in time ;

I(Q⃗) = ⟨A(Q⃗)A
∗(Q⃗)

V
⟩ = 1

V
⟨[∫ ρ(r⃗)eiQ⃗.r⃗d3r][∫ ρ(r⃗′)e−iQ⃗.r⃗′d3r′]⟩ (2.110)

where ⟨⟩ is average over all available positions and orientations of the particles. If the
centre position of particle is r⃗i, then r⃗ = r⃗i + u⃗ and intensity develops into

I(Q⃗) = 1
V
⟨[

N

∑
i=1
eiQ⃗.r⃗i ∫ ρ(u⃗)eiQ⃗.u⃗d3u][

N

∑
j=1
e−iQ⃗.r⃗j ∫ ρ(v⃗)e−iQ⃗.v⃗d3v]⟩. (2.111)

The intensity is the average of the product:

I(Q⃗) = N
V
⟨[∬ ρ(u⃗)ρ(v⃗)eiQ⃗.(u⃗−v⃗)d3ud3v][ 1

N

N

∑
i=1

N

∑
j=1
eiQ⃗.(r⃗i−r⃗j)]⟩. (2.112)

In the special case of spherical particles with identical interaction, the average of the
product is the product of average. The first part of the term in eqn. (2.112) is the
form factor V 2

p P (Q⃗) as defined previously. The second term is

S(Q⃗) = 1 + 1
N
⟨

N

∑
1=1

N

∑
j≠i
eiQ⃗.(r⃗i−r⃗j)⟩ (2.113)

where S(Q⃗) is the structure factor. Then the intensity can be written in the
common expression given by

I(Q⃗) = N
V
VpP (Q⃗)S(Q⃗) (2.114)

where this factorization into particle form-factor and structure factor is useful be-
cause they can be calculated separately in experiments. The form-factor is obtained
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from the particle morphology. On the other hand structure factor is associated with
interactions between particles which involves theoretical calculations using statistical
models. For an isotropic distribution of scattering elements averaged over all orien-
tations the vector can be dropped, the macroscopic cross-section dΣ

dΩ(Q) = I(Q) is
now simply written as a function of Q, and plotted in fig. 2.21 (a). Here, the inten-
sity is plotted considering no interactions and due to only orientationally averaged
form-factor P (Q). In Fig. 2.21 (b), the I(Q)(red curve)), is proportional to product
of P (Q) (red curve) and isotropic azimutally average structure factor S(Q) (blue
curve). An alternative strategy to obtain the structure factor is to first obtain the
form-factor for dilute system independently and then to divide this form-factor from
the experimental intensity to obtain the structure factor.

Figure 2.21.: (a) The intensity associated with particle form-factor P (Q) for various
shapes averaged over all orientations. (b) The scattering intensity (in
blue) includes product of particle form-factor of sphere (red) and struc-
ture factor associated with hard sphere potential (green).

2.5.3. Behaviour at low Q: Guinier regime

In a dilute system or in dispersions where structure factor can be neglected, the
scattering in the limit ∣Q⃗∣→ 0 can be analyzed using eqn. (2.108);

P (Q) = 1
Vp

D

∫
0

4πΓP (r)
r

Q
[Qr − (Qr)

3

6 + ...] (2.115)
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This equation can be related to radius of gyration Rg where R2
g = 1

2
∫Vp

r2ΓPrdr

∫Vp
ΓPdr

, then

P (Q) = 1
Vp

D

∫
0

4πr2ΓP (r)[1 −
(QRg)2

3 + ...] (2.116)

Guinier approximation is valid in regime where QRg < 1. The radius of gyration
is effectively the size of the scattering "particle". Since it is shape independent, the
particle could be chains, micelles, nanoparticles, proteins. This Guinier region can be
affected by instrumental smearing or inter-particle interactions. Scattering particle is
smaller than the probed Guinier region (see Fig. 2.22 (a) and (b)).

2.5.4. Behaviour at high Q: Porod regime

The analytical description of form-factor of other shapes is not always easy and cannot
be usually stated in closed form. When Q << R−1, based on scattered intensity of the
spheres decays as Q−4, while for thin disc and long rods as Q−2 and Q−1,respectively.
The Q−4 is behaviour for most objects due to orientation. Porod’s law estimates the
inhomogeneities through slope measurement at high Q. In general the equation can
be approximated to

P (Q⃗) = A

QP
+B (2.117)

where P is the Porod constant and value of this constant describes the surface and
dimension of the scattering object (Fig. 2.22 (c)). For instance P = 4 represents a
smooth surface), 3 a rough surface, 5/3 a swollen ring or P = 2 in a chains or 2D
structures.

2.5.5. Guinier-Porod model

Considering the asymptotic regimes in scattering (low Q and high Q regimes), model
independent functions can be defined. A Guinier-Porod formalism was developed to
fit for non spherical objects as described in detail in prior reports [65]. In order to
generalize the Guinier - Porod model to account for non-spherical scattering objects,
the following functional form is used:

I(Q) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

G
Qs e

(−Q2R2
g

3−s
), for Q ≤ Q1

D
Qd , for Q ≥ Q1
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2.5. Small-angle scattering (SAS)

Figure 2.22.: (a) and (b) represents the Rg for particles of different types of particle
(adapted from [64]) (c) Porod constants for different objects; taken from
[64])

where G and D are Guinier and Porod scale factors, respectively. Here, the require-
ment for the Guinier, Porod terms and their slopes must be continuous at value Q1.
The s parameter can be used to define non-spherical objects. For 3d globular object,
s = 0, s = 1 for rods and s = 2 for lamellae.

2.5.6. Contrast variation using neutrons

The neutron coherent scattering length for hydrogen 1H is -0.38 × 10−14 m and for
its isotope deuterium 2H is 0.66× 10−14 m. This variation in b can be exploited in
the so called contrast variation experiment. The basic principle is the substitution of
nuclei with its isotope, which does not introduce any significant change in properties
of material but strong variation in scattering length. Here, we mainly discuss neutron
scattering experiments. Consider N identical objects located at position vectors r⃗j

oriented at Θ⃗j where j = 1.2...N as shown in Fig. 2.23 (a). These identical particles
are randomly distributed in a matrix of SLD ηo which can be a solvent or medium
where objects are embedded. Then the scattering length density ρ(r⃗)

ρ(r⃗) = ηo +
N

∑
j=1
η̂p(r⃗ − r⃗i, Θ⃗j) (2.118)
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where ηo is the SLD of the solvent and here

η̂p(r⃗, Θ⃗j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ηp(r⃗, Θ⃗j) − ηo, r⃗ inside the particle

0, r⃗ inside the solvent

Fourier transform of the invariant function is δ-function and shifted function are
related through phase factors. Applying this and the SLD in eqn. (2.102) we get,

dΣ
dΩ ∝

RRRRRRRRRRRRRR
(2π)3δ(Q⃗) +

N

∑
j=1
eiQ⃗.r⃗j ∫

VΘ⃗

η̂p(r⃗, Θ⃗j)eiQ⃗.r⃗d3r

RRRRRRRRRRRRRR

2

(2.119)

where VΘ⃗ is the volume of the particle that is centred at the origin with orientation
Θ⃗j. We also know from eqn. (2.98), the presence of coherent and incoherent neutron
scattering. The summation in eqn. (2.119) is expanded and the coherent terms for
uncorrelated positions r⃗i and r⃗j, is

dΣ
dΩ ∝

N

∑
j=1

RRRRRRRRRRRRRR
∫
VΘ⃗

η̂p(r⃗, Θ⃗j)eiQ⃗.r⃗d3r

RRRRRRRRRRRRRR

2

, (2.120)

where the sharp signal at Q⃗ = 0 has been neglected. This is the intense unscattered
beam which would damage the sensitive detector and this is the reason for placing
a beamstop at the centre of the detector for SAS measurements. Consider spherical
symmetric particles with constant SLD ηcore, with radius R then,

η̂p(r⃗, Θ⃗j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ηcore, ∣r⃗∣ < R
0, otherwise

and in a sphere the orientational average is redundant, thus η̂p(r⃗, Θ⃗j) = η̂p(r). Similar
to eqn. (2.108), the Fourier transformation corresponds to 1d integral which is d∑

dΩ ∝
N(4π)2∣ ∫

R

0 r2η̂p(r) sin(Qr)
(Qr) dr∣

2
. Then,

d∑
dΩ ∝ N (4π(ηcore − ηo)

Q
)

2 RRRRRRRRRRRR

R

∫
0

rsin(Qr)dr
RRRRRRRRRRRR

2

(2.121)
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2.5. Small-angle scattering (SAS)

where the integral ∫
R

0 rsin(Qr)dr = sin(QR)−(QR)cos(QR)
Q2 = R2j1(QR) is related to

spherical Bessel function j1. Consider a multi-component spherical system with

η̂p(r⃗, Θ⃗j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ηcore, for ∣r⃗∣ < R1

ηshell, for R1 ≤ ∣r⃗∣ < R2

Using eqn. (2.121), for a core-shell the macroscopic cross-section is

Figure 2.23.: (a) Schematic illustration of eqn. (2.118) where grey is the matrix in
which anisotropic particle are embedded. (b) The concept of contrast
variation in core-shell particles in natural contrast, (c) shell contrast;
ηo = ηshell and (d) core contrast; where ηo = ηcore ; adapted from ref [57]

d∑
dΩ ∝ N (4π

Q
)

2
[(ηcore − ηo)R2

1j1(QR) + (ηshell − ηo) [R2
1j1(QR2) −R2

1j1(QR1)]] .
(2.122)

and in a natural contrast is schematically shown in Fig. 2.23 (b). The analysis will be
simpler when separate measurements are made such that solvent in which particles
are suspended are adjusted for scattering length by adjusting percentages of hydrogen
and deuterium such that ηshell = ηo (Fig. 2.23 (c)) and ηcore = ηo (Fig. 2.23 (d)).

2.5.7. Polarized neutrons: SANSPOL

Neutron has an inherent spin defined just like for an electron, with spin S = 1/2
and angular momentum. Magnetic moment of neutron is ∣µ⃗n∣ = gnSµN ≈ ∓1.913µN ,
where nuclear magneton µN = 5.05 × 10−27 J/T. Polarization of neutron beam is the
normalized average over particle ensemble of neutron spins P⃗ = 2⟨S⃗⟩. In a magnetic
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field H⃗, neutrons split in spin up and spin down states. The beam polarization is

−1 < P = n↑ − n↓
n↑ + n↓

< 1 (2.123)

where n↓ and n↓ are neutron up and down states respectively. Consider the scattering
nuclei where I ≠ 0 and the interaction is spin dependent. The two possible spin
states from coupling the neutron spin and spin of the nucleus are J+ = I + 1

2 and
J− = I − 1

2 . These states are associated with scattering lengths b+ and b−. Now the
three contributions to nuclear scattering ∣N2

Q⃗
∣ include

1. coherent scattering as discussed in section 2.4.5, due to the interaction of
neutron with nuclei of the sample through strong forces,

2. isotope-incoherent scattering resulting from variation in scattering lengths
due to isotopes (section 2.4.5),

3. spin-incoherent scattering due to interaction of neutron spin with the ran-
dom distribution of spins,

where the NQ⃗ = ∑N
i e

iQ⃗.r⃗j . Non spin-flip scattering (NSF) is when polarization state
remains unaffected and the spin-flip scattering (SF) is when the polarization of neu-
tron beam is reversed due to interaction. The sum of the coherent and isotopic
incoherent nuclear scattering result in NSF scattering and this can be separated from
spin-incoherent scattering which results in SF scattering. About two thirds of spin
incoherent scattering is SF. In polarization analysis there are four relevant scattering
cross-section corresponding to two NSF and two SF scattering cross-sections denoted
by d∑++

dΩ , d∑−−
dΩ , d∑+−

dΩ and d∑−+
dΩ . As seen in section 2.4.1, magnetic scattering is a result

of anisotropic dipolar interaction with spin of neutron and dipolar field in sample.
Here, only magnetic component M⃗⊥

Q perpendicular to scattering vector Q⃗ is detected.
The magnetic scattering will be SF scattering when the polarization of the beam is
parallel to the scattering vector (P⃗ ∣∣Q⃗). SANS experiments performed with incident
polarized beam and no analysis of polarization at detector are called SANSPOL ex-
periments. The unpolarized SANS and SANSPOL setup is illustrated in the Fig.
2.24. The difference is the presence of polarizer and flipper in the SANSPOL setup.
The beam is polarized using (i) total reflection of one orientation of neutron from
magnetic multilayers (Fe/Si supermirrors), (ii) Bragg reflection from monochromator
results in constructive intereference for one spin state and (iii) using polarized He-3
filters where parallel spins pass the filter while the anti-parallel spins are absorbed
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2.5. Small-angle scattering (SAS)

Figure 2.24.: (a) Schematic of the SANS experimental setup including velocity selector
for selection of wavelength and (b) SANSPOL setup includes velocity
selectors along with a polarizer to polarize the neutron beam and flipper
to reverse the polarization on the neutron beam.

[58]. SANSPOL provides half polarized scattering cross-sections d∑+
dΩ and d∑+

dΩ which
combine NSF and SF :

’spin-up’: d∑+
dΩ = d∑

++

dΩ + d∑
+−

dΩ (2.124)

’spin-down’: d∑−
dΩ = d∑

−−

dΩ + d∑
−+

dΩ (2.125)

In case unpolarized SANS, the cross section is then

1
2 (

d∑+
dΩ + d∑

−

dΩ ) =
d∑
dΩ ∣unpolarized

(2.126)

The nuclear SLD is defined using eqn. (2.100), as ηN = ∑i cibi/Vi, where b is the
nuclear scattering length, c is concentration of the particle and V is the volume. The
magnetic SLD is defined due to interaction between the neutron spin with assembly
of magnetic moment gives rise to magnetic SLD defined by

ηM = 0.27 × 10−12(cm)∑i ciM⃗i
⊥

Vi

(2.127)

where only projection of magnetic moment M⃗i
⊥ onto a plane perpendicular to scatter-

ing vector Q⃗. In a classical SANS experiment, the beam in unpolarized and spins are
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randomly distributed. Consider, the simplest case of spheres in dilution limit, where
the scattering cross-section is reduced to one-dimensional integral as in eqn. (2.121)
and when linked to eqn.(2.121) can be written as

d∑
dΩ ∝ ∣FN ∣2, FN(Q) =∆ηVpf(QR) (2.128)

The scattering intensity is sum of squared amplitudes from individual magnetic and
nuclear contrasts [66, 67]. The nuclear SLD ∆η is the contrast difference between
SLD of particle and matrix. Similarly ∆ηm and form-factor F ⊥M(Q⃗) are vectors which
depend on the orientation of the moment with respect to Q⃗. For a magnetic sample in
an applied magnetic field H⃗, the unpolarized scattering cross-section in general form
is given by,

d∑
dΩ = A(Q) +B(Q)sin

2α (2.129)

where A(Q) and B(Q) are related to isotropic and anisotropic terms, respectively
and α is the angle between H⃗ and Q⃗. In a saturated state, all the magnetic moments
are aligned along H⃗, then A(Q) = F 2

N is purely nuclear and B(Q) = F 2
M is the

squared difference of saturation between particle and matrix. Here the intensity
measured perpendicular to the magnetic field, I(Q⃗ ⊥ H⃗) gives the sum of nuclear
and magnetic contribution A(Q) + B(Q). In I(Q⃗∣∣H⃗), yields nuclear contribution
A(Q). The eqn.(2.128) is validated by analyzing the 2D scattering intensity I(α)
along different azimuthal angles. Usually in unpolarized SANS, this is difficult to
detect due to weak magnetic contrast compared to nuclear one. In SANSPOL, the
scattering cross-sections are obtained [66]

I+(Q) = F 2
N + [F 2

M + 2Pf±FNFM] sin2α (2.130)

I−(Q) = F 2
N + [F 2

M − 2PFNFM] sin2α (2.131)

where P is degree of polarization, f± is efficiency of spin-flipper.

(I+(Q) + I−(Q))
2 = A(Q) +B±(Q)sin2α (2.132)

where,
B±(Q) = F 2

M − 2P (1 − 2f±)FMFN . (2.133)
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2.5. Small-angle scattering (SAS)

The difference in the intensities,

I−(Q) − I+(Q) = Bintsin
2α (2.134)

and here Bint = 4Pf±FNFM . In SANSPOL, the evaluation of scattering cross section
in the "spin up" and "spin down" states and their difference will reveal the nuclear
and magnetic form-factors along with nuclear-magnetic cross term. These equations
are valid only in dilute solution of MNPs where structure factor may be neglected.

2.5.8. Experimental aspects: data treatment

In a SAS experiment, isotropic scattering intensity, I(x, y), is recorded on position
sensitive 2D detector intensity where x, y are detector coordinates (Fig. 2.25 (a)).
Standard treatment of isotropic data where intensity is not dependent on azimuthal
direction in detector involves several corrections and steps. First, the beam centre
coordinates are determined using standard calibrant. For the given the experimental
conditions, the average value of ∣Q⃗∣ is [63]

Q = 4π
λ
sin(1

2tan
−1 (∣r⃗∣

L
)) (2.135)

where λ is wavelength, L is the sample-to-detector distance and r⃗ is position on
the detector given by coordinate (x, y). The intensity I(Q) obtained through radial
integration is now 1D intensity plotted as a function ofQ (Fig. 2.25 (b)). The intensity
is corrected for sample thickness, absorption and backgrounds from sample container
and solvents. The data is normalized to incident flux, geometrical factors, detectors
cell efficiency and put on absolute scale (cm−1) using the scattering cross-sections with
standard reference samples. In scattering experiment, the measured intensity from
sample and container is Im

S+EC and empty container is Im
EC . Background in scattering

can be due to room background and electronic noise. In SANS this background given
by dark current IDC is measured by replacing sample with cadmium, which is very
good neutron absorbent. The transmission of the sample is TS = TS+EC

TEC
. The total

scattering of sample inside the container is

Im
S+EC = TSTECIS + TSTECIEC + IDC (2.136)
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Figure 2.25.: (a) 2D scattering pattern obtained for particles in a matrix are corrected
and integrated radially (in general) to obtain (b) I(Q).

and for the empty container

Im
S+EC = TECIEC + IDC (2.137)

We can write IEC = 1
TEC
(Im

EC − IDC) and inserting this in eqn.(2.136) results in scat-
tering intensity from particles on solvent [63]

IS =
Im

S+EC − IDC

TS+EC

− I
m
EC − IDC

TEC

(2.138)

Background solvent scattering following similar protocol is subtracted to obtain net
scattering of particles. The scattering intensities I(Q) is subjected to smearing be-
cause of uncertainty in Q⃗ which is called the instrumental resolution. The un-
certainties arise from the (i) instruments having finite wavelength distribution ∆λ

λ

of incident beam, (ii) finite divergence of incident beam and depends on collimation
distance, (iii) aperature defining the beam and (iv) spatial resolution of detector. All
particles identical in size and shape are known as monodisperse particles. If there
is a variation or polydispersity, but no correlation in location and orientation. The
polydispersity affects the resultant differential cross-section as seen in the measured
intensity I(Q) plot in Fig. 2.26.

2.6. Wide angle scattering

Elastic coherent scattering on highly crystalline or ordered phases of matter gives rise
to diffraction peaks. In contrast to SAS, diffraction in done at much higher scattering
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2.6. Wide angle scattering

Figure 2.26.: Radially averaged SAS intensity I(Q) smeared due polydispersity (2%,
5% and 10%) in NPs.

angles and is often referred to as wide angle scattering. This section will discuss the
origin of Bragg peaks in crystalline samples and the construction of Ewald sphere
to visualize the reciprocal lattice. Experimental aspects and challenges to probe
crystalline nanostructures will be addressed through diffraction experiments with pair
distribution function (PDF). The books and papers from which various concepts and
equations are borrowed for this section are listed in [57, 68, 69, 70, 71].

2.6.1. Fundamentals: Bragg’s Law

Mathematically, the SLD at a given position in the crystalline sample can be written
as

η(r⃗) = η(r⃗ + n1a⃗1 + n2a⃗2 + n3a⃗3) (2.139)

for any set of integers n1, n2 and n3 due its periodicity. The magnitude of the vectors
a⃗i, for i ∈ (1,2,3), defines the length of the basic unit cell. The differential scattering
cross-section linked to the SLD function from basics of elastic scattering discussed
previously is written as,

dσ

dΩ = ∣∫
V

η(r⃗)eiQ⃗.r⃗d3r∣2 (2.140)
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where V is the volume of the illuminated sample. Then from eqn.(2.139), the integral
can be equated as

∫
V

η(r⃗)eiQ⃗.r⃗d3r = LR(Q⃗) ∫
Vcell

η(r⃗)eiQ⃗.r⃗d3r (2.141)

where Vcell is volume of the unit cell and here

LR(Q⃗) = ∑
n1,n2,n3

exp[iQ⃗.(n1a⃗1 + n2a⃗2 + n3a⃗3)]. (2.142)

Summation of exponential cancels out unless they are added coherently. Thus,

Q⃗.(n1a⃗1 + n2a⃗2 + n3a⃗3) = ϕo + 2πn (2.143)

where ϕo is the constant and n is an integer. The eqn.(2.143) is achieved when

Q⃗ = hA⃗1 + kA⃗2 + lA⃗3 (2.144)

where h,k and l are integers and A⃗1 = 2πa⃗2×a⃗3
a⃗1.(a⃗2×a⃗3) , A⃗2 = 2πa⃗3×a⃗1

a⃗1.(a⃗2×a⃗3) , A⃗3 = 2πa⃗1×a⃗2
a⃗1.(a⃗2×a⃗3) .

Here the vectors obey a⃗i.A⃗i = 2πδij,∀i, j ∈ (1,2,3). So that in eqn.(2.143), ϕo = 0 and
n1h + n2k + n3l = n. At isolated non-zero points, the

LR(Q⃗) = ∑
h,k,l

δ[Q⃗ − (hA⃗1 + kA⃗2 + lA⃗3)] (2.145)

defines the reciprocal lattice with lattice vectors A⃗i. Although the Fourier transform
of SLD in eqn.(2.141) is for all Q⃗, the discrete nature of LR(Q⃗) with which it is
multiplied results in non-zero specific values of Q known as Bragg peaks.

2.6.2. Atomic planes and Ewald sphere

The link between discrete nature of scattering and atomic structure is based on reci-
procity of Fourier transform in real and inverse Q space. The atomic plane spacing
of a crystal given by d in real space appears with periodicity 2π

d in Q-space. For
a unit vector n̂ normal to this crystal plane, a position r⃗ in the crystal is given by
r⃗.n̂ = Nd+∆, where ∆ is the offset and N = 0,±1,±2...(see Fig. 2.27(a)). The spacing
gives rise to peaks in Q-space where Q⃗ = 2π

d Nn̂ [57]. Equating the magnitude of Q⃗
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with eqn. (2.74),
∣Q⃗∣ = 4πsinθ

λ
= 2πN

d
(2.146)

results in the well known formulation of Bragg’s law

Nλ = 2dsinθ. (2.147)

Hence, Bragg peak indexed by h,k,l correspond to planes with normal n̂ given by
n̂ = λ

4πsinθh,k,l
(hA⃗1 + kA⃗2 + lA⃗2) where the scalar prefactor ensures unit length.

Figure 2.27.: (a) Atomic planes with a vector normal n̂ and interplanar spacing d.
(b) Ewald sphere with crystal at origin of the sphere and radius 2π/λ.
The beam of x-rays/neutrons strikes the crystal and are diffracted along
directions passing through the atoms. The origin of the reciprocal lattice
is indicated by O.

Ewald sphere is a geometrical construction to visualize these Bragg planes (Fig.
2.27 (b)). Consider a sphere of radius 2π

λ (in crystallography often the choice is 1/λ)
with crystal placed at the centre of the sphere. The origin of reciprocal space is
point of exit of direct beam on the sphere labelled as O. When the set of the planes
satisfy the Bragg condition, the diffracted vector lies on the surface of Ewald sphere.
Combining eqn. (2.141) and (2.145), we can define a structure factor Fh,k,l for crystal
structure. Note that this structure factor is different from the structure factor S(Q⃗)
defined for SAS previously. Here, this function describes amplitude and phase of wave
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diffraction from crystal lattice planes h, k, l by n atoms in unit cell.

Fh,k,l = V
1

∫
x,y,z=0

η(x, y, z)ei2π(hx+ky+lz)dxdydz (2.148)

2.6.3. Powder diffraction: Bragg peaks

Compared to single crystals, powders consist of a large ensemble of randomly oriented
crystallites. Thus, the resulting differential scattering cross-section is spherically sym-
metric where ( dσ

dΩ) ∝ Sel(Q⃗) = Sel(Q). The diffraction pattern is independent of the
azimuthal angle and ∣Q⃗∣ depends on the wavelength λ and scattering angle θ. This
leads to circular rings of uniform intensity on detectors during diffraction experiment.
Then for a fixed λ, the peaks in the radially averaged intensity function I(Q) oc-
curs at d-spacing which satisfies Bragg’s law. Then the terms from eqn. (2.144) and
(2.146)

4πsinθ
λ

= ∣hA⃗1 + kA⃗2 + lA⃗3∣ (2.149)

must be satisfied by more than one set of Miller indices. The area under Bragg peak
I ∝ ∑h,k,l ∣Fh,k,l∣2, which essentially corresponds to sum of structure factor intensities
at several reflections where h, k, l obeys eqn. (2.149). The atoms are assumed to be
fixed but in reality the thermal motion affects the scattering intensity. The intensity
due to increased thermal atomic displacements is given by

Sel(Q) = [Sel(Q)]T=0 × e−
αTQ2

2 (2.150)

where, the right term indicates the exponential fall in scattering intensity with Q2

and is called Debye-Waller factor. The shape and spread of Bragg peaks result from
combination of instrument factors such as angular resolution, collimation distances,
source-sample-detector distance and intrinsic properties of crystals. The finite size of
crystal gives rise to Bragg peaks of width

βh,k,l =
Kλ

Lhklcosθ
(2.151)

where K = 0.94 for spheres with cubic unit cell and depends on the shape of crystallite
with thickness Lhkl given in the direction perpendicular to N planes.
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2.6. Wide angle scattering

2.6.4. Total scattering experiments: Bragg and diffuse peaks

The challenge to perform crystallography for nanoparticles is illustrated in the Fig.
2.28. Figure 2.28 (a) represents conventional x-ray diffraction of crystalline sample
with sharp peaks and Fig. 2.28 (b) represents the diffuse and broad peaks obtained
for a nanocrystalline sample. There are two evident challenges to retrieve nanostruc-

Figure 2.28.: Conventional x-ray diffraction of (a) crystalline and (b) nanocrystalline
sample indicating broad and diffuse peaks; taken from [69]

ture from the diffraction [70, 69]: (i) The short range information is embedded in
the diffuse scattering which is hard to detect in typical diffraction experiment and
(ii) nanocrystalline samples display broad and weak Bragg peaks which are difficult
to analyze. Debye scattering equation is an alternative method to describe diffrac-
tion pattern on a collection of randomly oriented crystallites without relying on the
crystalline periodicity. For a collection of identical grains, the scattering intensity is

Icoh(Q) = ∑
m,n

fm(Q)f∗n(Q)
sin(Qr)
Qr

(2.152)

which sums over all scattering centres with corresponding scattering power fi(Q). In
x-rays, the scattering power is the atomic form-factor and for neutrons it is given by
coherent scattering cross-section. The total scattering technique is used to resolve
structures with low coherence volume by analyzing both Bragg and diffuse scattering
simultaneously. The mathematical formulation of this starts with the definition of
pair distribution function g(r) which is defined as

g(r) = 1
4πρor2N

∑
i

∑
j≠i
δ(r − rij) (2.153)
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where ρo is the average number density of atoms, N is the total number of atoms, rij

is the distance between atom i and j. Here, δ(r − rij) is Dirac delta function which is
1 when r = rij. In practice, reduced pair distribution function G(r), where

G(r) = 4πrρo[g(r) − 1] (2.154)

is used for computational convenience. G(r) can be calculated from total scattering
function S(Q) through Fourier transform

G(r) = 2
π

∞

∫
0

Q[S(Q) − 1]sin(Qr)dQ. (2.155)

Experimentally it is not possible to access the 0 and∞ and the limits range from Qmin

to Qmax. High quality PDFs are produced as long as the value of Qmax is sufficiently
high. Accurate data analysis can be conducted on PDFs produced with Qmax > 20 Å−1

is often reduced below the experimental maximum to eliminate the noisy data. The
value of Qmax is Fourier transform that will also determine the real space resolution
of the PDF. Accessing finite values of Qmax results in termination ripplesat low r The
normal scattering intensity S(Q) is obtained by measuring Icoh(Q) and related to

S(Q) = 1 + Icoh(Q) −∑ ci∣f i(Q)∣2
∣∑ cif i(Q)∣2 (2.156)

where ci is atomic concentration of the ith element and f i(Q) atomic x-ray scatter-
ing factor or neutron scattering length and Icoh(Q) is the coherent intensity defined
previously. Thus, the g(r) related to collected intensity can be used to model the
structures in real space.

