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Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted considerable
attention in the past due to their unique properties allowing for a wide range of
applications in engineering and medicine, including adaptive dampers and cancer
treatment methods. The mechanisms leading to the observed macroscopic prop-
erties are complex and depend on multiple factors, such as the particle size, the
chemical composition and disorder and defects in the crystalline structure. Re-
cently antiphase boundaries (APBs) have been suggested to strongly influence the
macroscopic magnetic properties of iron oxide nanoparticles. In this work particles
in a size range from 5 to 20 nm were investigated experimentally and the results
were compared. Numerical simulations were used to study the impact of crys-
tal lattice defects on the atomic spin structure and on X-ray powder diffraction
patterns.

The combination of a variety of complementary techniques, including small-
angle X-ray (SAXS) and neutron scattering (SANS), X-ray powder diffraction
(XRD) with pair distribution function (PDF) analysis, transmission electron mi-
croscopy (TEM), Mössbauer spectroscopy and magnetometry, allowed the detailed
investigation of the macroscopic and microscopic properties of the nanoparticles.
A decrease in saturation magnetization with increasing particle size was found, in
contrast to most of the existing literature on SPIONs. SANS showed the presence
of a magnetically dead surface layer with similar thickness for particles with sizes
of approximately 12 and 16 nm. Comparison with literature values suggested that
this surface layer thickness is rather independent of the particle size. Thus the
trend in the magnetization could not be explained by the existence of the surface
layer alone. Further studies using XRD and PDF analysis were performed to assess
the number of vacancies and the degree of vacancy ordering in the nanoparticles.
While for the amount of vacancies no correlation with the particle size was found
the vacancy ordering is more pronounced for the larger particles. The presence of
APBs in the particles studied for this work was confirmed with XRD and high-
resolution TEM. For the detection and quantification of APBs with XRD a model
was used that was developed in this work on the basis of theoretical considera-
tions and Debye scattering equation simulations. It could be shown that a larger
number of APBs is directly related to the observed drop in magnetization. As
shown in this work via Monte Carlo simulations this reduction in magnetization
can be explained by strong spin disorder near the planar defect. The combination
of the magnetically dead surface layer, the amount and ordering of vacancies as
well as the presence and quantity of APBs was thus concluded to be the origin
of the peculiar size dependence of the saturation magnetization observed for the
particles used in this work.





Zusammenfassung

Superparamagnetische Eisenoxid-Nanopartikel haben aufgrund ihrer einzigartigen
Eigenschaften in der Vergangenheit beträchtliche Aufmerksamkeit erfahren und
finden breite Anwendung sowohl im technischen als auch im medizinischen Bereich,
wie etwa in adaptiven Dämpfern und Methoden zur Behandlung von Krebs. Die
mikroskopischen Ursachen für die makroskopischen Eigenschaften sind komplex
und hängen von vielen Faktoren ab. Hierzu zählen neben der Partikelgröße und der
chemischen Zusammensetzung auch Fehlordnungen und Defekte in der kristallinen
Struktur. Sogenannte Antiphasengrenzen (APBs) wurden in neueren Arbeiten als
ein wichtiger Einfluss auf die magnetischen Eigenschaften von Eisenoxid Nanopar-
tikeln erkannt. In der vorliegenden Arbeit wurden Partikel mit Durchmessern von
5 bis 20 nm experimentell untersucht und die Ergebnisse verglichen. Numerische
Simulationen dienten der Untersuchung des Einflusses von Kristallgitterdefekten
auf die atomare Spinstruktur und auf Röntgen-Pulverdiffraktogramme.

Durch die Kombination verschiedener komplementärer Techniken, darunter Klein-
winkelstreuung mit Röntgenstrahlung (SAXS) und Neutronen (SANS), Röntgen-
pulverdiffraktometrie (XRD) mit Paarverteilungsfunktions-Analyse (PDF), Trans-
missionselektronenmikroskopie (TEM), Mössbauer-Spektroskopie und Magneto-
metrie, konnten die makroskopischen und mikroskopischen Eigenschaften der Na-
nopartikel eingehend untersucht werden. Es wurde eine Abnahme der Sättigungs-
magnetisierung mit zunehmender Teilchengröße festgestellt, was im Gegensatz zur
Mehrzahl der veröffentlichten Literatur steht. Mit SANS wurde eine magnetisch
tote Oberflächenschicht mit ähnlicher Dicke für Partikel mit Durchmessern von
etwa 12 und 16 nm beobachtet. Der Vergleich mit Literaturwerten deutet darauf
hin, dass diese Oberflächenschichtdicke eher unabhängig von der Teilchengröße
ist. Somit konnte der Trend in der Magnetisierung nicht allein durch die Exis-
tenz der Oberflächenschicht erklärt werden. Weitere Untersuchungen mittels XRD
und PDF-Analyse wurden durchgeführt, um die Anzahl der Leerstellen und den
Grad der Leerstellenordnung in den Nanopartikeln zu ermitteln. Während für die
Anzahl der Leerstellen keine Korrelation mit der Partikelgröße festgestellt wer-
den konnte, ist die Ordnung der Leerstellen bei größeren Partikeln stärker aus-
geprägt. Die Existenz von APBs in den für diese Arbeit untersuchten Partikeln
wurde mit XRD und hochauflösender TEM bestätigt. Für den Nachweis und die
Quantifizierung von APBs mit XRD wurde ein Modell verwendet, das in die-
ser Arbeit auf der Grundlage von theoretischen Überlegungen und Simulationen
der Debye-Streugleichung entwickelt wurde. Es konnte gezeigt werden, dass ei-
ne größere Anzahl von APBs in direktem Zusammenhang mit dem beobachteten
Abfall der Magnetisierung steht. Wie in dieser Arbeit anhand von Monte Carlo
Simulationen gezeigt wurde, lässt sich dieser Rückgang der Magnetisierung durch
starke Spin-Unordnung in der Nähe des planaren Defekts erklären. Somit konnte
als Ursache für die Größenabhängigkeit der Sättigungsmagnetisierung der in dieser
Arbeit verwendeten Nanopartikel gerade die Kombination aus dem Vorhandensein
einer magnetisch toten Oberflächenschicht, der Menge und der Anordnung von
Leerstellen sowie das Auftreten und die Anzahl von APBs ermittelt werden.
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Chapter 1
Introduction

1.1 Motivation

The small size of iron oxide nanoparticles leads to several properties that are of
interest both from a technological as well as from a purely scientific point of view.
The most important feature is the phenomenon of superparamagnetism. In mech-
anical engineering ferrofluids, i.e. concentrated dispersions of superparamagnetic
iron oxide nanoparticles are used as seals and adaptive dampers. [1–3] A patent by
Apple Inc. illustrates a further use case of ferrofluids. In the patent induction char-
ging is described where ferrofluids are used as an intermediate layer between trans-
ceiver and receiver coils. [4] This helps to reduce coil misalignment issues that lead
to less efficient charging of devices. Another large area is the field of nanomedi-
cine including imaging diagnostics using magnetic nanoparticles as contrast agents
e.g. in magnetic resonance imaging (MRI) [5–11], magnetic drug targeting [10,12,13]

or cancer treatment methods based on magnetic hyperthermia [14–20]. The latter
method is based on the heat generation in iron oxide nanoparticles in alternating
external magnetic fields that leads to the destruction of cancerous tissue or makes
it more susceptible for further treatment. Clinically approved treatment is already
offered for glioblastoma, an aggressive type of brain cancer. [21,22]

The same principle of local heating albeit different application using superpara-
mgnetic iron oxide nanoparticles has also been used for polymerization [23] and
catalysis. [24] Most important in all these processes is the specific absorption rate
(SAR) that depends on the magnetic properties as well as the concentration of
the particles and is a measure of the heating efficiency. A large saturation mag-
netization is associated with a larger SAR and thus better heating. Additionally,
defects and deviations from the perfect crystal structure have been shown to lead
to better heating performance. [25] It is evident that a precise understanding of the
microscopic and macroscopic properties of iron oxide nanoparticles is necessary in
order to improve existing applications and enable the development of new ones.

This work aims at expanding the knowledge of the physical properties of super-
paramagnetic iron oxide nanoparticles, specifically with regards to the complex
interplay between the crystal structure and the magnetization distribution under
consideration of varying particle sizes.

1.2 State of research

Numerous studies have addressed the question of the magnetization distribution
within iron oxide nanoparticles and the size dependence of the magnetic proper-
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Chapter 1 Introduction

ties. [20,25–49] In this section an overview of the most relevant works for this thesis
is given.

A natural starting point for size dependent magnetic properties of nanoparticles
is the investigation of the surface region, since the surface-to-volume ratio is the
most obvious size-dependent parameter. An early investigation dealing with sur-
face effects by Hendriksen et al. [26] showed on the basis of spin-wave calculations
that for very small particles the magnetization in the surface layer decreases faster
with increasing temperature than that of the particle center. Therefore, the mag-
netization as a function of the temperature M(T ) is different for small particles
than the expected bulk behaviour. An early account of size dependent magnetic
properties of maghemite particles was given by Berkowitz et al. [27] They found
a significant decrease in the measured saturation magnetization with decreasing
particle size for particles below 20 nm. Coey et al. [28] later reported for 6 nm
maghemite particles a saturation magnetization at 4.2 K of 59 Am2/kgMagh. in ad-
dition to a reduced iron atom fraction. The reduction in the magnetization was
attributed to the presence of spin canting in a surface layer. This conclusion was
later supported by Morrish et al. [29] who studied different sizes of spherical ma-
ghemite nanoparticles. On the basis of Mössbauer spectroscopy they provided a
value of the surface layer thickness of 0.4 nm for particles with diameters of 6.5 nm.
Parker et al. [30] acknowledged that surface spins show reduced exchange interac-
tions compared to the spins in the core, however they argue that spin canting is
not a surface effect, but is instead a volume effect induced by the finite size of
the particles. Morales et al. [31] support this view of spin canting in the particle
interior. However they observe a decrease in saturation magnetization from spher-
ical particles of 120(10) nm in diameter to larger elongated particles. They also
find superstructure peaks in X-ray powder diffraction patterns relating to vacancy
ordering for the smaller particles that are absent for the larger ones. Thus, they
conclude that vacancy ordering and structural order both increase the magnetiz-
ation and propose that these effects are not necessarily dependent on the particle
size.

It has to be emphasized that in all the described works the particle sizes, shapes
and synthesis methods vary quite strongly. This was also recognized by Li et
al. [33] who performed a more systematic study for different particle sizes. They
prepared maghemite particles via flame spray pyrolysis with sizes of 6, 8, 10, 11,
13, 18 and 53 nm. Here, they found an increasing vacancy ordering with increasing
particle size up to the particle size of 18 nm where full vacancy order in the space
group P43212 is reached. Magnetometry data on these particles suggest a satur-
ation magnetization of nearly bulk values for particles with diameters ≥ 13 nm.
They thus conclude that the observed saturation magnetizations are a direct con-
sequence of the vacancy ordering as well as possible crystal facets for the larger
particles leading to a reduced surface region of disordered spins. Roca et al. [35]

produced iron oxide nanoparticles by the thermal decomposition method with a
mean size of 6.4 nm coated with oleic acid. For these particles a room temperature
saturation magnetization of 84 Am2/kgFerrite was recorded, showing that even at
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this particle size almost bulk like magnetization is possible for perfectly crystal-
line particles. It was also concluded that the oleic acid coating reduces the surface
spin canting through inorganic-organic interactions that are not entirely under-
stood yet. Daou et al. [34] propose on the basis of Mössbauer spectroscopy and IR
spectroscopy of 39(5) nm particles coated with a carboxylate layer a compositional
core-shell structure with the more oxygen rich maghemite phase at the particle
surface and the stoichiometric magnetite phase in the core. Further, they sugges-
ted the presence of a spin canted surface layer of 0.55(15) nm. This notion of a
chemical core-shell structure has very recently been disputed by Andersen et al. [50]

Instead a more gradual transition from a more iron rich core to a more iron de-
pleted surface is proposed, while the particles are structurally coherent. Dutta et
al. [42] observed an increase in the saturation magnetization from 15 Am2/kgFerrite

for particles with diameters of 4 nm to 62 Am2/kgFerrite for 12 nm nanoparticles.
This increase was attributed to a non-magnetic surface layer of 0.68 nm thickness
for particles with 6, 8, 10 and 12 nm and a slightly larger surface layer of 0.86 nm
for the smallest particles. However, these estimates were made only on the basis
of the magnetometry measurements.

New support to the theory of a surface layer dominating the magnetic proper-
ties of nanoparticles was presented by Krycka et al. [37] With uniaxial polarization
analysis in SANS they found a magnetic surface layer of 1.0 to 1.5 nm in 9.0 nm
spherical particles, where the net magnetization is oriented perpendicular to the
magnetization orientation of the particle core. However, Michels et al. [40] raised
serious concerns regarding the methodology of this work and argue that the presen-
ted results are not supported by the neutron data analysis. Furthermore, Disch
et al. [43] analyzed 9.9 nm spherical particles with SANS with polarized neutrons
(SANSPOL) and found a surface layer with spin disorder of only 0.3(1) nm. In
this work it is also emphasized that a reduced magnetization in the particle core
contributes to a larger extent to the overall magnetization than the surface layer.
As mechanisms for the reduced core magnetization spin canting around defects is
proposed. Herltischke et al. [51] studied 7.4 nm spherical particles with SANSPOL
and nuclear forward scattering and arrived at the conclusion that surface effects
are negligible and spin disorder distributed in the particle cores is responsible for
the observed reduced magnetization. More recently Zákútna et al. [44] found a
magnetically dead surface layer of 0.28(6) nm at an applied field of 1.2 T in cobalt
ferrite nanoparticles. Additionally, they report a field dependence of the surface
layer thickness such that it increases with decreasing fields.

Apart from canting around vacancies and defects another mechanism has been
proposed by Levy et al. [45] and Wetterskog et al. [46], namely the presence of an-
tiphase boundaries (APBs). In the latter work high resolution TEM (HRTEM)
provided evidence for the presence of APBs in cubic iron oxide nanoparticles with
edge lengths of 23(3) nm. They proposed that these defects, which are commonly
found in magnetite thin films, emerge due to the increase of oxygen-to-iron ratio
during the thermal decomposition synthesis procedure leading to the transition
from wüstite over magnetite to maghemite and that they are mostly responsible

3
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for the observed reduced saturation magnetization. In the work of Levy et al.
the particles were synthesized by a seeded growth method in the size range of 6
to 18 nm. Here, a trend of decreasing saturation magnetization with increasing
particle size was found which was related to primarily the presence of lattice strain
and APBs. More experimental evidence for APBs in iron oxide nanoparticles was
provided by Nedelkoski et al. [47] via atomically resolved HRTEM. In addition, they
performed Monte Carlo simulations of the effect of antiphase boundaries on the
spin structure of magnetite nanoparticles, claiming that a magnetic multi-domain
state forms that reduces the total magnetization by 26 % as compared to a particle
without this defect. Even larger reduction of 34 % is proposed for a non-planar
APB.

1.3 Concept

The above overview of the literature over the past few decades shows that while
progress has been made the internal properties of iron oxide nanoparticles and their
influence on the saturation magnetization are still far from being clear. The goal
of this thesis is thus to gain a complete understanding of the magnetization distri-
bution within these particles especially under consideration of the particle size. In
this work also an emphasis is placed on the complex interplay of size, composition,
structural defects and magnetic properties of iron oxide nanoparticles.

To this end a systematic study of different particle sizes with complementary
techniques is performed in combination with computer simulations. The focus of
this work lies on particles produced by a thermal decomposition method, as they
can be produced in a range of particle sizes with small size distributions and in
large quantities. [52] As shown by Wetterskog et al. [46] particles synthesized in this
way are prone to develop antiphase boundaries (APBs). Therefore, in the first part
of this work Monte Carlo simulations are used to investigate the effect of APBs on
the spin structure of maghemite nanoparticles. In the second part X-ray diffraction
simulations are carried out to determine the influence of APBs on the diffraction
patterns. Finally, experimental studies are performed on particles in the size range
of 5 to 20 nm. Here, first the particle sizes and size distributions are determined
via small-angle scattering and electron microscopy. Magnetometry, small-angle
neutron scattering, X-ray diffraction, Mössbauer spectroscopy and high resolution
transmission electron microscopy are used to obtain information on the chemical
composition, the structural and the magnetic properties.
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Chapter 2
Theoretical background

2.1 Magnetism

2.1.1 Fundamentals

2.1.1.1 Magnetic moment

For a single atomic electron the magnetic moment is a consequence of angular mo-
mentum resulting from an orbital and a spin contribution. In analogy to classical
electromagnetic theory the angular momentum of a charge leads to a magnetic di-
pole moment. However, it should be noted that magnetism is an entirely quantum
mechanical phenomenon as shown in the Bohr-van Leeuwen theorem. [53] An elec-
tron in an orbital around a nucleus possesses angular momentum, denoted by l
due to the orbital motion. In this case the magnetic moment relates to the angular
momentum according to

µl = −µB
h̄
l, (2.1)

where l = r × p is the orbital angular momentum operator defined by the cross
product of the position operator r and the momentum operator p and µB =
eh̄/2me is the Bohr magneton, with e the elemental charge, h̄ the reduced Planck
constant and me the mass of the electron. The spin angular momentum is denoted
by s and the resulting magnetic dipole moment is

µs = −geµB
h̄
s, (2.2)

where ge ≈ 2 is the Landé g-factor. The total magnetic moment of an atomic
electron is the sum of both contributions (neglecting spin-orbit coupling), i.e.

µ = µl + µs = −µB
h̄

(l + ges). (2.3)

2.1.1.2 Magnetic moment in a field

The quantum mechanical Hamiltonian for an atom with atomic number Z and
one electron is given by

H0 =
p2

2m
− Ze2

4πε0|r|
, (2.4)

where the first term corresponds to the kinetic energy with the momentum op-
erator p and the last term corresponds to the Coulomb potential with the radial
distance between nucleus and electron |r| and the permittivity of free space ε0. [54]

Application of an uniform magnetic field leads to a modification of the original
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Hamiltonian expressed in an additional term due to the interaction between the
field and the spin magnetic moment of the system and a modification of the kinetic
energy through the resulting vector potential, A. [55] Hence the resulting Hamilto-
nian is given by

H =
(p+ eA(r))2

2m
− (µs ·B)− Ze2

4πε0|r|

=
(p+ eA(r))2

2m
+
µBge
h̄
s ·B − Ze2

4πε0|r|
.

(2.5)

The magnetic field can be represented as the curl of a vector potential, i.e.
B = ∇×A. [56] The Coulomb gauge, i.e. setting the divergence of the vector field
A to zero, is fulfilled by A(r) = 1

2
(B×r). [55] This allows the momentum operator

and the vector potential to commute. The above equation can be rearranged to

H =
p2

2m
+

e

2m
p · (B × r) +

e2

2m

(
1

2
B × r

)2

+
µBge
h̄
s ·B − Ze2

4πε0|r|
. (2.6)

Identifying the first and the last term as the original Hamiltonian of eq. 2.4 yields

H = H0 +
e

2m
p · (B × r) +

e2

2m

(
1

2
B × r

)2

+
µBge
h̄
s ·B. (2.7)

Using the property of the triple product in the second term that it is invariant
under a circular permutation of the arguments it can be written as p · (B × r) =
B · (r × p) = B · l, where l is the orbital angular momentum operator. This is
possible because of the commutation relation between the momentum and position
operator [ri, pi] = ih̄δij, i.e. the components with different indices commute.
Inserting into eq. 2.7 gives

H = H0 +
e

2m
B · l +

e2

2m

(
1

2
B × r

)2

+
µBge
h̄
s ·B. (2.8)

Finally, with the definition of the Bohr magneton and combining the terms in-
cluding angular momenta the Hamiltonian reads

H = H0 +
µB
h̄

(l + ges) ·B +
e2

2m

(
1

2
B × r

)2

. (2.9)

Generalization of eq. 2.9 to a system with n electrons is straightforward if the
spin-orbit coupling of the electrons is neglected. [55] Then the individual orbital
and the spin angular momenta are added according to L =

∑n
i li and S =

∑n
i si.

With that the total angular momentum is introduced as J = (L+ geS), giving [53]

H = H0 +
µB
h̄
gJJ ·B −

e2

2m

n∑
i=1

(
1

2
B × ri

)2

. (2.10)
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2.1 Magnetism

with the Landé factor gJ given by

gJ =

(
1 +

J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)

)
h̄2, (2.11)

where ge = 2 was used and the eigenvalues of the angular momentum operators
according to J(J + 1)h̄2 for J2, L(L + 1)h̄2 for L2 and S(S + 1)h̄2 for S2. [53]

Minimization of the angle between the total angular momentum and the applied
field vector, i.e. alignment of the magnetic moment with the field leads to a
decrease of the energy as can be seen from the second term of eq. 2.10, which
is called Zeeman term that describes this paramagnetic effect. [55] The potential
energy of the magnetic moment in a field is given by

EZeeman = −µB
h̄
gJJ ·B = −µ ·B. (2.12)

The second term of eq. 2.10 is called diamagnetic term as it relates to an increase
in energy due to the applied field and can be shown to lead to a magnetization
opposite to the applied field. [53]

2.1.1.3 Magnetization and susceptibility

If the paramagnetic contribution to the magnetic moment is not zero, e.g. for
the partially filled orbitals in 3d transition metals [55], it can be assumed that it is
much larger than the diamagnetic term, which therefore can be neglected in the
following. For localized magnetic moments, as can be assumed for the compounds
used in this thesis, the volume magnetization corresponds to the sum over the N
individual magnetic moments in the volume V

M =
1

V

N∑
i

µi. (2.13)

This is easily transformed into the frequently occurring mass magnetization by
dividing by the density of the material. For maximum alignment with a uniform
field the magnetic moment is given by

mmax = µBgJJh̄, (2.14)

Jh̄ being the maximum of the component of the total angular momentum, i.e. the
maximum possible magnetic quantum number. [53] Therefore, the volume satura-
tion magnetization is given by

Msat =
1

V

N∑
i

mi,max. (2.15)

7



Chapter 2 Theoretical background

The response of the magnetization to an applied field is described by the magnetic
susceptibility χ according to

M = χH , (2.16)

where H is the external field. In general χ is negative for diamagnetic mater-
ials and positive for paramagnetic materials. [54] For a distribution of magnetic
moments as described by M the external field is influenced by the magnetic mo-
ments inside this body resulting in an internal magnetic field given by

B = µ0(H +M ), (2.17)

where µ0 is the permeability of free space such that in a vacuum the two vector
fields are related by this proportionality constant, i.e. B = µ0H . [53]

2.1.1.4 Brillouin and Langevin functions

A description of the temperature and field dependence of the magnetization is
obtained by a consideration of the possible states of the system. For a single
paramagnetic atom there are J(J + 1) possible states with eigenvalues of the Jz
component mJ h̄, if spin orbit coupling is neglected. Thus the eigenvalues of the
Hamiltonian corresponding to a paramagnetic moment in a field are the energies
according to [54]

E = µBgJmJB. (2.18)

With the partition function

Z =
∑
mJ

e
−E 1

kBT =
∑
mJ

e
−µBgJmJB

1
kBT (2.19)

the general behaviour of the magnetic moment can be shown to follow

M = Msat

[
2J + 1

2J
coth

(
2J + 1

2J
y

)
− 1

2J
coth

y

2J

]
= MsatBJ(y), (2.20)

where y = gJµBB
kBT

J and BJ(y) is the Brillouin function. [53–55,57] This function sim-

plifies to the Langevin function for J →∞ according to [53]

M = Msat

[
coth y − 1

y

]
, (2.21)

where in this limit gJµBJ can be replaced by the much larger macro- or super-
spin. [58] This is used to describe non-interacting superparamagnetic nanoparticles
above the blocking temperature (see section 2.1.3).
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2.1 Magnetism

Fig. 2.1 Magnetic dipole field originating from a magnetic moment in the center. The
dots symbolize magnetic moments in this dipole field with the resulting orientation (not
considering their own dipole field). It should be noted that the field lines do not terminate
as is drawn in the figure for better visibility but are continuous.

2.1.2 Collective magnetism

2.1.2.1 Dipole-dipole interactions

From magnetostatic theory it is known that a magnetic dipole generates a field
that can be described by

Bdipole =
µ0

4π

(
3(µj ·Rij)Rij −R2

ijµj

R5
ij

)
, (2.22)

where Rij = Ri−Rj is the distance vector between points Ri and Rj. Rij is the
corresponding distance. [55,56] Thus using eq. 2.12 the potential energy of a moment
µi due to magnetic dipole interactions with all the other moments in the magnetic
body is given by

Edd = −µi ·Bdipole(Rj) = −µ0

4π

∑
j

1

R3
ij

[
3(µi · R̂ij)(µj · R̂ij)− µi · µj

]
, (2.23)

where µi and µj denote magnetic dipoles separated by a distance Rij with direc-

tion given by the unit vector R̂ij.
[53,55]

The energetically most favourable configuration for two dipoles with the same
moment is obtained by parallel alignment if the vector R̂ij is also parallel to the

moments. If R̂ij ⊥ µ antiparallel alignment of the moments is favoured. This
can be understood by considering that one moment is subject to the dipole field
of the other. The field lines form a closed loop, thus depending on the relative
placement of the moments this dipole field is either parallel to the moment ori-
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Chapter 2 Theoretical background

entation or antiparallel or anything in between (fig. 2.1). Since the dipole field is
often opposite or at least at an angle to the alignment of the magnetic moments in
an applied field it acts against the magnetization. For two isolated moments this
energetic contribution is comparably small (approx. −2.15× 10−24 J for R̂ij ‖ µ,
µi ‖ µj, µi = µj = 1µB, and Rij = 0.2 nm) and is not able to explain the
magnetic order observed in many materials at room temperature and above. [54]

Nevertheless, its long range nature (decay ∝ R−3
ij ) and the sum of many individual

contributions can lead to non-negligible effects on the collective alignment of mag-
netic moments. Dipole interactions and the resulting stray fields are responsible
for the formation of magnetic domains (section 2.1.2.8) and for shape anisotropy
in finite size systems (section 2.1.2.5). [53,55]

2.1.2.2 Direct exchange

Direct exchange results in the alignment of magnetic moments for two atoms with
unpaired electrons whose orbitals overlap. Since electrons are Fermions they are
indistinguishable, hence their combined wave function must be totally antisymmet-
ric upon exchange of the two. The total wave function is given by the combination
of a spatial part and a spin part. The latter is defined by the total spin S and the
quantum number ms giving the state |S;ms〉. The possible combinations of the
two spin states lead to an antisymmetric singlet state with S = 0 and a symmetric
triplet state with S = 1 given by

|0; 0〉 =
1√
2

(| ↑↓〉 − | ↓↑〉)

|1; 1〉 = | ↑↑〉

|1; 0〉 =
1√
2

(| ↑↓〉+ | ↓↑〉)

|1;−1〉 = | ↓↓〉.

(2.24)

To achieve an antisymmetric total wave function the triplet spin configurations
that are symmetrical under exchange must be combined with an antisymmetrical
spatial wave function. For the singlet configuration the opposite is true, which
results in the wave functions

ΨS =
1√
2

(ψa(r1)ψb(r2) + ψa(r2)ψb(r1))XS (2.25)

ΨT =
1√
2

(ψa(r1)ψb(r2)− ψa(r2)ψb(r1))XT , (2.26)

10



2.1 Magnetism

where XS and XT denote the spin parts of the wave functions for the singlet
and the triplet configuration, respectively. [53] The Hamiltonian for a system of
interacting particles is given by

H =
2∑
i=1

p2
i

2m
+ V (r1, r2), (2.27)

which on a first glance seems to be independent of the spin contribution. [55] How-
ever, as shown above the spin configuration directly influences the spatial wave
function, thus it should be possible to construct an effective Hamiltonian result-
ing in the same energy eigenvalues but with the explicit dependence on the spin
configuration included in the equation. The energies associated with the singlet
and the triplet state are obtained by

ET =

∫
Ψ∗THΨTdr1r2 (2.28)

ES =

∫
Ψ∗SHΨSdr1r2, (2.29)

where ES and ET corresponds to the energy of the singlet and the triplet state
respectively. The asterisks denote the complex conjugate. To construct the spin
dependent Hamiltonian the scalar product of the two spin operators is useful.
The eigenvalue of this quantity can be obtained from the known eigenvalues of
the squared total spin operator S2 = S(S + 1)h̄2, where S = s1 + s2 with si the
spin operator of electron i and the eigenvalue of the squared single spin operator
s2 = s(s + 1)h̄2. [53,54] The square of the sum of the two spins can be expanded
according to

S2 = (s1 + s2)2 = s2
1 + s2

2 + 2s1 · s2. (2.30)

Rearranging gives
1

2
(S2 − s2

1 − s2
2) = s1 · s2, (2.31)

which for the eigenvalues evaluate to

1

2

(
S(S + 1)− 3

4
− 3

4

)
h̄2 = λ, (2.32)

where λ denotes the eigenvalue of s1 · s2. Thus,

λ =
1

2
S(S + 1)h̄2 − 3

4
h̄2. (2.33)

This results in an eigenvalue of −3
4
h̄2 for S = 0, i.e. the singlet state and 1

4
h̄2

for S = 1, i.e. the triplet state. Therefore, if s1 · s2 is to be used in the effective
Hamiltonian it has to be made sure that the correct energies are obtained for the
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singlet and the triplet state. A Hamiltonian satisfying this requirement is provided
by [53,54]

H =
1

4
(ES + 3ET )− (ES − ET )s1 · s2, (2.34)

which upon insertion of the eigenvalue for the triplet state, 1
4
h̄, returns the correct

energy eigenvalue ET . The same is true for the singlet state. Another useful
quantity to define is the exchange integral, J, according to

J =
1

2
(ES − ET ) =

∫
ψ∗a(r1)ψ∗b (r2)Hψa(r1)ψb(r2)dr1dr2, (2.35)

where eqs. 2.25 and 2.26 were used as well as the assumption that the spin compon-
ents are normalized. This finally results in an effective spin Hamiltonian obtained
from the second term in eq. 2.34 and by insertion of eq. 2.35

Hspin = −2Js1 · s2. (2.36)

For the generalization of many such interactions in a solid it is postulated that
the above expression holds for any neighbouring pair of atoms resulting in the
Heisenberg model, where the spin Hamiltonian is given by [53,55]

HHeisenberg = −2
∑
i>j

Jijsi · sj. (2.37)

In the semi-classical approach the spin operators are replaced by classical vectors.
Direct exchange is rare in solids as the atomic orbitals are too far from each other,
however magnetic interactions can also be mediated by hopping of electrons. This
is the basis of indirect exchange interactions discussed in the following. Two im-
portant mechanisms for this work are superexchange and double exchange. Other
indirect exchange interactions that are not treated here are the Rudermann-Kittel-
Kasuya-Yosida (RKKY) and the Dzyaloshinski-Moriya interactions. [55]

2.1.2.3 Superexchange

This exchange mechanism allows the establishment of magnetic order despite a
distance between the magnetic ions that would be too large for direct exchange.
The exchange interaction is instead mediated by an ion such as oxygen. [55] This
type of interaction can again be described by an effective Heisenberg Hamiltonian
as given in eq. 2.37, however the interpretation of J is different. [55] Here the ex-
change constant is related to the kinetic energy obtained by delocalization of the
electron and the Coulomb energy. [53] Cation-anion-cation bonds with bond angles
of 180° or 90° represent two limiting cases which lead to antiferromagnetic and
ferromagnetic alignment of the cation magnetic moments, respectively. Interme-
diate angles of 125° that are important in the sublattice coupling of the maghemite
and magnetite structures also lead to antiferromagnetic alignment. These qualit-
ative descriptions of the magnetic ordering can be inferred from the Goodenough-
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2.1 Magnetism

Fig. 2.2 In a) the 180° Fe3+−O−Fe3+ bond is shown, where the iron cations are placed
in the center of oxygen octahedra being found in APBs. The partial covalent bond between
the dx2−y2 (orange) and the px-orbital (blue) leads to antiferromagnetic alignment of the
spins. b) The 90° bond is found between two edge sharing octahedra. The partial covalent
bonds are formed between dx2−y2 and px for one cation and dx2−y2 and py for the other.
This time ferromagnetic alignment is favoured.

Kanamori-Anderson (GKA) rules, which are based on the interactions of atomic
orbitals. [59]

The limiting cases are realized in the maghemite structure. The 180° cation-
anion-cation bond occurs at antiphase boundaries where two oxygen octahedra
with Fe3+-ions in the center that are connected on a corner (fig. 2.2a). In the
octahedral environment the degeneracy of the five d-orbitals is lifted leading to
t2g-orbitals (dxy, dyz, and dzx, dark purple in fig. 2.2) with lower and eg-orbitals
(dx2−y2 , light purple in fig. 2.2, and dz2) with higher energy. The dx2−y2-orbital
points towards the oxygen ligands along the x-axis, the same orientation as the
px orbital of the oxygen ion. This leads to partial covalent bonds at the cations.
Due to the Pauli exclusion principle the two oxygen electrons in the px-orbital
have to occupy different spin states thus leading to antiparallel alignment of the
dx2−y2-electrons of the cations. This results in the antiferromagnetic configuration.

The 90° bond can be found between neighbouring Fe3+-ions in octahedral edge-
connected chains (fig. 2.2b). One contribution to the resulting spin configuration
in this geometry is again the formation of covalent bonds at the cations. How-
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ever, due to the 90° bond the bonds are formed with both p-orbitals of the oxygen
ion leading to ferromagnetic alignment of the cation spins. A competing inter-
action is due to the proximity of dxy-orbitals of the cations which favour anti-
parallel spin orientations via the delocalization of electrons. Thus in general the
90° cation-anion-cation bond leads to ferromagnetic alignment, however in some
cases antiferromagnetic configurations may be energetically more favourable. [59]

Determination of the exact exchange constants for the interactions is in general a
complex problem and they are often found empirically and validated by comparing
the calculated Curie temperature resulting from these constants with experimental
values or via ab-initio calculations. [60,61]

2.1.2.4 Double exchange

Double Exchange is a form of indirect exchange interaction between two metal
ions of different valence state separated by a non-magnetic anion. [53] In case of
a Fe2+ − O2− − Fe3+ bond the electron of the Fe2+-ion hops via the oxygen
ion to the Fe3+ ion. To be more precise actually two hopping processes take
place simultaneously from the Fe2+-ion to O2− and from O2− to Fe3+, hence the
name double exchange. [55] This exchange favours ferromagnetic alignment as the
electron moves from an eg orbital to another eg orbital which is only energetically
favourable if the t2g electrons have the same spin direction. This kind of exchange
is found in the magnetite structure between edge sharing octahedra similar to the
configuration depicted in fig. 2.2b) where one of the octahedral centres is occupied
by an Fe2+ ion. [53] For total spin S = 1/2 this interaction can also be described by
an Heisenberg type Hamiltonian (eq. 2.37) with an appropriate effective exchange
constant, for larger S this is only an approximation. [55]

2.1.2.5 Magnetic anisotropy

Magnetic anisotropy describes the tendency of magnetic moments to align prefer-
entially along a certain crystallographic direction due to anisotropic crystal fields
or the sample shape even without the presence of an external field. It is a direct
consequence of the coupling of electron orbits to the crystal field together with
the spin-orbit interaction (magnetocrystalline anisotropy) or of the dipole-dipole
interactions between individual moments (shape anisotropy), respectively. [55,62]

Magnetocrystalline anisotropy is intrinsic to the material under consideration
and related to the crystal symmetry. For crystals with cubic symmetry the easy
axis are oriented along the cube edges and the hard axis along the cube diagon-
als if the anisotropy constant is positive and vice versa for a negative constant
(fig. 2.3). [53,63] The anisotropy constants are temperature dependent such that
for magnetite the sign of the first order constant switches from negative at room
temperature to positive at low temperatures. [64] The anisotropy energy is given by

Eanis = K0 +K1V (α2β2 + α2γ2 + β2γ2) +K2V (α2β2γ2) + . . . , (2.38)
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Fig. 2.3 Cubic magnetocrystalline energy surfaces according to eq. 2.38. a) K0 = 0.5 and
K1 = −1.0 leading to easy axis along the cube diagonals. b) K0 = 1.5 and K2 = 2.5 giving
easy axis along the cube edges.

where α = Mx/M , β = My/M , and γ = Mz/M are the direction cosines of
the magnetization and V is the sample volume. [54,65] The constant K0 is usually
omitted. For iron oxide nanoparticles a common approximation is the use of only
the second term of eq. 2.38. An equivalent expression for the anisotropy energy
can be derived from the identity relation of the direction cosines

α2 + β2 + γ2 = 1 (2.39)

allowing for

α2β2 + α2γ2 + β2γ2 = −1

2
(α4 + β4 + γ4) (2.40)

thus resulting in

Eanis = −K1

2
(α4 + β4 + γ4). (2.41)

Useful for atomistic simulations is the introduction of an anisotropy constant kc
for each atom obtained by dividing the bulk anisotropy in J/m3 by the number
of atoms per m3. [47,60,66] Further replacing the direction cosines by the vector
components of a semi-classical spin vector gives [65–67]

Eanis = −kc
2

∑
i

(S4
x + S4

y + S4
z ). (2.42)

Shape anisotropy is a result of the finite spatial extension of a magnetic body.
The divergence of the magnetization at the surface of the object leads to an oppos-
ing field H that acts against the magnetization and is thus termed demagnetizing
field. For an ellipsoidal magnet the demagnetizing field can be assumed to be
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uniform inside the magnetic body and can be described by a tensor N according
to

Hdemag = −NM . (2.43)

For a perfect sphere the tensor has only diagonal components of 1/3 such that

Hdemag = −M
3
. (2.44)

For a magnet of arbitrary shape the demagnetizing tensor is not as straight for-
ward. [53] Although the shape anisotropy can be approximated with the demagnet-
izing field its origin are the dipole-dipole interactions between atomic magnetic
moments. Thus the microscopic dipole field given in eq. 2.22 provides a more
exact description.

2.1.2.6 Magnetically ordered structures

The interaction of atomic magnetic moments via the previously discussed mech-
anisms lead to different kinds of collective arrangements of the moments and thus
different macroscopic properties. Important in the context of this thesis are ferro-,
antiferro-, and ferrimagnetism.

In a ferromagnet (FM) neighbouring magnetic moments are generally aligned
parallel even without an external field through the exchange mechanisms discussed
above. This alignment results in a net magnetic moment of the material. How-
ever, due to magnetostatic energy domains may be formed which have different
orientations of the magnetization vector leading to a macroscopically reduced or
even vanishing net magnetization. [54] For ferromagnets the critical temperature
is called Curie temperature TC , below which the moments align in a preferred
orientation that evolves into perfect alignment at 0 K.

In an antiferromagnet (AFM) the neighbouring spins are aligned antiparallel
thus resulting in two sub-lattices, where each is ferromagnetically arranged. Sim-
ilar to the ferromagnets a critical temperature exists where the magnetic arrange-
ment vanishes at zero applied field, the Néel temperature TN . However, even below
this temperature no significant magnetization is measured as the magnetization
of the two sub-lattices cancel each other.

Similar to antiferromagnetism in a ferrimagnet (FiM) the lattice is build up
of two sub-lattices with opposing magnetizations but in this case with different
magnitude thus leading to a net magnetization. This type of magnetic order is
observed in the maghemite and magnetite structures, which are discussed in more
detail in section 2.6.2. The critical temperature at which this long range order of
magnetic moments is destroyed is in this case often again called Curie temperature.

Important in distinguishing the different kinds of magnetic order is the Curie-
Weiss law applied to susceptibility data at temperatures above the critical tem-
perature, i.e. in the paramagnetic state. It is given by

χ =
C

T − θ
, (2.45)
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where T is the temperature, C is the Curie constant and θ denotes the Weiss
temperature. A paramagnet has a Weiss temperature θ = 0, whereas for ferro- and
ferrimagnetic systems it is equal to the Curie temperature. For antiferromagnetic
structures θ is usually negative although in principle not equal to −TN . [53]

2.1.2.7 Exchange bias

Exchange bias is a phenomenon usually attributed to the presence of exchange
anisotropy at a ferromagnetic(FM) - antiferromagnetic(AFM) interface. [53,68–71] In
iron oxide nanoparticles a possibility is the presence of a wüstite phase with an-
tiferromagnetic spin structure next to ferrimagnetic maghemite or magnetite. [69]

The effect of exchange bias can be observed if the sample containing such an
interface is cooled from above the Néel temperature of the antiferromagnetic com-
ponent. [71] For the mentioned substances this is achieved by cooling from room
temperature. Usually then a shift of the recorded hysteresis loop is observed to-
wards smaller fields, i.e. opposite to the cooling field (if the cooling field was
positive). Additionally an increased coercive field is observed for these shifted
loops. [69]

The microscopic origin of the exchange bias (EB) effect is still not entirely
clear. [72] One approach is that of Malozemoff, [71,73] where the EB effect originates
from the formation of domain walls (see next section) in the AFM perpendicular
to the FM/AFM boundary due to interface roughness. The domains result in a net
magnetization at the interface yielding a shift of the hysteresis loop. However, do-
mains due to interface roughness alone are energetically not favourable, therefore
the domain formation due to non-magnetic defects throughout the AFM volume
was proposed. [71,72] This mechanism of EB origin was experimentally studied and
confirmed by introducing varying amounts of defects in the AFM CoO layer of a
Co/CoO bilayer, where a strong dependence of the EB on the amount of defects
was found. [72] The exchange bias field is defined as the offset of the hysteresis loop
center according to

HEB =
Hc1 +Hc2

2
, (2.46)

where Hc1 and Hc2 are the coercive fields which are related to the exchange con-
stant at the interface and the anisotropy. [54]

In some cases exchange bias effects have been observed for iron oxide structures
without the presence of a wüstite phase, i.e. an FM/AFM interface. Possible ex-
planations are the formation of a spin glass-like structure or spin disorder at nan-
oparticle surfaces [74,75], antiphase boundaries [70] and the ferrimagnet/ferrimagnet
interface of maghemite and magnetite [76].