2.6.5. Experimental aspects: data treatment

Synchrotron x-ray and spallation neutron sources due to its large flux can give access
to high Qmax values, enabling collection of high quality data for PDF analysis. For
instance, laboratory x-ray diffraction with Mo source gives a Q range upto Qmax ≃
14 Å−1. The total x-ray scattering experiments carried out at x-ray synchrotron can
reach Qmax ≃ 25-30 Å−1. The thesis mainly focuses on total scattering experiments
with x-rays and hence will discuss the data treatment for x-ray pair distribution func-
tion (xPDF) analysis. For xPDF, the detector is very close to sample to access high Q
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values (Fig. 2.29 (a)). A commercial Ni or CeO2 powder sample is used to both cali-
brate sample-to-detector distance and determine the instrument resolution parameter
Qdamp. The 2D detector intensities of the sample are centered and integrated after
calibration (Fig. 2.29 (b-c)) to obtain measured intensity as function of Q (Fig. 2.29
(d)). Since these experiments rely on preserving Bragg and diffuse scattering peaks,
separate background measurements (sample container) are to be made. The coherent
intensity Icoh(Q) can be obtained from experimentally measured total intensity I(Q)
when corrected for incoherent intensity, background noise and detector efficiency. The
intensity is then used in eqn. (2.156) to obtain total scattering function S(Q) plotted
in fig 2.29 (e). The oscillations in this function are more pronounced and converges to
1 at large values of Q. This means that during experiments high counting statistics
are required to measure intensity at high Q region. A reduced scattering function
F(Q) is defined as

F(Q) = Q[(S(Q) − 1]. (2.157)

oscillates at 0 for large values of Q (Fig. 2.29 (f)). Reduced scattering function is
replaced in eqn. (2.155) to obtain a real space function G(r) plotted in Fig. 2.29
(g). XPDFs obtained are real space functions that are more intuitive to analyze.
As shown in Fig. 2.30 (a-b), the peak position indicates distance between atomic
pairs. The area under the peak reveals the abundance of such atomic pairs weighted
by scattering factors. The full width half maxima of the the peak then corresponds
to the atomic vibration and structural disorder within the sample. The maximum
distance up to which oscillations persist in the PDF correspond to observed coherent
domain. To calculate PDF for a known structure, an atom is placed at the origin and
a delta function appears at the interatomic position for every atom the circle of radius
r intersects (Fig. 2.30 (c)). Thermal motion causes these delta functions to broaden
into a Gaussians type functions. The PDF is a sum of these independent Gaussian
functions. Following such modelling process G(r) can be fit using structural models
as shown in Fig. 2.30(d) to determine the local and intermediate range structure of
nanoparticles.
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Figure 2.29.: (a) Total scattering experiment geometry with x-rays. Data treatment
steps followed to obtain pair distribution function: (b) Calibration of the
sample-to-detector distance by fitting the powder rings of the calibrant
(CeO2 for x-rays). Here the colored rings are the fit to the powder rings.
(c) 2D data in usual scattering experiments are centred using values
in (b) and integrated to obtain (d) Debye scattering intensities I(Q).
Normalized and corrected I(Q) is further analyzed to obtain (e) total
scattering function S(Q) (using eqn. (2.156)), (f) reduced scattering
function F(Q) as a function of Q (using eqn. (2.157)). (g) Finally a real
spaced pair distribution function G(r) is obtained by Fourier transform
of the F(Q).
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Figure 2.30.: Analysis of G(r) functions: (a) Peak position, area under peak and width
(FWHM) of the peaks in the PDF corresponds to various structural
aspects of the nanostructure. (b) The crystallite size is denoted by
the peak cut- off in the PDF. (c) Schematic process for modelling the
PDF considers the atom at the origin and (d) Fit of G(r) data with
experimental data in blue open circles and calculated pattern is the red
curve based on the modelling described in (c) and difference between
calculated and experimental data is the green difference curve.

63



3. Review of magnetic dumbbells
nanoparticles

This chapter discusses and reviews the literature on hybrid magnetic dumbbell-shaped
nanoparticles. Dumbbell nanoparticles (DBNPs), sometimes called "snowman parti-
cles," is a generic name for two different/similar particles in close contact with a unique
morphology. Therefore, this name has been used extensively for soft, hard, organic,
and inorganic particles. This chapter focuses mainly on DBNPs containing metal and
metal oxide nanoparticles, in particular, Au-Fe3O4. Along with a brief introduction
to Au and iron oxide’s individual physical and magnetic properties, the chronological
order of events that led to their current synthesis trends, including the discovery of
novel properties, are discussed. Different assemblies formed by DBNPs are reviewed
with mention of potential applications. Finally, the gaps in the literature relevant to
the thesis are revisited.

3.1. Single phase nanoparticles

3.1.1. Gold nanoparticles

Technologically, Au NPs have been used for optical properties like staining glass since
ancient times. Systematic investigations on gold colloids began in mid nineteenth
century and their breakthrough use for biological applications were discovered only
in the last two decades with advent of nanotechnology. The toolbox now allow con-
trolled synthesis and characterising methods that did not exist before [72]. The most
prominent detection techniques are based on the interaction of light with Au NPs.
Au NPs absorb and scatter visible light. Upon absorption, the light energy excites
the free electrons in the Au particles of 4-40 nm to a collective oscillation to exhibit
the localized surface plasmon resonance (SPR) at wavelength of 510-530 nm [73, 74].
The excited electron gas relaxes thermally by transferring the energy to the Au lat-
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tice, leading to heated Au NPs. Gold particles larger than around 20 nm can be
directly imaged with optical microscopy in phase or differential interference contrast
mode. Efficient absorption and scattering of light at specific wavelength based on
shape and size of Au NPs can be used for labelling with different colours. The Au
NPs can be imaged using photothermal, photoacoustic and fluorescence microscopy.
The molecules adsorbed on the surface of Au is introduced into cells where molecules
can be detached [75]. Au NPs’ ability to absorb copious amounts of X-ray radiation
can be used to enhance cancer radiation therapy or increase imaging contrast in di-
agnostic computed tomography (CT scans) [76]. The Au NPs can shield the unstable
drugs or poorly soluble imaging contrast agents and facilitate their efficient delivery
to inaccessible regions of body. Unique properties of Au are still beginning to be fully
realized in range of medical diagnostic and therapeutic applications [77, 78, 79].

3.1.2. Iron-oxide nanoparticles

Iron oxides have extensive applications in magnetic recording medium, catalysts, pig-
ments, optical devices and electromagnetic devices [80]. They exist in rich variety of
structures and oxidation states. By definition, superparamagnetic iron oxide nanopar-
ticles (IONPs) are classified based on the size of the particle. Due to their high satura-
tion magnetization, high magnetic susceptibility and low toxicity, IONPs have found
several applications in biomedicine. For example as efficient contrast agents that are
used to enhance the relaxation difference between healthy and pathological tissues
in magnetic resonance imaging (MRI) [81, 82]. IONPs can be used as drug delivery
systems for cancer therapy and killing tumour cells in magnetic hyperthermia [83,
84]. Naturally occurring IONPs in form of chains can be found in magnetostatic bac-
teria that enable geomagnetic navigation in aquatic habitats [85]. Chemists have now
successfully synthesized and characterized IONPs of different morphologies including
spheres, rods, cubes and flowers [86, 87]. The resulting properties are highly depen-
dent on synthetic route, shape and size. Thus, there has been much development to
produce high quality iron oxide systems [88, 89, 90, 91]. Among several crystalline
modifications the magnetic phases include rhombohedral hematite (α-Fe2O3), cubic
maghemite (γ-Fe2O3), cubic magnetite (Fe3O4), cubic wüstite (FeO) and less com-
mon ϵ-Fe2O3. In the α-structure, all Fe3+ have an octohedral coordination whereas
γ-Fe2O3 has the cation deficient AB2O4 spinel. The metal atoms A and B occurs in
tetrahedral and octahedral environment, respectively. Hematite is AF at temperature
below 950 K while above Morin point (260 K) it exhibits weak FM. Bulk maghemite
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is FiM below 620 ○C. Among all, magnetite phase posses interesting properties be-
cause of the presence of iron cations in two valence states Fe2+ and Fe3+ in inverse
spinel structure. The cubic spinel is FiM at temperature below 858 K. Cubic wüstite
is AF with TC = 185 K in bulk state. Magnetite has a larger bulk Ms = 92–100
emu/g than maghemite Ms = 60–80 emu/g and a lower Curie temperature due to
antiparallel interactions between the electron spins of tetrahedral-coordinated Fe3+

and octahedral-coordinated Fe3+/Fe2+ in magnetite. Self-assembly into 1D, 2D and
3D structures with controlled shapes, alignment and spacing have been successfully
achieved in IONPs [92, 93, 94, 95].

3.2. Types of dumbbell

Figure 3.1.: (a) Au-Fe3O4 (b) Ag-Fe3O4 (c) AuAg-Fe3O4 and (d) Ag-CoFe2O3 DBNPs.
(a-c) Reprinted (adapted) with permission from [96] ©2010 American
Chemical Society and (d) reprinted (adapted) with permission from [97]
©2005 American Chemical Society.

Multi-functional DBNPs that combine and intertwine materials from transition
metal oxides (Fe3O4) to metals (Au, Ag, Pt) are expected to display novel proper-
ties as a result of this attachment. A number of authors have synthesized Au-Fe3O4,
Ag-Fe3O4, AuAg-Fe3O4, and Ag-CoFe2O4 DBNPs, as shown in the microscopy im-
ages in the Fig. 3.1 (a-d). Gu. et. al prepared Ag-CoFe2O4 DBNPs for instance
by mixing AgNO3 in aqueous phase with Fe3O4 dispersed in organic solution [98].
Ultrasonic emulsification triggered self-assembly at the liquid-liquid interface to pro-
duce such DBNPs. The sequential growth of DBNPs by thermal decomposition of
one component on the other was first successfully established by Yu. et al. in 2005
[16].
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3.3. Review of current synthesis methods

The difference in synthesis compared to core-shell particles lies in the heterogeneous
nucleation combined with a lattice mismatch of two components (Fig. 3.2). In DB-
NPs, a significant lattice mismatch favors the growth of one component on the crystal
plane of the other [99]. The seed to precursor ratio also plays a critical role. The
increased concentration of Au seeds means more surfaces are available, leading to
the precursor atoms nucleating on the other surface resulting in a core-shell struc-
ture. Electron transfer at the interface of the two components affects the morphology
of the dumbbell. The surface of the component can be active sites for the other
component to nucleate by controlling the solvent polarity [16, 100].

Figure 3.2.: Sketch representing the heterogeneous nucleation and homogeneous nu-
cleation of one component (blue) on the preformed seed of other (red).
Homogeneous nucleation results in composite system containing two dis-
joint particles. Heterogeneous nucleation results in dumbbell, core-shell
and flower nanoparticle; Figure adapted from [18].

The primary challenge for the synthesis of DBNPs was obtaining precise control
over their size and morphology. The earlier bifunctional systems were prepared by
physical deposition of thin Au film on spherical particles, adsorption techniques or
electroplating [101, 102]. One of the earliest successful synthesis of DBNPs with no
prior treatment of the surface were reported in 2005 by Yu, H. et al. using solution-
phase synthesis [16]. They achieved this remarkable result through thermal decom-
position of iron pentacarbonyl Fe(CO)5 on the surface Au nanocrystals followed by
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oxidation in air. The described protocols can produce Au-Fe3O4 with size-tunable
components up to 20 nm that can easily convert to Au-Fe2O3 and Au-Fe DBNPs. Au
nanoparticles were pre-formed or synthesized by in situ injections of HAuCl4 solution
into the reaction mixture. Au and Fe(CO)5 are mixed in the presence of oleic acid
and oleylamine to provide the coating around DBNPs to avoid irreversible aggrega-
tion in a 1-octadecene solvent. This mixture is heated to reflux (≈ 300○ C) to produce
the DBNPs. Several groups have optimized these protocols for precise size control of
DBNPs size in the next decade. DBNPs are synthesized similar to the seed-mediated
growth in core-shell NPs. However, the nucleation and growth are anisotropically
centered on one specific crystal plane around the seeding NPs. The control of seed
to precursor ratio achieves this heterogeneous nucleation; here, the Au NPs are the
seeds while Fe(CO)5 is the precursor. Several parameters such as seed to precursor
ratio, reaction time and temperature, and solvents were systematically investigated
for precise size control [18, 19]. The controlled growth of only one Fe3O4 on the seed
under current conditions is attributed to the possible electron transfer between Au
and Fe. In the growth process Fe(CO)5 decomposes into Fe and nucleates on Au NP.
Once the Fe nucleus is formed on Au, free electrons from Fe tend to flow across Au, as
a result the interface becomes electron rich [17]. When exposed to air, Fe is oxidized
to Fe3O4, thus electrons from Au must compensate for charge induced by polarized
plane at interface thus making other facets of Au unsuitable for multinucleation. The
type of surface ligand is critical in the growth condition. The compatibility requires
the ligands to bond not so strongly to particle surface. For instance, thiol can hinder
epitaxial growth of metal oxide on noble metal NPs producing a composite showing
individual properties of each component.

3.4. Emergence of novel properties

Au NPs have a characteristic surface plasmon resonance at wavelength of 520 nm,
which may broaden and shift depending on size and concentration. During growth
process, electrons flow from Fe to Au. However, small variations in electron transfer
at interface may lead to drastic change in properties as seen in wavelength shift to
538 nm for Au in Au-Fe3O4. The red shift occurs in these DBNPs due to electron
deficiency in Au caused by the interface [16, 103]. The interface is also responsible
for enhanced magnetic moment observed in Fe3O4 due to presence of Au [104]. Spin
polarization of non magnetic metals in contact with ferromagnet was extensively
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studied experimental and theoretically since the 70s’ for bulk [105, 106, 107]. They
found that the spin polarization can penetrate in a length scale of 1-2 nm in non-
magnetic metal in contact. In another example, the hysteresis measured in two types
of DBNPs Au-Fe3O4 with length scales 3- 14 nm and 3-6 nm were compared to single
spherical Fe3O4 of similar sizes [16]. The 14 nm magnetite attached to DBNP show
similar hysteresis loop as the spherical counterpart due to negligible Au content.
However, there is a slow increase in moment with field in 6 nm magnetite of the
DBNP. The slope is also attributed to the spin canting of the small magnetite which
is aggravated by Au [20]. Exchange bias corresponds to a shift of the hysteresis loop of
a ferromagnet along the magnetic field axis due to interfacial exchange coupling with
an adjacent antiferromagnetic layer. Exchange bias effect is therefore not expected
in single phase Fe3O4 nanoparticles. Hence observation of this exchange bias effect
in magnetite of the DBNP is a novel behaviour. This effect is attributed to electron
transfer at the interface from Au NP to ferrimagnetic Fe3O4 reducing the interface
to antiferromagnetic FeO [22]. Since the structure is limited to nanometer scale, any
variations in the electron transfer between the two species may result in the drastic
effect in property change in either NPs leading to novel properties [108]. DBNPs are
shown to exhibit enhancement in contrast with potential as improved contrast agent
for magnetic resonance imaging (MRI) to improved catalysis [21].

3.5. Previous observation of assemblies

Several reports exist on self-assembly of multi-functional yet spherically symmetric
particles like Janus particles and soft organic materials [109, 110, 111, 112, 113, 114].
DBNPs in the micron size regime are shown to assemble in to well defined clusters or
chains [115]. Dumbbell shaped microgels have been used as model systems to show
phase transitions as a function of volume fraction and aspect ratios [116]. Monte
Carlo simulations on DBNPs where one surface is attractive and other is repulsive
indicate formation of various structures ranging from spherical micelles to bilayers
based on the center to center separation, size ratio and volume fraction of the col-
loids [24]. Recently, several reports have demonstrated experimentally the formation
of assemblies into vesicles and spheres through selective functionalization where sur-
face of IONPs are made repulsive through electrostatic interactions while Au lobe is
made attractive via hydrophobic interactions [27, 29, 117]. Such experiments often
probe self-assembly using microscopy techniques like electron microscopy and high-
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angle annular dark-field scanning transmission electron microscopy (HAADF-STEM).
Contrasting the magnetic dumbbells, non magnetic dumbbells were shown to form
chains when dispersed in ferrofluid containing magnetic sphere. These spheres were
controlled by a combination of magnetic and electric fields [118]. Pre-designed block
copolymer led to DBNPs arranging in arrays [119]. Atomic force microscopy imag-
ing of DNA coupled with DBNPs are shown to align in the magnetic field. DNA
is easily coupled with Au surface via the Au-S chemistry and Fe3O4 is used to ma-
nipulate in magnetic field to identify different bending modes of the DNA [120]. In
the most recent report, Niehues. et. al in 2021 demonstrated that through selective
functionalization of the surface with a photo responsive material, light could be used
to assemble the DBNPs through host guest interactions [30]. An overview of such
assembly patterns formed are summarized in the Fig. 3.3.

3.6. Applications

The advantages of DBNPs that are exploited in several applications include (i) the
presence of two distinct surfaces that allow dual functionalization, (ii) the unique
morphology provides a rotational degree of freedom, and (iii) multifunctionality is
encoded in the system.

1. Dual probe biomedical imaging: The multifunctionality of the system, for
instance optically active Au attached to magnetic iron oxide is suitable for
simultaneous optical and magnetic detection, hence its potential as a dual probe
for biomedical imaging [16, 121, 122, 123]. The caffeic acid functionalized Au-
Fe3O4 and Pt-Fe3O4 heterodimers were excellent agents to enhance the effect
of x-ray radiation on 2D-3D tumour cells while protecting the healthy breast
cells [124]. Both Au and iron oxide are non-toxic and bio-compatible for in-vivo
drug applications [125, 126]. Unique morphology of the DBNPs offers two active
surfaces that make it multi-functional and suitable for target specific imaging
and delivery systems [98, 127].

2. Catalysis: Such structures are also excellent candidates for catalysis. The en-
hanced catalysis in these particles is associated to modified electronic structure
in both oxide and metal interfaces. This modification leads to electron transfer
from oxide to metal resulting in oxygen vacancies that become active sites [128,
103]. Wang et al. reported a 20-fold increase in mass activity toward oxygen

70



3.6. Applications

Figure 3.3.: (a) Micrometer sized dumbbells containing organic compounds forming
vesicles, reprinted (adapted) with permission from [109] ©2018 American
Chemical Society. (b) and (c) Non magnetic DBNPs in ferrofluid dis-
persion forming chains with simultaneous application of magnetic and
electric field, reprinted (adapted) with permission from [118], ©2015
American Chemical Society. (d) Scheme of surface functionalization of
Au-Fe3O4 with hydrophillic and hydrophobic ligand to induce assembly,
reprinted (adapted) with permission from [29] ©2017 American Chemical
Society. (e) Vesicle formation as result of the surface functionalization
of Au- Fe3O4 DBNPs, reprinted with permission from [27] ©2018 Ameri-
can Chemical Society. (f) The photo activated self-assembly in Au-Fe3O4
surface functionalized DBNPs, reprinted with permission from [30] ©2021
American Chemical Society.
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reduction reaction for Pt-Fe3O4 DBNPs compared with the single component
Pt NPs [17]. Au-Fe3O4 are found to be more active than individual Au or Fe3O4

in the catalysis reduction of H2O2 [129].

3. Sensors: DBNPs such as PtPd-Fe3O4 are one of the most sensitive probe to
quantitatively detect H2O2 in biological environment [124]. An electrochemical
immunosensor has been developed using novel kind of label based on DBNPs
such as Au-Fe3O4 for the detection of cancer biomarkers [129]. Ultrasensitive
colorimetry for Salmonella typhimurium detection was achieved with such DB-
NPs [130].

3.7. Conclusion
In many cases, theoretical and experimental studies on DBNPs have predicted and
confirmed ordered patterns. Often these assemblies are tuned through surface mod-
ification of the DBNPs and controlled through electrostatic interactions. However,
external magnetic fields are preferred stimuli for most relevant biomedical applica-
tions. Therefore, tuning and controlling assemblies via magnetic field is essential for
an in-vivo environment. So far, the assemblies have been mainly observed through
microscopy techniques. Scattering experiments offer an advantage in investigating
self-assembly in an environment close to real applications to explore parameter space.
To the best of our knowledge, there have been no prior reports on assemblies us-
ing scattering methods on DBNPs. Multi-scale approach, including microscopy and
scattering techniques, will offer new insight into the self-assembly phenomenon.
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Methods and Simulations

Self-assembly of magnetic nanoparticles (MNPs) in dispersion depends on various
parameters, including size, shape, composition, magnetic properties, magnetic struc-
ture, and thickness of coating around a nanoparticle. These multi-scale parameters of
MNPs are extracted in this thesis for dumbbell nanoparticles (DBNPs) and reference
iron oxide nanoparticles (IONPs) using several experimental methods. The methods
outlined in this chapter include imaging, total scattering and small-angle scattering
experiments, magnetometry, thermogravimetric and elemental analysis.

4.1. Samples

The samples investigated in this thesis include four different DBNPs (labeled: A12F10,
A9F11, A10F14 and A13F14) that primarily consist of a gold NP seed attached to
an IONP. Particles are stabilized by coating the surface with oleic acid and oley-
lamine. Before detailed studies on DBNPs, six reference IONPs surface stabilized
with oleic acid are investigated individually (F05, F10, F20, F21, F24 and F27). De-
tailed synthesis protocols and sizes of IONPs and DBNPs are outlined in chapters
5 and 6, respectively. These IONPs and DBNPs are initially dispersed in hydroge-
nous toluene. However, different sample handling protocols were established for the
methods described below.

4.2. Electron Microscope (EM)

Two different EMs employed to inspect the shape, size and structure of the IONPs
and DBNPs are (i) transmission electron microscope (TEM) and (ii) scanning elec-
tron microscope (SEM). The electron-matter interactions involved while imaging the
specimen with electrons are outlined in Fig. 4.1.
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Figure 4.1.: Different electron interactions in an electron microscope; inspired from
several sources [131, 132].

The primary electron beam incident on the sample and interactions of electrons
with atoms can be broadly classified into three categories [133, 134]:

• Backscattered electrons (BSE) are elastically scattered electrons deflected at an
angle greater than 90○ from the direction of the primary beam due to electro-
static interaction with positively charged atoms. The energy of the electrons is
close to the primary beam.

• Elastically scattered electrons are similar to BSE, except that electrons are
deflected at an angle less than 90○ from the direction of the primary beam. Due
to elastic scattering, the energy of the scattered electrons is close to the primary
beam.

• Inelastically scattered electrons are electrons that lose energy through interac-
tions with the electron cloud of the sample. Several processes can give rise to
signals due to inner-shell ionization, Bremsstrahlung or braking radiation, sec-
ondary electrons, phonons, plasmons, and cathodoluminescence. The atom’s
loosely bound electrons can be ejected at low energies to yield secondary elec-
trons. Due to energy transfer and excitation of the inner electronic shell, the
unstable atom causes the outer-shell electrons to fill the hole, which leads to a
release of characteristic x-rays or Auger electrons. Bremsstrahlung radiation are
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uncharacteristic x-rays generated when the atomic nucleus decelerates charged
particles.

The main components of the EM are (a) electron gun, (b) electromagnetic lens, (c)
vacuum system, (d) camera/detector and (e) processing system. The electron gun
generates electrons through thermionic emission (Tungsten, LaB6) or field emission.
EMs are maintained at a high vacuum level to avoid any collision, which affects the
image’s resolution. The voltage difference causes the acceleration of the electrons
in the system. The wavelength of the electrons is dependent on their momentum
and is varied through a range of accelerating voltages. Higher accelerating voltages
produce high-energy electrons with smaller wavelengths. The electrons are accelerated
through the electromagnetic lens to produce a focused beam of electrons to image the
specimen and gain information about its structure. The electromagnetic lens consists
of copper winding through which current passes to generate a magnetic field that
will determine the lens’s focal length. An EM designed to use 200-300 keV electrons
offers the advantage of high resolution. They have a very high magnification range,
typically 10-500,000 times for SEM and 2000-1 million times for TEM. Thus, EM
enables characterization at many different length scales, from micro- to nanoscale.

4.2.1. TEM

4.2.1.1. Working principle

The working principle and the components of TEM are schematized in Fig. 4.2. The
first lens system bundles the electrons to determine the beam’s brightness and guide
it to the sample. In TEM, mainly the transmitted elastically scattered electrons are
used for imaging. Therefore, the specimens must be thin (∼ 70 nm) and are usually
mounted on top of a carbon-coated grid for the electrons to penetrate the sample and
form a primary image at the objective lens. As a result, this gives information about
the sample’s inner crystal structure, morphology, and stress state. The magnetic field
strength at the objective lens is used to focus the image. The final magnification is
determined by the projective lens, which projects the final image on the fluorescent
screen or CCD camera. The circular path of the electrons leads to rotation of the
image, which is corrected with corrector coils.
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Figure 4.2.: (a) The working principle of TEM involves imaging thin samples in trans-
mission mode. (b) Principal components of the TEM setup; adapted from
[131, 132].

4.2.1.2. Sample preparation

The measurements were carried out in Ernst Ruska centre at Forschungszentrum
Jülich GmbH with Philips CM20 and FEI Technacai using an accelerating voltage of
200 kV. The samples were prepared by evaporating a drop of about 25 µl of solution
of IONPs and DBNPs on a carbon coated copper grid. The TEM images from IONPs
were obtained by Dr. Sascha Ehlert (Forschungszentrum Jülich) and some images of
DBNPs by Dr. Elvira Fanatechi (University of Pisa).

4.2.2. SEM

4.2.2.1. Working principle

The working principle and components of SEM are displayed in Fig. 4.3. The SEM
image is created by detecting the reflected or knocked-off electrons. This image pro-
vides information about the sample surface and composition. The difference from
TEM is that now specimens can be thicker since it does not have to be permeable to
electrons.
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4.2.2.2. Sample preparations

The SEM studies were limited to F27 IONPs that formed assemblies in a mag-
netic field. Two deposition modes were employed to prepare (a) drop-cast and (b)
spin-coated samples. The SEM studies were carried out at the PGI-7 institute,
Forschungszentrum Jülich GmbH on Hitachi SU8000 with an accelerating voltage
of 20 kV. In drop-casted samples, about 25 µl of F27 IONPs were dropped on a sili-
con substrate and were allowed to dry out at ambient conditions for three days. The
spin-coated sample was prepared by dropping 25 µl IONPs on the substrate placed
in a spin coater set to a rotation speed of 30 rps for one minute.

Figure 4.3.: (a) The working principle of a SEM involves imaging samples in scanning
mode and can be thicker than TEM samples. (b) Principal components
of the SEM setup; adapted from [131, 132].

4.3. Magnetometer

4.3.1. Working principle and setup

Magnetization and susceptibility measurements can categorize different magnetic ma-
terials. Magnetometers are magnetic sensors that detect the induced magnetic mo-
ment of the sample. The vibrating sample magnetometer (VSM) is one of the most
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common modes for extracting information about magnetic moment. In the scheme
shown in Fig. 4.4 (a), the sample is introduced in a constant uniform magnetic field
which induces a magnetization in the sample. As the sample is vibrated, the external
field experiences perturbations. A set of pickup coils arranged around the sample
can be used to measure the electromotive force (emf) generated due to a change in
magnetic flux. The time-dependent induced voltage induced in the pickup coil by
changing magnetic flux is Vcoil = dϕ

dt = (
dϕ
dz )(dz

dt ). The emf depends on the amplitude
and frequency of vibration, external field, and sample magnetization for a particular
geometry. Magnetometry measurements on IONPs and DBNPs were carried out on
the PPMS-DynaCool system from Quantum design at JCNS-2, Forschungszentrum
Jülich (Fig. 4.4 (b)). The DynaCool is the new generation of physical property
measurement systems requiring no liquid cryogens. A wide range of measurements,
including electrical and magnetic transport, may be performed. However, for mea-
surements included in the thesis, the DynaCool system was mainly used in VSM mode
(Fig. 4.4 (c)) to extract magnetic moment. This option requires a puck-based coil
set with integrated temperature sensors and a high-resolution linear transport motor.
The magnetic moment of the sample can be acquired at fast acquisition rates of 1
second average per data point with a sensitivity of 10−6 emu. The lock-in measure-
ment technique isolates the sample signal from external noise. Through calibration
measurement of palladium sample, a residual field of ∼ 20 Oe was determined for this
system.

4.3.2. Sample preparation

Samples of required concentration were prepared by melting weighted paraffin wax
at 50 ○C. The IONPs and DBNPs in the original dispersion state were measured,
extracted using pipettes and added to this melted wax. The mixture is allowed to
cool and the wax-like ball is loaded in plastic capsules (Fig. 4.5 (a)). The prepared
capsules are then sealed by melting the capsule edges and wrapped in Teflon to prevent
any contamination of the magnetometer system. Prior to alignment measurements,
the samples are adjusted by loading in the brass sample holder as shown in Fig. 4.5
(b).
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Figure 4.4.: (a) Schematic of the magnetometer in VSM mode. (b) The PPMS-
DynaCool system and (c) VSM module from Quantum Design at
Forschungszentrum Jülich GmbH.

Figure 4.5.: (a) VSM capsule loaded with sample. (b) The teflon covered capsule
loaded on the brass sample holder and aligned for VSM measurement.

4.3.3. Data acquisition

For data presented in the thesis, DC magnetization measurements were carried out at
temperatures from 5-300 K. A standard zero-field cooled (ZFC) measurement involves
first cooling the sample in zero field from 300 K to 5 K. The sample is measured in
the VSM mode as the sample is warmed from 5 K to 300 K in 100 Oe magnetic field.
Maintaining this field, field cooled (FC) curve is measured as the sample is cooled from
300 K to 5 K. The collected ZFC-FC measurements are used to obtain temperature-
dependent magnetization curves which is further analyzed to determine the blocking
temperatures TB. For field-dependent magnetization measurements, a strong field of
1 T is applied to the sample at 300 K and cooled to a target temperature of 5 K.
At 5 K and 300 K, the magnetic moment is measured in VSM mode on applying
a field from 5T to -5 T and back to 5 T. The magnitude of exchange bias field is

79



4. Experiments: Instruments, Methods and Simulations

calculated as ∣HEB ∣ = ∣Hc1 +Hc2∣/2, where Hc1 and Hc2 are the positive and negative
coercive fields, respectively. The diamagnetic contribution was subtracted from field-
dependent magnetization measurements by calculating the magnetization slope at the
large fields.

4.3.4. Elemental analysis

Inductively coupled plasma - optically emission spectroscopy (ICP-OES) was per-
formed to obtain the mass of Au and IONP in DBNP samples. ICP-OES can iden-
tify atomic composition of material. These measurements were carried out ZEA-3,
Forschungszentrum Jülich GmbH. The solution containing the sample is prepared
and aerolized using a nebulizer and pumped into the plasma chamber. A high energy
plasma contains Argon ions generated by high power RF signal that ionizes the gas to
form electrons and other charged species. Interaction of plasma with aerolized sample
results in degradation of individual elements each of which has a characteristic optical
signal that can be detected spectroscopically. The capsules measured with magne-
tometer was opened and leached out with 3 ml HCl, 3 ml HNO3 and 1 ml H2O2 at
80○C on hot plate for 72 hrs. Each digestion solution was made upto 50 ml. Three
replicable solution of each digestion was prepared and analyzed.