2.1.2.8 Domains

Magnetic domains are a consequence of the minimization of magnetostatic en-
ergy in a finite magnetic material originating from the dipole field as given in
eq. 2.22. [53] As shown in fig. 2.4 the formation of a domain wall reduces the stray
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Fig. 2.4 Dipole fields calculated at the lattice points of a spherical maghemite nanoparticle
with ideal alignment of the sublattices along x. a) In the single-domain state the dipolar field
inside the particle is antiparallel to the particle magnetization orientation that is indicated
with the big black arrow in the center. The closure of the field lines leads to larger stray
fields outside the particle (black lines) than would be observed for a particle containing a
180° domain wall through the center (b). It should be noted that the plotted lines belong to
the magnetic field H, while the field lines of the magnetic induction B are continuous. Blue
arrows point in −x-direction and red ones along x. Below the dipole energy of the system is
given, calculated as the sum of the dipole energies at the lattice sites. The depicted particles
have a diameter of approximately 9.2 nm.

field outside the particle. The different domains in the material are separated by
domain walls, where the direction of magnetization changes by a rotation of the
atomic moments. In a Bloch wall, the magnetization rotates about the normal
of the domain wall plane, while in thin films the rotation is often parallel to the
domain wall plane leading to a Néel wall. The domain wall width depends on
the exchange interactions and the magnetocrystalline anisotropy as a rotation of
a spin at the domain wall requires to overcome these energies. Strong exchange
interactions and small anisotropy constants favour large domain wall widths. [54]

Without external field the magnetization within the domains is oriented along the
easy axis giving rise to different possible domain wall orientations. E.g. in a ma-
terial with uniaxial anisotropy 180° domain walls form where the magnetization
is aligned along the anisotropy axis in opposite directions on either side of the
domain wall. This type of domain wall is shown in fig. 2.4. For cubic magneto-
crystalline anisotropy more easy axes are present. Easy axis along the cube edges
gives rise to both 90° and 180° domain walls, whereas for easy axis along the cube
diagonal 71°, 110°, and 180° walls are possible. [77]

The generation of domains depends on the balance of energy gain due to dipolar
energy reduction and the energy cost due to domain wall formation. There exists
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thus a critical radius for a spherical particle below which the cost of domain wall
formation is higher than the dipolar energy that could be saved and the single-
domain state becomes energetically more favourable. The consequences of this are
discussed in the next section dealing with Nanomagnetism.

2.1.3 Nanomagnetism

The size of the magnetic specimen plays a crucial role for the magnetic properties.
In bulk materials the dominating features in ferro- and ferrimagnets are magnetic
domains that lead to observable effects like hysteresis behaviour in measurements
of the magnetization as a function of the applied magnetic field. As stated previ-
ously these domains serve to reduce the total energy of the system by minimizing
the magnetostatic energy. Upon reaching a certain size introduction of domain
walls may increase the energy as compared to a single-domain particle. [58,78] The
magnetostatic energy of the single-domain spherical particle without applied field
can be approximated via

Edip = −µ0

2

∫
V

M ·Hdemagdr =
1

6
µ0M

2
s V =

2

9
µ0M

2
s πR

3, (2.47)

where Ms is the volume saturation magnetization and V = 4/3πR3 is the sphere
volume. [53] Here eq. 2.43 was used for Hdemag and the demagnetization tensor was
assumed to have only diagonal elements with entries equal to 1/3. The energy gain
due to domain formation can be estimated to be half this energy. The competing
contribution is the domain wall energy given by

Edw = β
√
AKπR2, (2.48)

where the cross section of the sphere was assumed as the domain wall area, A and
K are the exchange stiffness and the anisotropy constant, respectively and β is
a coefficient related to elastic properties and magnetostriction. [77,79,80] For a 180°
domain wall on a (110) plane β = 2.69. [81] Equating both energies and solving for
the particle radius R then gives the critical radius Rc according to

Rc ≈ 9β

√
AK

µ0M2
s

. (2.49)

For magnetite particles this results in a critical particle diameter of 18 to 43 nm
depending on the assumed magnetocrystalline anisotropy constant. However, it
should be noted that eq. 2.49 only holds for particles with strong anisotropy
(Ku ≥ µ0M

2
s /6). For small anisotropies this equation underestimates the critical

radius. [63] For spherical particles composed of γ-Fe2O3 an estimate for the critical
diameter of 128 nm and 166 nm for Fe3O4 is given by Leslie et al. [82] Moskow-
itz et al. [81] report a diameter of 80(20) nm for magnetite. In Butler et al. [83]

a critical diameter of 76 nm is given. Although those are only rough estimates
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and the critical radii depend on the specific sample this means that most of the
considered particles in this thesis theoretically fall well below the limit so that a
single-domain state is favourable. An important consequence of the single-domain
state is superparamagnetism that is discussed in the following.

Fig. 2.5 Calculation of the theoretical single-domain diameter. The critical particle diameter
below which the single-domain state is energetically more favourable is found by the inter-
section of the curves for magnetostatic energy and domain wall energy as given in eqs. 2.47
and 2.48 using β = 2.69, A = 1× 10−11 J/m, and Ms = 480 kA/m3 as well as two estim-
ates for the magnetocrystalline anisotropy constant corresponding to experimental values of
the bulk and 15 nm particles. [84]

2.1.3.1 Superparamagnetism

Superparamagnetism is a property exhibited by single-domain particles that act
like paramagnetic atoms although with a much larger magnetic moment in the
range of several thousand Bohr magnetons, also called macro- or superspins. [58] In
absence of an external magnetic field the magnetization direction of these particles
is determined by magnetic anisotropy (see section 2.1.2.5).

Different special cases of superparamagnetism may be distinguished, namely un-
blocked (isotropic), blocked and interacting superparamagnetism. The unblocked
state can be described by the Langevin model, whereas for the blocked state a
model was developed by Stoner and Wohlfarth [85].

The defining properties of a superparamagnetic material are a lack of hysteresis
above the blocking temperature in a magnetization vs. applied field measurement
and a temperature dependence of magnetization vs. field curves in a way that
measurements at different temperatures superimpose in a plot of magnetization
against H/T . [58] The blocking temperature TB is defined by the effective aniso-
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tropy K of the particle, the particle volume V , as well as the time scale of the
measurement τm and is given by

TB ≈
KV

kB ln (τm/τ0)
, (2.50)

where τ0 is the inverse attempt frequency, a material property that is often taken
as ≈ 10−12 − 10−9 s. [86] At this temperature the measurement time scale matches
the relaxation time scale of the particle. Experimentally this parameter can be
determined from the peak in a Zero-Field Cooled (ZFC) magnetization curve,
that is obtained by cooling a sample from above the blocking temperature without
external field and then recording the magnetization upon heating in a small applied
field. In such an experiment the recorded magnetization at first increases due to
the alignment of the superspins until at the blocking temperature the thermal
fluctuations lead to a decrease of the total recorded magnetization. If during the
measurement of the ZFC curve a larger field is applied the blocking temperature
shifts to smaller values due to a reduction of the energy barrier needed to overcome.
Usually after the ZFC curve also a Field Cooled (FC) curve is recorded by cooling
the sample again with the same temperature sweep rate and the same applied
field. A splitting of both curves can be observed at the irreversibility point Tirr.
For samples with a size distribution generally Tirr > TB and the difference depends
on the variation in the particle sizes. [86] For the FC curve a plateau is observed for
temperatures well below TB. A decrease of the magnetization in this temperature
range indicates the presence of a superspin glass, while an increase is attributed
to the presence of paramagnetic clusters or atoms dispersed between the particles.
The combination of both effects can lead to a dip in the FC curve for small
temperatures. [87]

In some cases [16,82] the presence of an open loop, i.e. hysteresis, at room-
temperature (RT) is taken to be a sign of lacking superparamagnetic behaviour.
However, for a single-domain particle this is merely a consequence of a blocking
temperature larger than RT and thus it should still be considered superparamag-
netic.

2.1.3.2 Unblocked superparamagnetism

In this case the thermal energy is much larger than the anisotropy energy of the
particle. As mentioned before the magnetic moment of the particle is very large
thus allowing the assumption J → ∞ which in turn justifies the usage of the
Langevin function (eq. 2.21) to describe the field- and temperature-dependent
magnetization. To recall eq. 2.21 is given by

L(y) = coth y − 1

y
, (2.51)

where y = µpµ0H/kBT , with the superspin magnetic moment µp.
[86] The latter

is related to the saturation magnetization in Am2/kgmaterial via Msat = µp/Vtρ,
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where Vt is the total particle volume and ρ the density of the material. In a real
sample of nanoparticles a size distribution is present, which has to be considered
in fits to experimental data. Accordingly, the magnetization is described by

M(B, T ) =

∞∫
0

MsatL

(
µpB

kBT

)
P (v)dv, (2.52)

where P (v) is the particle size distribution, as given in eq. 2.98. B is the magnetic
field, kB and T are the Boltzmann constant and the temperature, respectively. [88]

It should be noted that this is only valid for negligible interparticle interactions.
The change from unblocked to blocked superparamagnetism is not abrupt but a
transition region termed anisotropic superparamagnetism can be observed, where
deviations from the Langevin behaviour occur. [88]

2.1.3.3 Blocked superparamagnetism - Stoner-Wohlfarth model

Blocked superparamagnetism of nanoparticles is described by the theory of Stoner
and Wohlfarth. [85] This model assumes negligible inter-particle interactions and
coherent rotation of the magnetization within single particles. Central to this
model are the angle θ of the easy axis to the applied field H and the angle φ
between the magnetization vector of the particle and the applied field (fig. 2.6c).
The energy of the system is then described by

E = K sin2(θ − φ)− µ0HMs cos(φ), (2.53)

where the first term corresponds to the uniaxial anisotropy energy in polar rep-
resentation and the second to the Zeeman energy. If no external field is applied
the Zeeman term does not contribute to the energy, therefore minimization of the
system energy is achieved if the magnetization lies parallel or antiparallel to the
anisotropy axis (fig. 2.6e)). Upon application of a field the minimization of the
energy is more complex. Energy surfaces can be constructed for differing values of
φ and H, while fixing the angle between the anisotropy axis and the field (fig. 2.6a)
and b)). The paths of minimum energy along these surfaces thus correspond to
angles between the magnetization vector and the applied field that minimize the
energy. These angles relate to the magnetization via cosφ = M/Msat. Examples
of the resulting hysteresis loops are shown in fig. 2.6d). For a single particle the
hysteresis loops can take various shapes, i.e. between a square and a linear slope
depending on the angle θ. For a large number of particles an average is observed,
as the easy axis directions are randomly distributed.
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Fig. 2.6 a) and b) show energy surfaces calculated according to eq. 2.53 with the minimum
energy paths marked with black lines. c) Angle geometry of the Stoner-Wohlfarth model
with φ denoting the angle between the magnetization and the applied field and θ the angle
between the easy axis and the field. d) Calculated hysteresis loops corresponding to the
easy axis angles as used for the energy surfaces. I.e. the solid line corresponds to the energy
surface shown in a) and the dashed line to the one depicted in b). e) system energy in
dependence of the easy axis orientation without external field (φ = 0°), minimum energy is
achieved for 0° and 180° between easy axis and the magnetization, i.e. parallel or antiparallel
alignment.

2.2 Monte Carlo simulations

Computer simulations are well established as a complementary tool to theory and
experiment. They provide a method to deal with problems in physics that are
very difficult or impossible to solve analytically or where experiments are not pos-
sible. [89] Thus simulations can be used to evaluate whether an analytical model
describes a physical system well enough. An important advantage is the possibility
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to calculate properties of a model system exactly without additional approxima-
tions apart from the ones used to set up the model. [90] In addition, simulations
can serve as a tool to verify approximations used in analytical models. [91] In this
thesis Monte Carlo simulations were primarily used to study the influence of an-
tiphase boundaries on the spin structure of iron oxide nanoparticles. Controlling
the number and orientation of these defects in real samples is extremely difficult
whereas in the simulations model systems can be set up relatively easily to estim-
ate the effects on the macroscopic properties as well as the local spin structure in
a defined manner.

2.2.1 General Considerations

The expected value V (x) of some continuous probability distribution p(x) is given
by

Vp(x) =

∫
xp(x)dx, (2.54)

where the subscript p on V (x) indicates that the random variable x has been drawn
from the distribution p(x). The variable x can also be a vector with arbitrary
dimension. In the simple sampling Monte Carlo approach the expected value can
be approximated by randomly selecting values of x from the distribution p(x) and
computing the average according to

Vp(x) ≈ 1

N

N∑
i=1

xi, (2.55)

thus by increasing N , the number of samples, the resulting value gets closer and
closer to the expected value Vp(x). However, there are two drawbacks to this
method. First, it may not be possible to sample p(x) directly and secondly, the
variance of the obtained expected value might be very large if p(x) has a small
distribution and a large fraction of the samples lie in regions that do not signi-
ficantly contribute to the mean. These problems can be circumvented by using
the importance sampling Monte Carlo method. The idea here is that instead of
drawing from the distribution p(x) samples are drawn from a different distribution
q(x) that provides more samples of x in the region where p(x) is large and thus
the contribution of x to the mean is large. The trick is to expand eq. 2.54 by one,
i.e.

Vp(x) =

∫
xp(x)

q(x)

q(x)
dx =

∫
x
p(x)

q(x)
q(x)dx. (2.56)

Comparing to the equation above now the expected value for samples drawn from
q(x) can be approximated by

Vp(x) = Vq

(
x
p(x)

q(x)

)
≈ 1

N

N∑
i=1

xi
p(xi)

q(xi)
. (2.57)
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This approach is particularly useful in statistical physics, where any observable in
thermal average is defined in the canonical ensemble

〈A(x)〉 =
1

Z

∫
p(x)A(x)dx, (2.58)

where A(x) represents the observable, p(x) are the Boltzmann factors according
to

p(x) = e−E(x)/kBT (2.59)

with the total energy E. The partition function Z is given as

Z =

∫
e−E(x)/kBT . (2.60)

Thus the expected value of the observable can be approximated in the importance
sampling approach as

Āq(x) =
1

N

N∑
i=1

A(xi)
p(xi)

q(xi)
. (2.61)

A convenient choice of q(x) would be a distribution that is proportional to the
Boltzmann factor distribution p(x) such that the sum reduces to an arithmetic
average of the expected values associated with the selected states xi. A procedure
that provides states generated from such a distribution is the Metropolis algorithm,
discussed in the following.

2.2.2 Metropolis algorithm

The algorithm developed by Metropolis et al. [92] produces a Markov chain of phase
space states thus effectively giving samples for a distribution that is proportional
to the Boltzmann distribution. In a Markov chain the selected states are not
independent from each other but they are constructed from the previous one in
the chain with a transition probability W (xi −→ xi+1). With an appropriate
transition probability it can be ensured that the obtained states approximate the
equilibrium distribution for a large number of samples. With the principle of
detailed balance according to

p(xi)W (xi −→ xi′) = p(xi′)W (xi′ −→ xi), (2.62)

where p(x) is the Boltzmann distribution, it is made sure that the transition from
x to x′ and the reverse transition depends on the energy difference between both
states. [90] Rearranging gives

W (xi −→ xi′)

W (xi′ −→ xi)
=
p(xi′)

p(xi)
=
e−E(xi′ )/kBT

e−E(xi)/kBT
= exp

(
−E(xi′)− E(xi)

kBT

)
. (2.63)
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Thus one possibility for the transition probability is

W (xi −→ xi′) = exp (−δE/kBT ) (2.64)

with δE = E(xi′)−E(xi), if δE is positive and W = 1 otherwise. [90] The Metro-
polis algorithm in the context of atomistic Monte Carlo simulations proceeds as
follows. First the system is set up, i.e. the crystal structure is generated with e.g.
random orientation and random placement of vacancies. After that a spin vector
is selected randomly and its classical energy is calculated according to

E = Eexchange + Eanisotropy + EZeeman + Edipole (2.65)

It should be noted here that instead of the Hamiltonian valid for quantum mech-
anical systems only the classical energy associated with classical spin vectors is
calculated. The equations for the energy contributions are given in section 2.1.
After the energy is calculated a trial move is performed leading to a new orient-
ation of the spin with a subsequent calculation of the new energy. If the spin
move leads to an energy reduction the new orientation is accepted, if the energy
is increased the new orientation may still be accepted but with a probability of
exp (−δE/kBT ) (eq. 2.64). This process is repeated a number of times until equi-
librium is reached. A Monte Carlo Step (MCS) is defined as the number of trial
moves after which every spin in the system has statistically been moved once. Two
aspects are important for valid results and reasonable computation times, namely
the generation of (pseudo-)random numbers and the generation of trial moves.

2.2.3 Trial moves

Fig. 2.7 Spin orientations for 10 000 spins after one trial move. Each time the starting
orientation was along the z-axis. a) Gaussian trial move with σ = 0.14. b) Gaussian trial
move with σ = 0.27. c) Uniform trial move. d) Hinzke-Nowak trial move by randomly
selecting a spin-flip, Gaussian (σ = 0.14) or uniform trial move.

There are three main ways to perform trial moves, the first and the simplest
one being a reflection move, where all vector components are multiplied by −1.
In the Heisenberg model used in this work this trial move violates the principle of
ergodicity, since not all orientations theoretically possible are achievable. However,
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it is possible to use this move together with other types that sample the whole
phase space. [93] The second possibility is the completely random, i.e. uniform
selection of a new spin orientation. While being in accordance with ergodicity
with this approach it may take some time until the system reaches equilibrium,
as a large number of trial orientations are rejected. The third method is the
application of a weight to the possible outcome vectors. It has been recognized
by Hinzke and Nowak that a combination of all three trial moves leads to a fast
convergence. [66,93] In the implementation of this work for every trial move one of
the three possibilities is selected randomly, leading to the distribution of outcome
vector orientations depicted in fig. 2.7d). Figs. 2.7a) and b) show the distribution
of trial moves of only the third kind, i.e. weighted moves. The weighting is
achieved by adding vectors with orientations given by a Gaussian distribution to
the initial spin vectors and normalizing the obtained vector. Random numbers
with a Gaussian distribution needed for the Gaussian trial move are generated
by the fast Ziggurat-algorithm. [94] The opening angle of the cone described by
the possible new vector orientations can be adjusted by a parameter σ. For the
uniform distribution of trial vectors the Marsaglia method is used, where two
random numbers r1 and r2 are picked from the uniform distributions (−1, 1) to
generate a unit vector. If S = r2

1 + r2
2 < 1 the Cartesian vector components are

calculated according to [95]

x = 2r1

√
1− S = 2r1

√
1− r2

1 − r2
2

y = 2r2

√
1− S = 2r2

√
1− r2

1 − r2
2

z = 1− 2S = 1− 2(r2
1 + r2

2).

(2.66)

2.2.4 Random number generation

Monte Carlo methods rely heavily on good random numbers to generate the sample
states chosen from the distribution. The most efficient way to generate these ran-
dom numbers is by utilization of an algorithm. As such these numbers are in
fact not random, but completely deterministic and are thus called pseudo-random
numbers. The random numbers are generated in a defined sequence that can
be reproduced by using the same seed value. The algorithm used in this thesis
was implemented by Ralf Meyer and Fred Hucht on the basis of a process de-
scribed by Kirkpatrick and Stoll (R250). [96] This random number generator uses a
shift-register method, where bitmasks are used to guarantee linear independence
between individual bits. The advantage of this approach is the possibility to gen-
erate a large number of non-repeating pseudo-random numbers. Non-repeating in
the sense that no repeating sequences of random numbers are generated. Random
numbers are first generated by some random number generator and stored in a
table. From this table new random numbers are obtained via

Xn = Xn−p
⊕

Xn−q, (2.67)
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Fig. 2.8 a) So-called parking lot test, where random numbers are taken as coordinate pairs
that produce a dot on a x − y plot. No features indicating non-randomness are visible in
the 10 000 coordinate pairs that were used. b) Uniformity test with the numbers of entries
recorded in bins of 0.002 for 1 000 000 numbers.

where
⊕

denotes a bitwise exclusive-OR operator and p = 250 and q = 103 leading
to a period of about 2250. To test the randomness of the generated sequence of
numbers different tests have been developed. A simple visual test is the so-called
parking lot test, where sequential random numbers are taken as (x, y) coordinates
and plotted as points. Any geometric features such as stripes would indicate non-
random behaviour (fig. 2.8a). Another visual test is the uniformity test, where the
generated numbers in the interval [0, 1] are binned and the number of entries in
each bin is recorded. In a histogram of this data again any obvious features would
indicate non-randomness (fig. 2.8b). For both tests no such features are observed
for the random number generator used in this work.
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2.3 Scattering theory

2.3.1 Basic properties and sources of neutrons and X-rays

One of the fundamental results of quantum physics is the particle-wave duality,
e.g. neutrons and X-rays can be treated as both waves and particles depending on
the context. [97] The wave properties of neutrons are expressed by the de Broglie
equation which relates the mass, mn, and velocity, v of a neutron to its wavelength,
λ according to

λ =
h

mnv
, (2.68)

where h is the Planck constant. [98] In the non-relativistic limit the connection to
the kinetic energy according to E = mnv

2/2 is then given by

λ =
h√

2mnE
. (2.69)

Thus, in general a large kinetic energy associated with a high temperature via
E = kBT , where kB is the Boltzmann constant, relate to a short wavelength. For
neutrons with a wavelength in the range of e.g. nanoparticle sizes (several Å)
cold neutrons are needed with temperatures around 100 K. All neutron scatter-
ing experiments for this thesis were performed at the FRM II research reactor in
Garching, where neutrons are produced in a nuclear fission reaction of 235U iso-
topes. Other neutron sources that are not further discussed here include spallation
sources and nuclear fusion reactions. To achieve the desired wavelengths of a few
Å the neutrons generated by the fission reactor have to be moderated, that is their
kinetic energy and thus their temperature is lowered by inelastic scattering in a
moderator material. At the FRM II liquid deuterium is used as the moderator for
cold neutrons. An additional very useful property of neutrons is their magnetic
moment that allows the investigation of magnetic properties of materials. [99]

X-rays are electromagnetic radiation where the relation between wavelength λ
and the energy is given as

E =
hc

λ
, (2.70)

where c is the speed of light. [100] Their wavelengths lie between those of γ-rays
and ultraviolet light and are therefore again in a useful range to study the prop-
erties of materials. [101] X-rays interact with the atomic electrons and are therefore
more sensitive to heavier elements. They can be generated in X-ray tubes or in
a synchrotron facility. In a X-ray tube electrons are emitted from a cathode, are
accelerated in the electric field and hit an anode. The electrons are decelerated by
the electric fields of the target metal anions which leads to the Bremsstrahlung with
a continuous energy distribution. Additionally, characteristic X-rays are emitted
with an energy that is specific to the anode material as it originates from electron
transitions in the ionized anode atoms. [102] In synchrotron sources the X-ray gen-
eration is based on the acceleration of charged particles. The constant acceleration
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is achieved by forcing the charged particle beam into a circular path by the use of
magnets. Special magnet arrangements such as wigglers and undulators are used
in modern synchrotrons. By passing through a wiggler or an undulator consisting
of alternating magnetic fields the electron beam is forced on an oscillating path.
The difference between both lies in the period of the alternating magnetic field in
cm, λu, and the field strength in tesla, B, expressed in

K =
eBλu
2πm0c

, (2.71)

where e is the elementary charge, m0 is the mass of the electron and c is the speed of
light. ForK > 1 the device is called wiggler and otherwise undulator. While with a
wiggler a broad X-ray spectrum is generated the undulator produces a sharp X-ray
beam spectrum and a higher brilliance. [100] The wavelength of the generated X-ray
beam can either be selected by a monochromator from the continuous spectrum of
the wiggler or by adjusting the distance between the magnets in the undulator. [103]

2.3.2 Scattering cross sections

In a rough approximation the scattering of neutrons and photons from isolated
scattering centres can be described as a deflection of the particles from their ori-
ginal path due to an interaction potential. In the following only elastic scattering
is considered, where the kinetic energy of the incident particle is conserved. An
intuitively accessible example of scattering of a projectile from a target is the
classical hard sphere scattering. [104] The potential in that case is infinite inside
the sphere and equal to 0 outside, meaning the incoming projectile cannot pass
through the sphere and is scattered, but if the sphere is missed no deflection oc-
curs. The region where scattering is possible is thus the cross-sectional area of the
sphere

σ = πR2, (2.72)

also known as the scattering cross section. [104] This simple connection between the
scattering cross section and the cross section of the target object is generally not
given [99,105] and the scattering cross section in the case of X-rays and neutrons
should be thought of as a measurement of interaction strength between projectile
and target depending on the trajectory.