4.4. Thermogravimetric Analysis (TGA)
The thermogravimetry analysis (TGA) was performed at in-house NETZSCH TG 209
F1 Libra (Fig. 4.6 (a)). The sample was loaded into aluminum crucible (Fig. 4.6 (b).
The mass of a substance is monitored as a function of temperature or time as the
sample specimens are subjected to a controlled temperature program in a nitrogen
atmosphere.

4.5. Total scattering experiments-xPDF

4.5.1. Setup

Synchrotron radiation is the radiation emitted by a relativistic charged particle under
the action of a magnetic field. A series of particle accelerators accelerate electrons
generated by the electron gun before being injected into the large storage ring. As
the electron passes through each bending magnet, it loses energy as light, which is

80



4.5. Total scattering experiments-xPDF

Figure 4.6.: (a) The NETZCH TG 209 F1 Libra at Forschungszentrum Jülich GmbHF
in which (b) the aluminium crucible loaded with sample is placed in
notrogen atmosphere to obtain TGA curves.

channeled out of the storage ring into the beamline stations. A typical synchrotron
consists of a storage ring through which electrons circulate, passing through several
bending magnets and undulators.

The synchrotron x-ray pair distribution function (xPDF) measurements were con-
ducted at several beamlines:

• MS-x04SA beamline at Swiss Light Source, Paul Scherrer Institute (PSI) in
Switzerland operates in the energy range 5 - 40 keV, with flux at 12 keV around
2 × 1013 photons/s [135]. The experiments used a wavelength λ = 0.432 Å.
The intensities were collected by a rapid MYTHEN II point detector with a
maximum resolution of 3.7 milli degree in 2θ, covering a range of 120○ in 2θ as
shown in Fig. 4.7 (a-b).

• P02.1 beamline at Petra III facility at DESY in Hamburg, Germany operates in
the range up to 60 keV, with a flux of 4 × 1010 photons/s [136]. The operating
wavelength is λ = 0.232 Å. The intensities were collected using a 2D Dectris
Pilatus detector which provided powder averaged rings as shown in Fig. 4.7
(c-d).

• The experiments at 11-ID-B beamline, Advanced Photon Source (APS) in Ar-
gonne National Laboratory, USA operates in the range 58.6 keV-86.7 keV, with
a flux of 2.3 × 1012 photons/s at 58.6 keV. The experiments were conducted
using wavelength λ = 0.2115 Å. The intensities were collected using a 2D de-
tector. This research used resources of the Advanced Photon Source, a U.S.
Department of Energy (DOE) Office of Science User Facility, operated for the
DOE Office of Science by Argonne National Laboratory under (GUP-69551).
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Figure 4.7.: xPDF setup: (a) schematic and (b) actual Mythen-II point detector at
PSI, SLS. (c) Schematic and (d) actual 2D detector at DESY, Hamburg.

4.5.2. Sample preparation

IONP dispersions were dried at ambient conditions and filled in quartz capillaries for
SLS measurements (see Fig. 4.8 (a)). For DESY measurements, IONP samples were
dried and filled in Kapton capillaries and sealed with glue/clay (see Fig. 4.8 (b)). The
DBNPs were filled in Kapton capillaries directly as dispersions for measurements at
APS. The bulk samples of various iron oxides and gold powder obtained from Sigma
Aldrich were measured as a reference.

Figure 4.8.: (a) The quartz capillaries used at SLS and (b) kapton capillaries used at
APS and DESY.
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4.5.3. Data acquisition

The 2D data is treated using principles and equations mentioned in sections 2.6.4 and
2.6.5. In the case of 2D detectors, GSAS-II is used to obtain measured intensity as a
function of Q. The background includes measurements of the empty capillary, solvent
and dark current. The standard Ni bulk, LaB6 and CeO2 were measured to estimate
the beam centers of 2D diffraction patterns and resolution of the instrument (Qdamp

and Qbroad). The measurements were carried out at room temperature in ambient
conditions. The scattering structure factor S(Q), reduced scattering F(Q) and PDF
G(r) with the corrections for background scattering, x-ray transmission and Compton
scattering are obtained from the same diffraction data using PDFgetX3 [137]. The
obtained PDF was fit using PDFgui [138].

4.6. Small-angle x-ray scattering (SAXS)

4.6.1. Setup

Small-angle x-ray scattering (SAXS) was performed at the high brilliance laboratory
instrument the Gallium Anode Low Angle X-ray Instrument (GALAXI), which is
operated by JCNS, Forschungszentrum Jülich GmbH [139]. The sketch of the com-
ponents and photograph of the instrument are as shown in the Fig. 4.9. The x-ray
source uses liquid metaljet of GaInSn alloy as anode. The electrons of 200 W power
hits the metal jet and x-rays are produced. The parabolic optics are used to obtain
parallel, monochromatic beam with Ga Kα radiation of wavelength 1.34Å. At the
sample position flux of 1×109 photons/mm2·s is received. The sample position, with
two rotational and two translational degrees of freedom can be adjusted. There is a
second holder, 140 mm in front, containing all samples for calibrating the beam. The
x-ray path is completely evacuated and 2D position sensitive Pilatus 1M detector with
169 x 179 mm2 active area collects the scattered intensity. The samples were studied
in two distances, the large sample-to-detector distance LSDD (3535 mm) and short
sample-to-detector distance SSDD (835 mm) in order to cover Q-range of 0.004-0.3
Å−1.
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Figure 4.9.: (a) Schematic of GALAXI setup with its components, here the x-ray
source is on the far right separated by the wall to the other components
including optics to align the beam, evacuated detector tube and 2D posi-
tion detector on the left. (b) Photograph of the GALAXI setup at JCNS,
Forschungszentrum Jülich GmbH.

4.6.2. Sample preparation

The IONPs and DBNPs dispersed in toluene were filled in borosilicate capillaries of 2
mm in diameter with a wall thickness of 0.05 mm. These capillaries were sealed shut
by oxygen flame. To ensure no leakage, the ends of capillaries were double sealed
with hot glue. For measurements in magnetic field, capillaries of length 4-5 cm with
above specifications were used.

4.6.3. Data acquisition

Permanent magnets were used to produce a magnetic field of 0.9 T to induce self-
assembly. The field is generated horizontal to the capillary and perpendicular to
incoming beam. A 4-5 cm capillary is inserted vertically into the holder as shown
in Fig. 4.10 (a). However, to measure samples without field, the magnet holder
was replaced with a holder shown in Fig. 4.10 (b). Here several NP dispersions
in capillaries in horizontal position are measured. The 2D data was collected at 5
different vertical positions of the detector to obtain a merged image. The calibrants
silver behenate (AgBH) and fluorinated ethylene propylene (FEP) were measured to
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obtain the beam center of the direct beam and to calibrate the intensity in absolute
units (cm−1), respectively. Empty capillary and the toluene samples are measured
to obtain the thickness and buffer subtraction. The transmitted sample intensity is
given by

IS = IS+EC − TSIEC (4.1)

where, IS+EC and IEC is measured intensity of nanoparticle dispersion in a capil-
lary and empty capillary, respectively. TS is the sample transmission ratio. FIT2D
along with python routine are employed to center, mask, reduce and integrate the 2D
SAXS pattern. The radially averaged intensities are further fit to models available
on SasView software package [140].

Figure 4.10.: (a) The magnetic field setup includes magnet of 0.9 T on (left) and the
holder on (right) to insert capillary of about 4 cm vertically. (b) The
sample holder setup to load capillaries for zero field measurements.

4.7. Small-angle neutron scattering (SANS)

Neutrons are produced in fission reactors or spallation sources. In fission reactors, the
chain reaction is triggered when slow neutron is captured by uranium. In spallation
sources, high energy protons are accelerated to neutron rich targets. Further, the
spallation sources offers a precise time structure on the neutron beam due to the well
defined relationship between incoming proton and exiting neutrons.
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4.7.1. Setup

KWS-1 is the SANS beamline instrument operated by the Heinz Maier-Leibnitz Zen-
trum (MLZ) in Garching, Germany [141]. Figure 4.11 (a) presents the main compo-
nents of the SANS setup at KWS-1, which includes a neutron chopper to select the
required wavelength (5 Å), followed by a long collimation chamber with movable neu-
tron guides to adjust sample-to- detector distances, a sample table for conventional
SANS and a non-magnetic hexapod to carry heavy magnetic field setups. It consists
of a large 2D position-sensitive detector with an average pixel size of 0.35 x 0.35 mm.
The exit point of the neutron beam just after it strikes the sample is photographed
in Fig. 4.11 (b). The instrument is optimised for high resolution measurements with
wavelength spread ∆λ

λ = 10 % for the neutron velocity sector. The maximum neutron
flux hitting the sample is 1 × 108 neutrons/cm2.s. The covered Q range extends from
0.007 Å−1 to 0.5 Å−1 that accounts for size in the range between 10 Å- 9000 Å. In the
SANSPOL setup, an additional Fe/Si supermirror and RF spin flipper are installed
before the collimation line. All measurements are carried out in ambient conditions.

Figure 4.11.: (a) Schematic of the SANS setup at (b) KWS-1 at MLZ, Garching,
adapted from [141] and (c) Hellma cells in which dispersions are filled.

4.7.2. Sample preparation

• IONPs: Among the six IONPs, F20 and F27 were prepared in several con-
centrations ranging from 2 - 9 mg/ml. The F27 IONPs are dispersed in 100
%, 78 %, 56 % and 0 % deuterated toluene for contrast variation studies. Ad-
ditional contrast variation experiments were performed remotely at Spallation
Neutron Source (SNS)-Oakridge. Here, F20 and F27 IONPs were measured in
two different contrasts (100% d-and 0% h-toluene).

• DBNPs: All four DBNPs were measured in original concentration. The original
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concentration of the four DBNPs were fairly equal, ∼ 5 - 8 mg/ml for Au and
∼ 7 - 10 mg/l for Fe in 100 % h-toluene. Contrast variation experiment was
carried out on A10F14 DBNP in one contrast (78 % d-toluene).

4.7.3. Data acquisition

All MNPs were filled in 1 mm wide quartz Hellma cells. The measurements were
carried out at room temperature with a wavelength of 5 Å. The dark current, empty
cell and only solvent were measured for background corrections. Plexiglas (PMMA
polymer) was measured to account for the detector sensitivity.

• Beamtime with IONPs: A vertical magnetic field in the range 0-2.2 T was ap-
plied to Hellma cells containing IONPs, perpendicular to the neutron beam. The
unpolarized SANS data were collected at three sample-to-detector distances; 14
m, 8 m and 2 m. The scattering intensities were collected for 1 hour at every
field point. The field is varied from 0 to 2.2 T and back to 0 T to verify the
reversible formation of assemblies. For SANSPOL measurements, the data was
collected for 1 hour at various field points.

• Beamtime with DBNPs: A horizontal magnetic field in the range 0-3 T was
applied to Hellma cells containing DBNPs, perpendicular to the neutron beam.
The unpolarized SANS data were collected at two detector distances; 8 m and
20 m. The scattering intensities were collected at each magnetic field point for
600 seconds. In one case, the field is varied from 0 to 3 T and back to 0 T
to verify the reversible formation of assemblies. In the second case, the time
dependence is observed by fixing the field for 1 hour and collecting data every
600 seconds. SANSPOL data is collected at saturating 1 and 3 T magnetic
fields for 1200 seconds at each polarization state.

4.8. Reverse Monte-Carlo simulations
Reverse Monte Carlo (RMC) modeling is a widely used method to solve inverse
structure-related problems in condensed matter physics. Here, we describe numerical
modeling using RMC to simulate the 2D SANS patterns as shown in Fig. 4.12 (a).
A typical simulation starts with assuming a random initial configuration of particles
in a box under periodic boundary conditions where particle wall interactions are in-
cluded. The size of the box L, is obtained from the minimum value of Q given by

87



4. Experiments: Instruments, Methods and Simulations

L = 2π
Qmin

. The total number of particles N in RMC are fixed based on the particle
concentration and Qmin (Fig. 4.12 (b)). In the case IONPs, the box is assumed to
contain core-shell spherical particles with fixed values of diameter and polydispersity
obtained from other experiments. Simulated intensity is calculated as

Isim(Q⃗) = ∣
N

∑
j=1
Fcore−shell exp(−ιQ⃗.r⃗j)∣2 (4.2)

where Q⃗ is the scattering vector and Fcore−shell is form-factor of the core-shell particles
(as seen in chapter 2, eqn. (2.122)). Individual Monte Carlo steps are performed by
randomly choosing a particle and moving it in a box . Each step entails one of the
three randomly chosen actions given by A, B and C in Fig. 4.12 (b);

1. Linear: the particle moves in a straight line with a step size that is twice the
diameter.

2. Jump: The particles makes a jump in a close contact to another randomly
chosen particle.

3. Orbit: The particle makes orbits around a neighbouring particle

In all three cases, the action with particle overlap is avoided. A classic Metropolis
algorithm is used to decide the acceptance of each step [142]. The acceptance depends
on the reduced value of χ2, which is the difference between simulated and experimental
intensity, at every step. The full code currently available on https://github.com/
lestercbarnsley/SasRMC

4.9. Conclusion

Direct imaging techniques (TEM and SEM) provide information about the shape and
morphology of the NPs. The composition is determined through structural analysis
of xPDF data. Temperature and field-dependent magnetization studies reveal the
macroscopic magnetic properties. In this work, SAXS and SANS are used in zero and
applied magnetic fields to obtain NPs’ structural and collective behavior in disper-
sions. The length scales in these experiments combine the range from nanometers to
micrometers suited to observe a large variety of self-assembling systems. Parameters
including size, composition, morphology, surfactant coating around nanoparticles and
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4.9. Conclusion

Figure 4.12.: (a) 2D SANS simulated patterns (top) and experimental (bottom) pat-
terns. (b) The initial configuration of the box with particles and random
motions described as A, B and C. (c) Particles after fitting experimental
2D pattern.

magnetic properties are obtained by a combination of techniques summarized in Fig.
4.13.
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Figure 4.13.: Summary of the multiscale experiments and range of parameters probed
with experiments.
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5. Self-assembly in single phase
IONPs as a reference to dumbbells

5.1. Introduction

To investigate self-assembly mechanism in complex multi-component dumbbell nanopar-
ticles (DBNPs) where Au is attached to iron oxide nanoparticles (IONPs), we first
conduct reference studies on isolated IONPs. The self-assembly of IONPs is driven by
the balance of attractive (dipolar, magnetic and van der Waals) and repulsive (elec-
trostatic and steric) forces [143]. These forces further depend on several factors such
as the size, particle geometry, concentration, composition, thickness of the organic
molecules attached to the surface of IONPs, temperature and the applied magnetic
field. In the presence of a magnetic field, the spherical core-shell IONPs were pre-
viously shown to self-assemble into a 1D, 2D or 3D structures [144, 145, 7]. In this
chapter, we investigate parameters in IONPs which may also influence the formation
of assemblies in DBNPs. The major part of the following results described in the
chapter are published [14].

5.2. Samples and synthesis

The summary of the IONPs obtained from different laboratories, both commercially
and specifically synthesized, are presented in Table. 5.1. The commercially synthe-
sized IONPs labelled F05 and F10 dispersed in hydrogenous toluene were purchased
from Nanomaterials and Nanofabrication laboratories (NN labs), F21 and F24 were
obtained from OceanNanotech laboratories. Spherical IONPs labelled F20 and F27
were specifically synthesized through user program proposal at Center for Integrated
Nano Technology (CINT), Los Alamos National Laboratory (LANL) and Sandia Na-
tional Laboratories. The extended LaMer mechanism used to synthesize these par-
ticles yielded a large quantity of highly-crystalline nanoparticles with a narrow size
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distribution [146]. The method first includes synthesis of iron (III) oleate precursor
which is obtained through vigorous stirring of the mixture containing 3.3 g (9.3 mmol)
of Fe(acc)3 and 15 ml (47.3 mmol) of oleic acid in nitrogen atmosphere at 320 ○C in
a molten metal bath. Intermediate iron (II) oleate is formed at 290 ○C but thirty
minutes after this temperature is attained, the reaction was removed from heat bath
and quenched. The precursor thus formed is used without further purification. A
syringe loaded with as synthesized iron (III) oleate precursor diluted in octadecene
solution is dripped at rate of 3 ml/h into the reaction flask containing the stirred mix-
ture of 2.5 g of docosane and 2.5 ml oleic acid at 350 ○C. The nucleation event was
observed with an instantaneous change in the color of the reaction solution from dark
brown to black. Aliquots were withdrawn from the reaction as close as possible to
the nucleation event, and at periodic intervals thereafter. Particle sizes are controlled
by varying reaction duration and volume of added precursor. This modified approach
results in reproducible synthesis with precise control for larger sizes of IONPs. The
reference samples, Fe(II, II) oxide nanoparticles bulk powder and F50 nanoparticles
with a wide size distribution (50-100 nm) were obtained from Sigma Aldrich.

Table 5.1.: Summary of commercial and synthesized IONPs with their correspond-
ing sample IDs, diameters D and polydispersity (%) obtained from TEM
analysis.

Source Sample ID Diameter
(nm)

Polydispersity
(%)

NN-labs F05 5.2 ± 0.6 12
NN-labs F10 9.5 ± 0.9 9

Los Almos F20 20.1 ± 1.9 9
Oceannanotech F21 21.1 ± 1.5 7
Oceannanotech F24 24.3 ± 2.2 9

Los Almos F27 26.2 ± 2.1 8

The advanced LaMer mechanism used to synthesize F20 and F27 resulted in a large
quantity of IONPs. This makes it suitable for both neutron scattering experiments
and potential industrial applications. The specifically synthesized particle are dark
brown and jelly-like in appearance with original concentration of 45 mg/ml. The
IONPs were scooped and dispersed in toluene for scattering experiments in appropri-
ate concentration. The commercially synthesized IONPs nanoparticles were obtained
in already dispersed state and appear as dark brown in original concentration of 25
mg/ml.
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5.3. Shape size and crystallinity
The shape, size and crystallinity of IONPs are visualized using TEM and in high
resolution TEM (Fig. 5.2 (a-f) and insets).

Figure 5.1.: TEM and normal size distribution of (a and g) F05, (b and h) F10, (c
and i) F20, (d and j) F21, (e and k) F24 and (f and l) F27 IONPs. The
high resolution TEM micrographs in the bottom inset.

Figure 5.2.: High resolution TEM micrographs of (a) F20 and (b) F27 IONPs. The
crystalline lattice spacing corresponds to <111> crystal plane.

The diameters of IONPs from TEM are determined using ImageJ software. The
normal size distributions reveal the polydispersity of the samples (Fig. 5.2 (g-l)).
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These distributions are a number weighted average as opposed to the volume weighted
averages in scattering techniques. The crystalline planes are visible in the case of F20
and F27 proving that IONPs with LaMer technique are fairly monodisperse of high
crystalline quality. The crystalline lattice spacing of F20 and F27 is 0.45(3) nm
and 0.48(2) nm, respectively which corresponds to <111> plane. The Table. 5.1
summarizes the diameters and polydispersities of the IONPs obtained from TEM.

5.4. Composition and local structure

Synchrotron x-ray PDF measurements were conducted on selected IONPs in order to
probe the composition and local crystal structure. To compare lattice constants, to-
tal scattering experiments were also carried out on the reference samples including 50
nm nano (F50) and bulk iron (II and III) oxide powders from Sigma Aldrich. Several
phases of iron oxides may coexist in IONPs which is well documented in the litera-
ture [147, 148, 149, 150, 151, 152]. The possible phases are antiferromagnetic FeO
(wüstite), ferrimagnetic Fe3O4 (magentite), antiferromagnetic α-Fe2O3 (hematite)
and ferrimagnetic γ-Fe2O3 (maghemite). Refinements of the structure models at
300 K against PDF data sets were done in the range of 1 to 40 Å using the program
PDFgui. The instrument resolution Qdamp and Qbroad was obtained by refinement of
the standard calibrant data and fixed to refined value of 0.033 and 0.007, respectively,
for other data sets. The quality of the fits are shown in Fig. 5.3. The best fit of the
experimental data for F20 and F27 samples was obtained by the model including
two phases: maghemite (P4332 ISCD-79196) and magnetite (Fd − 3m ISCD-65339).
The best model for F20 and F27 includes a mixed composition of magnetite and
maghemite. The atomic displacement parameter (ADPs) were constrained according
to atom type and chemical environment; for example ADPs for Fe-atoms in tetrahe-
dral site in magnetite were constrained to refine as one parameter, and Fe atoms at
octahedral site as another. The scale factor, lattice constants, ADPs and linear atomic
correlation factor δ1 were refined for each phase in the range of 1–40 Å. Detailed in-
formation about all refined parameters in Appendix A.2. The lattice constants of two
phases in the MNPs are reduced compared to their bulk counterparts. Such finite-
size effect has been previously reported for metallic NPs [153]. During refinements of
PDF data for F20 and F27 particles, the coordinates of all atoms were fixed to the
bulk values. There are indications of local disorder and anti-phase boundaries due to
deviation from model at r < 12 Å as seen in F20.
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Figure 5.3.: The best refinements of PDF data for (a) F20 (b) F27 (c) F50 MNPs and
(d) magnetite powdered bulk, with experimental data in open circles,
calculated pattern in red and difference curve in green.

Table 5.2.: Summary of the xPDF refinement fits of F20, F27, F50 and Bulk reference
sample. The fits yield lattice constants scale, a, δ1, atomic displacement
factors Uiso, mass percentage of the phases.

Samples F20 F27 F50 Bulk iron-oxide
Phase γ-Fe2O3(a) Fe3O4(b) γ-Fe2O3 Fe3O4 Fe3O4 Fe3O4

crystal structure P4332 Fd-3m P4332 Fd-3m Fd-3m Fd-3m
a [Å] 8.37(6) 8.34(3) 8.355(7) 8.349(6) 8.372(1) 8.379(1)

mass (%) 30 70 34 66 100 100
Rw 0.216 0.169 0.135 0.117

Qdamp = 0.032 Å−1, Qbroad = 0.008Å−1, Qmax = 23 Å−1 for F20 and F27 and Qmax = 28 Å−1 for
references, (a) fit using cif file ICSD-79196, (b) fit using structural file obtained from standard

database ICSD-65339. Details about the fit parameters available in Appendix A.2.

Both the IONPs contain magnetite and maghemite with reduced lattice constant
to bulk magnetite and nanopowders of large size.
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5.5. Magnetic properties

The zero field (ZFC) and field cooling (FC) magnetization data of the IONPs sub-
jected to an applied magnetic field of 0.01 T are plotted as a function of temperature
in Fig. 5.4. The blocking temperature, TB, depends on the size, concentrations,
composition and size distribution and can be obtained from ZFC-FC curves. In non-
interacting samples, the average TB corresponds to the peak temperature in ZFC
curve. In monodisperse identical NPs, the TB is related to energy barrier. However,
in real systems there is an energy barrier distribution due to presence of polydisperse
particles. Even with identical particles, random orientation of the easy axis can result
in energy barrier distribution. Thus, the polydispersity in F10 IONPs, results in the
shift of peak temperature from the splitting point of ZFC-FC curves. As expected,
the peak of the ZFC curve shifts to higher temperatures with increasing size of the
IONPs. The ZFC and FC curves coincide at highest measured temperature (300 K)
for F05, F10, F20 and F21, unlike F24 and F27 where they continue to remain split.
Since magnetometer can reliably measure TB only up to room temperature, one can
estimate that TB > 300 K for F24 and F27. The appearance of peak temperature can
be understood as follows. Particles are first cooled in zero field to low temperatures
below peak temperature where moment is zero. When a small field is applied, the
particles with TB lower or equivalent reaches a thermal equilibrium. With increasing
temperature, the net moment increases as more particles reach equilibrium and are
unblocked. Since all moments are unblocked at the peak temperature any increase
will result in lowered net moment. The FC curves are obtained by cooling the sample
in a small applied field. In this case NPs are subject to an effective field which is
the sum of the applied field and interaction field. By introducing such mean field
approximations to SPM models, the FC curves show a reduction in net magnetic
moment with temperature [154]. Indeed such interactions may exist in F20, F21, F24
and F27 where we observed a lowered or fairly constant FC curve with temperature
compared to F05 and F10. We further note the similarity in ZFC-FC curves of par-
ticles obtained from the same source indicating that the synthesis and presence of
complex magnetic phase may play a critical role to describe various shapes of the
ZFC-FC curve. Previous reports have confirmed antiferromagnetic phases for ZFC-
FC curves that resembles F21 and F24 [155]. The XPDF results confirms magnetite
and maghemite in F20 and F27 with no indication of wüstite phase. This phase may
exist in F21 and F24 and is yet to be determined. The concentration of the IONPs in
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all measurements are around ∼ 5 mg/ml. The metal-insulator transition usually found

Figure 5.4.: ZFC ( ) and FC ( ) magnetization in an applied field of 0.01 T as a
function of temperature for (a) F05 (b) F10 (c) F20 (d) F21 (e) F24 (f)
F27 IONPs.

in strongly correlated magnetite Fe3O4 is characterized by the first order structural
Verwey transition temperature that occurs at around 124 K. However, it is worth
noting that despite the presence of magnetite phase in the analyzed IONPs, as quan-
tified from the xPDF, there are no evident signs of Verwey transition in our IONPs.
This transition exists in F50 nanopowders as a cusp around 110 K which is clearly
visible in the ZFC magnetization (Fig. 5.5 (a)). Thus, it is conclusive that Verwey
transition is suppressed in our samples for IONPs with diameters smaller than 50 nm.
Occurrence of Verwey transition still remains an open question in nano regime due
to the difficulty in the size dependent stochiometric control. According to existing
literature there are still conflicts in the critical size below which Verwey transition
is suppressed [156, 157, 158, 159]. The TB is calculated using eqn(2.56) and plotted
as a function of diameter in Fig. 5.5 (b). Here, the solid blue and red lines is the
calculated TB, assuming bulk anisotropy constants for magnetite (Kmagnetite = 1.3 ×
104 J/m3) and maghemite (Kmaghemite = 8000 J/m3), respectively. The calculated TB

is lower compared to the experimentally measured temperature for respective sizes
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in all cases. There are several reasons for this discrepancy. The effective anisotropy
constant in IONPs can be higher compared to the bulk values, as it was observed for
Co NPs [160]. However, no existing literature was found that discussed large values
of anisotropic constants for magnetite or maghemite in spherical IONPs. In the SW
model, the TB in eqn.(2.56) is calculated assuming no inter-particle interaction for
particles in superparamagnetic regime. An appropriate explanation for the increase
in TB can then be accounted to the presence of magnetic dipole-dipole interactions.
In F27, even with dilution the TB remains greater than 300 K. The energy of mag-
netic dipole–dipole interactions (Eint) increases the energy barrier ∆E =KeffV +Eint

and consequently the TB [161, 162]. The magnetization is measured as a function of
magnetic field at temperature T = 5 K and T = 300 K as shown in Fig. 5.6 (a) and
(b), respectively. The measured saturation field is around the bulk value of 0.2 T for
all samples, except for F24 at 0.5 T. The FC-DC magnetization curves measured with
an applied field of 1 T revealed a finite coercive field that is evident for all samples at
5 K (Fig. 5.6 (a) inset). This value is the largest for F21. In contrast at 300 K, the
coercive field becomes negligible (Fig. 5.6 (b) inset) for all samples but a finite value
for F27 and F50. It appears that the temperature-dependent magnetization measure-
ments demonstrate that the particles remain blocked at 300 K for F24, F27 and F50.
The coercive fields (Hc1) and exchange bias fields (HEB) determined from the DC
magnetization curves are summarized in Table 5.3. This is plotted as a function of
diameter in Fig. 5.6 (c) and 5.6 (d) at 5 K and 300 K. The exchange bias field (HEB)
measured at 5 K is the largest for F21 and origin in this sample is unclear. Possible
explanation suggests presence of AF wüstite and ferrimagnetic magnetite phase.

5.6. Magnetic field induced self-assembly

5.6.1. Energy calculations

The influence of dipole-dipole interactions leading to changes in blocking temperatures
is well documented in literature [163]. To quantify the phenomenon, the dipolar
coupling strength (γ) and Bjerrum length, (λB) are introduced given by,

γ = µ0µ2

2πkBTD3 ; (5.1)

λB = γ1/3 (5.2)
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Figure 5.5.: (a) ZFC ( ) and FC ( ) magnetization at 100 Oe as a function of tem-
perature for F50. (b) The experimental TB ( ) plotted as a function of
particle diameter. The blue( magnetite) and red (maghemite) solid lines
are calculated TB using K. (c) HEB plotted as function of diameter at 5
K and (d) Hc1 as a function of particle diameter at 5 K ( ) and 300 K
( ). Solid lines are guides for the eye.

where, µ0 is the vacuum permeability, µ is dipole moment calculated for bulk mag-
netite, kB is the Boltzmann constant, T is temperature and D is the diameter of the
IONP. Experiment results suggests that the γ > 1 for all IONPs except F05 as shown
in Fig. 5.7 (a). The Fig. 5.7 (b) plots λB which is the length scale up to which dipolar
interactions are dominant compared to thermal energies. Based on Langevin mean-
field approximations, the chain formation in dilute dispersions is predicted to occur
depending on the aggregation parameter N∗ [164, 165]. This parameter is calculated
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Figure 5.6.: DC magnetization as a function of applied magnetic field at (a) 5 K (b)
300 K. Inset shows the same (a) and (b) but expanded to show lower
fields.

Table 5.3.: Summary of sample IDs, calculated blocking temperatures (TB) for
maghemite/magnetite and experimental values, exchange bias field (HEB)
at 5 K and coercive (Hc1) fields at 300 K. Other details can be found in
the appendix.

Sample ID Calculated TB (a)

(K)
Calculated TB (b)

(K)
Measured TB

(K)
HEB

(± 28 Oe)
Hc1 (c)

(± 20 Oe)
F05 2 3 10 4 21
F10 10 85 18 27 20
F20 99 160 250 43 4
F21 116 188 270 1156 22
F24 174 283 300 90 1
F27 218 355 >300 11 181
F50 1517 2465 >300 1 94

(a) The blocking temperatures are calculated using eqn. (2.56) and using Keff =Kmaghemite = 8000
J/m3. (b) The blocking temperatures are calculated using eqn. (2.56) and Keff =Kmagnetite = 1.3

× 104 J/m3, (c) residual field of 20 Oe present in the PPMS-DynaCool system.

from equation N∗ =
√
ϕ0eγ−1, where ϕ0 is the volume fraction of the IONPs. There

are three possible scenarios to predict chain formation based on N∗ even if γ > 1;

• N∗ < 1: No formation of chains

• N∗ ∼ 1: Formation of equilibrium chains

• N∗ >> 1: Formation of non equilibrium chains that grow exponentially
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Figure 5.7.: (a) The dipolar coupling strength and (b) Bjerrum length plotted as a
function of diameter. The aggregation parameterN∗ plotted as a function
of concentration for (c) F05, F10, F20, F21, F24 and F27 samples. Solid
lines are guides for the eye.