In other words a larger scattering cross section relates to a larger probability
of scattering. In an experiment where an incident beam of particles hits a target,
some fraction of the incoming particles is scattered into a solid angle dΩ (fig. 2.9).
The proportionality constant between the number of incoming particles and the
number of scattered particles is called the differential scattering cross section and
is denoted by dσ/dΩ. It describes the number of particles scattered into the solid
angle dΩ after passing through an infinitesimal area dσ of the scattering cross
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section. Integration of the differential scattering cross section over all solid angles
thus returns the scattering cross section

σ =

∫
dσ

dΩ
dΩ, (2.73)

where dσ/dΩ should be regarded as a symbol rather than a mathematical expres-
sion. [99,105,106] The differential cross section is experimentally accessible through
the counting of the number of particles incident on a detector. [99,106] Therefore,
the main task in structure analysis is the reconstruction of this quantity with an
adequate fitting model.

Fig. 2.9 The particle trajectory is indicated with the solid red line passing through the
infinitesimal element dσ of the scattering cross section. Due to the interaction with the
potential located at the scattering center the particle is deflected into the infinitesimal solid
angle dΩ and passes through the surface element dA. The azimuthal angle is denoted with
θ, the polar angle is φ.

The particle picture of scattering is intuitive, however interference phenomena
can only be explained using the wave properties of X-rays and neutrons. [97,99]

Therefore a description of the differential cross section, i.e. the measurable quant-
ity, based on the scattering of waves is needed. The basic tool is the quantum
mechanical wave function Ψ, defined by a wavelength λ through the wave vector
k pointing in the direction of propagation with length 2π/λ.

The asymptotic solution to the time independent Schrödinger equation for a
wave scattered from a potential is a superposition of an incoming plane wave

Ψin = Ψ0e
(ik·r), (2.74)
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with the amplitude Ψ0 and a scattered spherical wave with scattering amplitude
A(θ, φ)

Ψsc = Ψ0
A(θ, φ)

r
e(ikr), (2.75)

where r is the distance from the origin and accordingly the intensity per unit
area, |Ψ(r)|2, decreases proportional to the square of the distance. [106,107] The
superposition of both waves is then

Ψ = Ψ0

[
e(ik·r) + A(θ, φ)

e(ikr)

r

]
, (2.76)

where Ψ0 = 1/
√
V is the normalization factor of the wave function with the

volume V , ensuring that the volume integral of the wave function is equal to 1, i.e.
the particle is present somewhere in the volume. [97,105] The scattering amplitude
A(θ, φ) in the spherical wave contribution corresponds to the interaction strength
between the incoming wave and the target. As it has dimensions of length it is
known as the scattering length.

X-rays interact with the electron cloud around the atom, thus A(θ, φ) is gen-
erally dependent on the scattering angle θ but isotropic with respect to φ and is
called atomic form factor usually denoted by f(θ). For non-magnetic scattering
of neutrons the interaction takes place at the atomic nuclei, which can be assumed
as points in space with constant scattering length. In this case the usual symbol
is b and is simply called nuclear scattering length. In magnetic scattering neutrons
interact with unpaired electrons of the atoms, where the scattering length depends
on the scattering angle similar to the atomic form factor of X-rays and is denoted
by Fd(θ), called the magnetic form factor. [99] The differential cross section can
be described as the ratio of the current densities of the scattered beam through
a solid angle and the incoming beam. Using eq. 2.74 and eq. 2.75 to calculate
the incoming (Jin) and the scattered beam (Jsc) current densities, respectively, it
can be shown that the absolute square of the scattering amplitude constitutes the
differential cross section [108]

dσ

dΩ
=
Jsc
Jin

r2 = |A(θ, φ)|2. (2.77)

Finally, normalizing the differential cross section by the sample volume yields the
scattering intensity

I(θ, φ) =
1

V

dσ

dΩ
=

1

V
|A(θ, φ)|2. (2.78)

The scattering intensity has units of cm−1sr−1, where the unit of the solid angle
is usually omitted. [108]

It should be noted that in reality the measured intensity is usually slightly
different due to factors such as the pixel size, the detector efficiency etc. In most
cases I(θ, φ) is isotropic with respect to φ, however in magnetic scattering of
neutrons this is not the case (see section 2.3.4.6). To simplify the notation in the
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following A(Q), with Q = 4π sin(θ/2)/λ is used where the dependence on φ is not
needed and A(Q) otherwise.

To find expressions for the scattering amplitude it is useful to describe it in
the first Born approximation, i.e. in a single scattering approximation, as the
interaction of a plane wave with a potential according to

A(Q) =

∫
V

ρ(r)eiQrdV, (2.79)

where Q = k− k0 is the scattering vector, with the wave vectors of the incoming
and outgoing wave k0 and k, respectively. The spatial vector is denoted with r. [106]

The potential ρ(r) can take different forms depending on the length scale under
consideration. A point-like potential is usually used to describe the interaction of
waves with free electrons or atomic nuclei. For neutron scattering from atomic
nuclei the potential is the Fermi pseudopotential. [99] A spherically symmetric po-
tential is used for the charge distribution around atoms to derive atomic form
factors for X-ray scattering. [109] A periodic potential represents the arrangement
of atoms in a crystal [101,106] and an arbitrary shaped potential could be attributed
to a larger particle. [106] The integral in eq. 2.79 is the Fourier transform of the
respective potential field, therefore, by reconstructing the differential scattering
cross section information on the structure of the sample can be obtained on the
length scale of the incident wavelength.

2.3.3 Debye scattering equation

The Debye Scattering Equation (DSE), established already in 1915, [110] represents
a fundamental result of scattering theory of isotropic samples that shows nicely
the connection between the different areas of scattering that are discussed in the
following sections. The derivation is based on very few assumptions and the result
can be applied to scattering from ordered crystal structures, disordered or amorph-
ous structures, to derive the expressions used in Pair Distribution Function (PDF)
analysis and even for small-angle scattering.

The starting point for the derivation of the DSE is the amplitude of a scattered
wave from a structure, i.e. the sum of the scattered waves from the individual
scattering sources. As mentioned, this structure is not required to be ordered and
the scattering sources could be atoms in a crystal structure, molecules, volume
elements in a particle or entire particles. The differential cross section is the
absolute square of the amplitude, i.e. the product of A(Q) with its complex
conjugate A(Q)∗, giving

dσ

dΩ
(Q) = |A(Q)|2 = A(Q)A∗(Q) =

∫
Vm

∫
Vn

ρ(rm)ρ(rn)eiQrmndVndVm, (2.80)

where rmn = rm−rn is the distance vector between two scattering sources n and m
(fig. 2.10). The scattered intensity only depends on the relative positions of these
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Fig. 2.10 Sketch of the real space and vector geometry used for the Debye scattering
equation. The center of the sphere is the atom with position vector rn, the radius is the
distance between rn and rm. The angle α lies between the scattering vector Q and the
distance vector. The scattering angle is designated with θ and the azimuthal angle is φ.
The infinitesimal surface element dA is shown as a grey rectangle.

sources and not the absolute locations. The next assumption is that the structure
under consideration can take any orientation in space with equal probability, which
would for example be the case for a powder sample of crystallites or particles
dispersed in a solvent. For each pair of scatterers in the integral of eq. 2.80 one of
the scattering sources can be placed in the origin, thus for any orientation of the
distance vector in space the endpoint lies on the surface of a sphere with radius
rmn, the distance between the two scatterers. The angle α is formed between the
scattering vector Q and the distance vector. Therefore the dot product of the
vectors in eq. 2.80 can be replaced by Qrmn cosα and the spherical average for
all angles α, i.e. the surface integral, can be performed. With the infinitesimal
surface element dA = rdα · r sinαdφ = r2 sinαdφdα the surface average of the
exponential term is [111]

〈e(iQrmn cosα)〉 =
1

4πr2
mn

π∫
0

2π∫
0

e(iQrmn cosα)r2
mn sin(α)dφdα. (2.81)
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The integral over the azimuthal angle φ gives a factor of 2π that can be pulled out
of the integral together with r2

mn, leaving only a factor 1/2 in front. The integral
with respect to α is

π∫
0

e(iQrmn cosα) sinαdα =

[
e(iQrmn cosα)

iQrmn

]0

π

=
e(iQrmn) − e(−iQrmn)

iQrmn
, (2.82)

where the numerator on the right can be written as 2i sin(Qrmn) thus leaving

〈eiQrmn〉 =
sin(Qrmn)

Qrmn
. (2.83)

This general result is also important for derivation of the form factors of isotropic
bodies (section 2.3.4.8). Inserting this into eq. 2.80 gives

dσ

dΩ
(Q) = |A(Q)|2 =

∫
Vm

∫
Vn

ρ(rm)ρ(rn)
sin(Qrmn)

Qrmn
drndrm (2.84)

If the scattering centres are taken to be atoms at positions ri the integrals can
be replaced by sums and the scattering potentials by the atomic form factors fn.
Thus the differential cross section is the Debye equation in the original form

dσ

dΩ
(Q) =

∑
m

∑
n

fmfn
sin(Qrmn)

Qrmn
= N〈f 2〉+

∑
m6=n

fmfn
sin(Qrmn)

Qrmn
, (2.85)

where angle brackets denote the compositional average and N is the number of
atoms in the structure. Note that the scattered intensity is isotropic with respect
to the azimuthal angle φ (see fig. 2.9) and thus only depends on Q. The first con-
tribution in the equation on the right corresponds to the so-called self-scattering
from individual atoms, which produces a continuous background. If instead the
scatterers are particles in a small-angle scattering experiment the scattering po-
tentials correspond to the particle form factors and the first term is the scattering
from an individual particle, while the interference term on the right corresponds to
particle interactions and ultimately can be shown to relate to the structure factor.

If applied to a crystalline particle the calculated pattern is similar to that of a
powder sample due to the spherical average used during the derivation (fig. 2.11).
However, only one particle is used to calculate the entire pattern, which means that
size distribution effects are not considered. Another drawback is the computational
burden imposed by the sum over all atomic pairs. The advantage of this approach
is that all features of the calculated pattern are directly related to the input
structure without further assumptions and possible diffuse scattering arising from
disorder is included in the calculated pattern. As such the use of the Debye
scattering equation is a total scattering approach similar to PDF analysis. [111,112]

The particle shape and finite size are also implicitly considered, leading to realistic
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Fig. 2.11 Example of a powder diffraction pattern calculated with the Debye scattering
equation (eq. 2.85) for a spherical Fe3O4 particle with diameter of 4.2 nm (blue line).
The Bragg peaks are clearly visible as well as the broadening of peaks originating from
the particle size. The inset shows the log-log plot of the small-Q region where the typical
oscillations expected for a spherical particle are visible (see section 2.3.4). The self-scattering
contribution, 〈f2〉, is also drawn (red line). Here f is the atomic form factor not to be
confused with the particle form factor.

peak broadening that would need to be phenomenologically included in traditional
approaches to calculation of powder patterns.

In the low-Q region the small-angle scattering contribution is observed. As Q
gets smaller the atomic details are not resolved any more and the sum in eq. 2.85
can be replaced by an integral over volume elements, which means that for small
Q this term is equal to the self-scattering contribution of a single particle with
a scattering length density distribution. This is explored in more detail in the
following section.

2.3.4 Small-angle scattering

Small-Angle Scattering (SAS) is the technique that allows investigation of the Q-

range from approximately 1× 10−3 to 1 Å
−1

. In this thesis it is used to obtain
exact information on the particle size, the size distribution, the organic shell thick-
ness, interparticle interactions as well as the magnetization distribution within a
single particle. In the following, first the concept of scattering length densities
is discussed, then general theoretical considerations regarding the scattering from
isolated and dispersed particles are explored. The influence of polydispersity and
instrumental resolution on the scattering intensities are shown. The theoretical
background of SAS with polarized neutrons, which allows investigation of the
magnetization distribution, is given. Moreover, contrast variation is discussed
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that can be used to determine the particle composition. And finally the analytical
expressions for the particle form and structure factors are presented.

2.3.4.1 Scattering length densities

For small-angle scattering from particles the scattered wave results from a linear
superposition of waves scattered from the individual scatterers, i.e. atomic nuclei,
atomic electrons or spins in the structure. However, the atomic details can not
be resolved in the small-angle regime as the probed length scales are much larger.
Using the Bragg equation [113] according to

nλ = 2d sin
θ

2
, (2.86)

where n is the diffraction order, λ is the wavelength, d is the distance between
scatterers and θ is the scattering angle and the magnitude of the scattering vector
Q = 4π/λ sin θ/2 the following relation can be obtained

Q =
2π

d
. (2.87)

Thus both large wavelengths and small angles result in information on larger
length scales. [114]

Therefore, in the small-angle scattering regime the discrete scattering from in-
dividual atoms can be approximated by a continuous distribution of scattering
lengths, the Scattering Length Density (SLD), which is defined as

ρ =
1

Vm

N∑
j=1

fj, (2.88)

where Vm is the molecular volume obtained from the molecular weight M and the
bulk density of the material ρ according to

Vm =
M

ρNa

, (2.89)

with the Avogadro constant Na. The sum in eq. 2.88 is over the atoms present
in the molecular volume and fj is the form factor or scattering length associ-
ated with atom j. For X-rays the atomic form factor generally depends on the
scattering angle, however for small angles the approximation fj(Q) Zj can be
made, where Zj is the electron number of the atom j. [115] To obtain units of m−2

the scattering length density has to be multiplied by the classical electron radius
re = 2.81× 10−15 m. Since the neutron nuclear scattering lengths are independent
of the scattering angle the respective values can be used directly. For magnetic
neutron scattering lengths a similar small-angle approximation can be made as
for X-rays and the magnetic scattering lengths are assumed to be constants. The
scattering length densities of X-rays and neutrons are generally quite different
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Tab. 2.1 Calculated scattering length densities for selected compounds according to eq. 2.88
with tabulated values for the nuclear and X-ray (at 9299 eV) scattering lengths. Values are

given in 1× 10−6 Å
−2

.

Substance Fe3O4 γ-Fe2O3 Oleic acid toluene D-toluene
X-ray SLD 41.457 39.054 8.514 7.982 7.982
neutron SLD 6.934 6.655 0.078 0.939 5.662

thus both methods yield complementary information on the studied sample. In
tab. 2.1 SLDs are given for typical iron oxide materials and solvents for both types
of radiation.

2.3.4.2 Small-angle scattering from a particle

Recalling eq. 2.79 the scattering amplitude is given as the Fourier transform of
the scattering potential

A(Q) =

∫
V

ρ(r)eiQrdV. (2.90)

For a single particle this potential can be identified as the scattering length density.
With that A(Q) is called particle form factor amplitude denoted by F (Q), where
the particle form factor P (Q) is the absolute square of this quantity.

For particles in a solvent the form factor amplitude is scaled by the difference
between the solvent and the particle SLD. This quantity is called contrast and is
defined as ∆ρ = 〈ρparticle〉 − ρsolvent, where the angle brackets denote the volume
average. Since the observed intensity is proportional to the squared amplitude
only the absolute value of the contrast matters, a concept described by Babinet’s
principle. [106] For scattering from a spherical particle in a solvent the scattering
amplitude is the sum of the scattering amplitudes from the particle and the solvent
according to

F (Q) =

∫
Vp

ρpe
iQrdV +

∫
V−Vp

ρsolv.e
iQrdV

=

∫
Vp

ρpe
iQrdV +

∫
V

ρsolv.e
iQrdV −

∫
Vp

ρsolv.e
iQrdV

=

∫
Vp

(ρp − ρsolv.)eiQrdV +

∫
V

ρsolv.e
iQrdV

≈
∫
Vp

∆ρeiQrdV,

(2.91)

where Vp and V are the particle volume and the total volume respectively. This is
illustrated in fig. 2.12. The last term in the third line corresponds to a scattering
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volume that is typically large compared to the investigated length scales (i.e. in the
range of the sample volume) and thus leads only to scattering at very low angles
that are experimentally not observable. Therefore, this term can be ignored and
the scattering amplitude depends only on the contrast. [115] This dependence of the
scattering intensity on the contrast is exploited in the experimental technique of
contrast variation (see section 2.3.4.7). As can be seen from the tabulated neutron
SLDs in tab. 2.1 the contrast between solvent and particle changes drastically by
a simple deuteration of the solvent.

Fig. 2.12 Illustration of the concept of contrast and the resulting form factor amplitudes of
a particle in a solvent (eq. 2.91).

2.3.4.3 Scattering from dispersed particles

Considering a sample of particles dispersed in a solvent the scattering potential
of the sample can be described by an isotropic distribution of particle potentials
at positions rn within the sample. In this case the scattering amplitude of the
sample is obtained by replacing the integral of eq. 2.79 by a sum over the particle
scattering amplitudes in the sample, giving

A(Q)sample =
∑
n

F (Q)ne
iQrn . (2.92)

The differential cross section is then

dσ

dΩ
(Q) = |A(Q)sample|2 =

∑
n

∑
m

F (Q)nF (Q)me
iQrmn , (2.93)
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where rmn is the vector between particle m and n. This can be rewritten in a
similar form to the Debye scattering equation [116] (eq. 2.85)

dσ

dΩ
(Q) =

N∑
n

|Fn(Q)|2 +
∑
m 6=n

Fn(Q)Fm(Q)eiQrmn , (2.94)

where N is the number of particles in the sample, the first expression corres-
ponds to the self-scattering from one particle described by the absolute square
of the particle amplitude and the second expression relates to the interference
of scattered waves originating from different particles, i.e. it corresponds to the
spatial arrangement of particles in the sample. For a sufficiently large number of
particles, as is usually the case for dispersed particles in a solvent, the differen-
tial cross section contain all possible orientations of particles thus the observed
intensity is proportional to the orientational average. The first term can then be
interpreted as the particle form factor P (Q) times the number of particles and for
the second term the expression for the orientational average of the exponential
term derived in eq. 2.83 can be substituted. Further simplification of eq. 2.94 is
achieved by introduction of the structure factor S(Q). This allows the transform-
ation to [115]

dσ

dΩ
(Q) = NP (Q)S(Q), (2.95)

with

S(Q) = 1 +

∑
m6=n

Fn(Q)Fm(Q) sin(Qrmn)
Qrmn∑N

n |Fn(Q)|2
. (2.96)

For widely separated particles in the sample, i.e. low concentration of particles,
the structure factor approaches 1 and can be omitted. [117] If this is not the case
expressions have to be found to properly describe the particle interactions and
the resulting relative placements in the sample encoded in the particle-particle
distances rmn.

2.3.4.4 Polydispersity

Thus far only monodisperse particle systems were considered, if a size distribution
is present the particles have different form factors and the collective interactions
may also be different. A useful approximation valid for diluted samples is the
local monodisperse approximation, where it is assumed that a particle is always
surrounded by particles with the same size. [117] With that the size distribution can
be introduced by simply performing the integral over the particle sizes according
to

dσ

dΩ
(Q) = N

∫
D(R)P (Q, R)S(Q, R)dR, (2.97)

where D(R) is the function describing the size distribution and R is the particle
radius. Usually a lognormal size distribution is used, since particle sizes cannot
be negative and experimentally observed particle size spread generally obeys this

40



2.3 Scattering theory

Fig. 2.13 Simulated detector image for scattering of core-shell nanoparticles without (top)
and with (bottom) a lognormal size distribution. The plot on the right hand side shows
the radially averaged data, where the blue line corresponds to the monodisperse case and
the pink line to the polydisperse particles. The inset depicts the probability density function
used in the simulation with a parameter σ = 0.07 and a median particle size of 7.8 nm.

distribution law. The lognormal probability density function used in this thesis is
defined as

D(R,R0, σ) =
1√

2πσR
exp

[
− ln2(R/R0)

2σ2

]
, (2.98)

where σ is the shape parameter defined as the standard deviation on a logarithmic
scale, R and R0 are the particle radius and the median particle radius, respectively,
on the natural scale. [118] The mean of the distribution is obtained via Rm =
R0 exp(1/2σ2). The effect of polydispersity on the scattering intensity, namely
the smearing out of the minima, is illustrated in fig. 2.13.

2.3.4.5 Instrumental resolution

Finally resolution effects have to be considered which are introduced as a second
integral over the scattering vector Q, with the resolution function Qres. With that
the differential cross section of a small-angle scattering experiment reads

dσ

dΩ
(Q) =

∫∫
D(R)P (Q, R)S(Q, R)Qres(Q,Q0, σQ)dRdQ. (2.99)

41



Chapter 2 Theoretical background

Fig. 2.14 Simulated Q-resolution smearing by applying a 2D-Gaussian resolution function
to each data point. The left image shows a test detector image with two rings of intensity
2.0 (yellow) and all other values set to 1.0. The detector mask as used for KWS-1 is
superimposed. On the right the resolution function is applied leading to a smearing of the
edges of the sample image.

where Q0 denotes the average scattering vector at which the radiation is detected.
This expression is valid for both X-ray and neutron small-angle scattering. The in-
strumental resolution leads to smearing of the experimentally recorded scattering
intensity (fig. 2.14) thus it has to be accounted for to obtain reliable parameters of
the particle size distribution that also produces smearing (fig. 2.13). Three contri-
butions to the resolution smearing have to be considered, namely the wavelength
spread, the angular uncertainty and detector pixel size, all of which result in an
uncertainty in Q. [119,120]

Using the expression Q = 4π/λ sin θ/2 for the magnitude of the scattering vector
the partial derivatives with respect to the wavelength λ and the scattering angle
θ are

δQ

δλ
=
−4π

λ2
sin

θ

2
= −1

λ
Q (2.100)

δQ

δθ
=

2π

λ
cos

θ

2
. (2.101)

These express the uncertainties in the wavelength arising from the monochromator
or velocity selector and in the scattering angle originating from the collimation
and the detector pixel sizes. The full width at half maximum (FWHM) of the
resolution function is given by the sum of the FWHM of the components resulting
from angular and wavelength uncertainties according to

σ2 = σ2
θ + σ2

λ =

(
1

2
√

2 ln 2

δQ

δθ
dθ

)2

+

(
1

2
√

2 ln 2

δQ

δλ
dλ

)2

, (2.102)

thus yielding

σ =
1

2
√

2 ln 2

√(
2π

λ
cos

θ

2
dθ

)2

+

(
dλ

λ
Q

)2

. (2.103)
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With this the combined resolution function for radially averaged data is given
as [119]

Qres(Q,Q0, σ) =
1√
2πσ

exp

[
−1

2

(
(Q−Q0)2

σ2

)]
. (2.104)

2.3.4.6 Small-angle scattering of polarized neutrons (SANSPOL)

Fig. 2.15 Scattering geometry of the SANSPOL experiment. The wave vectors of the
incident and scattered beam are denoted by k0 and k, respectively. The scattering vector
Q = k0 − k forms an angle α with the applied field vector B. The Cartesian coordinate
system is chosen such that the unit vector ex points along the primary beam and the vector
ez lies parallel to the applied field direction. The image shows the simulated intensity
according to eq. 2.113 with the sin2 α dependence resulting in the characteristic shape.

Small-Angle Neutron Scattering with POLarized neutrons (SANSPOL) is used
to study the magnetic properties of nanoparticles. Neutron polarization, i.e. the
alignment of the neutron spin in a certain direction, can be achieved by multiple
methods, e.g. by absorption of the undesired polarization direction in 3He filters.
The scattering geometry is shown in fig. 2.15, where the applied field is perpendic-
ular to the neutron beam direction. Due to the large sample-to-detector distance
the x-component of the scattering vector Q can be ignored in a first approxim-
ation and the intensity as a function of the y and z components is recorded on
the detector (fig. 2.15). The angle between applied field and Q is denoted with α.
As mentioned briefly in section 2.3.2 the neutron magnetic dipole moment inter-
acts with the field produced by unpaired electrons of ions resulting in magnetic
scattering. In the case of small-angle neutron scattering on magnetic iron oxide
nanoparticles it is the dipole moment of the particles with which the neutrons in-
teract. The interaction potential between a neutron and an electron is composed
of a contribution due to the spin of the electron, BS(r), and due to its orbital
momentum, BL(r)

VM(r) = −µn · (BL(r) +BS(r)), (2.105)
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where µn is the magnetic moment of the neutron. It can be shown that this
potential field is related to the magnetization of the sample. In particular, only
the component M⊥ of the magnetization that is perpendicular to the scattering
vector enters the potential and thus leads to scattering of neutrons [121]

VM(Q) = −µn ·B(Q) = −µ0µnM⊥. (2.106)

The magnetic interaction between a neutron and an atom can be described by
a magnetic atomic form factor and similar to the nuclear small-angle scattering
a magnetic scattering length density, SLDm, is introduced. The magnetic form
factor is given by the Fourier transform of the spin density of the ion and is there-
fore dependent of the scattering angle, similar to X-ray scattering form factors. [121]

In small-angle scattering the approximation is made that thisQ-dependence is not
significant in the angle region of consideration and the normalized magnetic form
factor is assumed to be unity and thus the magnetic scattering length depends
only on the magnetic moment of the respective atom. Therefore, the magnetic
scattering length density can be calculated from the magnetic moment compon-
ents Mi,⊥ of atom i in units of the Bohr magneton µB, that are in the plane
perpendicular to the scattering vector, according to

ρm = SLDm = C
1

Vm

N∑
j=1

Mi,⊥, (2.107)

where the sum is over the atoms in the volume Vm and the constant C is given
by C = 1

2
gnr0 = 2.7× 10−5 Å, with the gyromagnetic factor of the neutron gn

and the classical electron radius r0. This scattering length density is experiment-
ally accessible and, if recorded at saturating fields, is related to the saturation
magnetization of a magnetic nanoparticle via

Msat =
SLDmµB
Cρ

Veff
Vt

, (2.108)

where µB is the Bohr magneton. The effective magnetic volume is given by Veff
and the total particle volume is Vt. The density of the material is denoted by
ρ. This results in saturation magnetization values in units of Am2/kg. Similar
to the case of nuclear neutron scattering a contrast ∆ρ = 〈ρparticle〉 − ρsurrounding
is used, where angle brackets denote the compositional average. Since usually
organic solvents are used the magnetic scattering length density of the solvent
can be assumed to be zero. Completely analogous to the nuclear scattering case
a magnetic particle form factor can be defined as the Fourier transform of the
magnetic scattering length density and is in the following symbolized by FM(Q).
In SANSPOL the spins of the neutrons are aligned either parallel or anti-parallel
to the applied field by the use of a combination of neutron polarizer and neutron
spin flipper. After the scattering process the neutron spin can be either unchanged
(non spin flip scattering, nsf) or flipped (spin flip scattering, sf) and the result-
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ing scattered intensity is given by the sum of nsf and sf. [122] For non-interacting
polydisperse particles in a saturating magnetic field the intensity is given as [123,124]

I+(Q) = |A++|2 + |A+−|2 (2.109)

I−(Q) = |A−−|2 + |A−+|2, (2.110)

where A denotes the scattering amplitude. If the neutron polarization is along the
scattering vector only coherent nuclear scattering gives rise to nsf and magnetic
scattering leads to spin flip scattering. Then the following relations can be set
up [123]

|A±±|2 = |FN(Q)|2 (2.111)

|A±∓|2 =
[
|FM(Q)|2 − 2P (1− 2ε±)FN(Q)FM(Q)

]
sin2 α, (2.112)

with α as the angle between Q and the applied field (see fig. 2.15). The flipper
efficiency is ε and is a value close to 1 for spin up and 0 for spin down, because
the polarizer produces a down polarized neutron beam that has to be flipped
for the spin up channel. The polarization is denoted by P and is defined as
P = (n+ − n−)/(n+ + n−), where n+ and n− are the numbers of neutrons with
spins parallel and anti-parallel to the applied field. [123] The sin2 α dependence
originates from the sinα dependence of the magnetic scattering amplitude, which
is strongest for perpendicular arrangement of the magnetic moment to the field
vector and decreases to zero for parallel alignment. Subtracting I+(Q) from I−(Q)
yields the nuclear magnetic interference term according to

I−(Q)− I+(Q) = 4P (1 + ε−)FN(Q)FM(Q) sin2 α. (2.113)

2.3.4.7 Contrast Variation

In general the treatment of contrast in small-angle scattering is simplified by the
use of basic functions according to

I(Q) = Is(Q) + ∆ρIcs(Q) + (∆ρ)2Ic(Q), (2.114)

where I(Q) is the total scattering intensity, Is(Q) corresponds to the scattering
from density fluctuations within the particles and Ic(Q) designates the scattering
from the particle shape. [125] The contrast is defined as the difference between
the average particle scattering length density (SLD) and the solvent SLD, ∆ρ =
ρ̄−ρsolv.. At Q = 0 only the term from the particle shape contributes and is given
by the square of the particle volume Vp (the volume inaccessible by the solvent, i.e.
core plus shell volume) times the number density n. The above equation becomes

I(0) = (∆ρ)2nV 2
p , (2.115)

thus showing the square dependence of I(0) on the contrast. I(0) can be de-
termined by application of the Guinier approximation to the small Q region (sec-
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Fig. 2.16 Simulated contrast variation for core-shell nanoparticles in a solvent with varying
SLDs. The core radius was taken as 78 Å, the shell thickness as 14 Å. A lognormal size
distribution was used with σ = 0.1. The core SLD and shell SLD values of 6.8× 10−6

and 0.078× 10−6 Å
−2

were used. The solvent SLDs correspond to deuterated toluene in
the solvent from 0 to 90 %, using the SLDs for toluene and deuterated toluene as given in
tab. 2.1. On the right the I(Q = 0) determined from Guinier fits to the low-Q region (black
lines on the left) are shown as a function of the solvent deuteration, i.e. the contrast. From
the matchpoint obtained as the minimum of a parabolic fit to the I(Q = 0) the input core
SLD was calculated according to eq. 2.121. The determined value matches well with the
input parameter. The inset on the right shows the non-zero value of I(0) at the match point
due to polydispersity.

tion 2.3.4.8). A plot of I(0) against the scattering length density contrast for
different solvent SLDs shows a minimum at the so-called match point where the
average SLD of the particles is equal to the solvent SLD at that point. For poly-
dispersity in the studied particles the size distribution has to be considered, i.e.
following Avdeev [125]

I(Q) = 〈Is(Q)〉+ 〈∆ρIcs(Q)〉+ 〈(∆ρ)2Ic(Q)〉, (2.116)

where 〈. . . 〉 denotes
∫
D(R,R0, σ) . . . dR. A modified contrast is defined as ∆ρmod. =

ρ̄e − ρsolv., where ρ̄e is an effective SLD of the particles. The modified scattering
length density can be calculated via

ρ̄e =
〈ρ̄V 2

p 〉
〈V 2

p 〉
. (2.117)
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Since Vp is given by Vp = Vc + Vs, where Vc and Vs are the inorganic core and the
organic shell volumes respectively eq. 2.117 is written as

ρ̄e =
〈ρ̄(Vc + Vs)

2〉
〈(Vc + Vs)2〉

. (2.118)

ρ̄ is given by (Vcρc + Vsρs)/(Vc + Vs) thus eq. 2.118 gives

ρ̄e =
〈(Vcρc + Vsρs)(Vp)〉

〈V 2
p 〉

, (2.119)

making use of the addition rule for integration the angle brackets in the numerator
on the write can be separated yielding

ρ̄e〈V 2
p 〉 = 〈VcVpρc〉+ 〈VsVpρs〉. (2.120)

Now it can be assumed that ρc and ρs are constant with respect to the particle
size and thus can be pulled out of the integrals. Finally solving for the core SLD
and with the definition of ρ̄e = ρmp, i.e. at the match point (mp) the effective
SLD is equal to the solvent SLD, gives

ρc =
ρmp〈V 2

p 〉 − ρs〈VsVp〉
〈VcVp〉

. (2.121)

Thus by experimentally determining the match point scattering length density the
SLD of the particle core can be obtained, provided that the organic shell thickness
as well as the shell SLD is known. It should be noted that in the presence of poly-
dispersity for core-shell nanoparticles full contrast matching cannot be achieved as
the volume averaged SLD for particles with different inorganic core sizes is slightly
different due to a different volume ratio between the organic shell and the inor-
ganic core. A simulated contrast variation experiment of polydisperse core-shell
nanoparticles in a solvent is shown in fig. 2.16, where this effect can be seen.

2.3.4.8 Particle form and structure factors

In this section analytical expressions for particle form and structure factors are
discussed. Including the solid sphere form factor and the Guinier approximation,
as well as the spherical core-shell model. The sticky hard sphere structure factor
is discussed as it provides a good description of the interactions observed for iron
oxide nanoparticles induced by a magnetic field.

Solid sphere form factor For a solid sphere with radius R the form factor is
obtained by the Fourier transform of the density distribution ρ(r), which in this
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case is equal to the density of the sphere inside the particle (r < R) and zero
outside (r > R). As stated before

F (Q) =

∫
V

∆ρ(r)eiQ·rdV. (2.122)

Using the definition of the contrast and assuming the scattering length density to
be constant for small-angle scattering the integral can be carried out in spherical
coordinates according to

F (Q) = ∆ρ

R∫
0

π∫
0

2π∫
0

eiQ·rr2dr sin θdθdφ. (2.123)

This integral with respect to θ and φ has been shown in the context of the de-
rivation of the Debye scattering equation (section 2.3.3). With that the above
equation reads

F (Q) = ∆ρ(2π)

R∫
0

2 sinQr

Qr
r2dr. (2.124)

The integral over the particle radius yields [114,117]

F (Q) = ∆ρ
4π

Q

[
sin(QR)−QR cos(QR)

Q2

]
= ∆ρ4πR3

[
sin(QR)−QR cos(QR)

(QR)3

]
= 3∆ρVparticle

[
sin(QR)−QR cos(QR)

(QR)3

]
.

(2.125)

Guinier approximation In the low-Q region the small-angle scattering curve can
be approximated by the so-called Guinier law

I(Q) = I(0)e−
R2
gQ

2

3 , (2.126)

where I(0) is the scattering intensity in forward direction, given by the square of
the total particle scattering length, i.e. I(0) = n(∆ρV )2, with the particle volume
V , the scattering contrast ∆ρ and the particle number density n. [106] The radius
of gyration of the particles is Rg and can be interpreted as the average distance of
parts of a body to its center of mass, thus it is generally not equal to the physical
particle radius. For homogeneous spherical particles the relation between radius of

gyration and physical radius is Rg =
√

3
5
R. In the so-called Guinier plot of ln I(Q)

vs. Q2 the Guinier law is linear and Rg can be determined from the slope. [126] The
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Guinier law is valid only in the region qRg < 1.3 and deviations of the data from
the linear behaviour in this representation indicate particle aggregation.

Spherical Core Shell Form Factor The core shell model is used to describe nuc-
lear neutron scattering from particles with a coating of different scattering length
density than the particle core or in magnetic scattering the difference between a
magnetic core and a magnetically different shell. The spherical core shell form
factor is constructed in a similar way as the solid sphere in a solvent (fig. 2.12)
except that the particle contribution is split into a contribution from the particle
core and one from the shell according to

F (Q)core−shell = F (Q)core + F (Q)shell + F (Q)solvent

=

∫
Vcore

ρce
iQrdV +

∫
Vshell

ρshelle
iQrdV +

∫
V−Vparticle

ρsolv.e
iQrdV

≈
∫

Vcore

ρce
iQrdV +

∫
Vshell

ρshelle
iQrdV −

∫
Vparticle

ρsolv.e
iQrdV,

(2.127)

where in the last step the same assumption as in section 2.3.4.2 was made that
the solvent scattering contribution is negligible in the observable angular range.
The general equation of the form factor for spherically symmetric body is given
as

F (Q) = 4π

∫
ρ(r)

sin(Qr)

Qr
r2dr. (2.128)

The contribution from the particle core is the solid sphere form factor derived
above for a particle in vacuum, i.e.

F (Q)core = 3ρcoreVcore

[
sin(QRc)−QRc cos(QRc)

(QRc)3

]
, (2.129)

where Rc is the particle core radius. The solvent contribution is∫
Vparticle

ρsolv.e
iQrdV = 3ρsolv.Vparticle

[
sin(QRt)−QRt cos(QRt)

(QRt)3

]
, (2.130)

where the total particle radius Rt is the sum of the particle core radius and the
shell thickness t, i.e. Rt = Rc + t. The shell contribution is given as

F (Q)shell = 4π

Rt∫
Rc

ρ(r)shell
sin(Qr)

Qr
r2dr, (2.131)
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which under the assumption of a constant ρshell yields

F (Q)shell = 3ρshellVparticle
sin(QRt)−QRt cos(QRt)

(QRt)3

− 3ρshellVcore
sin(QRc)−QRc cos(QRc)

(QRc)3
.

(2.132)

Together with the expressions for the solvent and the core contribution the core
shell form factor is [114]

F (Q)core−shell = 3(ρcore − ρshell)Vcore
sin(QRc)−QRc cos(QRc)

(QRc)3

+ 3(ρshell − ρsolvent)Vparticle
sin(QRt)−QRt cos(QRt)

(QRt)3
.

(2.133)

Sticky hard sphere structure factor The sticky hard sphere model can be de-
rived as a perturbative solution of the factorized Ornstein-Zernike equation or
from the Percus-Yevick approximation for a square well potential. It is suitable
to describe the interactions of sterically coated particles, i.e. short ranged at-
tractive potentials. The parameters that enter this model are the stickiness, the
volume fraction of dispersed particles, the perturbation parameter and the effect-
ive particle radius RS. The latter is defined as the sum of the particle radius Rt

and an effective additional radius. The perturbation parameter is usually set to
zero. The structure factor is given as

S(Q) =
1

A(Q)2 +B(Q)2
, (2.134)

where A(Q) and B(Q) are lengthy expressions that can be found in Menon et
al. [127]. A python implementation based on the code from SasView is given in
appendix D. A simulation is shown in fig. 2.17.

2.3.5 Wide-angle scattering

This area of scattering theory deals with the atomic arrangements of structures
and in this thesis is used to obtain information on the crystal structure of the
particle core, including structural defects and features such as vacancy ordering.
The first part of this section is concerned with general considerations regarding the
coherent scattering from ordered crystalline structures, with a focus on isotropic
powder samples. The second part deals with the real space analysis of the local
atomic structure with the pair distribution function method. Since in this thesis
only X-rays were used for both techniques the theory is developed for this kind
of radiation. However, in principle with some minor modifications it holds for
scattering of neutrons as well.
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Fig. 2.17 Simulated sticky hard sphere structure factor in 2D and 1D. The structure factor
is isotropic with respect to the scattering vector orientation and oscillates around 1 for large
Q. An effective radius RS = 50 Å was used together with a stickiness of 0.2 and a volume
fraction of 0.2. The perturbation parameter was set to zero.

2.3.5.1 Bragg’s law and Miller-indices

A condition for constructive interference of waves was found by W.H. and W.L.
Bragg. From simple geometric considerations they arrived at the expression given
in eq. 2.86 as

2d sin θ = nλ,

where d is the distance between crystal lattice planes, θ is the scattering half-angle,
λ is the wavelength and n is the order of the reflection. [113]

For every set of parallel planes in a crystal a vector can be constructed that
is perpendicular to these planes. To describe the orientation of the planes in the
crystal so-called Miller-indices are used. These are obtained from the intersections
of the planes with the coordinate system axis. E.g. in the cubic system the
intersection with the crystallographic a-axis gives 1/h, where h is the Miller-index.
Similar for the other axis such that a triple of integers hkl can be found that
describes the orientation of the set of planes. A Miller-index of 0 indicates that
the planes are parallel to the respective axis, i.e. the planes with indices (100),
(010) and (001) only intersect the a, b and c axis, respectively. In a cubic crystal
system with lattice parameter a the lattice plane distance d is connected to the
Miller-indices via

dhkl =
a√

h2 + k2 + l2
. (2.135)

A reciprocal crystal lattice can be constructed by setting up reciprocal lattice
vectors bi that are perpendicular to two real space lattice vectors. Points in this
lattice can be described by a vectorH = hb1+kb2+lb3, where h, k, l are the Miller-
indices. Thus each point in the reciprocal lattice corresponds to a set of parallel
planes in the real lattice. The length of a reciprocal lattice vector is |H| = 2π/dhkl,
i.e. inversely proportional to the lattice plane distance (fig. 2.18b). [109]
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2.3.5.2 Scattering from crystals

Fig. 2.18 a) Plot of the function I = sin2(Nx)/ sin2(x) appearing in eq. 2.139 for two
values of N . It is evident that intensity maxima occur at x = nπ and their intensity and
sharpness scales with N . b) Sketch of the scattering geometry illustrating the relationship
between the scattering vector Q and the reciprocal lattice vector Hhkl.