As mentioned, in field directed assemblies the chain formation occur before 2D/3D
assemblies [7, 94]. Since γ < 1 in F05 and N∗ < 1 in F10, there should be no chain
formation in these IONPs according to calculations. Moreover, IONPs of other sizes
in the given concentrations are predicted to self-assemble into chains. The typical
energies such as dipole-dipole, van der Waal, Zeeman and steric repulsion energies
normalized to thermal energies are plotted as a function of distance between IONPs
(Fig. 5.8) and formulas used can be found in the appendix C. Clearly, the energies in-
volved in the formation of IONPs assemblies are dominated by magnetic field induced
dipole-dipole interactions in field and dipole-dipole interactions at 0 T for distances
larger than 1 nm. However, below 1 nm steric repulsion may dominate.

Figure 5.8.: (a) Dipole-dipole energies (b) van der Waal’s (c) Zeeman energies calcu-
lated for F05, F10, F20, F21, F24 and F27 IONPs, and (d) steric energies
calculated for F27 IONP with varying shell thickness ranging from (0.8
nm to 1.9 nm). All energies are plotted as a function of edge to edge
separation between IONPs in assemblies.
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5.6.2. Assemblies as function of size, concentration and magnetic
field

SAXS and SANS techniques are employed to observe and investigate the type of
assemblies formed in the IONPs. First, the SAXS scattering patterns are analyzed to
determine the effect of size, concentration and field on the formation of assemblies.
The 2D SAXS patterns at 0 T for different sizes in a fixed concentration of 25 mg/ml
are visually isotropic, indicating no assemblies are formed in 0 T. On application of
0.9 T magnetic field, the 2D scattering pattern still remain isotropic for F05, F10,
F20 and F21 as shown in Fig. 5.9 (a-d). In contrast, stripe patterns perpendicular to
field direction appeared in F24 (Fig. 5.9 (e)) and F27 (Fig. 5.9 (f)). The 2D pattern
at 0 T is reduced to radially averaged 1D intensities as shown in Fig 5.10 (a-b). The
1D data is fit to spherical form-factor in all cases except for F27 (fit parameters in
Appendix A.3). In F27 IONP, there is a change in slope at low Q region with a small
peak at Q = 0.018 Å−1. The linear pearl model is used to describe F27 scattering
curve which indicates the presence of small chains even at 0 T. The model describes
the form factor for N spheres of radius R linearly joined by straight strings with
negligible thickness. The edge separation parameter dET E = dCT C − D, where dCT C

is the center-to-center distance between the particles and D is the diameter of IONP
[166]. This anisotropy at H = 0.9 T is further pronounced in the 1D radial averages as
shown in Fig. 5.10. There appears to be a size effect indicating assembly formation
in IONP with diameters, D > 21 nm, at fixed concentration and magnetic field. This
is in sharp contrast to the prediction based on Langevin calculations of N∗. Since
N∗ also depends on concentration, IONPs were investigated in concentrations ranging
from 1.9 mg/ml - 25 mg/ml. The SAXS data of self-assembling F24 and F27, at 0.9 T
in different concentrations obtained by consequently diluting IONPs with toluene are
as shown in Fig. 5.11 (a-b), respectively. For F24 IONPs the intensity of the peak is
significantly reduced at concentrations below 1.98 mg/ml. On the contrary, the peak
is clearly visible for F27 at similar concentration. The anisotropy in the 2D scattering
pattern of F27 (Fig. 5.11 (b) top inset) diluted by a factor of 30 from its original
concentration revealed the presence of structures which disappears in F24 for a similar
dilution (Fig. 5.11 (a) top inset). This is further emphasized in the structure factor
S(Q) obtained at various concentrations by dividing the experimental data by the
form-factor intensity of a single nanoparticle form factor as shown in bottom insets of
Fig 5.11. Here, decrease in S(Q) with concentration is more drastic for F24 compared
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Figure 5.9.: 2D SAXS patterns at applied magnetic field, H = 0.9 T and in concen-
tration pf 25 mg/ml for (a) F05, (b) F10, (c) F20, (d) F21, (e) F24 and
(f) F27 IONPs. The intensities are in log scale. The black vertical line
in the pattern is the gap between two detectors which is masked during
reduction of the data.

to F27 IONPs. The edge to edge separation ℓ extracted from linear pearl model
fits plotted as a function of concentration in Fig. 5.11 (c), further highlighted this
difference. The value of ℓ increases at lower concentration for F24, while remaining
relatively constant for F27. Additionally, the ℓ in F27 IONPs is larger with magnetic
field as compared to data at 0 T which is perhaps a counter-intuitive observation that
will be treated in detail in the next section. The most critical aspect of concentration
studies is another contradiction in the prediction thatN∗ > 1 implies chain formations,
since chains are absent in F24 for concentrations below 1.9 mg/ml. Further, there are
no signs of assembly formation in F20 even at highest concentration. This pertains
to a critical question, what curtails formation of assemblies in these IONPs despite
the predictions;

1. The calculations overestimate the magnetic moment by assuming bulk values
of magnetite since NPs are known to have reduced magnetic moment due to
internal magnetic structure. Polarized SANS can help determine the magnetic
form-factor as will be shown in the next section. Such reductions could not
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Figure 5.10.: The radially averaged SAXS data at (a),(b) 0T and (c)(d) 0.9 T for
F05,F10, F20, F21, F24 and F27. The IONPs are fixed to concentration
25(2) mg/ml. The intensities are therefore scaled for easy visualizations.
The open circle in respective colours are experimental data and solid
black lines are fits to form-factor models as described.

be accounted for from those measurements to indicate lowered moment which
inhibits the assemblies

2. Presence of repulsive forces originating from organic content coated around the
NPs in the dispersion.

5.6.3. Formation of 1D chains

Surprisingly, increasing the interparticle interactions in F20 by increasing the con-
centration did not yield ordered assemblies. Two contrasting cases are discussed as
follows: (i) F20 IONPs, where no chains were observed at high concentration and/or
high field and (ii) F27 IONPs, where chains exist in low concentration and zero field.
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Figure 5.11.: The radially averaged SAXS data measured in applied field of 0.9 T
for (a) F24 (b) F27 samples in a concentration of 22(2) mg/mL( ),
5.9(1) mg/mL( ), 1.9(9) mg/mL( ) with the experimental data as open
symbols and linear pearl model fit as solid black lines. The bottom
insets show the structure factors and the top inset shows the 2D pattern
at 0.66 mg/mL. (c) The edge separation parameter l as a function of
concentration for F27 ( ) and F24 ( ) samples. Solid lines are guides
for the eye.

Table 5.4.: Summary sample IDs, diameters, and size distributions obtained from
TEM, SAXS and SANS measurements of IONP. (*Discrepancy in F10 between
SAXS and TEM is due to the fact the both 9 nm and 5 nm particles are present in F10
IONPs, also seen as shift in peak temperature from ZFC-FC splitting)

Sample Id DT EM

(nm)
∆D
(%)

DSAXS

(nm)
∆D
(%)

DSANS

(nm)
∆D
(%)

F05 5.2 12 4.7 14
F10 9.5 9 5.3 14
F20 20.1 9 20.7 6 20.0 6
F21 21.1 7 21.0 7
F24 24.3 9 23.0 11
F27 26.2 8 26.4 8 26.6 8

Unique properties of neutron scattering are exploited in order to explore the internal
magnetic structure and magnetic interactions in our samples. SANS of F20 revealed
a similar isotropic pattern as SAXS even in varying applied magnetic field. The 2D
SANS patterns of F27 samples under applied magnetic fields are as shown in Fig. 5.12
(a-f). The 2D SANS pattern of F27 at a low field (0.004 T) resembles bent stripes
that evolve into straight stripes at 2.2 T. Additionally, these field induced patterns
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can be reverted back to the original state when brought back to 0 T. These chains are
confirmed with the 1D radial averaged intensities fit to linear pearl model. However,
radial averaged intensities do not provide a complete analysis due to anisotropy in
the 2D pattern. IONPs that align vertically along the applied field will contribute
to the horizontal stripes in the inverse Fourier Q space. The separation between the
stripes in Q space corresponds to the distance between IONPs in real space. To deter-
mine the correlation distances and chain lengths associated with these assemblies, 2D
SANS pattern is integrated over azimuth sector width of 15○. The axis of the sector
is centred at α = 0○, where α is the angle between Q and the external field direction.

Figure 5.12.: 2D SANS patterns of F27 MNPs in solution in applied magnetic field of
(a) 0 T, (b) 0.004 T, (c) 0.008 T, (d) 0.02 T, (e) 0.5 T and (f) 2.2 T.
The magnetic field was applied perpendicular to the incident neutron
beam as indicated by the black arrow. The colour scale is in units of
scattering cross section (cm−1) and represented in the log-scale.

The resulting correlation peak for integrated intensity of the sector parallel to H is
modelled with a Gaussian function described below

I = (scale) ∗ exp [−1
2
(Q −Qpp)2

W 2 ] (5.3)

to obtain the peak position (Qpp) and width (W ) as shown in Fig. 5.13. The peak
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Figure 5.13.: (a) 1D sector integrated intensities of F27 IONPs along the sector cen-
tered at α = 0○, where α is the angle between H⃗ and Q⃗ for fields ranging
from 0 - 2.2 T, inset: The sector of width 15○, in 2D SANS pattern. (b)
The peaks from (a) are zoomed in for further visualization. The solid
lines are the fits to Gaussian functions.

position corresponds to the projection of center-to-center distance of the IONPs on
the field axis (ℓ∣∣ = 2π

Qpp
) [66]. The width of the peak describes the correlation length

given by ζ = 2π
W , where W is the width of the correlation peak, related to the chain

length. The dependence of both parameters on field magnitude is depicted in Fig.
5.14 (a-b). The schematic, (Fig. 5.14 (c)), describes the variation of ℓ∣∣ from low
to high magnetic fields. The projected distances ℓ∣∣ increase as the chains align and
straighten at high fields. The distance eventually saturates at H ≥ 0.5 T, because
the straight chains are in the most energetically favorable configuration. Figure 5.14
(d) depicts the increase in chain length with magnetic field. The effective correlation
length obtained at 2.2 T is ∼ 270 nm and contains about 8-9 individual IONPs. De-
spite the intense attraction, there is no continuous growth of chains as predicted by
the Langevin simulations. A similar equilibrium state was previously observed for Co
MNPs with chain lengths of ∼ 65 nm [167]. Chain-formation induced in a dispersion
is also observed on the substrate at ambient conditions. The SEM images of drop-cast
F27 IONPs display randomly distributed entangled chains over the entire sampling
region as shown in Fig.5.15 (a). In contrast, the spin-coated sample shows ordered
alignment of the long chains along a given direction (Fig.5.15 (b)) extending over to
µm-range. These results imply that F27 MNPs form long chains which can be aligned
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Figure 5.14.: (a) The projected distance between nanoparticles ℓ∣∣ and (b) the corre-
lation length ζ plotted as a function of the magnetic field. Schematic
representation of the change in (c) ℓ∣∣ and (d) ζ in IONPs as they re-
spond to low field (left) and strong field (right).

with a combination of the centrifugal forces and surface tension. It is in agreement
with previous observations of zero-field chains with cryoTEM [168].
Indeed, the chain lengths in solution of F27 IONPs are much shorter than those ob-

Figure 5.15.: SEM image of F27 IONPs when (a) drop-casted (b) spin-coated.

served for the same particles deposited on a substrate due to disorder forces such as
Brownian motion. The flexibility of chains in dispersion are controlled by tuning the
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applied magnetic field. At higher applied fields, the strong interaction of the dipoles
with magnetic field along with dipole-dipole interactions between IONPs disentangle
the dipolar chains into straight chains. [169].

5.6.4. Role of shell thickness

IONPs in dispersion are coated with a surfactant containing oleic acid (OA) to prevent
irreversible aggregation of NPs due to van der Waals interactions. OA consists of a
hydrophillic head group (-COOH) and a hydrophobic tail (-C17H32) connected by
a double bond. The tail is bent due to the double bond and in a full stretched
configuration its length is about 2.1 nm [11]. Contrast variation, was employed to
unambiguously determine the ligand shell thickness and assess its properties during
self-assembly. The initial experiments performed at KWS-1 reported in [14]. The
initial experiments at KWS-1 resulted in refined shell thickness tshell = 1.0(1) nm and
1.3(4) nm in h and d-toluene, respectively for F20. These experiments were repeated
for two contrasts at SNS-Oakridge for F20 and F27 (100 % h-toluene and d-toluene).
The 1D SANS data of F20 IONP dispersions prepared in h- toluene is fit to a core-shell
model with fixed radius value obtained from SAXS data and refined shell thickness of
3.2(1) nm as shown in Fig. 5.16 (a). The discrepancies in value of tshell for h-toluene
is due to the poor contrast of the shell component with the solvent. In the prepared
d-toluene due to improved contrast the shell can be distinguished. However, the
form-factor is completely smeared in d-toluene which is an indication of excess OA
present in the shell. The surface coverage governs the strength of steric repulsion. A
shell thickness of 1.8(4) nm was obtained on refinements of 100 % d-toluene contrast
(core contrast) for core-shell form-factor. Dispersions were prepared in four contrasts
for F27 IONPs as shown in Fig. 5.16 (b). Using the diameter and polydispersity of
the core obtained from TEM and SAXS studies as constraints, the thickness of the
shell tshell = 1.7(4) nm was determined by initially refining it for 100 % d-toluene
scattering data. To improve the reliability of the fit for the other contrasts, this value
was fixed and SLDs of the solvents were refined for other contrasts as shown in Fig.
5.16 (c). Both values are smaller than the nominal length of fully stretched out OA.
TGA performed on all IONPs (Fig. 5.16 (d) are used to quantify the organic material
present without assuming a core-shell model. In fact all sizes exhibit a variation in
the TGA curve indicating distinct nature of distribution of surfactant coating and
ligand content. There are significant weight losses observed at the boiling point of
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free OA ( 95-115 ○C) in all commercial samples compared to F20 and F27, indicating
a negligible amount of free OA in both samples. The significant weight loss occurred
at around 380-430 ○C due to complete combustion of organic material for F20 and
F27. The loss percent is significantly larger in F20 (∼ 80%) compared to other sizes
indicating a larger percentage of OA. The other losses at higher temperatures is due
to phase transition of the IONPs. The lack of prominent scattering features in the
F20 d-tol contrast and large amount of organic content detected from TGA curve
points to the explanation that free micelles are possibly attached to the shell of the
IONPs. The free OA in forms of micelles attached to the shell will have much higher
boiling point. Micelles existing in between IONPs can cause steric repulsion which
presumably explains the lack of formation of assemblies in F20 despite strong dipolar
interactions.

5.6.5. Magnetic structure

The SANSPOL scattering patterns of F20 sample are displayed in Fig. 5.17. Figure
5.17 (a) and (b) show the patterns associated with different spin configurations of the
neutron, I− and I+, respectively. The sum signal (Fig. 5.17 (c)) and difference signal
(Fig. 5.17 (d)) correspond to the scattering obtained with unpolarized SANS and
nuclear−magnetic cross term, respectively. The difference signal follows sin2 α depen-
dence from α, as is evident from the fit of the data to eqn. 2.132 at various Q values
(Fig. 5.17 (e)). The magnetic and nuclear form factors were obtained using methods
described previously in [66] and the best fits are shown in Fig. 5.17 (f). In the case
of nuclear form factor, SLD of the core (ηnuclear−c = 6.93 ×10−6 Å−2) and SLD of the
solvent (ηsol = 0.94 ×10−6Å−2) were fixed while the diameter was refined. Similar
strategy was employed to refine the magnetic form factor where the magnetic SLD of
the core (ηmagnetic−c = 1.46 ×10−6 Å−2) was fixed [170]. The results of refinements for
nuclear and magnetic form factors revealed that magnetic and nuclear diameters of
F20 IONPs are equal to 19.7(7) nm. Therefore a conclusion is derived that the F20
MNPs have an uniformly magnetized core, with no indications of surface canted spins
that reduce the overall magnetization of the IONPs. It is in agreement with SEM and
TEM studies, as well as with PDF results showing highly-crystalline order in synthe-
sized IONPs. Additionally, the explanation of lowered magnetic volume is unlikely
in these IONPs. Not surprisingly, the SANSPOL experiments on self-assembling F27
IONPs revealed additional anisotropy arising from interactions between the particles
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Figure 5.16.: (a) SANS of F20 at two different contrasts, in (100 %) h-tol (blue) and
(100 %) d-tol (red) measured at at SNS. The black lines are fit to core-
shell model (b) SANS of F27 prepared in four different contrasts (100 %,
78%, 54 % and 0% d-tol) measured at KWS-1, here the solid lines are
fit to core-shell model. (c) Calculated SLD (black) and refined SLD (red
dots and dashed line) as function of diameter. (d) Weight loss plotted
as a function of temperature obtained via TGA for F05, F10, F20, F21,
F24 and F27.

(Fig. 5.18 (a) and (b)). Anisotropic magnetic structures with a local magnetization
direction M and a preferred axis lead to a significantly complex dependence of the
scattering cross-section due the interplay of this axis with Q and applied magnetic
field [171]. The difference pattern as shown in the Fig, 5.18 (d) can not be factorized
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Figure 5.17.: 2D SANSPOL scattering patterns of F20 at 1 T (a) I− (b) I+ (c)
(I− + I−)/2 and (d) I− − I+, (e) Intensity of (d) plotted as a function of
α where solid lines are the fit to sin2α for different values of Q. (f) Q-
dependence of the nuclear and magnetic form factors, where solid lines
are fit to spherical form factor.

in to nuclear and magnetic form-factors as simply as in F20. SANSPOL pattern is
divided into different sectors with centers at α = 0○,30○,60○ and 90○ and intensity is
integrated along these sectors of width 15o as shown in Fig. 5.18 (e)-(h), following
analysis adopting in literature [66, 172]. At α = 0o, the correlation peak for both I+

and I− coincide, indicating a purely nuclear origin of the scattered intensity. This
correlation peak vanishes at α = 60o and α = 90o indicating absence of any 2D or 3D
assemblies. The difference in the intensities between I+ and I− are evident for these
two sector and clearly indicates the presence of magnetic scattering.

5.7. Reverse Monte Carlo (RMC) simulations

The chain formation of IONPs in dispersion is confirmed through several independent
experimental methods. Radially averaged SAXS/SANS intensities were modeled us-
ing linear pearl models. Parameters of the chains were obtained using sectoral analysis
of 2D SANS, including distances between IONPs in a chain and chain lengths. How-
ever, the 2D scattering patterns in their entirety are rarely analyzed in the literature
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Figure 5.18.: 2D SANSPOL scattering patterns of F27 at 1 T (a) I− (b) I+ (c) (I− +
I−)/2 and (d) I− − I+, the colour scale is in units of scattering cross
section (cm−1) and represented in logscale. (e) Integrated intensity of
I−( ) and I−( ) of sectors 15o in width, with sector centers at α = 0o (f)
30o (g) 60o (h) 90o. Solid lines are guides for the eye.

without complex energy descriptions of the system. We have developed the RMC
method to analyze the 2D SANS patterns. The advantages are multifold:

• The method helps avoid a complex energy calculation

• Radially/sector averaged intensities do not account for the complete anisotropy
in the 2D pattern without loss of structural information.

• The chains observed with microscopy techniques are typically observed by spa-
tially confining them on the substrate. RMC provides a tool to gain the real-
space visualization of chain formations in dispersions as intended in applications.

We employed RMC simulations to analyze 2D SANS data of F27 in 50% d-toluene at
a 14 m detector distance. We have access to low Q at this distance, which contains
high-resolution information about the structure factor. The core and shell parameters
obtained from SAXS and SANS were used to define the box’s particles. The number
of particles in the box matched the actual concentration. The total number of steps is
computed by multiplying the particles with Monte Carlo steps, i.e., for 300 particles
and 100 random RMC movements would imply 30000 steps. The 2D experimental
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Figure 5.19.: Simulated and experimental halves of the 2D SANS patterns and real
space distribution of IONPs in space at (a-b) 0 T (c-d) 0.006 T (e-f) 2.2
T.

(bottom half) and simulated pattern (top half) along with real space visualization at
zero field are shown in Fig. 5.19 (a-b). As exhibited in the Fig. 5.19 (c-d) for IONPs
at µoH = 0.006 T, there are linear chains bent along the field axis. At µoH = 2.2
T, the field-dipole interactions result in straight stiff chains as displayed in Fig. 5.19

114



5.8. Conclusion

(e-f). The direction of the effective dipolar field experienced by a single IONP is
determined by random orientation and arrangements of its neighbors. On application
of a magnetic field, the direction of the dipole moment of a single IONP competes
with the effective dipolar field from the clusters forcing more particles to align with
the field and extend into ordered chains. The actual distances between IONPs are
determined through particle analysis of RMC real-space assemblies using imaging
software ImageJ. We confirm from SANS and simulations that IONPs self-assemble
into finite chain structures

5.8. Conclusion
In conclusion, various parameters that influence self-assembly in IONPs for a size
range between 5-27 nm are identified. The attractive dipolar interactions mainly re-
sponsible for the 1D chain formation in IONPs depend on size, crystalline quality,
composition, concentration (1.9 - 25 mg/ml), magnetic structure, and magnitude of
the applied magnetic field. Such interactions between particles result in an increased
value of blocking temperature (TB). On the other hand, steric repulsion depends on
the thickness of the ligand coated on NPs. In some cases, we have shown that the
presence of excessive ligands may inhibit such chain formation. A range of experi-
ments, including TEM, SEM, xPDF, magnetometry, TGA and SAS techniques, were
performed to study these parameters. Several methodologies were adopted to analyze
SAXS and SANS pattern formation for these assemblies, including (i) fitting shape-
dependent functions to radially integrated 1D curves to obtain individual parameters
of the IONPs, (ii) peak analysis of sectorally integrated intensities along the field to
obtain interparticle distance and chain lengths, and (iii) direct visualization of real
space assemblies in dispersion via SANS-RMC simulations. Individual IONPs can be
manipulated to form 1D chains than can be bent and straightened with a magnetic
field. Since these IONPs are the magnetic component of the Au-Fe3O4 dumbbells,
similar interactions are expected in DBNPs. Along with the parameters of IONPs,
the morphology of DBNPs will be a critical parameter in defining the non-trivial
correlation lengths in assemblies formed by DBNPs.
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This chapter describes the physical properties of dumbbell nanoparticles (DBNPs)
containing Au noble metal linked to IONP. The seed-mediated approach used to
synthesize DBNPs is a robust strategy for obtaining samples of varying sizes. Sev-
eral structural and magnetic parameters of DBNPs, such as length scales of Au and
IONP, crystallinity, interplanar spacing, phase composition, blocking temperatures
and magnetic moment, are determined. These properties play a significant role in
the functionality of the DBNPs and extend our knowledge of systems more complex
than IONPs. This chapter compares the physical properties of DBNPs with spherical
IONPs from chapter 5.

6.1. Dumbbell geometry

The dumbbell is a non-centrosymmetric structure and has several relevant geometric
length scales. The particle geometry deviating from perfectly spherical shapes, is
of significance in colloidal assembly because it influences the particle “recognition”,
determines the particle packing, and ultimately dictates the formation of assemblies.
Therefore, to understand the relationship between the shape of the building block and
their assemblies, several length scales are defined (see Fig. 6.1). A DBNP of length
LD consists of Au seed of diameter LA on which iron oxide is grown with diameter DF

and length LF along the symmetry direction such that LD = LA +LF. The coating, of
thickness t, contains a mixture of oleic acid and oleylamine ligands. These DBNPs
are labeled such that the number following A and F represents the length of Au and
iron oxide, respectively. For instance, A13F14 consists of a Au seed with LA =13 nm
on which the IONP of LF = 14 nm is grown.
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Figure 6.1.: The morphology of DBNP and its length scales. The red sphere repre-
sents the Au seed of diameter LA. The blue non-spherical structure rep-
resents the IONP with diameter DF that is grown on Au. The length of
IONP along symmetry axis is LF such that length of DBNP, LD = LA+LF.
The surface is coated with ligands of thickness t.

6.2. Samples and synthesis

DBNPs are not available commercially, and meticulous synthesis of these samples was
required. Collaborators from the University of Pisa, Prof. Dr. Francesco Pinieder and
Dr. Elvira Fanatechi, prepared several different sizes of DBNPs that are described
in this thesis. The aim was to synthesize DBNPs with a narrow size distribution
and a total size comparable to IONPs used in the previous chapter. The DBNPs
are synthesized using the seed mediated approach which involves growth of iron on
the spherical preformed seeds of Au [18]. The steps involved in the seed-mediated
approach are outlined in Fig. 6.2. The nucleation event of Fe occurs due to thermal
decomposition of the Fe(CO)5 precursor on the Au surface. Fe(CO)5 is injected into a
hot mixture (120 ○C) of preformed Au seeds, oleic acid, oleylamine and 1-octadecene.
The mixture is stabilized at 315 ○C for 50 min, before being allowed to cool down and
exposed to air. The above described conditions were maintained in the preparation
of A10F12 and A13F14 DBNPs. In the case of A9F11, the only difference is the
addition of 1,2-dichloroethane into hot mixture containing Au seeds before injection
of iron pentacarbonyl (Fe(CO)5). Seed mediated growth involving one pot synthesis
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with conditions as described in [19] was followed for A10F14 DBNPs. In this method,
the Au seeds are also prepared in-situ before the growth of IONPs. A freshly prepared
gold solution of HAuCl4 is injected into hot mixture containing 1-octadecene, oleic
acid, oleylamine. Subsequently, Fe(CO)5 is injected at 150 ○C. The temperature was
increased and maintained at 200 ○C for 90 minutes. The temperature was further
stabilized at 300 ○C for 60 minutes till it was allowed to cool. The Cl− ions, either
as ingredients in the reaction pot as HCl or 1,2-dichlorethane counter the ions of Au
salt, that enable growth at low reaction temperatures and larger domain of iron oxide
in the dumbbell [18, 19]. The [Fe]/[Au] molar ratio, together with ligands, solvents,
heating rate, and reaction time, control the effective morphology and size. Through
mild changes in the synthesis, four diverse DBNPs are prepared. All suspensions of
DBNPs were re-dispersed in toluene for further experiments. Each of the DBNPs
mentioned along with materials, parameters and synthesis methods are summarized
in Table 6.1.

Figure 6.2.: Steps involved in seed mediated growth of Au-Fe3O4. The primary steps
include: formation of Au seeds, decomposition of iron pentacarbonyl on
the surface of Au and oxidation of grown Fe.

6.3. Shape, size and crystallinity
The TEM images of the DBNPs are as shown in Fig. 6.3. In these images produced by
bright-field TEM, the difference in the brightness contrast is associated with variation
in mass density or crystallinity. Thus, the Au components appear darker compared
to iron oxide because this region is enriched with heavy atoms of gold. Through
parallel illumination, TEM images are essentially 2D projection of 3D objects. In
such anisotropic particles, particles lying flat on the substrate and standing up have
a different projections on the image plane. One way to separate various projections is
to tilt the sample and collect several images over various tilt angles. Such precise tilt-
ing experiments were not performed here. Nevertheless, due to the multi-component
nature and the fact IONPs are grown on spherical Au, the particle size distribution
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Table 6.1.: Summary of the DBNP synthesis protocols including amount of materials,
parameters and method

Sample Id Material Parameters Method

A12F10

Au(35 mg) + Fe(CO)5 (0.38 mmol)
+ Oleylamine(0.92 mmol)
+ Oleic acid (0.92 mmol)
+ 1-octadecene(20 ml)

[Fe]/[Au] = 2
[ligand]/[Fe] = 5
concn of Au ∼ 8 mg/ml
concn of Fe ∼ 7.4 mg/ml

Seed-mediated
cooled and exposed to air
[18]

A9F11

Au(35 mg) + Fe(CO)5 (0.38 mmol)
+ Oleylamine(0.92 mmol)
+ Oleic acid (0.92 mmol)
+ 1-octadecene(20 ml)
+ 1,2-dichloroethane (0.79 mmol)

[Fe]/[Au] = 2
[ligand]/[Fe] = 5
concn of Au ∼ 5.7 mg/ml
concn of Fe ∼ 7.9 mg/ml

Seed-mediated
cooled and exposed to air
[18]

A10F14

HAuCl4(35 mg) + Fe(CO)5 (0.38 mmol)
+ Oleylamine(3 mmol)
+ Oleic acid (1 mmol)
+ 1-octadecene(20 ml)

[Fe]/[Au] = 2
[ligand]/[Fe] = 5
concn of Au ∼ 4 mg/ml
concn of Fe ∼ 9.8 mg/ml

Seed-mediated
one-pot synthesis
[19]

A13F14

Au(35 mg) + Fe(CO)5 (0.38 mmol)
+ Oleylamine(0.92 mmol)
+ Oleic acid (0.92 mmol)
+ 1-octadecene(20 ml)

[Fe]/[Au] = 2
[ligand]/[Fe] = 5
concn of Au ∼ 8 mg/ml
concn of Fe ∼ 7.4 mg/ml

Seed-mediated
cooled and exposed to air
[18]

Figure 6.3.: TEM (left) and high resolution (right) TEM micrographs of (a-b) A12F10
(c-d) A9F11 (e-f) A10F14 and (g-h) A13F14. The crystal plane spacing
is shown with yellow lines in each case.

analysis is first performed assuming individual spheres of Au to get reliable diameter
of gold LA. Since the IONPs grown on Au cause DBNPs to have different projections
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along the image plane, the length along the growth axis LF and the largest diameter
of the IONP DF obtained perpendicular to the former, are measured separately. Fur-
ther, the whole length of DBNP LD is also measured and the standard deviation of LD,
obtained from particles size analysis, now accounts for the various projections in the
sample and intrinsic size variations. The major contributing factor to uncertainties in
LA is the intrinsic polydispersity in the spherical Au. The uncertainties in determina-
tion LF and DF together account for polydispersity of IONP. The geometric lengths
LA, LF, LD, DF and corresponding polydispersities obtained from TEM, are compiled
in Table 6.2. Through particle size analysis, we have shown that LD ∼ LA + LF. The
lattice spacing of each component of the DBNP is visible in the high resolution TEM
images (see Fig. 6.3).