The basis of this discussion is again the definition of the scattering amplitude
given in eq. 2.79 according to

A(Q) =

∫
V

ρ(r)eiQrdV, (2.136)

where in diffraction by crystals the potential field ρ(r) can be represented as
localized potentials at the atomic sites and the scattering amplitude is given as the
superposition of the scattered waves from the individual potentials. The observed
interference pattern is due to the phase difference between waves scattered from
different points in space, i.e. atomic positions.

The following discussion is based mainly on the work from B.E. Warren. [109]

The scattering vector is Q = k − k0, where k0 and k are the wave vectors of the
incident and the outgoing waves, respectively. The integral of eq. 2.136 can be
replaced by a sum as the scattering potentials are assumed to be localized on the
discrete atomic positions, therefore

A(Q)crystal =
∑
n

fn(Q)eiQRn , (2.137)

where the scattering potentials were replaced by the atomic form factors for X-ray
scattering and Rn are the atomic positions in the crystal structure. The long
range order of the crystal structure allows a subdivision into smaller units that
are periodically arranged to return the total structure. These units are called unit
cells, which are defined by lattice parameters a, symmetry operations and atomic
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positions. The position of a unit cell in the crystal structure is described by the
vector ma = m1a1 +m2a2 +m3a3, where m1, m2 and m3 refer to the numbers of
unit cells along a1, a2 and a3, respectively. Thus the position of an atom relative
to the crystal origin is given by Rn = ma + rn, where rn denotes the position
of the atom n inside the unit cell. Thus the scattering amplitude of the wave
scattered by a periodic crystal structure is

A(Q)crystal =
∑
n

fn(Q)eiQ(ma+rn)

=
∑
n

fn(Q)eiQrn

N1−1∑
m1=0

eiQ(m1a1)

N2−1∑
m2=0

eiQ(m2a2)

N3−1∑
m3=0

eiQ(m3a3).

(2.138)

The first sum is called structure factor, since it contains the structural information,
i.e. the atomic positions in the unit cells. To complete the confusion of terms and
symbols from small-angle scattering and wide-angle scattering it is commonly
denoted by F (Q). The other sums relate to the phase shifts originating from the
placement of the unit cells. The scattered intensity is proportional to the absolute
square of the scattering amplitude giving

dσ

dΩ
∝ |A(Q)crystal|2 = |F (Q)|2 sin2(Q ·N1a1)

sin2(Qa1)

sin2(Q ·N2a2)

sin2(Qa2)

sin2(Q ·N3a3)

sin2(Qa3)
,

(2.139)
where the fact was used that the sums in eq. 2.138 can be represented as geo-
metric series. Ni is the number of unit cells in direction êi. There are two major
observations to be made:

1. Eq. 2.139 has maxima whereQ·ai is equal to integer multiples of π. It follows
that a maximum in the differential cross section is observed only when this
is satisfied for all three fractions in eq. 2.139 simultaneously which leads to
the three Laue equations

Q · a1 = hπ (2.140)

Q · a2 = kπ (2.141)

Q · a3 = lπ, (2.142)

where the h, k and l are integers. It can be shown that this is equivalent to
the vector representation of the Bragg condition for scattering that states
that for constructive interference to occur the scattering vector Q has to
be parallel and equal in length to a reciprocal lattice vector Hhkl, defined
by the reciprocal coordinates h, k and l and with length |Hhkl| = 2π/dhkl,
where dhkl is the spacing of hkl-planes (see section 2.3.5.1 and fig. 2.18b).
Thus

Q = Hhkl, (2.143)
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from which follows

|Q| = |Hhkl| →
4π

λ
sin

θ

2
=

2π

dhkl
,←→ λ = 2dhkl sin

θ

2
(2.144)

where the right equation is Bragg’s law as given in eq. 2.86.

2. The sharpness of the maxima of eq. 2.139 is influenced by the crystal di-
mensions Ni. If the crystal dimensions are large, eq. 2.139 is essentially 0
everywhere, except for the reciprocal lattice points, defined by Hhkl. The
width of a peak produced by a function sin2(Nπx)/ sin2(πx) gets larger as N
decreases, thus for smaller crystals broader peaks are observed (fig. 2.18a).
This fact can be used to determine crystallite sizes from powder diffraction
patterns.

2.3.5.3 Powder diffraction

A powder sample consists of a large number of crystallites that are typically ran-
domly oriented. The consequence of this is that the Bragg condition (eq. 2.144)
is satisfied simultaneously for all sets of lattice planes. Additionally, Bragg peaks
are not observed as points in reciprocal space as is the case for single crystal dif-
fraction but produce rings at the scattering angle θ for the respective reflection
due to the presence of crystals in different rotations with respect to the incident
wave. Integration of these rings yields the powder diffraction pattern, where the
scattered intensity is depicted as function of the diffraction angle θ or as function
of the length of the scattering vector Q, respectively. A number of parameters
can be extracted from this pattern. From the position of peaks the lattice para-
meters can be obtained (through eqs. 2.135 and 2.144, if the structure is already
known), the width of peaks contains information on the particle size, lattice strain
and lattice defects, such as antiphase boundaries. The relative intensity of peaks
is directly related to the structure factor (eq. 2.138), which can be used to per-
form structure refinement with e.g. the Rietveld method. [128] Another approach to
study the structural properties through powder diffraction data is the method of
whole powder pattern modelling (WPPM) introduced by Scardi et al. [129] Here the
diffraction peaks are modeled using the Fourier coefficients of the different con-
tributions to the peak profile, such as an instrumental component and the peak
profile resulting from the finite size. Other contributions can be included as well
if the respective Fourier coefficients are known. In general a peak is described by

Ihkl(Q,Qhkl) = k

∞∫
0

Chkle
πi(Q−Qhkl)dL, (2.145)

where Chkl are the aforementioned Fourier coefficients, L is a distance in real space
along [hkl], Qhkl is the peak position and k stands for constant terms such as the
square of the structure factor.
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Peak shapes In the context of nanoparticle research the dependence of the peak
shape and width on the particle size deserves special attention, as it provides
another method to determine the particle size in addition to the more commonly
used methods of SAXS and TEM. The sizes obtained from powder diffraction
patterns relate to the coherence length in a direction perpendicular to the set
of lattice planes of the corresponding diffraction peak. Therefore, it is generally
possible to obtain different sizes for particles from different peaks if the coherence
lengths in a crystal change for different crystallographic directions. To obtain sizes

Fig. 2.19 Comparison of the peak shape obtained from a powder pattern simulation using
the Debye scattering equation for a spherical particle to a theoretical peak shape based on
eq. 2.149. The small satellite peaks due to the sphere shape as well as the peak broadening
due to the finite size of the particle are well described by the profile function.

from the peak width of diffraction patterns the most often employed approach is
the Scherrer equation [130], that was first derived for cubic crystallites and relates
the full width at half maximum (FWHM) in radians to the cube edge length L
according to

B(θ) =
Kλ

L cos θ/2
, (2.146)

where λ is the wavelength and θ is the scattering angle. K is a constant related to
the crystallite shape. Different values can be found depending on the approxima-
tions made during the derivation. [131] It can be shown that the correct value of K
for spherical particles is 1.107. [131] However, in practice often values of 0.94 or 1.0
are used for spherical particles with cubic unit cells. [132] This shows that there is
a degree of arbitrariness involved in determining sizes with the Scherrer equation.
Although efforts are made to modify the Scherrer equation for use on nanoma-
terials [132] the application of the equation as given in eq. 2.146 is discouraged for
use in determining absolute values of nanoparticle sizes and should only be used
to obtain relative sizes from peak widths to gain insight into possible systematic
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changes of coherent sizes. [133,134] As pointed out by Scardi et al. [135] a more ad-
equate description of the peak shape produced by small crystallites is achieved by
an expression derived by Patterson [131]. He showed that the peak shape can be
directly obtained from a Fourier transform of the particle profile function or com-
mon volume function. This function appears again as the autocorrelation function
of the shape function in pair distribution function analysis. The profile function
is given as the intersection volume, Vi between the particle with diameter D and
an identical copy shifted by a distance x along the scattering vector normalized
to the particle volume V

AP (x,D) =
Vi(x,D)

V (D)
=

π
12

(D − x)2(2D + x)
4
3
π(D/2)3

= 1− 3

2

x

D
+

1

2

( x
D

)3

. (2.147)

This profile function can be directly used in eq. 2.145. Alternatively for this
peak shape there exists also an analytical expression obtained from the Fourier
transform of eq. 2.147 according to

I(Q,D) =

D∫
0

AP (x,D)eixQdx, (2.148)

which leads to

I(Q,D) =
(sin ∆−∆ cos ∆)2 + ∆2 sin2 ∆

∆4

−(sin Ξ− Ξ cos Ξ)2 + Ξ2 sin2 Ξ

Ξ4
,

(2.149)

where

∆ =
D

2
(Q−QB) (2.150)

Ξ =
D

2
(Q+QB), (2.151)

with the peak position of the Bragg peak, QB. [131,135] The use of this peak profile
for the determination of particle sizes removes the arbitrariness introduced by the
choice of peak profiles used to derive the FWHM and the value for K in eq. 2.146.
Comparison of a theoretical curve calculated with eq. 2.149 to a simulated powder
diffraction peak using the Debye scattering equation (fig. 2.19) confirms the the-
oretical considerations and shows that this peak shape is well suited to estimate
sizes from nanoparticles. Peak profiles for different particle shapes are shown in
Leonardi et al. [136]

Instrumental Resolution The instrumental resolution of a powder diffracto-
meter can be determined by the use of a standard sample, e.g. LaB6 or CeO2, that
would theoretically produce infinitely sharp diffraction peaks, which get smeared
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out due to a convolution of the real peak shape with the instrumental resolution
profile. This leads to peak broadening in the measured diffraction patterns, which
can be significant for laboratory X-ray sources and need to be properly considered.
However, for synchrotron sources this peak broadening contribution is usually or-
ders of magnitude smaller than the peak broadening observed from the finite size
of nanoparticles and can in most cases be neglected. For the symmetric peaks from
standard samples a description by a Voigt function is adequate, which is given by
the convolution of a Gaussian (G) and a Lorentzian (L) peak profile function

V (x, σ, γ) =

∫
G(τ)L(x− τ)dτ (2.152)

G(x, σ) =
e−x

2/(2σ2)

σ
√

2π
(2.153)

L(x, γ) =
γ

π(x2 + γ2)
, (2.154)

where σ is the standard deviation of the Gaussian contribution and γ corresponds
to the width of the Lorentzian function. The obtained peak shape from the stand-
ard sample is then convoluted with the size broadening component. [133] For inclu-
sion in the whole powder pattern modeling approach (eq. 2.145) the normalized
Fourier transform is useful, given by [137]

AIP(σ, η, L) = (1− k) exp

(
−π2σ2L2

ln 2

)
+ k exp (−2πσL), (2.155)

where

k =
1

1 + [1/(π ln 2)1/2(1− η)/η]
. (2.156)

The parameter η describes the relative contributions of the Gaussian and the
Lorentzian functions to the peak shape and σ relates to the peak broadening due
to the instrumental resolution.

2.3.5.4 Pair distribution function

The powder Pair Distribution Function (PDF) can be calculated from an exper-
imental powder diffraction pattern and basically shows the frequency of inter-
atomic distances as a function of the distances. It provides access to the local
structure and is especially useful in amorphous, disordered crystalline or nanos-
ized materials. [138–140]

To calculate the PDF, first the experimental pattern has to be normalized to
the average atomic form factor and corrected for a possibly present background.
It should be noted that the background is strictly only the contribution of e.g.
the sample holder or other instrumentation related factors, which should also be
experimentally determined. Other background contributions from e.g. diffuse
scattering due to structural disorder must not be subtracted as the entire point
of PDF analysis is the inclusion of these effects in the total scattering approach.
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Fig. 2.20 At the top a calculated powder diffraction pattern is shown from a spherical iron
oxide nanoparticle with diameter of 42 Å. The small-angle scattering is highlighted in blue.
Below the calculated reduced pair distribution function G(r) is shown. If the SAS region
is included in the calculation a background due to the particle shape function is visible. If
Qmin is larger than the SAS region this contribution is not visible. At the particle diameter
the reduced PDF converges to zero.

The equations used for PDF analysis can be derived from the Debye scattering
equation as given in eq. 2.85 as it represents the scattering from a not necessarily
periodic structure and therefore inherently also considers diffuse scattering and
contributions originating from disorder. The basis of pair distribution function
analysis is the total scattering function S(Q), which is defined through the coherent
intensity, Ic, obtained from the Debye scattering equation or from an experiment
after appropriate corrections, as

S(Q) = 1 +
Ic(Q)−N〈f 2〉

N〈f〉2
= 1 +

1

N〈f〉2
∑
m 6=n

fnfm
sin(Qrmn)

Qrmn
, (2.157)

where angle brackets denote the compositional averages of the atomic form factors
and N is the number of scatterers. The function S(Q) represents a normalized
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function of the scattered intensity in units of scattering per atom, which oscillates
around and asymptotically approaches 1 for large Q. The corrections needed
for experimental data have to be either known or determined by an ad hoc fitting
procedure, as done in the program PDFgetX3. [141] A derived function F (Q), called
reduced structure function, is introduced that emphasizes the intensity in the high
Q region and oscillates around zero according to

F (Q) = Q [S(Q)− 1] =
1

N〈f〉2
∑
m 6=n

fnfm
sin(Qrmn)

rmn
. (2.158)

The reduced structure function , F (Q), is Fourier transformed to yield a function
of the interatomic distances, F (r). Due to the sin function in the numerator F (Q)
is an odd function and therefore the Fourier transform is given by a sine transform

F (r) =
2

π

∞∫
0

F (Q) sin(Qr)dQ =
R(r)

r
= 4πrρ(r), (2.159)

where R(r) is the radial distribution function, that is defined as

b∫
a

R(r)dr = Nab, (2.160)

i.e. the integral over a certain interatomic distance interval returns the number
of atomic pairs that are separated by this distance. The function ρ(r) is the
atom-pair density function. [111]

If a PDF is calculated from simulated data that extends to Qmin = 0 a back-
ground due to the small-angle scattering (SAS) is visible (fig. 2.20). In real meas-
urements Qmin is usually larger than the Q-range of SAS, thus this contribution is
usually not found and is introduced as a correction factor in the definition of the
reduced pair distribution function G(r). For G(r) calculated from experimental
data Qmax is also some finite value thus

G(r) =
2

π

Qmax∫
Qmin

F (Q) sin(Qr)dQ = 4πrρ(r)− L(r), (2.161)

where the function L(r) describes the small-angle scattering contribution. For an
infinite sample with uniform number density, ρ0, the contribution L(r) is equal to
4πrρ0. Nanoparticles can of course not be regarded as infinite and the small-angle
contribution depends on the autocorrelation function of the shape function, γ0(r),
which is given in eq. 2.147 for a sphere. In this case

G(r) = 4πrρ(r)− 4πrρ0γ0(r) = 4πr[ρ(r)− ρ0γ0(r)]. (2.162)
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This leads to the behaviour observed in fig. 2.20, where for small r the initial
slope is observed according to −4πrρ0 and for large r the function approaches zero
where the maximum size of the particle is reached. Applying the approximation
ρ(r) = γ0(r)ρbulk(r), i.e. assuming that the particle is a piece cut from a bulk
structure, which is the approach utilized in PDFgui, [142] G(r) takes the form

G(r) = 4πrγ0(r)[ρbulk(r)− ρ0] = 4πrγ0(r)ρ0[g(r)− 1], (2.163)

where g(r) = ρ(r)bulk/ρ0 is the pair distribution function, which approaches the
average number density at large r and is zero for r smaller than the smallest in-
teratomic distance in the structure. As such g(r) is closely related to the sample
structure, however, G(r) is more commonly used as it can be directly computed
from the corrected experimental data. Additionally, uncertainties in the measured
data are constant in r for G(r), which allows for more straight forward fitting pro-
cedures. [111] It should be noted that G(r) is also frequently called pair distribution
function.

Finally, artefacts originating from finite limits for Q have to be considered. A
finite value for the upper Q limit results in termination ripples of the Fourier
transform. This effect can be reduced by application of a damping function.
However, it is generally advised to measure up to large enough values of Q where
the intensity naturally approaches zero and the resulting termination ripples are
not as strong. Furthermore, the high Q peaks contain important information
about the local atomic arrangement. Termination ripples occur also due to low
statistics in the high Q-range. This results in the need for synchrotron radiation
to obtain reliable PDFs. [111]

60



2.4 Transmission electron microscopy

2.4 Transmission electron microscopy

Fig. 2.21 Schematic ray diagram illustrating the image formation in a TEM. The rays from
the sample are focused by the lens such that they converge to points on the image plane,
thus forming the image. All parallel rays are focused in the back focal plane, leading to a
diffraction pattern. The arrows at the bottom refer to the distance between the object and
the lens (do), the distance between the lense and the image (di) and the distance between
the lens and the back focal plane (f). Modified after Williams et al. [143] and Hawkes [144].

In this section the basic principles of transmission electron microscopy (TEM)
and high resolution TEM (HRTEM) are presented. This discussion is based on
the work of D.B. Williams and C.B. Carter [143] unless otherwise indicated.

The basic image formation process in transmission electron microscopy (TEM)
is sketched in fig. 2.21. An electron beam is generated by the electron gun, where
electrons are accelerated. In the condenser system comprised of usually two or
more condenser lenses the convergence of the electron beam can be adjusted. For
lower magnification typically a parallel beam is used to illuminate a large area
of the sample, while for higher magnification a larger convergence is used thus
illuminating a smaller area. Rays emerging from the sample are focused by the
lens to points on the image plane, thereby forming the image. Magnetic lenses are
used in TEM to focus the electrons. In addition, all parallel rays, i.e. rays with
the same scattering angle are focused in points on the back focal plane (BFP),
which creates a diffraction pattern. The object to lens (do), lens to BFP (f) and
lens to image (di) distances are combined in the thin-lens equation

1

f
=

1

do
+

1

di
. (2.164)
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The magnification of a convex lens is given as [145]

M =
di
do

=
f

do − f
=
di − f
f

, (2.165)

thus higher magnification can be reached by either changing the focal length f of
the lens or by changing the distance between the object and the lens do. Usually
additional lenses are used after the objective lens. By adjusting the strength of
these lenses either the image is projected on the screen, which is called imaging
mode or the diffraction pattern is projected on the screen, which is called diffrac-
tion mode. In imaging mode the objective aperture can be used to select the beams
that contribute to the image formation. If only the direct beam is used a so-called
bright field (BF) image is formed. If instead only diffracted beams are used a dark
field (DF) image is produced. In TEM and high resolution TEM (HRTEM) of
crystalline samples usually no objective aperture is used thus allowing both the
direct and the diffracted beams to form the image.

In transmission electron microscopy the observed image contrast is due to the
differences in the scattering of the electron beam by different parts of the sample.
Two types of contrast may be distinguished, namely mass-thickness contrast and
diffraction contrast. If more than one diffracted electron beam is allowed to con-
tribute to the image formation via opening of the objective aperture also phase
contrast can be observed, that is due to the interference of the diffracted elec-
tron waves. Phase contrast can be viewed as a type of diffraction contrast. In
the experimental work for this thesis only the multiple beam mode was used thus
mass-thickness, diffraction and phase contrast contribute to the image.

For non-crystalline materials generally mass-thickness contrast is most import-
ant as the periodic arrangement of atoms is lacking that produces significant dif-
fraction or phase contrast. [145] This type of contrast can be understood by in-
coherent elastic scattering of electrons from the nuclei in the sample. Elements
with a higher atomic number Z have larger cross section for elastic scattering
and thus will scatter the electrons more strongly. With the use of an objective
aperture centered around the primary beam this leads to the appearance of darker
areas, where more high-Z elements are present. Similar for thicker areas of the
sample more elastic scattering will take place and therefore again these regions
appear darker. The two effects combined are called mass-thickness contrast. In
the samples used in this thesis mass-thickness contrast results in the visibility of
the inorganic particle cores against the amorphous carbon background. However,
the organic shell is invisible as it also mainly contains carbon and is thin com-
pared to the particle core thus no contrast contribution from the shell can be
seen. For crystalline nanoparticle samples mass-thickness contrast would suggest
that all particles show similar contrast to the surrounding amorphous substrate.
However, in experimental images it can clearly be seen that some particles appear
darker than others. This can be explained by the additional diffraction contrast
due to a certain orientation of particles i.e. certain orientation of crystal lattice
planes, where Bragg diffraction of the electron beam is stronger and thus the
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particle appears darker. [145] Due to the mass-thickness and diffraction contrast in
low magnification TEM the inorganic particle size can be determined by measuring
the diameter of the dark areas of the recorded image.

Despite the common association of diffraction or phase contrast with high resol-
ution TEM (HRTEM) it can also be observed in lower magnification TEM images
if a large enough objective aperture is used and the image is recorded in defocus.
Phase contrast is the origin of so-called lattice fringes, which can only occur via the
interference of electron beams. If the Bragg condition for a set of planes is fulfilled
a peak will form in the back focal plane. If the condition is satisfied for multiple
lattice planes a diffraction pattern forms with several spots (fig. 2.21). The in-
terference of a diffracted beam with the direct beam leads to lattice fringes, wich
are periodically varying intensities in the detected image. The distance between
intensity maxima of the lattice fringes is equal to the lattice plane spacing of the
lattice planes that resulted in the diffracted beam. However, defocus as well as
the sample thickness affect the position of the fringes thus they generally do not
coincide with the real lattice planes. [146] The periodicity and the orientation can
still provide information on the crystal structure of the specimen. Multiple lattice
fringes originating from the simultaneous fulfillment of the Bragg condition for
several sets of lattice planes can also cross each other leading to bright and dark
spots in the recorded TEM image that can in some case correspond to individual
atomic columns. However, the real position of the atoms can usually only be
inferred from image simulations. [147]
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2.5 Mössbauer spectroscopy

Mössbauer spectroscopy is based on a recoilless nuclear resonant absorption of
γ-quanta by isotopes. [148] The Mössbauer effect, named after the discoverer R.
L. Mössbauer, can be used to analyse the chemical, structural, magnetic and
thermodynamic properties of materials. In this work Mössbauer spectroscopy is
used to distinguish magnetite from maghemite and quantify the phase fractions
via determination of the Fe2+ contribution to the spectrum.