Table 6.2.: Summary of DBNP length scales LA, LF, DF, total length of dumbbell
LD, polydispersity (∆LD) and the aspect ratios ( A1 = LD

LA
and A2 = DF

LF
)

obtained from TEM for DBNPs.

Sample ID LA
(nm)

LF
(nm)

DF
(nm)

LD
(nm)

∆LD
(%) A1 A2

A12F10 12.9 ± 2.2 10.9 ± 1.8 22.9 ± 2.4 22.1 ± 3.5 15 1.7 ± 0.4 2.1 ± 0.4
A9F11 9.7 ± 2.0 11.6 ± 1.4 16.3 ± 1.7 19.8 ± 2.5 12 2.0 ± 0.4 1.4 ± 0.2
A10F14 10.4 ± 1.2 14.1 ± 1.6 18.0 ± 1.8 23.8 ± 2.1 9 2.3 ± 0.3 1.3 ± 0.2
A13F14 13.9 ± 1.9 14.2 ± 1.7 22.3 ± 2.5 26.7 ± 3.3 12 1.9 ± 0.4 1.6 ± 0.3

The resulting hybrid nanoparticles exhibits a dumbbell-like morphology, and such
different length scales are rarely mentioned in the previous literature [96, 16]. Reports
suggest that Au enlargement potentially causes detachment from the iron oxide NPs
due to increased mechanical stress. However, despite the large size of metal NP, the
particles are still attached. The polydispersities in DBNPs are large compared to
the reference IONPs. The lengths of DBNP (LD) are larger than those reported in
existing literature [16, 18, 22] while the diameter of the IONPs (DF) in the DBNP is
equivalent to the previously described single IONPs. Distinct assemblies are observed
in TEM and simulated previously through fine tuning another parameter that is the
aspect ratio A of the dumbbell [27, 109, 173]. In general, the aspect ratio by definition
is the ratio of the largest length to shortest length. Similar definitions exist for 1D
nanostructures such as nanowires and ellipsoids made of same material. To account
for the multi-component nature of the DBNPs, two aspect ratios A1 and A2 are
considered. The aspect ratio A1 is defined as LD

LA
, which is the ratio of the length scale
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along the long axis LD to the short axis length given by LA. The aspect ratio A2 is
defined to consider the loss of sphericity of the IONP due to its growth on Au and is
defined as DF

LF
.

The high-resolution TEM shows the alignment of iron oxide crystal plane along the
planes of Au particle. The lattice parameter of Au and Fe3O4 are 4.08 Å and 8.39
Å, respectively, from previously reported bulk values. The large lattice mismatch
between these components lead to the atoms of iron oxide nucleating on <111>
crystal plane. that are and in Au and iron oxide, respectively. The inter planar
spacing of IONP d = 5.3(2) Å is almost double that of Au d = 2.6(2) Å indicating
<111> orientation in IONP for all cases but A13F14. Here the planes spacing of IONP
correspond to 2.7(1) Å, the <311> lattice plane (Fig. 6.3 (d)). This indicates that
IONP with crystal plane <311> is grown on <111> plane of Au. It is worth noting
that, however precise, TEM provides statistically limited information on particles due
to limited area analysis.

6.4. Composition and local structure

The composition of the DBNPs are determined by the x-ray pair distribution function
(xPDF) measurements. Fig. 6.4 (a) and (b) show xPDF data and modeling of the
reference IONP and Au bulk samples. The best fit was obtained using cubic phases
of Au (space group Fm-3m, Inorganic Crystal Structure Database(ICSD) collection
code 52249) and magnetite Fe3O4 (Fd-3m, ICSD code 65339). The reference IONP
consists of 50 nm iron oxide (II and III) oxide nanopowder from Sigma Aldrich. The
best agreement with experiment data of IONPs was obtained by using structural
model of 100% magnetite phase to yield a lattice constant of 8.3901(7) Å. Powdered
bulk gold data refinement fit with 100% Au gave a lattice constant of 4.0792(3) Å. In
the case of DBNP, the xPDF data is dominated by scattering from the Au component
of the sample due to its higher contrast for x-rays. For A12F10, a reasonable fit is
obtained for a phase composition of 22% Au and 78% magnetite as shown in the Fig.
6.4 (c). As shown in the fit in Fig. 6.4 (d) in A13F14 the mass fraction of Au seems
larger (61% ) and compared to IONP (39%). This is presumably because A13F14
are sedimenting particles and the large amount of residual Au particles maybe found
in the supernatant phase. In this modelling approach, one cannot determine the
interface between Au and IONP, since it assumes a mixed phase of Au and iron oxide.
The quality of fits in A13F14 needs to be improved to confirm the lattice constant
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expansion of IONP. The lattice constants of A12F10 and A13F14 are listed in Table
6.3, along with those for Au and Fe3O4 reference samples.

Figure 6.4.: The best refinements of xPDF data for (a) bulk iron oxide Fe3O4, (b)
bulk Au, (c) A12F10 and (d) A13F14 with experimental data in open
blue circles, calculated pattern in red curve and difference curve in green.

Table 6.3.: Summary of the xPDF refinement fits bulk reference iron oxide, powdered
Au compared to A12F10, A13F14 DBNPs. The fits yield lattice constants
a, δ1, atomic displacement factors Uiso, masses of magnetite and Au.
Here, Qdamp = 0.0377 Å−1, Qbroad = 0.007Å−1, Qmax = 24 Å−1 The detailed
refinement parameters can be found in the appendix A.2.

Samples Bulk iron-oxide Au powder A12F10 A13F14
Phase Fe3O4 Au Au Fe3O4 Au Fe3O4

crystal structure Fd-3m Fm-3m Fm-3m Fd-3m Fm-3m Fd-3m
a [Å] 8.3901(7) 4.0792(3) 4.0499(7) 8.42(3) 4.054(1) 8.40(8)

mass (%) 100 100 22 78 61 39
Rw 0.126 0.065 0.218 0.42

Qdamp = 0.0377 Å−1, Qbroad = 0.007Å−1, Qmax = 24 Å−1. Au structural fit using cif file
ICSD-52249, iron oxide fit using structural file obtained from standard database ICSD-65339.

Details about the fit parameters available in Appendix A.2.
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The lattice constants of the Au in the DBNPs are significantly lower than the bulk
value. Conversely, the lattice constants of Fe3O4 in DBNPs are found to be larger as
compared to bulk values. Reliable refinement of atomic displacement parameter of
oxygen in oxides is challenging given the poor contrast of x-rays with light elements.
A simple Scherrer formalism is limited and complicated by the multi-component over-
lapping peaks in the diffraction pattern. Possible reduction in lattice constants of the
Au can be associated with the finite size effects in DBNPs [22]. The G(r) function
converges to zero at higher r, due to the finite-size of our particles as shown in the
Fig. 6.5 (a) for all particles. Due to the sedimentation nature of A9F11 and A10F14

Figure 6.5.: G(r) function plotted for DBNPs in the range of (a)1 - 50 Åand (b)1 - 20
Å. (c) The simulated G(r) plotted for bulk gold (red), magnetite (blue)
and 50 % mix fraction of gold and magnetite (black). The red and blue
dashed lines extending through (b) and (c) represents the corresponding
Au- Au and Fe - Fe, peaks found in simulated and experiments data.

DBNPs, the signal to background ratio is low for obtaining a good fit. The modelling
involves no specific consideration of the sample interface or shape of the particles and
simply assumes a mixed phase model. in Fig. 6.5 (a), the finite size effect from the
xPDFs for all DBNPs terminate indicate crystalline NPs of ∼ 5 nm. At r < 2 Å(Fig.
6.5 (b)), systematic peaks not associated to the phase of any expected component are
present in all four DBNPs. These peaks can be the residuals from Fourier transforms
applied to scattering intensities and can be identified by fine tuning Qmax. However,
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no such indications exist at the moment. It must be noted that the in the xPDF
measurement, the DBNPs are measured along with all the residual particles in the
solvent. The C-C bonds from organic material and disorder within the DBNP can
also contribute to such the peaks. Further, to make a qualitative assessment of the
composition in these DBNPs, the xPDF curves are compared peak by peak to the
simulated G(r) function for reference and mix phases in the range of 1 - 20 Å for
all sizes in Fig. 6.5 (b-c). Thereby, one can conclude that the DBNPs mainly con-
tains mixed phase of Au and magnetite. Due to large scattering intensity of Au, the
different magnetic phases cannot be uniquely identified.

6.5. Magnetic properties

The Fe3O4 and Au nanoparticles are often explored as individual systems, the iron ox-
ide for magnetic properties and Au for optical/electrical properties. Combining them
together in a single system is fundamentally interesting to understand variations in
the magnetic properties of IONPs when in a bifunctional system. Structural Verwey
transition is commonly observed at temperature close to 120 K due to presence of
magnetite in IONP. As discussed in chapter 5, debate exists in the community re-
garding the observation of this transition in ZFC-FC curves. The reference IONPs
used in Chapter 5 indicate no sign of Verwey transition for NPs below 50 nm. On
the other hand, there are reports presenting Verwey transition in ultrasmall shape
controlled NPs [158]. The ZFC-FC measurements at an applied field of 100 Oe of the
DBNPs are as shown in the Fig. 6.6 (a-d).

The ZFC-FC curves present a typical behaviour of an interacting system with no
visible Verwey transition. Nevertheless, xPDF has confirmed the presence of mag-
netite despite the absence of visible Verwey transition in both spherical IONPs and
DBNPs. As defined in the previous section, the aspect ratio A2 that connects the two
length scales DF and LF of the grown IONPs accounts for its non-spherical nature.
Using these length scales and fixed anisotropy constant of magnetite (Keff = 1.3×104

J/m3), the lower of the energy barrier is calculated as follows ∆Emin = 4π
3 Keff (LF

2 )
3.

Likewise the upper limit is ∆Emax = 4π
3 Keff (DF

2 )
3. Using eqn. (2.56), minimum

and maximum values of TB are obtained for the respective DBNPs and plotted with
respect to A2 in fig. 6.7 (a). The shaded region between the calculated minimum
and maximum value of TB depicts the possible range of expected blocking tempera-
tures for the grown IONPs of different aspect ratios. As expected when A2 → 1, the
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Figure 6.6.: ZFC (black) and FC (red) magnetization as function of temperature in
an applied field of 100 Oe for (a) A12F10 (b) A9F11 (c) A10F14 (d)
A13F14.

reduction in shaded area corresponds to the fact that the temperatures coincide to
a single value of TB if IONPs are purely spherical. For all DBNPs, from Fig. 6.6
the observed TB > 250 K and lies outside the shaded calculated region. Dilutions of
DBNPs only show slightly variation in TB. Comparing the observed TB of IONPsin
DBNPs with single-phase IONPs from chapter 5, additional shifts in TB cannot be
merely accounted as a consequence of dipolar interactions. For instance, the TB ∼
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Figure 6.7.: (a) Calculated TB corresponding to energy barrier Emin (blue) and Emax

(red), plotted as a function of IONPs’ aspect ratio (A2). (b) Schematic
representing the energy barrier increase as a result of the anisotropy in
the DBNPs.

18 K for F10 IONP and close to 300 K for A12F10 DBNP of similar short axis
length. As noted in previous reports on powdered Fe3O4 sample, the strong dipolar
interaction only induces a shift in the value for TB by a few degrees [174]. The key
factor responsible for the shift in DBNPs is the enhanced anisotropy, which can in-
crease the energy barrier and consequently the TB . In DBNPs, the IONPs are grown
along <111> crystal plane of Au NP as observed in TEM. The interface between
Au and IONP are possibly subjected to stress due to their growth. Further, these
IONPs are not spherical as single- phase IONPs. The loss of sphericity is captured
in the definition of aspect ratio A2, hence there is a suggested contribution of shape,
stress and magnetocrystalline anisotropy to the effective magnetic anisotropy [175].
The shift due to enhance anisotropy has been explored in prior studies on Ag-Fe3O4

DBNPs [176]. Recent reports on AC frequency dependent blocking temperatures on
such DBNPs also exhibit similar characteristics. The AC susceptibility was fit to two
separate models; non-interacting Néel-Arhenius and weakly interacting Vogel Fulcher
model to determine the discrepancy. However, a weak accuracy in the description of
a suitable model is a clear indication of the complexity of the problem at hand [177].
The shift in TB up to room temperature can be then accounted by the enhanced
magnetic anisotropy. We concur that the ZFC curve in a DBNP clearly exhibits two
contributions. At low temperatures, the magnetization emerges due to the anisotropy
of individual IONPs, and at high temperature it is added to the anisotropy of the
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DBNPs as a whole leading to a very large energy barrier distribution, with block-
ing temperatures higher than room temperature [176] (Fig. 6.7 (b)). Field dependent
magnetization M(H) curves recorded at temperatures 5 K and 300 K after being field
cooled at 1 T, are displayed in Fig. 6.8. In all the cases, there are no obvious signs
of exchange bias field as reported before in literature [22, 21]. However, we observed
high linear contribution in M(H) curved associated with the diamagnetic moment.
The diamagnetic content has been subtracted through following steps: (a) fitting the
linear curve for the magnetization data where field, H > 3 T and (b) subtracting the
linear diamagnetic contribution using the following slope. These curves do not follow
the usual Langevin model at room temperature present in SPM systems. Satura-
tion magnetization Ms(emu/g) is the magnetic moment per gram of iron oxide and
which is calculated assuming that iron holds 70 % of the nanoparticle weight. This
is achieved by dividing the maximum value of magnetization Mmax given in emu by
mass of Fe obtained from separate ICP-OES measurement and multiplying with 0.7
factor [178]. The amount of Fe and Au present in the sample are separately obtained
through ICP-OES measurement (see Appendix for more details). The field cooled
curves corrected and normalized to iron oxide mass in the DBNP system reveal a
steady increase in Ms that scale with volume associated with LF. The reduction in
saturation magnetization at 300 K compared to 5 K is expected because magnetic
moments can no longer freely align with thermal energy. At low temperatures such as
5 K, the loops show the presence of two contributions (i) linear magnetic susceptibility
at high field and (ii) ferromagnetic component at low field. The blocking tempera-
tures, exchange bias fields, coercive field and corresponding saturation magnetization
of the DBNPs are detailed in Table 6.4.

The bulk saturation magnetization value of Fe3O4 is about 91 emu/g [179]. In
all the DBNPs, this is much reduced but A13F14 the saturation magnetization is ∼
108 emu/g. Saturation magnetization can be reduced in NPs due to several reasons
such as finite size effects, surface spin canting due to lower coordination number,
surface strain, magnetically depleted layers and antiphase boundaries[180, 181, 182,
183]. Au coated IONPs show further reduction in the magnetic moment [184, 185].
The surface moments are disordered further due to interaction with Au electrons
leading to reduced saturation moment. Despite the overwhelming reports on reduced
magnetization, in parallel there are several studies on magnetism enhanced in non
magnetic oxides, borides and graphite [186, 187, 188, 189]. The associated origin
in these materials have been attributed to orbital magnetism occurring in nanosize
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Figure 6.8.: Field-cooled DC magnetization M(H) curves as a function of magnetic
field at (a) 5 K and (b) 300 K with 1 T cooling field, inset; M(H) is zoomed
in at low fields to indicate the waist shaped curved for A9F11(green) and
A10F14(red)

Table 6.4.: Summary of the calculated and measured TB of DBNPs compared with
IONPs using ZFC-FC curves. Exchange bias field HEB and coercive field
Hc1 at 300 K from M(H) hysteresis loops. The saturation magnetization
Ms at 300 K.

Sample ID TB (min)
(K)

TB (min)
(K)

Measured DBNPs TB
(K)

Measured IONP TB (a)

(K)
HEB

(± 28 Oe)
HC1 (b)

(± 20 Oe)
Ms @ 300 K (c)

(emu/g)
A12F10 25 236 290 10 (F05) 7 21 33.9 ± 0.4
A9F11 30 85 >300 18 (F10) 15 0 46.7 ± 2.0
A10F14 55 115 >300 250 (F20) 15 36 73.9 ± 1.5
A13F14 56 218 >290 270 (F21) 17 18 108.6 ± 2.9

300 (F24)
>300 (F27)

(a) observed blocking temperatures of IONPs from chapter 5, (b) The errors correspond to the
residual fields present in the PPMS-dynacool system, (c) saturation magnetization is obtained as

follows Ms(emu/g) → Mmax

mass of[Fe]× 0.7 where mass of [Fe] is obtained from ICP-OES results in
appendix.

defects. Polymer stabilized metallic Au and Pd were found to be magnetic [190].
Further, thiol capped single phase Au NPs are reported to have an apparent FM due
to localized 5d holes that arise from the bond between Au and thiol surfactant [191].
Further studies on bare Au and Pd particle also show 4d FM [192, 193, 194]. The
presence of magnetism is not limited to just thiol capped but also Au NPs capped
in a mixture of oleic acid and oleylamine surfactant similar to our system [195]. It
has also been observed that coating IONP containing magnetite with Al multilayer
system has shown enhancements in magnetism. Often enhancement in magnetization
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are associated with an interfacial effect [196]. Enhancement in the magnetic moment
is also observed in gold coated IONP core-shell structures [197, 104]. One contesting
theory is the induced moment in Au due to proximity in a magnetic material. Banerjee
et al., have shown that there is a chemical gradient at the interface responsible for
trapping the conduction electron of Au [104]. These electrons contribute to the orbital
magnetic moment. The magnetic character of IONPs is in particular also affected by
the oxygen content in the system. Numerous studies on thin film systems exist which
elucidate the change in exchange coupling in Fe as function of oxygen. A complete
review of all the physics related to iron oxidation in general is well beyond the scope
of this work. These studies are however limited in nanoparticle system, one because
of the poor sensitivity to light element in experiments such as x-ray total scattering
experiments. Hence, separate experiments have to carried out to quantify oxygen
diffusion and their role in potentially enhancing the magnetic moment. Another
interesting feature not observed in previous case is the waist shaped hysteresis loop.
At 300 K, the M(H) hysteresis loop width narrows as magnetization goes to zero
in A9F11 and A10F14. These waist-shaped curves are visible in the zoomed inset in
Fig. 6.8 (b). The origin of these curves in other system presents as a consequence
of mixed magnetic phase containing soft and hard magnetic subsystems. A recent
study by Lopes. et. al observed a similar waist shaped hysteresis loops in Ag-Fe3O4

dumbbells [176]. Magnetization enhancement in the DBNPs can be extremely useful
while designing MNPs suitable for hyperthermia applications.

6.6. Surface ligand density

The surface coating is yet another parameter to consider for self-assembly. TGA is
an excellent tool to characterize the surface bound ligands as seen in the Chapter
5. It was shown how the large quantity of surfactant on the shell of certain IONPs
inhibited the formation of assemblies. The DBNPs are coated with surfactant such as
oleic acid (OA) and oleylamine (OLA) in the 1:1 ratio. An approximate value of the
grafting density for a spherical IONP coated with oleic acid can be obtained through
weight loss percentages from the TGA given by,

σ(ligands/nm2) =
wt%shell
wt%core ρcore

4
3π(

Dcore

2 )3NA

MWOA.4π(Dcore

2 )2
(6.1)
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where wt%shell is weight loss obtained from TGA equivalent to the relative mass
of the organic shell and the residual mass of NP is given by wt% core; ρcore = 5.17
g/cm3 denotes the density of IONP core; MWOA = 282, 47 g/mol is the molecular
weight of OA; Dcore is the diameter of the core obtained through TEM, SAXS and
NA is the Avagadro number. The Fig. 6.9 depicts the TGA curves for DBNPs. For a
DBNP geometry, to calculate the surface ligand density, Eqn. (6.1) is modified. The
equation can be modified assuming OLA capped Au and OA is coated around IONP.

σ(ligands/nm2) =
wt%shell
wt%core

4
3π[ρF (DF

2 )3 + ρA(LA

2 )3]NA

4π[MWOLA.(LA

2 )2 +MWOA.(DF

2 )2]
(6.2)

where ρF = 5.17 g/cm3 denotes the the density of IONP, ρA = 19.3 g/cm3 is the density
of Au, MWOLA= 267 g/mol is the molecular weight of OLA, DF is the diameter of
the IONP and LA is the diameter of the Au NP obtained through TEM analysis. The
observed weight loss before 200 ○C is attributed to unbound surface ligands. The
boiling point of the bound OA and OLA ia about ∼ 460 - 500 ○C. At this temperature
point the major mass loss is observed for all samples, though the amount of ligand
varies in all samples. Larger mass losses indicate presence of higher ligand density.
These mass losses and calculated ligand density are presented in the Table 6.5.

Table 6.5.: Summary of the ligand density σ calculated for DBNPs and IONPs using
the respective geometric length scales.

Sample ID wt%shell(a)
(%)

σ(b)

(ligands/nm2) Sample ID wt%shell(c)
(%)

σ (d)

(ligands/nm2)
F05 47 ∼ 8.6 A12F10 58 ∼ 61
F10 24 ∼ 6 A9F11 86 ∼ 192
F20 83 ∼ 189 A10F14 74 ∼ 102
F21 10 ∼ 4 A13F14 75.9 ∼ 134
F24 46 ∼ 39
F27 51 ∼ 54

(a) Weight loss percent obtained from TGA curves for IONPs from chapter 5 , (b) calculated using
eqn. (6.1), (c) weight loss percent obtained from TGA curves of DBNPs, (d) calculated using eqn.

(6.2).

In the case of IONPs, these calculation concur with the findings presented in Chap-
ter 5 where ligand density is the highest for F20 which in turn inhibits formation of
assemblies. However in DBNPs, the geometric aspect again plays a role. These lig-
and densities are calculated assuming two spheres. Based on preliminary assumptions,
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6.6. Surface ligand density

Figure 6.9.: TGA curve representing the mass loss as a function of temperature for
(a) A12F10, (b) A13F14 (c) A9F11 and (d) A10F14

A12F10 has the lowest ligand density, while A9F11 and A13F14 has the highest. The
aspect ratio is closely connected to these estimations. These densities are much larger
than IONPs as expected due to larger surface area. The long carbon chains attached
to the DBNP surfaces are responsible for the stability of the colloids. The steric inter-
actions between them effectively control the minimum distance between the DBNPs.
Further, interactions can also exist between the surface of NP and the ligand in the
form electrostatic repulsion, van der Waals or hydrogen bond. The OLA consists of
an amine head group (-NH2) which can only bind to single motif as opposed to OA
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6. Structural and Magnetic Characterization of Dumbbell Nanoparticles

(-COOH) which can bind 3 times more to the surface. The charge stabilized on these
surfactants is also shown to play a role in driving assemblies in Au-Fe3O4 systems [27].
Liu et al. have shown how tuning the hydrophobic and van der Waals interactions
through hydrophobic OLA capped Au and hydrophillic Fe3O4 was critical for forming
various assemblies. Alternatively, the thickness of the coating around NPs could also
play a vital role in hindering the formation of assemblies as seen in Chapter 5 for F20
IONPs. Moreover, dual functionalization of the DBNP surface due to large surface
area and its further application in tuning interactions will play a key role in its use
as diagnostic and drug carrier system for biomedical applications.

6.7. Conclusion
This chapter investigates DBNPs consisting of IONPs grown on Au seeds by a seed-
mediated approach. The epitaxial relationship between Au and the IONPs particles
are evidenced by either the small mismatch between IONPs <311> and Au <111>
[< 5%] or the interfringe distance of IONP <111> being 2 times that of Au <111>.
The multicomponent and non-spherical nature of the DBNPs is characterized by the
definition of A1 and A2. Improved dumbbell morphology is expected as the aspect
ratio A1 → 2. Further, the loss of sphericity in IONP of the DBNP corresponds to a
high value of A2. In individual spherical IONPs, the dominant dipolar interactions are
shown to shift the measured TB. However, along with dipolar interactions, the most
remarkable result in DBNPs is the shift in measured TB associated with anisotropy.
The loss of sphericity combined with constrained growth of IONPs on <111> crystal
plane of Au can enhance magnetic anisotropy. Contribution to anisotropy emerges
from the associated shape, stress, magnetocrystalline and other induced effects in
IONP of the DBNPs. Due to finite size effects, Au NPs in DBNPs are shown to un-
dergo structural contraction of the lattice constant compared to bulk. The enhanced
magnetization in DBNPs compared to bulk magnetite may be a consequence of in-
terfacial effects, magnetism in Au, or the effect of oxygen-induced magnetic behavior.
Stabilizing ligands prevents irreversible agglomeration; however, there is no indica-
tion of excessive ligands in DBNPs. Our recommendations to predict the assemblies
are linked to geometric aspect ratios. Parameters, techniques and these geometric
parameters developed will be employed to analyze the assemblies formed by DBNPs.
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7. Self-assembly of Dumbbell
Nanoparticles

This chapter describes the self-assembly of DBNPs using scattering methods and
simulations. As discussed previously, DBNPs have different structural and magnetic
properties compared to their spherical counterparts. Though the literature on prepar-
ing such non-spherical particles has grown over the decade, reports on assemblies into
1D, 2D and 3D structures are still infrequent. Often in limited cases, the self-assembly
of DBNPs is achieved in the liquid phase using linkers or templates [119, 120]. In this
chapter, the DBNPs are shown to assemble readily and reversibly into structures in an
applied magnetic field, and this phenomenon is identified through anisotropy in the
2D SAXS and SANS scattering patterns. Based on the anisotropy and the assembly
formed, we classify the DBNPs into three separate categories. The scattering patterns
are analyzed using shape-dependent and independent models to reveal interparticle
correlations and particle arrangements. Novel scattering patterns observed are quali-
tatively analyzed using simulations. Particle aspect ratio and magnetic field strength
are identified to play a crucial role in the stability and formation of self-assembled
structures.

7.1. Scattering contrast

Au-Fe3O4 DBNPs coated with oleic acid and oleylamine surfactants in a dispersion
of toluene forms a system with different scattering contrast for x-rays and neutrons
(see Fig. 7.1). For x-rays, scattering intensity is dominated by the Au particles that
have nearly three times the scattering length density (SLD) than that of Fe3O4 (Fig.
7.1 (a)). Conversely, neutron SLD of Fe3O4 is larger when compared to Au (see Fig.
7.1 (b)). Thus, simultaneous refinement of small-angle x-ray and neutron scattering
data can be used to increase accuracy in the determination of structural parameters
of the multi-component DBNPs.
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7. Self-assembly of Dumbbell Nanoparticles

Figure 7.1.: Scattering length density of various components in a surfactant coated
Au-Fe3O4 DBNP system suspended in h-toluene with (a) x-rays and (b)
neutrons.

7.2. Phase separation and macroscopic assemblies

Among the four DBNPS (A12F10, A9F11, A10F14, A13F14) presented in the previ-
ous chapter, A9F11 and A10F14 DBNPs sediment almost immediately due to large
heavy gold particles as shown in Fig. 7.2. Shaking the cells re-disperses the DBNPs
(Fig. 7.2 (a)). However, the Brownian diffusive force combined with gravitational
force separates the DBNPs from the supernatant phase, which lies above (Fig. 7.2
(b)). In the presence of an inhomogeneous magnetic field from a handheld magnet,
the DBNPs behave like macroscopic iron filings (see Fig. 7.2 (c)). The nanosized
DBNPs form long needle-like macroscopic structures affected. The nanoscale config-
uration of these DBNPs is probed using SAXS and SANS in an applied magnetic
field. The field gradient values are not directly measured in both cases and may vary
in different setups. The SAXS patterns for DBNPs are collected only at 0.9 T field
point using a set of permanent magnets at GALAXI (see chapter 4 for instrument de-
tails). For SANS, a range of fields up to 3 T can be applied horizontally to the sample
using the current setup of the magnetic field at KWS-1. For SANS measurement on
IONPs (from chapter 5), the field setup at KWS-1 was different and had a vertical
electromagnet producing fields up to 2.2 T. The system of DBNPs in a dispersion can
be described as a combination of the supernatant and particle phase.
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7.3. Probing self-assembly : 2D visual analysis

Figure 7.2.: Sedimentation of DBNPs: Hellma cells filled with A10F14 DBNPs in
toluene dispersion (a) before and (b) after sedimentation, the supernatant
is the solution phase containing residual particles above the dark sedi-
mented particles collected at bottom of the cell. (c) The same DBNPs in
the presence of 200 Oe hand held in inhomogeneous field, here the DB-
NPs clearly separate out of dispersion to form macroscopic structures.

7.3. Probing self-assembly : 2D visual analysis

7.3.1. 2D SAXS patterns

DBNP dispersions were filled in ∼ 2 mm wide borosilicate capillaries with a wall thick-
ness of 0.05 mm and ∼ 4-5 mm in length for SAXS measurements at room temperature.
Dilution methods to study individual particle behavior or concentration effects on as-
sembly are not straightforward in these DBNPs compared to IONPS. In IONPs, due
to the stability of the dispersion, extraction with pipettes for further dilution was triv-
ial and the concentration of each dispersion could be accurately determined. However,
in DBNPs, the extraction of liquid and particle-phase to accurately obtain the diluted
concentration remains a challenge due to gravity and particle separation. Hence in
this thesis, all DBNP samples were measured in the initial overall concentration of ∼
7-8 mg/ml obtained during synthesis without further dilution. The beam of size ∼ 0.7
× 0.7 mm2 can gauge different positions of the in-homogeneous sample. For zero-field
measurements, the filled capillaries are placed horizontally, as shown in Fig. 7.3 (a),
and due to sedimentation of DBNPs, the particle phase lies near the edge of the holder
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7. Self-assembly of Dumbbell Nanoparticles

and most of the measured signal is due to the supernatant phase. The capillaries in
the field setup are placed vertically and exposed to a horizontal 0.9 T magnetic field.
Due to phase separation combined with its response to the applied magnetic field, the
particle phase rises towards strong field gradients displacing the supernatant phase.
The x-ray beam is focused at two different vertical positions on the capillary to probe
this phase (see Fig. 7.3 (b)) and the detector images collected at these positions of
the capillaries are as shown in Fig. 7.3 (c). Visually the anisotropy in the 2D SAXS
pattern at a fixed field remains the same with varying intensities along different posi-
tions of the capillary as long as the gauged volume lies in particle phase. Due to the
complete absence of DBNPs, the 2D SAXS pattern is isotropic with low scattering
intensity from residual particles and solvent at a position along the capillary in the
supernatant phase. The 2D SAXS patterns collected along different positions and the

Figure 7.3.: (a) The capillaries are held horizontally for zero field and (b) vertically
for magnetic field SAXS measurements on DBNPs at GALAXI. In (b)
due to phase separation and magnetic field response, the x-ray beam is
focused at two different positions on the capillary represented by blue
and red arrow. The direction of applied field H⃗ is given by the black
arrow. (c) The SAXS patterns of A9F11 DBNP collected from top (red
outline) and bottom (blue outline) of the capillary. Note the capillaries
in the figure are just representative and do not contain the actual DBNPs
samples.

scattering patterns with maximum intensity at 0.9 T and 0 T, for the four different
DBNPs, are displayed in Fig. 7.4. The SAXS patterns of the stable and well dis-
persed A12F10 DBNPs, remain isotropic at all positions along the capillary and the
circular pattern at 0 T. However, at 0.9 T the pattern is elongated at the centre (Fig.
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7.3. Probing self-assembly : 2D visual analysis

7.4 (a-b)). This is an indication that DBNPs orient in the magnetic field resulting
in an elongation although no assemblies are formed in these DBNPs. However for
remaining DBNPs, due to phase separation and horizontal configuration of the zero
field setup, the SAXS pattern has lowered intensity at 0 T. The 2D SAXS patterns
reveals anisotropy at 0.9 T. The 2D SAXS patterns of A13F14 and A9F11 have stripe
patterns with a diffuse ring in the former case. The stripe pattern for A9F11 DBNPs
is similar to the one observed for IONPs in chapter 5 that indicates the formation of
chains (Fig. 7.4 (c)). The cross pattern of A10F14 is unique because it is unlike any
scattering pattern observed previously for NP systems. Visual interpretation already
depicts rich variety of assemblies formed in three of the four DBNP samples.

Figure 7.4.: The 2D SAXS patterns of (a-b) A12F10 (c-d) A13F14 (e-f) A9F11 and
(g-h) A10F14 DBNPs collected at H = 0.9 T (top panel) and 0 T (bottom
panel). The black area represents the insensitive part of the detector. The
DBNPs with similar 2D SAXS pattern are classified into same category.

7.3.2. 2D SANS patterns

Dispersions prepared for SANS measurements are filled in 110 type Hellma cells which
are ∼10 mm wide and ∼1 mm thick. The sample preparation is described in chapter
4. The beam size of the neutron beam on a sample is 6x8 mm2 (width x height).
Different parts of the sample cell cannot be focused using neutronbeam in SANS
done with SAXS experiments. Here, the neutron beam is incident at the center
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of Hellma cells. For well-stabilized dispersions, the behavior of NPs in the gauged
volume is representative of the entire volume of the dispersion. However, in DBNPs,
the gauged volume concentration varies due to the formation of supernatant and
particle-phase combined with a macroscopic response to the field. The 2D SANS
patterns collected for four DBNPs in fields ranging from 0-3 T are displayed in Fig.
7.5.

Figure 7.5.: 2D SANS patterns of (a1-a5) A12F10, (b1-b5) A13F14, (c1-c5) A9F11,
and (d1-d5) A10F14 DBNPs in the field ranging from 0 T to 3.3 T. The
horizontal panels from left to right displays the 2D pattern collected at
0, 0.5, 1, 2 and 3 T for respective sizes.
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The anisotropy in the 2D patterns for their respective sizes at 1 T concurs with
SAXS at a similar field. Additionally, even at the highest applied field of 3 T, there
are no visible changes in the pattern of A12F10, indicating the non-assembling and
homogeneous phase of DBNPs. On the other hand, the remaining three DBNPs show
anisotropy in the 2D SANS pattern. There is a visible drop in intensity at low and
high fields in these cases and the reasons are illustrated in Fig. 7.6. The particles
are still sedimented at the bottom of the cells in low fields. The maximum scattering
intensity is recorded for intermediate fields since the gauged volume contains DBNPs
lifted due to the magnetic field gradient. The intensity further drops at high fields due
to a strong attraction of particle phase to the magnets’ pole. The patterns remain
stable and the intensity is invariant at a fixed field for 1 hr of data acquisition,
regardless of how the field was applied.

Figure 7.6.: The loss of intensity in the 2D SANS patterns at low and high fields is
due to the inhomogeneous sample and the limited size of the neutron
beam (shown by the yellow region). (a) At low fields, magnetic forces
compete with phase separation and sedimentation forces. (b) In the in-
termediate field region, magnetic forces lift the particle phase to displace
the supernatant. (c) Strong fields further tear apart the assemblies to
pull the DBNPs to the edge of the cells resulting in lowered intensities.

7.4. Types of assemblies and analysis methods
Through visual analysis, it is evident that different types of assemblies are formed in
A13F14, A9F11 and A10F14 while A12F10 indicates no such formation. Based on
the scattering patterns, we classify the DBNPs in to three main categories;

1. Category-O: In A12F10, the 2D SAXS and SANS pattern have elongation at
the centre and remain isotropic at high Q in all fields. These DBNPs orient and
do not indicate any assembly.
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2. Category-I: The stripe pattern is present in both A9F11 and A13F14. How-
ever, there is an additional diffuse ring in A13F14. From chapter 5 on IONPs,
such 2D patterns are signature of 1D chains assemblies.

3. Category-II: The cross pattern of A10F14 is unique and with indication of
assemblies in two directions resulting in 2D chains.

The two most common approaches to analyze such scattering patterns are (i) radial
analysis and (ii) sectoral analysis.

The DBNPs are much more complex and the form factor of a multicomponent re-
alistic dumbbell model is currently not available on SAXS/SANS data analysis soft-
wares. The analytical form-factor derivation of DBNP described in the outlook will
provide a means to analyze these DBNPs systematically. Nonetheless, before building
a more sophisticated model, an alternative analysis of the particle morphology be-
gins with inspection of asymptotic behaviour using shape independent Guinier-Porod
models. Further, applying scattering contrast assumptions we can fit spherical models
on the radially integrated 1D SAXS and SANS data. To avoid any loss of informa-
tion through radial averaging, the 2D SAXS and SANS intensities are integrated in a
sector of width 20○ centered on an axis parallel (α = 0○) and perpendicular (α = 90○)
to the applied magnetic field. Here, α is the angle between scattering vector Q⃗ and
applied field H⃗. The peak obtained from the integrated intensities are fit to Gaus-
sian model to obtain the peak positions and peak width. The peaks position (Qpp)
corresponds to the distance between particles (ℓ) and peak width (w) to correlation
length ζ in real space. These parameters are in general defined as

ℓ = 2π
Qpp

(7.1)

ζ = 2π
w

(7.2)

where ℓ = ℓ∣∣,ζ = ζ∣∣ are interparticle distances for the sector parallel to the field.
Correspondingly, ℓ = ℓ⊥,ζ = ζ⊥ are correlation lengths for sector perpendicular to
the applied magnetic field. Albeit corresponding parameters have been determined
in assemblies formed by IONPs in Chapter 5, there are some crucial differences for
DBNPs as listed below ;

• The center-to-center distance is no longer trivial as for spherical IONPs.

• The multicomponent and unique morphology can be accounted through two
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aspect ratios A1 and A2 defined in chapter 6. Here, A1 can be associated with
the shape factor of the whole DBNP while A2 to the shape of the magnetic
IONP.

• The phase of IONPs remains homogeneous and the dispersion remains stable in
the entire time frame of the experiment. However, instantaneous phase separa-
tion and formation of macroscopic assemblies in DBNPs can result in non-trivial
analysis.

7.5. Category O: No assemblies

In this section, The results from the 1D analysis of the SAXS (see Fig. 7.4 (a-b))
and SANS scattering patterns (see Fig. 7.5 (a1-a5)) of A12F10 DBNPs are discussed.
These patterns belongs to a category of DBNPs where no assemblies were inferred
from direct visualisation.

7.5.1. Radial analysis

A simplified analysis on radially integrated 1D SAXS at 0 T and 0.9 T of A12F10
DBNP follows fitting the entire data range with the Guinier-Porod model as shown
in Fig. 7.7 (a) (see chapter 2, section 2.3 for details about the model). Since DBNP

Figure 7.7.: SAXS fits of A12F10 ; radially integrated SAXS intensities of A12F10
at 0 T (red) and 0.9 T (green) fit to (a) Guinier-Porod model to fit
asymptotic limits and (b) a gold sphere model. The intensities are scaled
for visualization.
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is a 3D object, the dimension variable s is set to 0 and the slope at high Q follows
the behaviour with Porod exponent P = 4. The radius of gyration obtained from the
fits corresponds to Rg ∼ 11 nm for 0T. Further, since the x-ray SLD of Au is almost
three times than that for IONPs (see Fig. 7.1 (a)), a simplistic model containing
non-interacting Au spheres is employed to fit the data (Fig. 7.7 (b)). The SLD of
Au (ηcore = 1.23 × 10−4Å−2) and h-tol (ηsolvent = 8.03 × 10−6Å−2) is fixed for this
model, while the diameter of Au and the size distribution parameters are refined.
The mean diameter Dcore = 11 nm with very large size distribution describes the
data. From the scattering data, it is also impossible to determine simultaneously the
shape and size distribution of a polydisperse system. Hence for this model, the large
polydispersity is an indication of the deviation from its spherical shape. Albeit the
large size distribution, the mean value of the diameter is in fair agreement with the
diameter of gold (LD) obtained from TEM for such a simplistic model fit.

Figure 7.8.: (a) Radially integrated SANS intensities of A12F10 DBNP in fields rang-
ing from 0-3 T, where the solid black lines are fits to Guinier-Porod model,
bottom inset: The isotropic 2D SANS pattern of A12F10 DBNP at 1 T.
The intensities integrated along the black ring represents the intensity
at a single Q value. The integrated intensities are plotted as function
of Q for radial analysis. (b) The blue solid line is the neutron SLD of
the original DBNP system and the black solid line is the calculated SLD
of the composite core-shell model used to describe A12F10. (c) SANS
1D data of A12F10 at various fields fit to a composite core-shell model
described in (b).

Following the similar analysis for SANS data at various fields, the radially integrated
intensities are fit to Guinier-Porod model by setting s = 0 and P = 4 (Fig. 7.8 (a)).
The obtained radius of gyration Rg ∼ 10 nm is in fair agreement with value obtained
from x-rays. This value is about half the length of the entire DBNP estimated from
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TEM (∼ LD
2 ). As discussed in chapter 2, intensities integrated along different orien-

tations assuming homogeneous particles result in spherical and core-shell form-factor
descriptions that are simpler to calculate and easier to reconstruct from scattering
data. In section 2.5.6, the equation (2.118), clearly demonstrates how the overall scat-
tering length density ρ(r⃗) of the system depends on the SLD of the solvent (ηo) and
the SLD of the particle (η̂p(r⃗, Θ⃗)) summed over the entire particle ensemble. Here, ηo

is a constant value that is dependent on the embedded environment of the particle.
On the other hand, particle SLD η̂p(r⃗, Θ⃗) depends on the internal homogeneity and
the particle orientation (Θ⃗). Therefore, it becomes impossible to get an unique re-
construction of an arbitrary inhomogeneous 3D structure without additional a priori
information. Since the radially integrated intensities cannot differentiate scattering
along various orientations, we assume a composite core-shell spherical model to fit
the 1D scattering data. Here the SLD of the Au-IONP composite core is calculated
as

ηcore =
VA

VD

ηAu +
VF

VD

ηF (7.3)

where VA and VF is the volume of Au and IONP, component in the DBNP respectively
with total volume VD = VA + VF . Additionally, ηAu = 4.6 ×10−6 Å−2 and ηF = 6.63
×10−6 Å−2 is the calculated neutron SLD of Au and IONP(magnetite), respectively.
Using the geometric length scales defined in the Fig. 6.1 and determined from TEM
in the previous chapter, we calculate

VA =
4
3π (

LA

2 )
3

(gold-sphere) and VF =
4
3π (

LF

2 )
2 DF

2 (IONP ellipsoid). (7.4)

The value of ηcore = 5.75 × 10−6 Å−2 for A12F10 DBNPs. Further, the composite shell
SLD consisting of (1:1) mix of OA and OLA is calculated as follows:

ηshell = 0.5ηOA + 0.5ηOLA (7.5)

where, ηOA = 0.077 × 10−6 Å−2 and ηOLA = -0.172 × 10−6 Å−2 are the neutron SLDs
of OA and OLA, respectively. Using the above mentioned practical considerations,
the SLD model is constructed as shown in Fig. 7.5 (b) and employed to generate fits
to field dependent data in Fig. 7.5 (c). The average diameter of this composite core,
obtained from the fits, is Dcore = 22 ± 3 nm, with shell thickness tshell = 3.3 ± 0.5
nm. The uncertainties in the fit values are determined from size distribution or the
polydispersity index which is about 15 % for this model. The thickness of the shell
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may be overestimated due to poor contrast between shell and solvent of the system.
However, the polydispersity is in agreement with the size distribution obtained from
TEM. As summarized in Fig 7.9, it is instructive to compare the length scales of
DBNPs from various experiments to resolve its structure. The length of DBNP, LD =
22 nm with 15% size distribution, is in reasonable agreement from TEM, SAXS and
SANS experiments.

Figure 7.9.: Summary of various geometric parameters of A12F10 DBNP determined
from (Panel A) TEM image analysis, (Panel B) SAXS and (Panel C)
SANS analysis.

7.6. Category I: 1D chains with disorder

Among the three assembling DBNPs, the stripe and diffused ring pattern observed in
SAXS (Fig. 7.4 (g-h)) and SANS (Fig. 7.5 (d1-d5)) of A13F14 are discussed in this
section.

7.6.1. Radial analysis

Radial integrated SAXS and details of the modelling functions can be obtained from
the appendix. For radially integrated SANS at various fields, equations (7.3), (7.4)
and (7.5) are employed to calculate core and shell SLD for A13F14 DBNPs to yield
ηcore = 5.88 × 10−6 Å−2 and ηshell = -0.0475 × 10−6Å−2, respectively. The results of the
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Figure 7.10.: SANS 1D data of A13F14 at 0.5, 1 and 2 T fit to composite core-shell
model constrained to high Q. Black solid lines are fits to data. The
result of the fits are given in the appendix.

composite core-shell model are as shown in Fig. 7.10. The refined diameter of the
composite core is Dcore = 22.3 ± 2.6 nm with 12 % size distribution and shell thickness
tshell = 7.0 ± 0.8 nm. The errors in the fit value are calculated from the polydispersity
in the core. The shell thickness maybe overestimated due to poor contrast conditions
with solvent.

7.6.2. Sectoral analysis

The sectorally integrated intensities, as presented in Fig. 7.11 (a) and (b) for SAXS
and SANS data, are fit to Lorentzian and Gaussian functions, respectively. The
correlation distances (ℓ∣∣) and lengths (ζ) are determined, and plotted as a function
of applied magnetic field (see Fig. 7.11 (c-d)). Due to its phase separation and
macroscopic response to field, it is difficult to separate the absolute intensities from
supernatant and particle phase. The chain lengths may vary as result of the strong
field gradient and the inability to gauge the entire sample. Nevertheless, at intermedi-
ate fields (0.5 T < H < 1 T) the average correlation length remain fairly constant for
SANS data and is equivalent to the value determined from SAXS peak at 0.9 T. The
uncertainties plotted as error bars, are determined from the residuals of the fitting
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Figure 7.11.: 1D integrated (a) SAXS intensity peak at 0.9 T and (b) SANS intensity
peaks at 0.5, 1, 2 and 3 T of A13F14 DBNPs along the sector parallel to
the magnetic field. Insets: 2D patterns and parallel sectors depicted as
dashed lines. Both (a) and (b) are baseline subtracted and the solid lines
are fits to Lorentzian and Gaussian model functions, respectively. (c)
The correlation distances ℓ∣∣ and (d) chain length ζ∣∣ obtained from the
peak position and width, respectively plotted as a function of applied
field. The shaded region in (c) and (d) indicates high field region with
observed drop in intensity due to measurement of supernatant phase.
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function and is very low (∼ 0.02 - 0.08 nm) due to excellent fit of the peak function.
Thus, the average correlation distance for SAXS and 1 T obtained from SANS at
various fields is ℓ∣∣ ∼ 24.1(1) nm. Here, the error value of 0.1 nm is deviation of the
average value from correlation distances at various fields. Similarly, the average chain
lengths from SANS is ζ∣∣ = 163.6 ± 4.8 nm and longer than chains observed with SAXS
ζ∣∣ = 139.9 nm. Due to dynamic behaviour of chains in field, the chain lengths may
vary and cannot be ascertained absolutely. All parameters from TEM image analysis,

Figure 7.12.: Summary of various geometric parameters of A13F14 DBNPs deter-
mined from (Panel A) TEM image analysis, (Panel B) SAXS and (Panel
C) SANS analysis.

radial and sectoral analysis of SAXS and SANS data are visualized in Fig. 7.12. The
diameter and polydispersity of the composite core-shell model are in close agreement
with LD and size distribution determined from TEM. Comparing the length scales of
DBNP from SAXS and SANS sector analysis we note that the DF ∼ LD ∼ ℓ∣∣. Thus,
we cannot distinguish between head-to-tail and side-by-side arrangement of particles.

7.7. Category I: 1D chains

The analysis of the stripe pattern observed from SAXS (Fig. 7.4 (c-d)) and SANS
(Fig. 7.5 (b1-b5)) of A9F11 DBNPs are discussed in this section.
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7.7.1. Radial analysis

Figure 7.13.: (a) SANS 1D data of A9F11 at 0.5, 1, 2 and 3 T fit to composite core-
shell model constrained to high Q. Black solid lines are fits to data
and are scaled for visualization. The result of the fits are given in the
appendix.

The composite core-shell model adapted from the previous section to A9F11 DBNPs
results in ηcore = 6.08 × 10−6Å−2 and ηshell = -0.0475 × 10−6Å−2. The radially integrated
SANS intensities are fit to the composite core-shell model as shown in Fig. 7.13. The
average of refined diameters obtained from such composite core-shell model at various
fields is Dcore = 21.2 ± 2.5 nm with 11.4 % polydispersity index. The average diameter
and polydispersity is in fair agreement to the overall length of the DBNP LD and size
distribution obtained from TEM image analysis.

7.7.2. Sectoral analysis

The analysis of the SANS and SAXS sector integrated intensities along the applied
field for A9F11 DBNPs is summarized in the Fig. 7.14. The 2D pattern resembles
the pattern observed for single phase IONPs. In chapter 5, the increase in correlation
distance with field is attributed to the bending and straightening of chains. Such
field dependent changes are difficult to separate due to phase separation in DBNPs.
For chains made of DBNPs, the average correlation distance is ℓ∣∣ ∼ 19.4(1) nm and
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Figure 7.14.: 1D integrated (a) SAXS intensity peak at 0.9 T and (b) SANS intensity
peaks at 0.5, 1, 2 and 3 T of A9F11 DBNPs along the sector parallel
to the magnetic field. Insets: 2D patterns and parallel sectors depicted
as dashed lines. Both (a) and (b) are baseline subtracted and the solid
lines are fits to Gaussian model function. (c) The correlation distances
ℓ∣∣ and (d) chain length ζ∣∣ obtained from the peak position and width,
respectively plotted as a function of applied field. The shaded region in
(c) and (d) indicates high field region with observed drop in intensity
due to measurement of supernatant phase.

21.6(1) nm from SAXS and SANS, respectively. This closely corresponds to the LD

value from TEM. The correlation distances confirm that A9F11 DBNPs are arranged
in a head-to-tail configuration as summarized in Fig. 7.15. The average length of
chains in these DBNPs obtained from SANS (ζ∣∣ = 161.0 ± 5 nm) is in agreement with
value obtained from SAXS.

7.8. Category II: 2D chain assemblies

Among all the self-assembling DBNPs, the cross pattern of A10F14, observed in SAXS
(Fig. 7.4 (e-f)) and SANS (Fig. 7.5 (c1-c5)), is a unique pattern that has not been
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7. Self-assembly of Dumbbell Nanoparticles

Figure 7.15.: Summary of various geometric parameters of A9F11 DBNPs determined
from (Panel A) TEM image analysis, (Panel B) SAXS and (Panel C)
SANS analysis.

previously observed in NPs to the best of our knowledge.

7.8.1. Radial analysis

The radially integrated SANS intensities are fit to the composite core-shell model as
shown in Fig. 7.16. The core and shell SLD from the calculation is set to ηcore = 6.15
× 10−6Å−2 and ηshell = -0.0475 × 10−6Å−2, respectively. The diameter of the composite
core is refined to Dcore = 18.4 nm with 12 % size distribution. This value corresponds
to length DF obtained from TEM analysis. Details of the fit are provided in the
appendix.

7.8.2. Sectoral analysis

The peak positions obtained from sector aligned along field (α = 0), as shown in
Fig. 7.17 for SAXS and SANS, corresponds to ℓ∣∣ = 18.78(7) nm and ℓ∣∣ = 18.03(7)
nm, respectively. The numerical results of the fit are provided in the appendix.
The errors in parenthesis corresponds to the average of the deviations of mean value
from ℓ∣∣ attained at each field point. These peak positions are in fair agreement to
the diameter of the IONP (DF) determined from TEM. Additionally, in the sector
perpendicular to the field, peaks are observed in the case of SANS and is absent in
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Figure 7.16.: 1D radially integrated SANS intensity of A10F14 at 0.5, 1, 2 and 3 T fit
to composite core-shell model constrained to high Q. Black solid lines
are fits to data and are scaled for visualization. The result of the fits
are given in the appendix.

SAXS (see Fig. 7.18). The average correlation distance is ℓ⊥ = 19.82(3) nm which is
different by 1 nm to the parallel arrangement. The chain lengths in both direction
are equivalent ζ∣∣ ∼ ζ⊥ = 158(3) corresponds to 8-9 particles in both parallel and
perpendicular direction in magnetic field. The cross pattern describes the onset of 2D
ordering in these DBNPs, hence such ordering must be present in SAXS. The peaks
in direction perpendicular may also have magnetic origin. In this particular DBNPs,
for a single contrast variation experiment, the contrast was adjusted by extracting
DBNPs and redispersing in solvent containing 78 % d-tol and 22 % h-tol. In this
ratio, the solvent matches the contrast of the Au component in the DBNPs. The
cross pattern is clearly visible in the SANS pattern at 1 T field as displayed in Fig.
7.19 (a). The peaks from the sector parallel and perpendicular to the applied field
results in correlation distances corresponding to 18.1(1) nm and ℓ⊥ ∼ 19.21(2) nm,
respectively (see Fig. 7.19 (b-c)). A summary of the various length scales obtained
from scattering and image analysis are presented in the Fig. 7.20. The length scales
suggest that DBNPs arrange in side-by-side configuration. The peaks in perpendicular
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7. Self-assembly of Dumbbell Nanoparticles

Figure 7.17.: 1D integrated (a) SAXS peak at 0.9 T and (b) SANS peaks at 0.5, 1,
2 and 3 T of A10F14 DBNPs along the sector parallel to the magnetic
field. Insets: 2D patterns and parallel sectors depicted as dashed lines.
Both (a) and (b) are baseline subtracted and the solid lines are fits
to Gaussian model function. (c) The correlation distances ℓ∣∣ and (d)
chain length ζ∣∣ obtained from the peak position and width, respectively
plotted as a function of applied field. The shaded region in (c) and
(d) indicates high field region with observed drop in intensity due to
measurement of supernatant phase.

sector of the 2D SANS data indicates that the arrangement of chains extends in both
direction resulting in what we term as 2D chains. In the perpendicular direction, the
alignment of magnetic dipoles in side-by-side configuration configuration would result
in repulsion possibly leading to unstable structures perpendicular..

7.9. Orientation of Particles
The appearance of cross pattern in A10F14 DBNP requires a more careful treatment
of integrated intensities in several directions. Although, sectoral analysis provides
quantitative information about distances, there is a need to analyse the entire 2D
pattern as done with RMC simulations on IONPs. However, the dumbbell form-
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Figure 7.18.: (a) The 1D SANS integrated intensity peak of A10F14 DBNP at 0.5,
1, 2 and 3 T along the sector perpendicular to the applied field. Insets:
2D SANS pattern of A10F14 and sector represented by dashed lines.
These peaks are baseline subtracted and the solid lines correspond to
the fits using Gaussian peak model. (b) The correlation distances ℓ⊥
and (c) chain lengths ζ⊥ are plotted as a function of applied field. The
shaded region in (b) and (c) indicates high field H > 1 T field region
with observed drop in intensity due to dynamic nature of the assembly.

Figure 7.19.: (a) The 2D SANS pattern of A10F14 at 1 T dispersed in 78 % d-toluene.
The dashed yellow lines represents the sector along the applied field (α =
0○) and black dotted line represents the sector perpendicular to the field
(α = 90○). Peak integrated intensity along the sector centered at (b) α =
0○ and (c) α = 90○.

factor based on two sphere model does not truly describe the various aspect ratios
involved. Based on the particle arrangement information obtained from various MNPs
and fundamental principles of scattering outlined in chapter 2, following empirical
remarks describe the general features in 2D scattering patterns of assemblies;

• In case of non-interacting randomly oriented IONPs and DBNPs, the 2D SAS
pattern is isotropic irrespective of the individual particle form-factor. This
resembles the 2D SAS pattern for F05, F10, F20 and F21 IONPs at all fields
and A12F10 DBNPs at 0 T. This is schematically shown in Fig. 7.21 (a).

• The vertical stripes pattern is a result of horizontal chains of IONPs and DBNPs.
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7. Self-assembly of Dumbbell Nanoparticles

Figure 7.20.: Summary of various geometric parameters of A10F14 DBNP determined
from (Panel A) TEM image analysis, (Panel B) SAXS, (Panel C) SANS
and (Panel D) SANS with contrast variation analysis.

Such stripe patterns are visible for F27 IONPs, A9F11 and A13F14 DBNPs.
The stripes in the direction perpendicular to applied fields are strong indicators
of chain formation (see Fig. 7.21 (b)).

• Various orientations of the DBNP have different projection on detector plane.
The A12F10 DBNPs in field results in elongated pattern at lowQ, These DBNPs
orient in the field without forming higher ordered structures (see Fig. 7.21 (c)).

• The stripe patterns F27 IONPs at low fields and A9F11 and A13F14 DBNPs
appear as curved strips. This is attributed to misalignment of the particles in
the chain (see Fig. 7.21 (d)). The distance between the peaks correspond to
the correlation distances.

• Extrapolating from the above observations, one can expect for spherical IONPs
arranged in direction parallel and perpendicular to the field results in the 2D
SAS pattern sketched in Fig. 7.21 (e). Such 2D assemblies with IONPs are
rarely stable and not usually observed with scattering.

Particles with simpler shape such as spherical IONPs, the scattering intensity can
be described by analytical or semi analytical expressions [198]. When particles as-
sume complicated shapes, it is not possible to represent scattering merely with simple
expressions. To describe the anisotropic particle such as DBNP, the reference ori-
entation of DBNP was to be considered as shown in Fig. 7.22 (a). The incident
beam of x-rays or neutrons is along the z-axis. The particle coordinates (a,b and c)
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Figure 7.21.: Sketch of expected 2D SAS detector pattern due to scattering from (a)
non-interacting ensemble of randomly oriented spheres or dumbbells, (b)
IONPs and DBNPs in a chain, (c) oriented dumbbells, (d) misaligned
chains containing spherical and dumbbells and (e) spherical particles
arranged into chains extending in both directions.

are defined using three angle namely ϕ,θ and ψ. Angles ϕ,θ define orientation of the
c-axis of the particle and ψ rotation about c axis. Determination of orientation is
obscure when the DBNP axis aligns along the z-axis which is unavoidable. When the
particle orientation is changed, the projections change and therefore the 2D scattering
pattern also change. In softwares such as SasView, while considering form factor of
anisotropic objects such as ellipsoids and cylinders, the orientational distribution is
fit by performing numerical integrations at these angles. Hence, we could fit the same
1D DBNP data with spherical model. However, they have to be carefully considered
while performing 2D fits [199]. The angle θ, initially in the x − z plane, is considered
first followed by the rotation ϕ about the z axis. Using this information about ori-
ented particles, the cross pattern in 2D scattering pattern of A10F14 emerges as a
result of the inherent anisotropy in the DBNP combined with particle arrangement.
The 2D chains formed with these particles have different projection on the detector

155



7. Self-assembly of Dumbbell Nanoparticles

plane resulting in the elongation along both directions for the scattering pattern as
shown in the Fig. 7.22 (b).

Figure 7.22.: (a) Oriented dumbbell with definitions of θ and ϕ to describe orientation
of anisotropic particles when beam is incident along the z-axis. It is
noted that θ rotation is performed first followed by the ϕ [140, 199]. The
red and blue arrow represents the direction of the dumbbell containing
multi-component spherical sub-units (b) Expected 2D scattering pattern
expected for DBNPs due to parallel and perpendicular orientation of the
anisotropic particles.