An important process for this technique is the radioactive decay of nuclides that
produce daughter nuclei. These nuclei are in an excited state that reach a stable
ground state by emitting γ-rays. The γ-rays in turn can excite ground-state nuclei
of the same isotopes. This effect is called nuclear resonant absorption. However,
two processes prevent this mechanism from taking place. The emission of the
γ-ray results in a recoil of the emitting nucleus thus lowering the γ-ray energy.
Secondly the thermal motion of nuclei produces a Doppler effect via the movement
of emitting and absorbing nuclei towards and away from each other. This leads
to a broadening of the energy distribution of the emitted γ-rays. A solution to
this problem was proposed by R. L. Mössbauer. Here, the emitting nucleus is
placed within a crystal, where the chemical bond energy prevents the recoil of this
individual nucleus and instead the crystal recoils either as a whole or by excitation
of phonons. Since the mass of the crystal is much larger than that of the isolated
nucleus both the recoil energy and the Doppler broadening become very small. If
no phonons are excited the emission of γ-rays can be viewed as recoil-free. The
fraction of γ-ray emission occuring without recoil depends on the temperature and
the specific transition energy of the source material. For 57Fe this fraction is 0.91
at low temperatures. [149]

The intensity of γ-rays is measured after transmission through the sample. If
nuclei of the same isotope as in the source are present in the sample, resonant
absorption occurs and the detected γ-ray intensity is reduced. Introducing also
a relative motion of the source and the sample allows a fine-tuning of the γ-ray
energy by the Doppler effect. Thus, recording the transmission as a function of
the relative velocity yields an absorption spectrum. [148]

To study Fe-containing samples the 57Co source is especially suited as it de-
cays to 57Fe in excited nuclear states. By de-excitation to the ground-state these
produce γ-rays with the right energy to excite iron nuclei in the sample. The
above described utilization of the Doppler effect can be used to study hyperfine
interactions of the iron nuclei. Most important for this work are the isomer shift,
the quadrupole splitting and the magnetic splitting of energy levels (fig. 2.22).
The isomer shift is a consequence of the Coulomb interactions between electrons
and the nuclear charges. Thus the different charge densities at the core of Fe2+

and Fe3+ cations lead to a difference in the observed isomer shift. An isomer
shift is observed for both cations as the excited 57Fe has a slightly larger nucleus
and therefore the emitted γ-ray has a slightly different energy than the absorption
energies of both cations. Quadrupole splitting is a result of the local crystallo-
graphic environment, leading to a doublet in the transmission spectrum caused by
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Fig. 2.22 Nuclear energy levels of 57Fe. The effects of isomer shift, quadrupole splitting
and magnetic splitting are shown from left to right. The arrows indicate the transition due
to absorption of γ-rays. Figure adapted from Blundell. [53]

the splitting of the excited energy level. Magnetic splitting is caused by a local
magnetic field where the ground state is split into a doublet and the excited state
into a quadruplet thereby resulting in six absorption lines, i.e. a sextet. [53]

In the iron oxide samples of this work these effects are superimposed, i.e. there
are sextets corresponding to the magnetic hyperfine splitting of both iron cations.
These sextets are isomer shifted due to the different charge densities at the nucleus.
Additionally, the hyperfine magnetic fields are lower for Fe2+ ions. [150] Different
local environments such as octahedral or tetrahedral iron positions lead to a dif-
ference in the hyperfine fields as well, however for maghemite and magnetite this
difference is very small. [151] Quadrupole splitting leads to a slight asymmetry in
the sextets, however again for maghemite and magnetite this effect is small. [151] It
should also be noted that the magnetic splitting in nanoparticles is only observed
below the blocking temperature, as above this temperature the superparamagnetic
relaxation smears out the observed spectrum leading to a doublet spectrum. [152]

Considering these effects in a fit to the measured Mössbauer spectra an estimate
of the magnetite content can be made on the basis of the relative contribution of
the Fe2+ sextet to the total spectrum.

65



Chapter 2 Theoretical background

2.6 Iron oxides

Fig. 2.23 a) Unit cells for the most important iron oxides in the context of iron oxide
nanoparticles. With increasing ratio of oxygen-to-iron, the structure changes from FeO
(wüstite) over Fe3O4 (magnetite) to γ-Fe2O3 (maghemite). Through this transition the
oxygen lattice is almost not affected but the overall symmetry changes due to different
placement of the iron cations. Additionally, the ratio of Fe2+ to Fe3+ decreases from 0.5
to 0 with increasing oxygen-to-iron ratio. In the maghemite structure no Fe2+ cations are
left and instead vacancies are formed mainly on the octahedral sites (indicated as white
wedges on the atom balls). The symmetry of maghemite can be further reduced by vacancy
ordering leading to a tetragonal space group. b) Calculated powder diffraction patterns
from the ideal crystal structure models as given in the text. Patterns were calculated using
Vesta. [153] The different lattice parameters of the iron oxides lead to a shift in the peak
positions. Here Q = 4π/λ sin θ was used.

The three most important iron oxides to be considered for this work are wüstite
(Fe1−xO), magnetite (Fe3O4) and maghemite (γ-Fe2O3). This is due to the fact
that during the particle synthesis via the thermal decomposition of an iron pre-
cursor in a boiling organic solvent, oxidation in the sense of an increasing oxygen-
to-iron ratio of particles takes place from wüstite over magnetite to maghemite
(fig. 2.23). [46] This is possible, since the crystal structures of all three iron oxides
are rather similar and can be transformed into each other by diffusion of Fe cations
and adjustments in the oxygen distances and inter-layer spacing. [154] Despite their
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Tab. 2.2 Ideal crystal structure data of wüstite in space group Fm3̄m. The multiplicity of
the sites is given under ”mult.”, the site occupancy is abbreviated by ”occ.”.

label mult. x/a y/a z/a occ. ion

Fe(oct) 4 0.0 0.0 0.0 1.0 Fe2+

O 4 0.5 0.5 0.5 1.0 O2−

similarities these iron oxides exhibit significant differences in structural features
as well as their magnetic properties, which will be analysed in this chapter.

2.6.1 Wüstite

The iron oxide wüstite (FeO) crystallizes in the cubic space group Fm3̄m with a
lattice parameter of 4.28 to 4.31 Å (fig. 2.23 and tab. 2.2). [154] This is slightly larger
than half of the lattice parameter of maghemite and magnetite. The structure is
constructed of cubic close-packed octahedrally coordinated iron atoms and can be
described by two face-centred lattices, one for Fe2+ ions and one for O2−. Trans-
formation to magnetite is relatively easy since only minor rearrangements in the
iron sub-lattice are necessary, which lead to a slight reduction in the oxygen dis-
tances as well as the layer spacing. The magnetic structure of wüstite is that of an
antiferromagnet with alternating orientation of magnetic moments between (111)
planes that cancel each other. The Néel temperature lies in the range of 203 to
211 K. [154] Above this temperature wüstite is paramagnetic. Due to this low trans-
ition temperature it is possible to measure an exchange bias effect when cooling
iron oxide particles containing both wüstite and magnetite from room temperat-
ure to temperatures below TN in an applied field. [155] However, the exchange bias
effect observed for a nanoparticle sample alone is not enough to prove the presence
of wüstite in the structure. Further insights may be provided by X-ray powder
diffraction as the Bragg peak positions of this phase are very different compared
to the ones obtained from maghemite and magnetite (fig. 2.23b)). Additionally,
Mössbauer spectroscopy can provide information on the presence of wüstite (see
section 2.5).

2.6.2 Magnetite and maghemite

Magnetite crystallizes in the inverse spinel structure with a cubic unit cell with
space group Fd3̄m and lattice constant a = 0.839 67(3) nm that contains 8 formula
units, i.e. 32 oxygen atoms, 8 Fe2+ and 16 Fe3+ ions. [165] The oxygen anions form
a cubic close packing lattice, where iron cations are placed in the interstices. Half
of the trivalent iron ions are placed in oxygen tetrahedra (A-sites). The other
half and the 8 divalent ions are distributed randomly within oxygen octahedra (B-
sites). A-site ions have 4 nearest neighbours on A-positions and 12 on B-positions.
B-site ions have 6 nearest neighbours on A-positions and 6 on B-positions. The
crystal structure data is given in tab. 2.4.
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Tab. 2.3 Material properties of magnetite and maghemite. a is the cubic lattice parameter,
TC the ferrimagnetic Curie temperature, K1 the magnetocrystalline anisotropy constant.
The exchange constants are JAA, JAB and JBB, where the subscript indicates the involved
lattice sites. Msat. is the saturation magnetization. The critical diameter below which the
single domain state is favourable is given as Dsd.

Parameter magnetite maghemite

a 0.839 67(3) nm [156] 0.834 57 nm [157]

TC 856 K [158] 893 to 918 K [159,160]

K1 (nano) −27 kJ [64] −27 to −19 kJ (15 nm) [84,150]

K1 (bulk) −13.5 kJ (above TV ) [64] −4.7 kJ [161]

JAA/kB −1.3 K [61]; −18 K [154] −21.0 K [60]

JBB/kB 7.3 K [61]; 3 K [154] −8.6 K [60]

JAB/kB −33.9 K [61]; −28 K [154] −28.0 K [60]

Msat. (0 K) 96 Am2/kg [162] 87 Am2/kg [162]

Msat. (RT) 86 Am2/kg [163] 76 Am2/kg [164]

Dsd 50 to 128 nm [82,83] 40 to 166 nm [27,82]

ρ 5.2 g/cm3 4.9 g/cm3 [159]

Tab. 2.4 Ideal crystal structure data of magnetite in space group Fd3̄m. The multiplicity
of the sites is given under ”mult.”, the site occupancy is abbreviated by ”occ.”. Tetrahedral
and octahedral iron positions are labelled with Fe(tet) and Fe(oct), respectively.

label mult. x/a y/a z/a occ. ion

Fe(tet) 8 0.125 0.125 0.125 1.0 Fe3+

Fe(oct) 16 0.5 0.5 0.5 1.0 Fe2+/Fe3+

O 32 0.25 0.25 0.25 1.0 O2−
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The octahedral iron cations interact via double-exchange (between Fe2+ and
Fe3+, see section 2.1.2.4) and super-exchange (between Fe3+ and Fe3+, see sec-
tion 2.1.2.3) leading to an effective nearest neighbour exchange constant of JBB/kB =
7.3 K, i.e. ferromagnetic alignment. The exchange constant for the tetrahedral
sub-lattice is negative with JAA/kB = −1.3 K thus favouring antiparallel alignment
of the spins. However, the super-exchange interaction between octahedral and tet-
rahedral iron is strongly antiferromagnetic as well (JAB/kB = −33.9 K) giving rise
to antiparallel alignment of the sublattices. This acts against the antiferromag-
netic alignment between A−site ions resulting in a ferromagnetic structure in the
tetrahedral sub-lattice. Hence, the magnetic structure of magnetite in the ground
state can be described by two sub-lattices that are antiferromagnetically aligned.
In the ideal structure the magnetic moments of the trivalent iron cations in each
sub-lattice cancel each other exactly and the net magnetic moment of the unit cell
results only from the Fe2+ ions. The ferrimagnetic Curie temperature is given
as ≈ 870 K. [166] At 120 K magnetite undergoes a phase transition called Verwey
transition, that is in a first approximation due to charge ordering of the delocal-
ized electron from the Fe2+ ions. [167,168] Below this transition magnetite becomes
electrically insulating and the crystal symmetry changes to a monoclinic one. [168]

In a M(T ) measurement this transition is also characterized by a sudden drop in
magnetization upon cooling the sample. This distinct feature is taken as evidence
for the presence of magnetite in a sample, however, the opposite is not necessarily
true as it was observed that the Verwey transition may be suppressed or at least
shifted towards low temperatures in nanomaterials. [50,64,169] For bulk magnetite
above the Verwey transition temperature TV the magnetocrystalline anisotropy
constant is negative thus resulting in an easy and hard axis along 〈111〉 and 〈100〉,
respectively. Below TV a structural change leads to a uniaxial anisotropy with the
easy axis along 〈001〉. However, as noted above this case may not be realized even
at 5 K for nanoparticles due to their low TV . [64]

Magnetite forms solid solutions with the isostructural maghemite. The latter
differs in the structure in that it contains vacancies on octahedral sites and all
other cation sites are occupied only by trivalent iron. The transition between
both structures is gradual, which makes a distinction of both phases even harder.
Maghemite is usually found to have slightly smaller lattice parameters. On the
basis of this observation Cervellino et al. [157] proposed a law to determine the cubic
lattice parameter from the particle composition and size according to

a = [(1− x)amaghemite + xamagnetite]

(
1− Ω

D

)
, (2.166)

where the term in square brackets is Vegard’s law with amaghemite and amagnetite the
lattice parameters of maghemite and magnetite, respectively, given in tab. 2.3. The
correction factor in the round brackets accounts for the influence of the particle
size on the lattice parameter. The parameter Ω = 4γ

3B
= −2.05(21)× 10−3 nm

is related to the bulk modulus B and the surface tension γ. However, this law
does not account for possible deviations from the cubic symmetry as discussed
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Tab. 2.5 Ideal crystal structure data of maghemite in the various observed space groups
related to different degrees of vacancy ordering. The multiplicity of the sites is given under
”mult.”, the site occupancy is abbreviated by ”occ.”. Tetrahedral and octahedral iron
positions are labelled with Fe(tet) and Fe(oct), respectively.

label mult. x/a y/a z/a occ.

Fd-3m
Fe1(tet.) 8 0.125 0.125 0.125 1.0
Fe2(oct.) 16 0.5 0.5 0.5 0.83
O1 32 0.25 0.25 0.25 1

P4332
Fe1(tet.) 8 0.25 1.0 0.625 1.0
Fe2(oct.) 4 0.875 0.625 0.25 0.33
Fe3(oct.) 12 0.375 0.375 0.50 1.0
O1 8 0.125 0.875 0.50 1
O2 24 0.375 0.125 0.0 1

P43212
Fe1(tet.) 8 0.75 1.0 0.125 1.0
Fe2(oct.) 4 0.375 0.625 0.75 0.33
Fe3(oct.) 4 0.125 0.875 0.25 1.0
Fe4(oct.) 8 0.375 0.875 1.0 1.0
O1 8 0.125 0.375 0.5 1
O2 8 0.375 0.125 0.0 1
O3 8 0.125 0.875 0.0 1
O4 8 0.375 0.625 1.0 1

P41212
Fe1(tet.) 8 0.750 1.000 0.0420 1.0
Fe2(tet.) 8 0.750 1.000 0.7083 1.0
Fe3(tet.) 8 0.750 1.000 0.3750 1.0
Fe4(oct.) 4 0.625 0.625 0.0000 1.0
Fe5(oct.) 8 0.125 0.875 0.0830 1.0
Fe6(oct.) 8 0.375 0.875 1.0000 1.0
Fe7(oct.) 8 0.375 0.875 0.3330 1.0
Fe8(oct.) 8 0.375 0.875 0.6670 0.0
Fe9(oct.) 4 0.375 0.625 0.2500 1.0
Fe10(oct.) 8 0.625 0.375 0.0830 1.0
O1 8 0.125 0.375 0.1667 1
O2 8 0.125 0.375 0.5000 1
O3 8 0.125 0.375 0.8330 1
O4 8 0.375 0.125 0.0000 1
O5 8 0.375 0.125 0.3330 1
O6 8 0.375 0.125 0.6660 1
O7 8 0.125 0.875 0.0000 1
O8 8 0.125 0.875 0.3330 1
O9 8 0.125 0.875 0.6670 1
O10 8 0.375 0.625 0.0000 1
O11 8 0.375 0.625 0.3330 1
O12 8 0.375 0.625 0.6670 1
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Fig. 2.24 Simulated powder diffraction patterns of the maghemite structures with different
degrees of vacancy ordering but same total occupancy of the iron positions. The vacancy
ordering leads to a decrease in symmetry from cubic space groups to tetragonal with an
increase in small superstructure peaks between the major inverse spinel peaks.

in the following. For iron oxide nanoparticles containing a mixture of maghemite
and magnetite it was found that powder diffraction patterns and PDFs are best
described by a non-stoichiometric intermediate composition that conforms to the
model of a gradual transition from a more oxidized surface region towards a more
iron rich core region without a distinct separation. [50]

Different space groups for maghemite are reported in the literature, which can
be attributed to different degrees of vacancy ordering. Kelm et al. [170] constructed
a continuous group-subgroup relation between disordered cubic maghemite/mag-
netite with the space group Fd3̄m down to the tetragonal structure with symmetry
P41212. Group theoretical considerations leave only the group-subgroup chain of
Fd3̄m - F4132 - P4332 (P4132) - P43212 (P41212) - P41212 (P43212). [170] The
last step involves a tripling of the unit cell along the c direction to describe the
periodicity of the vacancy ordering. In parentheses are the enantiomorphic space
groups, that differ only in the handedness of the screw axis. The cubic struc-
ture with space group Fd3̄m contains only two independent iron positions, for
tetrahedral and octahedral iron. The octahedral iron position is then split into
an increasing number of independent positions due to the decrease in symmetry.
Simulated powder diffraction patterns for the different space groups are shown
in fig. 2.24, where the emergence of the vacancy ordering superstructure peaks is
clearly visible. Space groups P4332 and P43212 do not differ much if the ideal
crystal structures are considered, however the latter provides more degrees of free-
dom in the atomic positions due to the decrease in symmetry from the cubic to
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the tetragonal system. Generally, vacancies seem to form preferably on the oc-
tahedral lattice sites. [157] This may be explained by considering the oxidation of
Fe2+ ions to Fe3+ during the transition from magnetite to maghemite via the
migration of mobile electrons away from this site. The Fe2+ ions are only found
on the octahedral iron sites due to their larger ionic radius. The remaining Fe3+

leads to a charge imbalance that can be compensated by removing the excess
Fe3+. Finally, this leaves a vacancy on the octahedral site behind. [171] In reality
the vacancy formation process is likely more complex as frequently a significant
amount of vacancies is also found on tetrahedral lattice sites. [157]

The magnetic structure of maghemite can be described by two antiferromag-
netically aligned iron sublattices, in which the magnetic moments are ferromag-
netically aligned. Contrary to the magnetite structure only Fe3+ ions are present,
however still ferrimagnetic ordering can be observed due to the vacancies on the
octahedral lattice sites. The bulk saturation magnetization is lower than for mag-
netite. Moreover, there are no magnetic transitions known for the maghemite
structure. The exchange constants between iron ions are given in tab. 2.3. Va-
cancy ordering has been found to increase the measured saturation magnetization
of otherwise defect free maghemite nanoparticles up to the expected bulk values. [33]

Additionally, in the same work increasing exchange bias effects with decreasing
particle size were attributed to increasing vacancy disorder leading to a higher
degree of spin frustration.