7.10. Scattering simulation with BornAgain

BornAgain is a free and open platform targeted for simulation and fit of 2D small angle
scattering in grazing incidence based on distorted wave Born approximation (DWBA).
BornAgain provides flexible tuning of composite particles made easily accessible with
intuitive GUI as shown in the workflow (see Fig. 7.24). As with any grazing incidence
scattering mode, the code can be easily modified to transmission mode by rotating the
incoming beam and detector location. The geometry is set to transmission mode for
SAXS/SANS, which replaces DWBA with ordinary Born approximation [200]. The
modifications were done to verify the patterns empirically described in the previous
section. The instrument is set to SAXS mode. The scattering patterns for individual
spherical IONPs and Au in a non interacting case and in chains are verified (Fig. 7.23).
DBNP is created through combination of two spherical sub-units. These composite
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Figure 7.23.: Real space and simulated scattering patterns of spherical (a-b) Au NPs,
(c-d) IONPs, (e-f) Au NP chains and (g-h) IONPs chains dispersed in
h-toluene.

particles are created by translating the x-coordinate/y-coordinates for center of IONP
by the value of Au diameter, they already have a preferential direction inherent to the
DBNP for these simulations. DBNPs aligned along x-axis even without any explicit

Figure 7.24.: BornAgain workflow to create a composite DBNP using spherical sub-
units with SLD of the IONP and Au and by translating the origin of
IONP to (10,0,0) and setting Au origin to (0,0,0) to realize A10F14
DBNP.

arrangement result in stripe parallel to Qy of the SAS pattern as shown in Fig. 7.25
(a-b). The broadness of the stripes compared to previously generated chains is the
inherent misalignment of these DBNPs. Likewise, for DBNPs aligned along the y
axis, resulted in stripes parallel to Qx (see Fig. 7.25 (c-d)). Orienting the anisotropic
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particles such as DBNPs unlike single IONP in both directions result in the cross
pattern observed in the Fig. 7.25 (e-f)). This further confirms the role of orientation
in the observation of anisotropy in 2D patterns. Alves. et. al, have shown the effect
of orientation on the 2D scattering pattern model through numerical treatment of
oriented particles with spherical subunits, which further indicated such elongation in
scattering profile along the center [199].

Figure 7.25.: The real space distribution of assemblies on the right and simulated
detector image on the the left for DBNPs (a-b) aligned along the x-
axis (c-d) aligned along the y-axis and (e-f) 50 % distributed in both
directions.
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7.11. Shape induced mechanisms involved in the
assembly formation

The previous sections compared the correlation distances for all DBNPs obtained
through scattering data with dimensional parameters acquired via TEM image anal-
ysis. Despite the presence of inhomogeneous phase and dynamic assemblies, the
average correlation distance remained fairly constant with ± 1 nm fluctuation in ap-
plied field. Each DBNPs system is classified in to one of the three broad categories
listed below,

• Category-O: No assemblies A12F10 DBNPs belongs to this category as these
oriented NPs form no assemblies despite the strong applied magnetic field. The
dimensional parameters are summarized in Fig. 7.9.

• Category-I: 1D chains A13F14 and A9F11 DBNPs that form 1D chains be-
long to this category with parameters summarized in the Fig. 7.12 and 7.15,
respectively. The difference between the two chains is the presence of additional
disorder in the A13F14.

• Category-II: 2D chains A10F14 DBNPs form 1D chains oriented in two direc-
tion to the applied magnetic field. The correlation parameters are summarized
in Fig. 7.20.

Together, the present findings has also identified two different chain configurations
for DBNPs in category -I and II namely,

1. head-to-tail: [(Au1-IONP1)-(Au2-IONP2)-..]

2. side-by-side:[..(Au1-Au2) (IONP1-IONP2) ...]

7.11.1. Energy estimates

Since the IONP grown on Au is no longer spherical in a DBNP, two length scales
LF and DF are used to define the sphericity of the IONP. The minimum dipolar en-
ergy Edd(min) is calculated assuming a magnetized sphere of diameter LF. Likewise,
Edd(max), is calculations assuming a magnetic sphere of diameter DF. The magne-
tization Ms determined from chapter 6 in emu/g for iron oxide is converted to A/m
following a simple conversion given by

Ms[A/m]→Ms[emu/g] × density [g/cc] × 1000 (7.6)
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The calculations of dipolar and Zeeman energies following eqn. (2.70) and (2.69),
respectively are detailed in the appendix. The calculated dipolar energies and Zeeman
energies at 1 T applied magnetic field are summarized in the table 7.1 for all the
DBNPs.

Table 7.1.: Comparison of dipolar Edd and Zeeman energies Ez calculated using the
dimension of IONPs in the DBNP and their respective saturation magne-
tization Ms

Assembly
category Sample ID

LF (a)

(nm)

DF (a)

(nm)

Ms
(b)

×105

(A/m)

Edd(min) (c)

(meV)

Edd(max)(d)

(meV)

Ez(min) (c)
@ 1 T
(meV)

Ez(max) (d)
@ 1 T
(meV)

O A12F10 10.9 22.9 1.75 13 126 740 6870
I A13F14 14.2 22.3 5.27 272 1055 4928 19088
I A9F11 11.6 16.3 2.45 32 89 1250 3468
II A10F14 14.1 18.0 3.84 141 294 3515 7814
(a) Mean values obtained from TEM analysis in chapter 6, (b) Saturation magnetization in (emu/g)

obtained from chapter 6 converted to A/m using eqn.(7.6), (c) estimated energies assuming
magnetized sphere of diameter LF and (d) estimated energies assuming magnetized sphere of

diameter DF.

Moreover, the shape anisotropy can not be ignored in such non-spherical IONPs.
In general, calculating demagnetizing tensor for an arbitrary body is complicated.
Nonetheless, "prolate" and "oblate" type ellipsoids shown in Fig. 7.26 are artificially
constructed to perform preliminary estimates using well established theories of ellip-
soids outlined in chapter 2 [36, 37]. The "prolate" ellipsoid has the long axis corre-
sponding to LD and short axis to LA. The colour gradient in the figure represents the
multicomponent nature of the DBNP. The "oblate" ellipsoids represent the IONPs
in DBNPs with long axis corresponding to DF and short axis to LF. The loss of
sphericity in IONPs is most profound in the category-O type and least in category-II
type DBNPs. For a body of arbitrary shape, demagnetization energies is generally
nonuniform inside the body even with uniform M⃗ . Therefore, no single demagnetizing
field can be associated with the body [37].

Recapitulating eqn. (2.39), Esh = 1
2µoVM2

s (N⊥ −N∣∣), the shape anisotropy energy
EP (∥) for prolate ellipsoid is calculated using demagnetizing factor N from eqn.
(2.40) for preferred magnetization alignment along long axis LD. Along the similar
lines, the energy of IONP ellipsoid Eo∥ is calculated assuming magnetization along
the long axis DF and Eo⊥ for preferred alignment along the growth axis LF. The
details of the calculation can be found in the appendix and estimations are tabulated
in Table 7.2.
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Figure 7.26.: Construction of "prolate" and "oblate" type ellipsoids for shape
anisotropy energy calculations with aspect ratio A1 and A2, respectively.
The ellipsoids are constructed to scale.

Table 7.2.: Comparison of shape anisotropy energies calculated through artificial con-
struction of ellipsoids. Here Ep(∥) and Eo(∥) are magnetostatic energies
calculated when demagnetizing field is along the long axis of DBNPs and
IONPs, respectively. For the demagnetizing field along the growth axis of
the IONP, the corresponding energy is Eo(⊥)

Assembly
category Sample Id Vp(∥) (a)

(nm3)
Ep(∥) (b)

(meV)
Vo(∥) (c)

(nm3)
Eo(∥) (d)

(meV)
Vo(⊥) (e)

(nm3)
Eo(⊥) (f)

(meV)
O A12F10 1925 44 1424 43 2992 112
I A13F14 2701 671 2354 425 3697 759
I A9F11 975 56 1148 34 1613 53
II A10F14 1347 215 1873 101 2392 139

(a) volume of ellipsoid V = 4
3 πabc where c = LD/2 and b = a = LA/2, (b) is calculated using eqn

(2.39), (2.40) and the volume Vp(∥), (c) volume of the IONPs where c = DF/2, b = a = LF/2, (d)
energy calculated using volume Vo(∥), (e) volume of ellipsoid where c = b = DF/2, a = LF/2, (f)

energy calculated using Vo(⊥).

The aspect ratio A1 = LD
LA

is associated with the overall shape of the DBNP and
A2 = DF

LF
corresponds to the IONP grown on the Au seed. The range of calculated

Zeeman, dipolar and energies associated to the shape anisotropy are plotted as a
function of A2 shown in Fig. 7.27. The Zeeman energies at 1 T are large to saturate
the moment in all DBNPs, the type of assembly formed depends on the anisotropy
and the dipolar energies. Ideally, assuming equal bulk magnetization (Ms = 4.46 ×
105 A/m) of IONP for all DBNPs, the energies are expected to converge to a single
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value as A2 → 1. As shown in Fig. 7.27 (a), the area of shaded green region decreases
at low A2. However in reality, we have found enhanced magnetization resulting in
large grey region in some cases despite low A2. This explains the monotonically in-
creasing and decreasing energy range. The range of dipolar energies have decreased
substantially for high values of A2 in category-0 (A12F10) DBNPs (Fig. 7.27 (b)).
Previously it has been shown how shape play a critical role in determining mag-
netic properties, on one hand by inducing anisotropy and the other by stabilizing the
single domain state in much larger particles [201]. Reduced magnetization is associ-
ated with the internal spin and crystal structure which is further connected to shape
of the nanoparticle. Previous studies using simulation methods and experimental
studies have confirmed the effect of shape on magnetization of MNPs and other mag-
netic properties [201, 202]. Computationally expensive simulations are required to
model such DBNPs precisely. However, with preliminary estimates of various dipolar
and shape anisotropy energies described above and plotted in Fig. 7.27 (b), the net
dipolar energy Edd = Edd(max) − Edd(min) is equal to net shape associated energy
Esh = Ep∣∣ +Eo⊥ −Eo∣∣ = 113 meV, only in category-O DBNPs. In category-I (A9F11),
despite the improved magnetization, the smaller sizes in A9F11 results in net dipo-
lar energy Edd= 75 meV lower than A12F10. Nevertheless, these DBNPs arrange in
head-to-tail fashion to form chains due imbalance with associated net shape energy
Esh = 18 meV. Similarly the imbalance suggests the formations of chains in category-
1 and II DBNPs. In category-I and II, due to improved spherical nature of IONPs
the magnetic dipole moments within the IONP attempts to align and attract the
neighbouring dipoles strongly resulting in chains. Among the DBNPs, category-II
has the lowest value of A2 and largest value of A1 indicating improved spherical and
dumbbell nature, respectively. This presumably favours the alignment of the whole
DBNP in direction parallel and perpendicular to the field to ensure close contact of
IONPs, resulting in side-by-side 2D arrangement. Since particles are well separated,
the exchange energy between the DBNPs suspended in liquid may be neglected due
to short range of interaction. Monte Carlo simulations have shown that uniaxial par-
ticles randomly oriented in a 2D array are sensitive to anisotropy, dipolar and Zeeman
energies in the presence of the field. Due to competition between these energies sev-
eral variety of magnetic orientations are expected to be present. For example, in
these numerical treatments they have shown antiferromagnetic perpendicular align-
ment when anisotropy energy dominated and antiferromagnetic inplane alignment for
dominating dipolar energies [203]. Steric hindrance may also play a role, however
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Figure 7.27.: The range of calculated (a) Zeeman (b) dipolar and various shape asso-
ciated demagnetization energies plotted as a function of aspect ratio A2.
In (a) and (b) the grey region of energies is plotted using values in Table
7.1 and green region in (a) represents the calculated energy assuming
equal bulk magnetization Ms = 4.46 × 105 A/m of IONPs in all DBNPs.

preliminary estimates of the surfactant shell reveals no such untoward repulsion in
Category-O DBNPs preventing assemblies.

7.11.2. Differences between IONPs and DBNPs

Comparing the results from single phase IONPs, we aim to determine why such varied
assemblies exist in DBNPs. Qualitative analysis of complete 2D scattering patterns
reveals that although similar assemblies are formed in IONPs and DBNPs, orientation
factors inherent in multicomponent DBNPs result in varied 2D scattering patterns.
Self-assembly of IONPs into 1D chains was found due to the field-induced dipolar
interactions that align the particle. Several intrinsic and external factors influence
the assembly formation, such as the diameter of the IONP, composition, thickness of
surfactant coating and concentration. These systems are coated with OA ligands to
prevent irreversible interactions due to vdW forces. Large ligand density distribution
around particles may hinder the dipolar forces, as seen in certain IONPs. Dipolar
forces further depend on the magnetic structure of the IONP. The magnetic structure
is interconnected to size, composition, crystallinity, and several structural-dependent
factors. The blocking temperature TB scales with volume of the particle for all the
IONPs as expected. Additionally, the deviation in the measured TB from the cal-
culated values for the single-phase IONPs was attributed to the dominant dipolar
interactions of the neighbouring particles [14, 204, 205, 206]. However, in the DB-
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NPs, the large increase in TB cannot be merely accounted from the additional dipolar
interactions. We introduce two relevant geometric parameters A1 and A2 to describe
the morphology of DBNPs. Analogous to diameter in spherical IONP counterparts,
we can now arrange DBNPs as a function of aspect ratio A2. The larger deviation
of this ratio from 1 indicates loss of spherical nature of IONP. From the SW model,
the energy barrier is associated with the anisotropy energy Ea (including MCA, shape
and surface anisotropy). The shape induced anisotropy along with dipolar interaction
must indeed affect the energy barrier of the IONPs in DBNPs compared to individual
IONPs resulting in shifted TB. Further, the anisotropy within the DBNP governs the
orientation of the magnetic dipole moment. The strong saturating field orients these
dipole moments along the field. In both single IONPs and DBNPs, the attraction
between neighbouring dipoles are governed by dipole-dipole interactions. The dipoles
arrange in head-to-tail fashion in individual IONPs and DBNPs. However due to
anisotropic nature of the whole DBNP, the structural subunits can align perpendic-
ular or parallel to the field resulting in the so called "head-to-tail" and "side-by-side"
arrangement. The literature on assemblies have predicted that individual IONPs can
be tuned with magnetic field to form first 1D chains that coalesce into 2D and later 3D
assemblies [94, 92]. However, stable intermediate 2D structures are rarely observed
experimentally in dispersion of IONPs. Now with DBNPs, we demonstrate both 1D
and 2D assemblies can exist and are tuned as a consequence of the aspect ratio. The
enhanced anisotropy in DBNPs are a consequence of the particle aspect ratio which in
turn affects magnetic behaviour and the assemblies formed as shown in the schematic
Fig. 7.28.

7.12. Conclusion

To summarize, the DBNPs are analyzed through model independent (Guinier-Porod)
and dependent (composite core-shell) approaches. Geometric length scales of the
DBNP from these approaches concur with values obtained via microscopy. Further
based on the type of assemblies formed the DBNPs are classified into one the three
categories. In category-O, where (A1 ≲ 2 and A2 ≳ 2), no assemblies were observed
despite large external magnetic fields. Further, to analyse the assemblies in category-I
and II type DBNPs, shape independent peak functions are used to model the sectoral
intensities to obtain correlation distances and lengths. In category-I type, 1D chains
aligned in direction of the field are in head-to-tail configuration. In category-II, 2D
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Figure 7.28.: Schematic of shape induced mechanisms governing self-assembly.

chains result in side-by-side configurations. The unique cross pattern in category-II
type DBNPs in the 2D SAXS/SANS pattern is a consequence of inherent orientation
in the DBNPs combined with formation of 2D chains. This is qualitatively realized
through 2D simulations using BornAgain. To conclude, chain formation in DBNPs
is found as a consequence of the competing tendencies between magnetic-dipolar,
anisotropy and Zeeman energies in the presence of magnetic field. In particular, the
shape induced anisotropy contributes dominantly to the anisotropy energy. Shape
factor in DBNPs arises due to a combination of assymeteric DBNPs characterized by
A1 and non spherical IONPs by A2 . The shape anisotropic energies of the system are
analysed through artificial construction of ellipsoids with aspect ratio A1 and A2. In
the limited set of samples, DBNPs are expected to form higher ordered assemblies as
A1
A2
→ 2 and is absent when A1

A2
< 1. A potential way forward to designing and tuning

assemblies with field in any hybrid magnetic structures is through attributing a key
dimensionless parameter that can describe the shape.
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8. Conclusion and outlook

8.1. Conclusion

The spatial organisations of hybrid Au-iron oxide dumbbell nanoparticles (DBNPs) in
the presence of magnetic field are investigated in the present thesis using a multiscale
experimental approach including imaging and advanced scattering methods. Despite
long standing focus on inherently local and spatially confined imaging techniques to
observe assemblies, these scattering results provide invaluable information about the
predominant order present in such dispersions. In order to gain perspective on the
DBNPs, separate investigations were carried out on its spherical magnetic counter-
parts namely iron-oxide nanoparticles (IONPs). Based on the comparative studies
between the IONPs and DBNPs, the observed spatial organizations are broadly clas-
sified into three categories.

• Category-O: IONPs and DBNPs that do not form any assemblies, despite
the external stimuli, belongs to this category. Size, concentration and field
dependent studies, within the constraints of the sample space, reveal that IONPs
with diameters less than 24 nm do not form any assemblies. While there is a
size dependent effect, in some cases, assemblies are inhibited by steric repulsion
from the surfactant shell coating around the particle. Analogous to diameters
in the spherical counterparts, two aspect ratios A1 and A2 are introduced to
account for the multicomponenet and non-spherical nature of DBNPs. Without
loss of generality, A1 = A2 = 1 in IONPs. In DBNPs that do not form assemblies,
A1 ≲ 2 and A2 ≳ 2. Compared to other DBNPs, these particles form the most
stable suspension with no evidence of phase separation.

• Category-I: IONPs and DBNPs in this category form 1D chains. As men-
tioned, there is a profound size effect in the observation of chains. IONPs, in
particular with diameters equal to 27 nm form 1D chains that are bent at low
fields and straighten in the presence of strong magnetic fields. The chain forma-
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tion in the IONPs was further visualized using microscopy when deposited on
templates and 2D SAXS/SANS data analysis with RMC simulations when dis-
persed in a suspension. Similar anisotropic scattering patterns were observed in
DBNPs, with aspect ratio A1 ≳ 2 and A2 ≲ 2. Using constraints and assumptions
from several experiments, model dependent and independent analysis reveal the
presence of 1D chains. This category also includes 1D chains that are highly
disordered and do not completely align with the field. In this category a head-
to-tail arrangement of chains are preferred.

• Category-II: Chains that align in two directions with magnetic field belong to
this category. In the limited sample space, we have no IONPs that fall into this
category. In fact such 2D assemblies in IONPs are considered meta stable [7, 94]
and may not be stable in the dispersion. However, such 2D chains are observed
in DBNPs with aspect ratio A1 ≳ 2 and A2 ≲ 2. Compared to other DBNPs,
this category of particles have the highest mean value of A1 and the lowest A2.
The novel scattering pattern observed are a consequence of the DBNP being
an anisotropic particle and presence of 2D arrangement. The chains in this
category seem to arrange in a side-by-side configuration.

The stability and the assemblies formed in dispersions are topics of considerable re-
search activity. The first step in approaching problems in this area is to study the
origin and the nature of the interparticle forces. The main forces include exchange
forces, van der Waals (vdW), electrostatic (ES), steric, gravitational and magnetic
forces. The steric stabilized organic coating around the surface of the DBNPs and
IONPs prevent irreversible aggregation due to vDW forces and considerably reduce
any ES type interactions. Exchange forces maybe neglected since these particles are
not in contact and are separated by solvent and polymer coating. In IONPs, the
suspensions remain more stable compared to DBNPs which are heavier and undergo
phase separation almost instantaneously. The predominant magnetic and steric forces
most likely affect the assembly formation in our DBNPs and IONPs systems. Macro-
scopic magnetic properties are driven by dipolar interactions that cause a shift in the
blocking temperature TB of spherical IONPs. The magnetic and steric forces further
depends on the diameter of the IONP, composition, thickness of the ligand shell, con-
centration, magnetic structure and magnetic field. The rich parameter space explored
in IONPs provides a foundation for extending more complex DBNPs. Thus, we can
infer that the loss of sphericity in IONP of the DBNP accompanied with constrained
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growth on Au’s curved surface influences the structural and magnetic properties of
DBNPs as opposed to its spherical counterparts. The dipolar interactions in combi-
nation with anisotropy energy affects the TB in DBNP. The unique morphology and
multi-component nature of DBNPs offers an additional degree of freedom absent in
spherical IONPs which further affects the type of assembly. By combining various
sets of anisotropy dimensions through definition of aspect ratios, following conclusions
about the field induced self-asssembly phenomenon in Au-Fe3O4 can be made

1. Spherical IONPs (A1 = A2 = 1)
In monodisperse spherical IONPs of high crystalline quality, there are no addi-
tional contributions to the shape anisotropy energy. The assemblies formed in
IONPs are a result of the competing tendencies between the magnetic dipolar,
steric and Zeeman energies.

2. DBNPs (A1 ≲ 2 and A2 ≳ 2)
DBNPs explored in this regime indicated no sign of assemblies even in the
presence of strong fields. There are no evident indications of dominating steric
repulsion in these DBNPs that prevent such formation. Loss of sphericity of
the IONP is maximum in these DBNPs indicating a strong influence of the
shape induced anisotropy. Calculations of demagnetization energy for arbitrary
shape such as dumbbell is done through artificial construction of "prolate" and
"oblate" ellipsoids. Additional contribution of shape anisotropy in the energy
term results in competition with magnetic dipolar energies which further inhibits
formation of assemblies in these DBNPs. Thus, one may predict the likelihood
of assemblies by identifying the limits of the geometric aspect ratios.

3. DBNPs (A1 ≳ 2 and A2 ≲ 2)
The formation of chains in DBNPs are the result of competing magnetic dipolar
and anisotropic contributions arising primarily from the shape induced anisotropy.
DBNPs in this regime assembled into 1D and 2D chains. The chains exist in
one of the two configurations: "head to tail" or "side by side". The 2D chains
are a result of improved size distribution and the ratio A1

A2
fast approaching

2. This indicates that the probability of assemblies are the highest when the
overall DBNP and the individual magnetic component has the maximum and
minimum deviation from the spherical nature, respectively.

Importantly, our results provide evidence for inducing pattern formation with mag-
netic field in DBNP dispersions. These results adds to a growing corpus of research
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showing the use of anisotropic building blocks. Analysis methods and identification of
a geometric aspect proposed can be generalized to study any hybrid dumbbell system.

8.2. Scope for future developments

Monodisperse DBNPs

There is a continuous need for scalable, economic and large scale production of bio-
compatible anisotropic particles due to interest in designing next generation medical
nanorobotics. Our studies indicate that assemblies can be tuned with geometric as-
pect ratio which implies that synthesis route of DBNPs are important and that results
may vary for DBNPs designed with Fe3O4 as seeds rather than Au. Although the last
two decades have improved synthesis methods, further research require large quan-
tity monodisperse DBNPs for experiments. Crystal defects in individual IONPs are
explained as possible causes for reduced magnetization in IONPs. Similarly internal
crystal structure of DBNPs may be correlated to the macroscopic enhanced magneti-
zation in certain DBNPs. Improved total scattering experiments and RMC modelling
schemes have to be adopted to ascertain the crystal and interface structure of the
such multicomponent DBNPs.

Analytical form-factor of DBNP:

In the context of self-assembly, collective behaviour were investigated through shape
independent functions and models constructed based on apriori information. A full
theoretical treatment would involve modelling with form-factors of dumbbells. One
way to obtain form-factor is to define the SLD function and perform discrete Fourier
transform. However in multicomponenet non-centrosymmetric particles, the SLD
function is dependent further on the orientation of the particle. It is clear, that such
an oriented particle have various projections on the scattering plane resulting in dif-
ferent scattering patterns along different orientations. In the case of an ensemble of
dumbbells that are randomly oriented, the detector pattern may be indistinguishable
from patterns generated by its spherical sub-units. Since the thesis focused on such en-
sembles, the analysis with assumptions and simpler models are fairly valid. However,
in dilute limits and to obtain magnetization distribution within the DBNP particle,
description of form-factor of dumbbells may be critical. The closest description to
dumbbells existing in the current database of form-factors by SasV iew is the barbell
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model. However, the barbell is symmetric and has uniform SLD within the particle
and based on our findings, we know the aspect ratios’ are critical to the dumbbells.
Taking a digression from the current body of literature in DBNPs, analytical formu-
lation of a form-factor was established to describe formation of nonane and water
aerosol droplets. These droplets are indeed phase separated and closely resemble the
dumbbell particle [207, 208, 209], The analytical formulation of form-factor developed
by these authors could be adapted to describe the dumbbells. A brief derivation of
the form-factor is presented in the appendix.

RMC simulations with DBNPs

The development of RMC with single phase IONPs reveals the presence of chains
through real space visualizations. The RMC models can be easily adapted to visualise
novel assemblies formed with isotropic particles with no prior assumptions about
the energies involved in the system. However, with anisotropic particles there is an
additional degrees of freedom associated with orientation or rotation (see Fig. 8.1).
Without including the complex form-factor of the DBNP the problem is simplified by

Figure 8.1.: The various motions associated with IONPs and DBNPs distributed in
the box.

assuming two spheres Au(red) and IONPs(blue) distributed in the box. The dumbbell
morphology is achieved by constraining one sphere to follow the random motion of
the other. The preliminary results was simulated for 100 particles in 50 steps took
10hrs to converge are detailed in appendix.

Magnetic structure of IONPs in DBNPs

From macroscopic magnetic measurements, we observe enhanced magnetization in
larger DBNPs. Several factors including shared interface with Au, role of Au’s con-
duction electrons and oxygen content may be responsible for such observations. Pre-
vious SANSPOL experiments on the magnetic structure of individual IONPs have
indicated canted shell and magnetic dead layer to explain reduced magnetization.

170



8.3. Outlook

The microscopic magnetization distribution is correlated with the magnetic nanopar-
ticle form factor of DBNPs and is accessible with polarized scattering cross-sections.
Similar SANSPOL experiments at 1 T on different DBNPs classified into their cat-
egory are as shown in Fig. 8.2. Analysis of SANSPOL patterns as seen with single
phase IONPs on its assemblies are not trivial.

Figure 8.2.: The difference in SANSPOL patterns (I− - I+) obtained at 1 T for (a)
category-O DBNPs (A12F10), (b) (A13F14) and (c) (A9F11) belongs to
category-I A. (d) category-II DBNPs (A13F14). A saturating field of 1
T is applied along the horizontal direction.

8.3. Outlook
With advances in particle synthesis, there is growing availability of such anisotropic
and complex particles. Research on these colloidal assemblies is relatively in an infant
stages and there is still no common nomenclature or general classification scheme to
describe the building blocks and assemblies. With increasing complexity of the parti-
cles, modern techniques and complementing multiscale approaches must be employed
to ascertain their functionality. This work sheds light on the possibility of such classi-
fications and the current findings in the thesis open doors to more advanced analysis
of such assemblies.
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A.1. Image analysis results

Figure A.1.: Size distributions obtained from TEM image analysis where the red his-
tograms represent diameter of the Au nanoparticles LA (a-d), the blue
histograms represents dimension along the growth axis LF (e-h) and DF
(i-l) and black represents the whole diameter of the DBNP LD (m-p).
An average of ∼ 50-100 particle were measured for all DBNPs.

The several length scales of DBNPs are extracted by fitting normal distribution
to statistical data from TEM image analysis using ImageJ . The performance speci-
fication for our TEM is 0.27 nm point resolution or better and 0.14 nm for a lattice.
The values are obtained by measuring 50-100 particles.
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The TEM images of F05 and F10 particles. In this image, it is clearly visible how
two size ranges exist in F10 IONPs. The initial selected images mainly contained
larger particles, however due to lowered diameter with SAXS. All the images were
reconsidered.

Figure A.2.: TEM images of (a) F05 and (b) F10 IONPs.

A.2. Total scattering refinements
The phase composition and lattice constants for IONPs and DBNPs are obtained
with total scattering experiments. The results of the refinements are as presented
below. It should be noted that the errors obtained with refinement using PDFgui are
ambiguous. The problem lies in integrating the 2D data, which does not produces
uncertainty on any data point resulting in unreliable and non-realistic uncertainties
in PDFgui. It remains an issue in all the parameters refined by PDFgui. One way
is to take several measurements on the same sample with no condition changing and
refine parameters for each measurement and observe the deviation. Due to limited
beamtime, we estimate the error based on the stability of the refined point with several
iterations of the fit. Based on the expectation of the phase, a structural model is
loaded as the phase and parameters are refined to produce Rw which is weighted R

value that describes how well the chosen model correspond to the experimental data.
The program also includes parameters δ1 and δ2 to account for the correlated motion
between atoms. At short distances correlated motion this results in sharp peaks and
broadening at large distances. The δ2 is associated often with low temperature and
it is sufficient to refine one parameter. Alternative methods to account for correlated
motion is through use of sratio and rcut. Do not use both methods simultaneously.
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The Qdamp and Qbroad parameter is obtained by refining the standard calibrants like
CeO2, Ni. However, it fairly valid to fix this value also using a standard reference
sample with excellent structural fit. This was done in the case of DBNPs using Au
and CeO2. This value is fixed during refinement of the data from a single beamtime.
Other parameters available for refinement include the spdiameter and stepcut. The
former is associated with diameter of the NP and the later truncates PDF to zero at
values greater than stepcut. The least square fitting is adopted in both cases.

Table A.1.: Summary of the xPDF refinement fits of reference Au and bulk reference
iron oxide powdered samples measured at APS. The fits yield lattice con-
stants a, δ1, atomic displacement factors Uiso.

Sample : Au powder QmaxÅ−1 Atom label Atom label x y z Uiso Qdamp (Å−1) Qbroad (Å−1)
Fm-3m (ICSD-52249) 24.09 Au1 4a 0 0 0 0.0089(2) 0.0377(7) 0.007(2)

a = b = c (Å) 4.0792(3)
scale 0.445(7)
δ1 1.43
Rw 0.065

Sample : Bulk Fe(II and III) oxide QmaxÅ−1 Atom label Atom label x y z UisoÅ2 Qdamp (Å−1) Qbroad (Å−1)
Fd-3m (ICSD-65339) 24.09 Fe1 8a 0 0 0 0.0047(3) 0.0377 0.007

Fe2 16d 0.625 0.625 0.625 0.0090(4)
O1 32e 0.3798 0.3798 0.3798 0.017(1)

a = b = c (Å) 8.3901(7)
scale 0.426(7)
δ1 1.54(12)
Rw 0.127

The values with errors in parenthesis are refined parameters.

Table A.2.: Summary of the xPDF refinement fits of A12F10 and A13F14 at APS.
The fits yield lattice constants a, δ1, scale, atomic displacement factors
Uiso.

Sample : A12F10 QmaxÅ−1 Atom label Atom label x y z Uiso a = b = c (Å) spdiameter (nm) Mass (%)
Fm-3m (ICSD-52249) 24.09 Au1 4a 0 0 0 0.0124(5) 8.42(3) 6(2) 22
Fd-3m (ICSD-65339) 24.09 Fe1 8a 0 0 0 0.5(3) 4.0499(7) 5.4(2) 78

Fe2 16d 0.625 0.625 0.625 0.08(1)
O1 32e 0.3798 0.3798 0.3798 0.27(7)

scale-phase Au 0.45(2) scale-phase Fe3O4 0.55
δ1 1.94
Rw 0.218

Sample : A13F14 QmaxÅ−1 Atom label Atom label x y z Uiso a = b = c (Å) spdiameter (nm) Mass (%)
Fm-3m (ICSD-52249) 24.09 Au1 4a 0 0 0 0.0119(5) 4.054(1) 7.6 61
Fd-3m (ICSD-65339) 24.09 Fe1 8a 0 0 0 0.02(1) 8.40(1) 14.5 39

Fe2 16d 0.625 0.625 0.625 0.007(3)
O1 32e 0.3798 0.3798 0.3798 0.02(1)

scale-phase Au 0.274(7) scale-phase Fe3O4 0.04(2)
δ1 2.3
Rw 0.425
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Table A.3.: Summary of the xPDF refinement fits of reference F50 and bulk reference
iron oxide powdered samples measured at DESY. The fits yield lattice
constants a, δ1, atomic displacement factors Uiso.

Sample : F50 QmaxÅ−1 Atom label Atom label x y z UisoÅ2 Qdamp (Å−1) Qbroad (Å−1)
Fd-3m (ICSD-65339) 28.27 Fe1 8a 0 0 0 0.0045(5) 0.0322 0.008(2)

Fe2 16d 0.625 0.625 0.625 0.0075(5)
O1 32e 0.3798 0.3798 0.3798 0.015(2)

a = b = c (Å) 8.372(1)
scale 0.335(9)
δ1 1.9(3)
Rw 0.135

Sample : Bulk Fe(II and III) oxide QmaxÅ−1 Atom label Atom label x y z UisoÅ2 Qdamp (Å−1) Qbroad (Å−1)
Fd-3m (ICSD-65339) 28.27 Fe1 8a 0 0 0 0.0048(6) 0.0322 0.008

Fe2 16d 0.625 0.625 0.625 0.0079(6)
O1 32e 0.3798 0.3798 0.3798 0.016(2)

a = b = c (Å) 8.379(1)
scale 0.306(9)
δ1 1.45(12)
Rw 0.117

Table A.4.: Summary of the xPDF refinement fits of reference F20 and F27 IONPs
samples measured at DESY. The fits yield lattice constants a, δ1, atomic
displacement factors Uiso.

Sample : F20 QmaxÅ−1 Atom label Atom label x y z Uiso a = b = c (Å) mass (%)
Fd-3m (ICSD-65339) 23.0 Fe1 8a 0 0 0 0.004(1) 8.34(3) 70

Fe2 16d 0.625 0.625 0.625 0.009(1)
O1 32e 0.3798 0.3798 0.3798 0.011(2)

P4332 (ICSD-79196) 23.0 Fe1 8c 0.9921 0.9921 0.9921 0.009(1) 8.37(6) 30
Fe2 12d 0.8650 0.6150 0.8750 0.007(2)
Fe3 4b 0.3750 0.1250 0.8750 0.011(6)
O1 8c 0.8610 0.8610 0.8610 0.018(7)
O2 24e 0.3720 0.3770 0.8760 0.1(5)

scale (phase-1) 0.02(1) scale (phase-2) 0.01(1)
spdiameter (nm) 20

δ1 1.9(3)
Rw 0.21 for Q from 5-50 Å

Sample : F27 QmaxÅ−1 Atom label Atom label x y z Uiso a = b = c (Å) mass (%)
Fd-3m (ICSD-65339) 23.0 Fe1 8a 0 0 0 0.004(2) 8.349(6) 66

Fe2 16d 0.625 0.625 0.625 0.010(3)
O1 32e 0.3798 0.3798 0.3798 0.03(2)

P4332 (ICSD-79196) 23.0 Fe1 8c 0.9921 0.9921 0.9921 0.002(3) 8.355(7) 34
Fe2 12d 0.8650 0.6150 0.8750 0.005(6)
Fe3 4b 0.3750 0.1250 0.8750 0.01(4)
O1 8c 0.8610 0.8610 0.8610 0.002(1)
O2 24e 0.3720 0.3770 0.8760 0.002(1)

scale (phase-1) 0.12(5) scale (phase-2) 0.06(2)
spdiameter (nm) 27

δ1 0.48
Rw 0.169 for Q from 0-50 Å

A.3. SAXS refinement parameter

SAXS data of DBNPs is associated with phase separation. This results in focused
beam experiments at different parts of the capillary. The following tables present
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various refined parameters and their fits. The quality of fits is identified visually,
monitoring the residuals from the fitting functions and when reduced χ2 < 0.01.
Summary of the radially integrated SAXS data fit parameters of DBNPs.

Table A.5.: Summary of the A12F10 SAXS radial fit parameters
Guinier-Porod model Gold sphere model

H (T) scale s P Rg (nm) ηcore×10−6Å−2 ηsolvent× 10−6Å−2 Rcore (nm) pd (%)
0 3769(12) 0 4 10.9 123 8.03 5.6±2.2 48

0.9 1923(7) 0 4 9.8 123 8.03 6.4 ± 2.2 35

Following the similar analysis protocol from A12F10, a Guinier-Porod and Au
sphere model fit to SAXS 1D data at 0 T reveal Rg ∼ 8 nm and Dcore = 10(2) nm (see
Fig. A.3). However, as discussed in section 7.2, sedimentation affects the scattering
from particle phase at 0 T, which means there is an increased possibility of measuring
residual particles of the supernatant. To ensure we extract the parameters associated
with particle phase, the SAXS 1D data collected at 0.9 T is fit to Au-sphere model
by constraining the model to 0.034 Å−1 < Q < 0.147 Å−1 limits, so that the structural
peak at Q = 0.0267 Å−1 is avoided (Fig. A.3 (b)). The results of the fit indicate large
polydispersity for this choice of model with a mean diameter Dcore = 12 nm lying
within the expected range of Au diameter determined from TEM .

Figure A.3.: SAXS fits of A13F14 ; radially integrated SAXS intensities of A13F14
at 0 T (red) and 0.9 T (green) fit to (a) Guinier-Porod model and (b) a
gold sphere model. The intensities are scaled for visualization.

The SAXS at 0 T is dominated by the supernatant and thus lowered intensity.

178



A.3. SAXS refinement parameter

Table A.6.: Summary of the A13F14 SAXS radial fit parameters
Guinier-Porod model Gold sphere model

H (T) scale s P Rg (nm) ηcore×10−6Å−2 ηsolvent× 10−6Å−2 Rcore (nm) pd (%)
0 221 0 4 7.9 123 8.03 5.2±1.8 32

0.9 - - - - 123 8.03 6.3 ± 1.2 20

Figure A.4.: SAXS fits of A9F11; radially integrated SAXS intensities of A9F11 at 0
T (red) and 0.9 T (green) fit to (a) Guinier-Porod model and (b) a gold
sphere model. The intensities are scaled for visualization.

Table A.7.: Summary of the A9F11 SAXS radial fit parameters
Guinier-Porod model Gold sphere model

H (T) scale s P Rg (nm) ηcore×10−6Å−2 ηsolvent× 10−6Å−2 Rcore (nm) pd (%)
0 15.6 0 4 6.6(1) 123 8.03 4.5 ± 1.4 33

0.9 - - - - 123 8.03 6.5 ± 1.2 18

Table A.8.: Summary of the A10F14 SAXS radial fit parameters
Guinier-Porod model Gold sphere model

H (T) scale s P Rg (nm) ηcore×10−6Å−2 ηsolvent× 10−6Å−2 Rcore (nm) pd (%)
0 24 0 4 5.6 123 8.03 4.5 ±1.2 28

0.9 - - - - 123 8.03 5.5 ± 0.9 18

The following tables are associated with SAXS data collected for IONPs and can
be reproduced using these parameters.
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Figure A.5.: SAXS fits of A10F14; radially integrated SAXS intensities of A10F14 at
0 T (red) and 0.9 T (green) fit to (a) Guinier-Porod model and (b) a
gold sphere model. The intensities are scaled for visualization.

Table A.9.: SAXS fits for the spherical model at 0 T and 0.9 T
Spherical model Refined parameters @ 0T Refined Parameters @ 0.9 T

Sample ID ηc = ×10−6Å−2 ηs = ×10−6Å−2 Scale Diameter (nm) Polydispersity (%) Scale Diameter (nm) Polydispersity (%)
F05 41.4 8.03 0.016377 4.7 ± 0.7 14.5 85.839 5.78 ± 0.8 14.5
F10 41.4 8.03 0.01618 5.3 ± 0.7 14.5 79.325 6.6 ± 0.9 14.5
F20 41.4 8.03 0.00023986 20.7 ± 1.2 6 0.25364 20.8 ± 1.2 6
F21 41.4 8.03 1.7037e-05 21.0 ± 1.5 7 0.40535 21.0 ± 1.7 7
F24 41.4 8.03 2.3759 23.0 ± 2.5 11.5 1.9633 21.0 ± 1.7 11.5
F27 41.4 8.03 1.0196 26.4 ± 2.0 8 1.1466 27.2 ± 2.1 8

Table A.10.: SAXS of F24 and F27 IONPs
Linear pearl model H= 0 T H= 0.9 T

Sample Id ηcore × 10−6Å−2 ηsolvent × 10−6Å−2 D (nm) Polydispersity (%) dET E(nm) D (nm) Polydispersity (%) dET E(nm)
F24 41.4 8.03 - - - 25.2 ± 2 11.5 7.7 ± 0.8
F27 41.4 8.03 27.3 ± 1.9 7 10.67 ± 0.7 27.4 ± 1.9 7 10 ± 0.7

The linear pearl model is taken originally from [166] and adapted in SasView [140].

P (Q,α) = scale
V

⎡⎢⎢⎢⎢⎣
η2

p(N + 2
N−1
∑
n−1

sin(qnL)
qnl

)(3(∆η)sin(QR) −QRcos(QR)(QR)3 )
2⎤⎥⎥⎥⎥⎦

(A.1)

where ηp = (ηpearl − ηsolvent)*(volume of N pearls)
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A.4. SANS fits and parameters
SANS radially integrated data of DBNPs fit to core-shell composite model. The most
straightforward way to analyze 2D SAS patterns is to radially integrate to obtain 1D
SAS spectra. While this remains a valid choice of analysis for isotropic patterns such
as A12F10, there is a loss of valuable information for anisotropy patterns. The analysis
of the 1D SAXS data usually begins with form-factor analysis to understand physical
properties as described in the case of spherical IONP particles in Chapter 5. Often,
such an analyses requires some a priori sample knowledge to impart constraints,
given the possibility of multiple solutions to describe the SAXS data. Typically to
determine the size and shape of a particle, a model dependent approach is considered,
one that assumes a particular form-factor scattering. Determining the characteristics
is fairly straightforward for geometrically simple particles such as spherical IONPs
whose center of mass is at origin given by eqn. (2.121). The scattering from a sphere
is only isotropic and mainly depends on the scattering vector, Q⃗. In the case of
anisotropic object like a cylinder with center of mass at origin oriented parallel to the
z axis, the form-factor is calculated as

F (Q) = 2∆VcyJ1(Q∣∣,R)sinc(
QzL

2 ) (A.2)

and Vcy = πR2L, where R and L are the radius and length of the cylinder, respectively.
The quantity J1 is the first order Bessel function, sinc(x) = sin(x)

x , Q∣∣ =
√
Q2

x +Q2
y

where Qx, Qy and Qz are the components of Q⃗ along x, y and z directions, respec-
tively. The anisotropic cylinder results in a different radial and axial scattering. For
randomly aligned particles, the orientational average is applied to eqn. (A.2). A close
resemblance to DBNP is the barbell model function derived from cylinder model with
spherical caps where L is set to zero [210]. However, barbell model describes two
spheres of equal radii and similar SLD.
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Table A.11.: SANS core-shell and Guinier-Porod model of A12F10 DBNP
Field Guinier-Porod

model
Core-shell

model

s P scale Rg (nm) ηcore

× 10−6Å−2
ηshell

× 10−6Å−2
ηsolvent

× 10−6Å−2 scale Rcore (nm) pd (%) thickness (nm)

0 0 4 36(4) 11.3 ± 1.7 5.75 -0.0475 0.94 0.005(2) 11.3 ± 1.7 16.5 3.3
0.5 0 4 33(3) 11.4±1.6 5.75 -0.0475 0.94 0.006(2) 11.4±1.6 15.3 3.9
1 0 4 30(3) 11.3± 1.6 5.75 -0.0475 0.94 0.005(2) 11.3± 1.6 15.2 3.7
2 0 4 28(3) 11.4± 1.7 5.75 -0.0475 0.94 0.004(1) 11.4± 1.7 15.4 3.6
3 0 4 27(3) 11.4 ± 1.8 5.75 -0.0475 0.94 0.004(1) 11.4 ± 1.8 15.5 3.6

Table A.12.: SANS core-shell fits of A13F14
Field
(T)

ηcore

× 10−6Å−2
ηshell

× 10−6Å−2
ηsolvent

× 10−6Å−2 scale Rcore (nm) thickness (nm) pd (%)

0.5 5.88 -0.0475 0.94 0.00527(3) 11.1 ± 1.3 7.3 12
1 5.88 -0.0475 0.94 0.00522(3) 11.2 ± 1.3 7.2 12
2 5.88 -0.0475 0.94 0.00454(3) 11.2 ± 1.3 6.6 12

Table A.13.: SANS core-shell fits of A9F11
Field
(T)

ηcore

× 10−6Å−2
ηshell

× 10−6Å−2
ηsolvent

× 10−6Å−2 scale Rcore (nm) thickness (nm) pd (%)

0.5 6.08 -0.0475 0.94 0.011(2) 10.6 ± 1.2 3.1 11.4
1 6.08 -0.0475 0.94 0.011(2) 10.6 ± 1.2 3.0 11.6
2 6.08 -0.0475 0.94 0.010(2) 10.7 ± 1.3 3.1 12.0
3 6.08 -0.0475 0.94 0.009(2) 10.6 ± 1.3 3.4 12.0

Table A.14.: SANS core-shell fits of A10F14
Field
(T)

ηcore

× 10−6Å−2
ηshell

× 10−6Å−2
ηsolvent

× 10−6Å−2 scale Rcore (nm) thickness (nm) pd (%)

0.5 6.15 -0.0475 0.94 0.010 9.2 ± 1.1 1.3 12
1 6.15 -0.0475 0.94 0.011 9.2± 1.1 1.2 12
2 6.15 -0.0475 0.94 0.011 9.2 ± 1.1 1.0 12
3 6.15 -0.0475 0.94 0.008 9.2 ± 1.1 1.1 12

A.5. Sector fits
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A.5. Sector fits

Table A.15.: Refined parameters from fitting peak functions to sector integrated peaks
for category-1 DBNPs

α = 0○ A13F14 A9F11
field ℓ∣∣ (nm) ζ∣∣ (nm) ℓ∣∣ (nm) ζ∣∣ (nm)
0.5 23.99 ± 0.01 161.3 ± 0.7 21.72 ± 0.01 164.1± 0.7
1 23.89 ± 0.01 156.5 ± 0.7 21.70 ± 0.02 168.9 ± 1.0
2 24.06 ± 0.02 164.3 ± 0.9 21.40 ± 0.04 157.6 ± 2.5
3 24.25 ± 0.2 172.5 ± 13.1 21.43 ± 0.06 153.4 ± 3.6

average 24.0 ± 0.1 163.6 ± 4.8 21.6 ± 0.1 161.0 ± 5
SAXS @ 0.9 T 24.0781 ± 0.0001 139.912 ± 0.004 19.4093 ± 0.0004 159.99 ± 0.03

Table A.16.: Refined parameters from fitting peak function models to sector inte-
grated peaks of A10F14 DBNPs

A10F14 α = 0○ α = 90○

field ℓ∣∣
(nm)

ζ∣∣
(nm)

ℓ∣∣-cv
(nm)

ζ∣∣-cv
(nm)

ℓ⊥
(nm)

ζ⊥
(nm)

ℓ⊥-cv
(nm)

ζ⊥-cv
(nm)

0.5 18.839 ± 0.005 153.4 ± 0.5 18.23 ± 0.1 167 ± 8 19.87 ± 0.01 160.6 ± 0.7 19.23 ± 0.16 159 ± 11.4
1 18.864 ± 0.005 154.0 ± 0.3 18.0 ± 0.1 161.6 ± 9 19.77 ± 0.01 159.4 ± 0.5 19.19 ± 0.16 159.2 ± 11.0
2 18.752 ± 0.006 159.0 ± 0.4 19.83 ± 0.01 159.8 ± 0.6
3 18.675 ± 0.007 167.8 ± 0.6 19.82 ± 0.01 153.0 ± 0.7
average 18.8 ± 0.3 158.6 ± 4.8 18.1 ± 0.1 164.5 ± 3 19.82 ± 0.03 158 ± 3 19.21 ± 0.2 159.4 ± 0.1
SAXS @ 0.9 T 18.0328 ± 0.0005 182.28 ± 0.06
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B. Magnetic properties

Macroscopic magnetization

Table B.1.: he diamagnetic corrections for the M-H data of DBNPs, exchange bias
(HEB) fields @ 5 K and coercive fields (Hc1 and Hc2) at 5 K and 300 K

Sample ID
Slope

correction
@5K

Slope
correction

@300K

HEB

(Oe)
@5K
± 28 Oe

Hc1
(Oe)
@5K
±20 Oe

Hc2
(Oe)
@5K
± 20 Oe

Hc1
(Oe)

@300K
± 20 Oe

H2
(Oe)

@300K
± 20 Oe

A12F10 0 -4.450e-05 -7 299 -314 21 -22
A9F11 -6.116e-5 -7.072e-05 -15 480 -490 0 -3
A10F14 0 0 -15 475 -505 36 -41
A13F14 -0.0001 -9.623e-05 -17 388 -423 18 -19

The masses obtained from ICP-OES are tabulated below and used to calculate the
saturation magnetization Ms. The details of the experiment are mentioned in the
chapter 4.

Table B.2.: Mass of the Fe and Au component in DBNPs determined using ICP-OES

Sample Id Mass of Fe
(µg)

Mass of Au
(µg)

A12F10 41.6 ± 0.6 39.8 ± 0.7
A9F11 35.8 ± 1.6 25.7 ± 1.2
A10F14 288 ± 6 175 ± 2
A13F14 11.0 ± 0.3 16.1 ± 0.6
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Table B.3.: The diamagnetic corrections for the M-H data of IONPs, exchange bias
(HEB) fields @ 5 K and coercive fields (Hc1 and Hc2) at 5 K and 300 K

Sample ID
Slope

correction
@5K

Slope
correction

@300K

HEB

(Oe)
@5K
± 28 Oe

Hc1
(Oe)
@5K
±20 Oe

Hc2
(Oe)
@5K
± 20 Oe

Hc1
(Oe)

@300K
± 20 Oe

Hc2
(Oe)

@300K
± 20 Oe

F05 -9.330e-05 -0.0001 -4 16 -26 21 -23
F10 -9.181e-05 -9.516e-05 -27 70 -125 20 -26
F20 0 -1.692e-05 -43 513 -601 4 -40
F21 -7.721e-05 -9.795e-05 -1240 824 -3306 22 -24
F24 -0.00012 -0.0001 -90 561 -742 1 -3
F27 -3.059e-06 -1.094e-05 -11 523 -546 181 -156
F50 0 0 -1 220 -223 94 -96
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C. Energy calculation

These equations are used for energy calculation based on equations obtained from [39,
211, 212, 213, 36]. Here, µo = 4π × 10−7, Ms = 4.46 × 105A/m for bulk magnetite. The
Ms from magnetometer is in emu/g is converted to A/m using equation eqn. (7.6).
Given µ =MsV , then for a sphere of diameter D is

µ = MsπD3

6 (C.1)

Then the Zeeman energy, where H = 1 T = 7.9 ×105 A/m, is

Ez = µoµH (C.2)

The dipolar energy when in an head-to tail arrangement is

Edd = −
µ0µ2

2πr3 = −
µ0πM2

sD
6

72r3 (C.3)

where r is the centre to centre distance between two spheres and δ is the edge to edge
separation so that r = D + δ. Then,

Edd = −
µ0πM2

s

9
D3

(∆ + 2)2 (C.4)

where ∆ = 2δ
D . This energy is plotted as function of edge to edge separation. The

maximum dipolar energy is calculated by setting ∆ = 0

The simplified vDW energy for two spheres can be written and calculated as follows
[53].

EvdW = −
A

6

⎡⎢⎢⎢⎢⎣

2
∆2 + 4∆ +

2
(∆ + 2)2 + ln

(∆2 + 4∆)
(∆ + 2)2

⎤⎥⎥⎥⎥⎦
(C.5)

where A is the Hamaker constant.

Calculation of steric energy may be more complex for a general arbitrary shape,
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however for spheres it is calculated and given by [53]

Esteric = −
kBTπD2ζ

2

⎡⎢⎢⎢⎢⎣
2 + ∆ + 2

teq

ln
(1 + teq)
1 +∆/2 +

∆
teq

⎤⎥⎥⎥⎥⎦
(C.6)

where ζ is the surface density, teq = 2t/D where t is thickness of the surfactant.
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D. Extended dumbbell analysis

Form-factor of DBNPs

In this section, the form-factor of a realistic dumbbell model (Fig. D.2) is analytically
derived using the formulation of the form-factor developed previously for D2O-nonane
aerosol droplets [207, 208, 209]. This form-factor could be potentially used to model
the dumbbell results. Consider the DBNP structure as depicted in Fig. D.2 where
the radius of the spherical Au seed (shaded region) is given by R2 while R1 is the
radius of the iron oxide sphere (unshaded region). The scattering length density for
the IONP sphere is η1, for the seed is η2, and that of the surrounding is η3. The
scattering length density difference is then given by

∆η1 = η1 − η3 (D.1)

∆η2 = η2 − η3 (D.2)

for each of the IONP and Au seed, respectively. Also consider θc to be the contact
angle between the Au seed and the IONP sphere. The DBNPs exist in form of
a number of possible structures which is broadly classified by their corresponding
contact angle as presented in Fig. D.1.

Figure D.1.: Possible structures of the DBNP where (a) θc = 0○,(b) 0○ < θc < 180○ and
(c) θc = 180○, adapted from [208].
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The distance between the centers of the two spheres is defined by the quantity d

such that
d2 = R2

1 +R2
2 − 2R1R2cosθc (D.3)

where d is a function of the radius of the two spheres and their mutual contact
angle. Formally, the form-factor amplitude for the entire particle assuming constant

Figure D.2.: Illustration of dumbbell length scales and angles. Here, θC is the contact
angle while d is the distance between the centers i.e. z1 + z2.

scattering length density in each component is written as

F (Q,∆η1,∆η2,R1,R2) = F1(Q,∆η1,R1) + F2(Q,∆η2,R2) (D.4)

where F1 and F2 are the form-factors of IONP and Au, respectively. The form-factor
of the Au seed, i.e., F2, is given by the spherical form-factor obtained using eqn.
(2.121),

F2(Q) = 3∆η2V2
(sin(QR2) −QR2cos(QR2))

(QR)3 (D.5)

and here V2 = 4πR3
2/3 is the volume of the seed. Fütterer, Vliegenthart and Lang

(FVL model) developed the form-factor of the hemispherical cap of uniform density
[214]. Thus, the IONP sphere grown on Au seed can be apprehended as the difference
between form amplitudes of hemispherical caps sharing the same base indicated by
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D. Extended dumbbell analysis

the dashed line in Fig. D.2. Thus, form amplitude of the IONP sphere is given by

F1 =∆η1(∫
V SC

1

exp(iQ⃗.r⃗)d3r − ∫
V SC

2

exp(iQ⃗.r⃗)d3r) (D.6)

where V SC
1 and V SC

2 are the volumes of the spherical caps with radius R1 and R2,
respectively. The integrals are evaluated by extending the FVL method on Janus
particles. The volume of the hemisphere with radius R2 has the integration limits
ranging from 0 to R2. Here, the cap origin is conceived as shifted from 0 to z2 =
d + R1cosψ. The angle ψ as portrayed in Fig. D.2 is introduced by Fletcher [209].
Therefore, the integration limits for V SC

2 is now z2 to R2. FVL results on the cap
with radius R1 is then applied by changing the lower limits to z1 = R1cosψ. Thus,
eqn (D.6) is rewritten as

F1(Q) =∆η1[F (1)1 (Q) − F
(2)
1 (Q)] (D.7)

where the superscript index denotes the cap volume used in integration

F n
1 (Q) = ∫

V sc
n

exp{iQ.r}dr⃗ (D.8)

Based on FVL results this integral is then expressed as

F
(2)
1 (Q) =

2π
Q
√

1 − µ2 ∫
R2

Z2

√
R2

2 − z2J1(u2)exp(iQµz)dz (D.9)

where J1 is the Bessel function of the first order, while

µ = cosθ (D.10)

and θ is the angle between the scattering vector Q⃗ and the z-axis. To evaluate F (1)1 ,

F
(1)
1 (Q) =

2π
Q
√

1 − µ2 ∫
R1

Z1

√
R2

1 − z2J1(u1)exp(iQµ[z + d])dz (D.11)

where
u1 = Q

√
1 − µ2

√
R2

1 − z2 (D.12)

u2 = Q
√

1 − µ2
√
R2

2 − z2 (D.13)

To complete the construction of the particle form factor P (Q) = ⟨F 2(Q)⟩, the square
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of F (Q) is written as

F 2(Q) =F 2
2 +∆η1F2[F (1)1 (Q) + F

(1)∗
1 (Q) − F (2)1 (Q) − F

(2)∗
1 (Q)] (D.14)

+∆η1
2[F (1)1 (Q) − F

(2)
1 ][F

(1)∗
1 (Q) − F (2)∗1 ]

where * indicates complex conjugation. Then the expression is explicitly written in
a more compact form as

F 2(Q) =F 2
2 (Q) + 2π∆η1[C1(µ, d) −C2(µ,0)]
+ (2π∆η1)2[(C1(µ, d) −C2(µ,0))2

+ ((S1(µ, d) − S2(µ,0))2] (D.15)

where Ci and Si are defined as follows,

C1(θ) =
1

Q
√

1 − µ2 ∫
R1

Z1

√
R2

1 − z2J1(u1)cos[Qµ(z + d)]dz (D.16)

C2(θ) =
1

Q
√

1 − µ2 ∫
R2

Z2

√
R2

1 − z2J1(u2)cos[Qµz]dz (D.17)

S1(θ) =
1

Q
√

1 − µ2 ∫
R1

Z1

√
R2

1 − z2J1(u1)sin[Qµ(z + d)]dz (D.18)

S2(θ) =
1

Q
√

1 − µ2 ∫
R2

Z2

√
R2

1 − z2J1(u2)sin[Qµz]dz (D.19)

To complete the calculation, the orientational average over the angle θ is performed.

P (Q) =F 2
2 + 2π∆η1∫

π

0
[C1(θ) −C2(θ)]sinθdθ

+ (2π∆η1)2∫
π

0
[(C1(θ) −C2(θ))2 + ((S1(θ) − S2(θ))2]sinθdθ

Preliminary RMC simulation on DBNPs

The preliminary results was simulated for 100 particles in 50 steps took 10hrs to
converge. Although, the result do not currently satisfactorily replicate the 2D pat-
tern, there are early indications of 2D chains present in A10F14 and 1D chains in
A9F11. Fits have to be further optimised based on the above analytical or numerical
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D. Extended dumbbell analysis

descriptions of dumbbells. Preliminary results show chains arrange in head-to-tail 1D
arrangement for A9F11 and 2D arrangements in A10F14.

Figure D.3.: (a) The scheme of simplified RMC. (b) 2D Simulated patterns on right
half and experimental data on the left (c) corresponding real space assem-
bly of A10F14. (b) 2D Simulated patterns on right half and experimental
data on the left (c) corresponding real space assembly of A9F11.
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List of Abbreviations

NP nanoparticle
MNP magnetic nanoparticle
IONP iron oxide nanoparticle
DBNP dumbbell nanoparticle
ZFC zero field cooling
FC field cooling
PPMS physical property measurement system
SW Stoner-Wohlfarth
SOC spin-orbit coupling
FM ferromagnet
AF antiferromagnet
FiM ferrimagnet
MCA magnetocrystalline anisotropy
SW Stoner-Wohlfarth
SPM superparamagnetism
vdW van der Waals
xPDF x-ray pair distribution function
SAS small-angle scattering
SLD scattering length density
SAXS small-angle x-ray scattering
SANS small-angle neutron scattering
RMC reverse Monte-Carlo
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List of Symbols

me mass of electron 9.109 ×10−31 kg
mn mass of neutron 1.675 ×10−27 kg
µB Bohr magneton 1µB = 9.27 × 10−24Am2

µo magnetic permeability in free space 4 π× 10−7 H/m
kB Boltzmann constant 1.381 ×10−23 J/K
J Exchange integral J
µ⃗ magnetic moment Am2

Ms saturation magnetization A/m
Mr remanent magnetization A/m
B⃗ magnetic field T
H⃗ magnetic field strength 1 T = 795 kA/m
Hc coercive field T
χ magnetic susceptibility
C Curie constant K
TC Curie temperature K
TN Néel temperature K
TB Blocking temperature K
Ea anisotropy energy J
Emca magnetocrystalline anisotropy energy J
Esh shape anisotropy energy J
Ez Zeeman energy J
Eex exchange energy J
Em magnetostatic energy J
Eme magnetoelastic energy J
Keff effective anisotropy constant J/m3

K1 crystalline anisotropy constant J/m3

Ksh shape anisotropy constant J/m3
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List of Symbols

Ks surface anisotropy constant J/m2

KV anisotropy constant macroscopic sample J/m3

Nij demagnetizing tensor
EvdW van der Waals energy J
EES electrostatic energy energy J
Edd magnetic dipole energy J
Esteric steric energy J
Q⃗ scattering vector Å−1

V volume m3

V interaction potential
A(Q⃗) scattering amplitude
P (Q⃗) particle form-factor
S(Q⃗) structure factor
S(Q⃗) scattering function
H general Hamiltonian
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