2.6.3 Antiphase boundaries

Antiphase boundaries (APBs) occur in many crystal structures and are commonly
associated with metallic systems that exhibit disorder-oder transitions, such as
the Cu3Au alloy, [109,172–175] but can exist in all ordered phases. [176] These kinds
of defects have also been detected in Fe3O4-thin films and were the subject of
numerous works. [177–183] More recently it was recognized that APBs might be
responsible in large parts for the anomalous magnetic properties of iron oxide
nanoparticles. [43,46,47,84,158]

The formation of APBs in iron oxide nanoparticles is intimately linked to the
synthesis method. All of the samples considered in this work were produced by the
thermal decomposition of an iron oleate complex. In this synthesis the particles
start out with wüstite composition, which gets oxidized to magnetite and finally
maghemite. Dark-field transmission electron microscopy shows the nucleation of
the spinel-phase on several locations at the particle surface. As the oxidation of
the particle proceeds these structural and compositional subdomains will eventu-
ally meet, where at the interface the iron sublattices might not line up, but are
displaced by some fraction of the unit cell parameter. [46] The oxygen sublattice,
however, remains rather constant throughout this oxidation process, since all three
iron oxide phases (wüstite, magnetite and maghemite) share in principle the same
oxygen sublattice configuration differing only slightly in the oxygen-oxygen dis-
tances (fig. 2.23). Some configurations of iron sublattice displacements thus formed
are especially stable as first principle calculations have found. [184] These are two

72



2.6 Iron oxides

Fig. 2.25 Maghemite/magnetite cubic unit cell containing an 1/4a[110] APB indicated with
the grey plane. At the APB the octahedral chains that are perpendicular to the APB plane
are displaced leading to a 180° angle between octahedral iron atoms. This arrangement is
also drawn on the top right.

kinds of displacements on {110} planes, i.e. the cube diagonals, namely the trans-
lations 1/4a[110] (APB-I) and 1/4a[110] + 1/4a[11̄0] (APB-II). APB-I, depicted
in fig. 2.25 has the lowest calculated formation energy of 102 mJ/m2. This is due
to the small lattice distortions introduced by this shift, which are only present
between octahedral and tetrahedral Fe sites at the interface. For APB-II the
formation energy is much larger with 954 mJ/m2, thus the focus of this work will
lie on type I APBs as they will be much more likely. Electron microscopy studies
of magnetite thin films also seem to indicate the prevalence of type I APBs. [185,186]

As can be seen from fig. 2.25 indicated by the green line in the 3D-structure as
well as in the top view on the upper right the APB leads to disruption in the
edge-sharing octahedral chains giving rise to a corner sharing configuration at the
interface that is associated with an increase in the FeB − O − FeB bond angle
from 90° to 180°. As discussed in section 2.1.2.3 according to the Goodenough-
Kanamori rules this will lead to a change in the superexchange interaction from
ferromagnetic to antiferromagnetic alignment of the magnetic moments. The an-
tiferromagnetic exchange interaction has been experimentally confirmed by mag-
netotransport measurements across a single antiphase boundary in a magnetite
thin film. [187] This abrupt change in the magnetic ordering will have an impact on
the spin structure and subsequently the macroscopic magnetic properties of nano-
particles containing these defects. The precise nature of this impact as well as the
macroscopic implications are the subject of this work. Regarding the morphology
of APBs in materials W.L. Bragg made several observations and considerations
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already in 1940 in Cu3Au alloys. [188] Calling the type of order on one side of an
APB A and on the other side B he proposed that a region of order A that reaches
into region B will become smaller as the atoms in A now have more neighbours in
B and thus at the interface they rearrange into B-type order. This process should
proceed until the APB is flat, i.e. no more regions of A extend into regions of
B but both types of order coexist with a planar boundary between them. Addi-
tionally A-type regions surrounded entirely by B-type ordering will be converted
into B-regions and thus vanish. After equilibrium is reached he supposed that the
generated arrangement of APBs should be very stable. Eerenstein et al. [189] found
that annealing of magnetite thin films leads to coarsening of the APB-domain
sizes, suggesting the thermally activated migration of APBs. McKenna et al. [184]

report straight APBs in Fe3O4 thin films. This migration is explained by the
diffusion of iron cations through interstitial positions of the oxygen sublattice. In
iron oxide nanoparticles the APBs are found primarily close to the particle center,
but not entirely planar. [45,47] Considering the Bragg-model of APB development,
an APB close to the surface would mean a smaller region of A close to the sur-
face surrounded by region B. This would probably lead to the conversion of the
A region to B. Additionally, close to the surface the structure is likely distor-
ted and depleted of iron compared to the core possibly allowing faster diffusion
and rearrangement of the Fe-lattice. It has to be noted, however, that the few
published HRTEM images showing particles with APBs cannot provide statistical
information on the placement and quantity of APBs in nanoparticles.
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Instruments and experimental
techniques

3.1 Small-angle scattering

3.1.1 SAXS: GALAXI

Fig. 3.1 Scheme of GALAXI, adapted from [190]. The X-ray beam generated by the liquid
anode source is collimated by the slits labeled S1, S2 and S3. After passing through the
sample capillary in the sample chamber the X-rays are recorded by the 2D position sensitive
detector. The position of the detector can be adjusted between 0.8 and 3.5 m to collect
signal in different Q-ranges. The beam path is fully evacuated.

Small-angle X-ray scattering (SAXS) experiments were performed on GALAXI
(Gallium anode low-angle X-ray instrument) at Jülich Centre for Neutron Sci-
ence (JCNS), Forschungszentrum Jülich GmbH [190]. GALAXI is operated with
a GaInSn liquid anode producing Ga Kα radiation with 9243 eV photon energy
(wavelength: λ = 0.134 nm), monochromatized by parabolic Montel-type optics.
The wavelength spread for GALAXI of ∆λ/λ ≈ 3× 10−3 (Ga Kα1 and Ga Kα2

are not resolved) is assumed to be small enough and is not considered in the data
analysis. [119] The beam is collimated by two slits indicated with S1 and S2 in figure
3.1. The third slit labeled S3 in the figure is used to reduce the background. The
data was recorded on a Pilatus 1M 2D position sensitive detector. The isotropic
detector images were radially averaged using the fit2D software. [191] The scattering
cross section per unit volume (1/V

(
dσ
dΩ

)
) is obtained after correction for the empty

cell and the solvent scattering contributions and normalization with the reference
material FEP 1400 Å. The experiments were conducted at two detector distances
(3535 and 835 mm) to cover the entire Q-range (4× 10−2 to 8 nm−1) available
on the system. For the experiment borosilicate glass capillaries from Hilgenberg
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GmbH with wall thickness of 0.05 mm and internal diameter of 2.0 mm [192] were
filled with liquid nanoparticle dispersions and then sealed by melting the ends.
This ensures no leakage of the sample in the evacuated sample chamber.

3.1.2 SANS: KWS-1

Fig. 3.2 Top view of the experimental setup for small-angle neutron scattering experiments
at KWS-1. [193] The neutron flight path is symbolized by the dashed blue line. The magnetic
field is applied at the sample position perpendicular to the neutron beam. The area detector
is placed in an evacuated tube.

Small-angle neutron scattering with polarized neutrons (SANSPOL) was per-
formed on KWS-1 operated by the Jülich Centre for Neutron Science at Heinz
Maier-Leibnitz Zentrum (Garching, Germany) [193,194]. A sketch of the instrument
is shown in fig. 3.2. Neutrons produced in the core of FRM II research reactor are
moderated in the cold source and reach the instrument via a system of neutron
guides. The mechanical velocity selector is used to select the mean wavelength
of the neutrons with a spread of around 10 %. In this work neutrons with a
wavelength of 4.9 Å were used. The transmission polarizer is used giving a spin
down polarization of P ≈ 90.5 %. To obtain the opposite direction in neutron
polarization, i.e. spin up, the radio-frequency spin flipper is used, with the flipper
efficiency of ε = 0.998. The collimation distances can be adjusted, but in this work
for resolution purposes it was fixed at 8 m. At the sample position a horizontal
magnetic field was applied perpendicular to the neutron beam. The scattered
neutrons are detected by a 2D detector consisting of 3He tubes placed inside the
evacuated detector tube, which can be moved thereby adjusting the Q-range. For
this work detector positions of 2.3 m and 8 m were used. The recorded data was
normalized to absolute intensities by measuring a standard sample and the empty
beam. Correction for the solvent contribution and the empty cell scattering was
also performed. Sector averages in detector plane parallel and perpendicular to
the applied field were performed for each polarization state in 10°-sectors to im-
prove the statistics and to obtain the purely nuclear scattering contribution and
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the nuclear-magnetic interference terms (see section 2.3.4). Data reduction and
fitting was carried out in QtiKWS and QtiSAS [195].

Diluted solutions of spherical nanoparticles were measured at 5 contrast con-
ditions. As described in section 2.3.4.7 contrast variation experiments allow to
study the nuclear inorganic core - organic shell structure of the nanoparticles used
in this work. In addition, polarized neutrons serve to examine the magnetic struc-
ture from a simultaneous fit of the nuclear magnetic interference terms obtained
from the different contrasts. Differences between the determined nuclear and mag-
netic particle sizes allow conclusions on the possible presence and thickness of a
magnetically dead or depleted surface layer.

Different scattering contrasts were achieved by varying the isotope composition
of the solvent by mixing regular toluene with deuterated one. Five solvent com-
positions were produced with 0, 25, 35, 50 and 80 vol. % of deuterated toluene.
Quartz cuvettes (Hellma GmbH, Germany) of 1 mm thickness were filled with
300 µl of the samples.

3.2 X-Ray diffraction and PDF analysis

3.2.1 PSI: MS-X04SA

Synchrotron X-ray scattering experiments on dried nanoparticle powder of sample
OC15 were performed at the Material Science Beamline MS-X04SA of the Swiss
Light Source at the Paul Scherrer Institut (Villigen, Switzerland). At this beamline
an energy resolution of ∆E/E = 1.4× 10−4 can be achieved with a flux of more
than 1013 photons/s (at 12 keV). [196] Particles in solution and as a powder were
measured. For the powder sample the original nanoparticle dispersion was dried
yielding a sticky powder due to the oleic acid coating. This powder was transferred
into a glass capillary with 0.9 mm interior diameter, which was inserted into a brass
fitting and loaded into the sample cassette. For the measurement the sample was
picked up by the sample changer robot and inserted horizontally in the sample
space. During the measurement the capillary was rotated around its long axis.
After collection of the data with a 1D-detector the instrument related corrections
were applied immediately. Additional measurements of the empty capillary, the
empty beam and the solvent contribution for the liquid samples were also recorded.
The NIST standard LaB6 was used to determine the X-ray wavelength. After
normalization and correction of the obtained powder pattern the pair distribution

function (PDF) was calculated with PDFgetX3 [141] using Qmin = 0.8 Å
−1

, Qmax =

18 Å
−1

, rpoly = 1.3 and a composition mixture of iron oxide and oleic acid. Analysis
of the PDF was carried out with PDFGUI [142]. Further analysis of the powder
diffraction patterns was performed with GSAS-II [197] and with Python scripts
written for this thesis.
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3.2.2 APS: 11-ID-B

Additional synchrotron X-ray diffraction experiments were conducted at the 11-
ID-B beamline of the Advanced Photon Source (APS) at the Argonne national
laboratory (Lemont, IL, USA). For these experiments samples were shipped and
the measurements were done by the beamline staff. The energy resolution of this
beamline is ∆E/E = 1× 10−3 with a flux of 2.3× 1012 photons/s (at 58.6 keV).
Highly concentrated nanoparticle dispersions were generated inside Kapton capil-
laries by filling the capillaries and letting the solvent evaporate. This process was
repeated until the capillary was sufficiently filled. Afterwards the capillaries were
sealed with a two component glue and placed in a cartridge that was returned
to the beamline staff. After the data acquisition was completed the 2D-detector
data for all samples including a CeO2 reference and the empty capillary was sent.
Background subtraction, calibration and integration was performed with GSAS-
II [197] by using the empty capillary and the reference sample data. The PDFs were

generated with PDFgetX3 [141] using Qmin = 0.8 Å
−1

, Qmax = 23 Å
−1

, rpoly = 1.3
and a composition mixture of iron oxide and oleic acid. Analysis of this data was
carried out with the software mentioned in the previous section.

3.3 Elemental analysis (ICP-OES)

Inductively coupled plasma optical emission spectroscopy (ICP-OES) was carried
out at the central Institute for Engineering, Electronics and Analytics (ZEA-3),
Forschungszentrum Jülich GmbH. Samples used for magnetometry measurements
were microwave digested in HNO3 and H2O2 and then analyzed. Co, Fe, Ni, Gd,
Cr and Al were considered for determination of the total weight present in the
sample. The basic principle of ICP-OES is the spectral decomposition of light
emitted by the atoms and ions that were excited by a plasma. The wavelengths
of the emitted light are used to identify the elements. From the intensity of the
emitted radiation the absolute quantities of the elements can be determined. [198]

3.4 SQUID magnetometry

Magnetometry was performed using a superconducting quantum interference device
(SQUID) magnetometer (MPMS XL, Quantum Design). The reciprocating sample
option (RSO) was used in this work. With this method the sample is moved in
an oscillatory fashion leading to an induction current inside the pickup coils (fig.
3.3). The winding of the pickup coils ensures that a current is only induced for
changes in the magnetic field and not for uniform fields or linear gradients. To
convert these small changes in the magnetic flux to voltages a SQUID ring with a
Josephson junction is used. [199] The magnetic moment of the sample can then be
obtained by measuring the time and sample position dependent SQUID voltage.
This technique allows the measurement of magnetic signals with a sensitivity of
10−11 Am2. [200]
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3.4 SQUID magnetometry

Fig. 3.3 Scheme of the experimental setup and the measurement process using a rf SQUID.
Adapted from the technical data sheet for the MPMS-XL system. [200]

For the experiments performed for this work the nanoparticle dispersions were
diluted in molten paraffin at temperatures of about 50 °C to 0.1 vol. % of the
original dispersion to ensure negligible inter-particle interactions. After cooling
of the nanoparticle-paraffin mixture pieces were extracted with ceramic tools to
avoid contamination with ferromagnetic materials. The sample pieces were fixed
onto a plastic straw with scotch tape that was inserted into the sample space (fig.
3.3). After the measurements the sample was removed from the straw and handed
over to ZEA-3 for the elemental analysis with ICP-OES (see section 3.3).

Magnetization vs. temperature M(T ) curves were measured by first cooling the
sample without an external magnetic field to 10 K and subsequent recording of the
magnetization during heating to room temperature with a magnetic field applied.
This measurement yields the zero-field cooled (ZFC) curve. After reaching room
temperature the magnetization is recorded but upon cooling while keeping the
applied field and the sweep rate at the same values as for the ZFC curve. This
yields the field-cooled (FC) curve. The so-called aged zero-field cooled (aZFC)
measurements were also performed by halting the ZFC process roughly at 50 K,
i.e. below the maximum of the ZFC curve, for 104 s, then resumed to cool down and
finally proceeding the measurement as for a regular ZFC curve. Comparison of the
aZFC and ZFC curves allows conclusions on the presence of a collective superspin
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glass. [87] Magnetization vs. field M(H) curves were obtained by sweeping over a
field range of −1 to 1 T at constant temperatures. M(H) curves after FC were
recorded by applying various fields (0, 0.1 and 1 T) during the cooling of the
sample prior to the measurement.

3.5 Mössbauer spectroscopy

Mössbauer spectra were recorded at 4.3 K in transmission geometry and constant
acceleration mode using a 57Co(Rh) source in a liquid helium bath cryostat. As
discussed in section 2.5 this source produces γ-rays in an energy range that is espe-
cially suited to study iron containing samples. The particle dispersions were dried
and the obtained powders were mixed with chemically inert boron nitride to ob-
tain a homogeneous sample of sufficient volume. The Mössbauer spectra presented
in this work were recorded by Dr. Joachim Landers from the Faculty of Physics
and Center for Nanointegration Duisburg-Essen (CENIDE) at the University of
Duisburg-Essen.

3.6 TEM/ HRTEM

Transmission electron microscopy (TEM) and high resolution TEM (HRTEM) was
carried out using a FEI Tecnai G2 F20 field emission transmission electron micro-
scope, operated at 200 kV at the Ernst Ruska-Centre (ER-C), Forschungszentrum
Jülich GmbH [201] with the help of Tanvi Bathnagar-Schöffmann (JCNS-2, FZJ).
The sample was prepared by drop casting onto a carbon layer supported by a Cu-
grid. Image simulations to verify the contrast were performed with the QSTEM
software package [202]. Particle size measurements and image manipulations, such
as the generation of fast Fourier transformed images and the inverse Fourier trans-
formation after masking of Bragg peaks were performed with ImageJ [203]. Addi-
tional TEM measurements were performed at JCNS-4 (at MLZ in Garching) with
the help of Dr. Marie-Sousai Appavou using a JEOL JEM-FS2200 field emission
electron microscope, operated at 200 kV. Again the nanoparticle dispersion was
drop casted onto a carbon coated Cu-grid and the experiment was performed after
the solvent evaporated.

3.7 Simulation programs

3.7.1 Monte Carlo program

3.7.1.1 Program structure

The structure of the Monte Carlo program used and developed for this work is
sketched in fig. 3.4. The program is based on a previous implementation by O.
Petracic and X. Sun. While the previous implementation written in C was purely
procedural, in this work an object oriented approach was followed. A shell script
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Fig. 3.4 Scheme for the structure of the Monte Carlo program developed in this work. The
entry point is a shell script containing the input parameters, which in turn calls python
scripts to generate the particle crystal structure as well as JSON files used as inputs in the
main Monte Carlo program written in C++.

containing all input parameters can be executed from the command line. This
script then calls Python scripts to setup the nanoparticle structure as well as
JSON files that are both read into the main program written in C++.

Templates for the shell scripts have been developed for spin structure, mag-
netization vs. temperature and magnetization vs. field simulations. The parts
written in bash calling the subroutines as well as the main program can be left
unchanged. For different simulations only changes in the input parameters are
necessary. For spin structure simulations these parameters include the output
directory, the number of particle configurations to be simulated and a CIF (Crys-
tallographic Information File) for the crystal structure. Since the program is
developed for iron oxide nanoparticles additional parameters are the occupancies
of iron positions and the lattice parameters. These are also specified in the CIF
itself. However it was found to be more convenient to change these values in the
shell script and keeping the CIF untouched.

The shape of the particle can be specified as well as the size and its orientation.
Very important for this work is the possibility of generating an APB through the
center of the particle. Further simulation parameters are the applied magnetic
field, the temperature, the number of Monte Carlo steps, the sigma parameter of
the Gaussian trial move and the mode of handling the dipole interaction calcula-
tions (brute force method, macrocell method or not considered). Upon execution
of the shell script the crystal structure is generated by a separate Python script,
where the unit cell parameters are parsed from the CIF and the unit cell is re-
peated a number of times to generate a 3D structure. Iron atoms are removed
to obtain the specified occupancy at the iron positions and the shape is gener-
ated by removing all atoms outside of a volume defined by the shape and the size
parameter.

The APB is optionally introduced prior to the shape cutting by shifting one
half of the crystal along the [110] direction. The resulting structure is stored
in a text file containing the x/a, y/b and z/c fractional coordinates, where a,
b and c are the lattice parameters. Additionally, the position, i.e. octahedral
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Fig. 3.5 Scheme for the basic structure of the crystal and atom objects used in the simulation
program. The crystal instance contains a list of Atom objects at fixed memory locations.
The atom objects in turn contain pointers to the other atom objects in the crystal to speed
up calculations. A selection of the most important class methods is also shown.

or tetrahedral is encoded with 0 for the former and 1 for the latter. The fifth
column has values of 1 if the atom is located at the APB and is subject to the
modified exchange interactions, otherwise a 0 is entered. The last three columns
specify the unit cell the atom belongs to. The JSON generator script sets up text
files containing the simulation parameters in JSON format that can be read by
the main program via the JSON for Modern C++ (version 3.9.1) JSON-parser
developed by Niels Lohmann [204]. The results of the simulations are written into
new text files, with file names containing the most important parameters as well
as all input parameters as comments within the text. In the case of spin structure
simulations an average structure is calculated from the individual simulations by
adding and normalizing the spins at each position. To deal with missing atoms at
vacancy sites a template structure is generated without vacancies.

3.7.1.2 Main program

The main program is called from the shell script with the JSON file as input.
Central to all simulation modes is the ”Crystal” class defined in ”Crystal.hpp”
(fig 3.5). It contains a list of atom objects and has a number of methods. An
atom object is an instance of the Atom class defined in ”Atom.hpp”. It contains
the atom positions in space, the spin components, the exchange and anisotropy
constants, the magnetic moment and other attributes relating to the position of
the atom in the crystal. Important in speeding up the computation are lists of
pointers to other atom objects, e.g. the nearest neighbours on both sub-lattices.
The methods of the Atom class are the different energy contributions as discussed
in section 2.1 as well as the trial move methods (see section 2.2.3). The ”Monte-
CarloStep” method performs one trial move on the atom object and determines
if the move is accepted according to the Metropolis algorithm (see section 2.2.2).
Upon starting the simulation a Crystal object is instantiated, where the Atom list
is filled with instances of Atom, where in turn the position parameters are read
from the input structure file generated by the Python crystal generator. After this
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Fig. 3.6 a) Example of a simulated spin structure represented as color coded spin vectors on
atomic positions with the same colors. Deviations from perfect alignment with the applied
field oriented along x can be seen as colors deviating from red or blue. b) Example of the
polar representation of spin structures. The top image shows the angles φ and α associated
with each spin vector that are drawn in the figure below as colored dots. In this case the
colors correspond to the spatial position of the spin vectors in the structure, i.e. positions to
the left of the APB are drawn in red and positions to the right in blue. Other color coding
could be used to distinguish octahedral and tetrahedral positions.

the crystal is rotated to the desired orientation and the neighbour lists are gener-
ated for each atom in the structure. If dipole interactions are calculated directly
each atom gets also a list of pointers to all other atoms in the structure as well as
pre-computed lists of all inter-atomic distances and distance unit vectors needed
for the calculations. To speed up the dipole calculations the long sum of eq. 2.23
is calculated in parallel using OpenMP.

3.7.1.3 Spin structure visualization

Interpretation of the simulation results is much easier through some kind of graph-
ical representation of the spin structures. In this work two types of visualizations
are used. The first kind are 3D plots showing the spin vectors as arrows placed on
their associated atomic positions allowing the direct assessment of the simulated
spin structures (fig. 3.6a). However, from these plots it is sometimes difficult to
see trends or collective spin canting as these effects may be very subtle or the re-
spective region is covered by other spins. Thus, the second kind or representation
is useful to provide a more statistical view on the spin structures by polar plots
(fig. 3.6b).
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Fig. 3.7 Dots and squares show the tabulated values of the atomic form factors for Fe3+

and O2− taken from Brown et. al [206] and Tokonami [207], respectively. The lines correspond
to the interpolation according to eq. 3.1 with parameters given in tab. 3.1.

The 3D plots are produced with the Python package Mayavi. [205] Color coding is
used to visualize the alignment of the spin vectors with an external magnetic field,
e.g. with a red-green-blue color map, fully parallel or antiparallel alignment of the
spin vectors with the field is displayed using red or blue color, respectively. Canted
spins can then be identified by green or yellow colors. The implementation can
be found in the appendix. The polar plots are generated with the Python library
Matplotlib. For these plots the atomic spin vectors of the simulated structures are
placed in the origin. A projection plane is chosen perpendicular to the applied field
direction such that fully aligned spin vectors that are either parallel or antiparallel
to the field vector correspond to points in the center of the plot. The position
of the projected points is defined by an azimuthal (α) and an elevation angle
(Φ). The elevation angle is defined as the angle between the spin vector and the
plane perpendicular to the field vector, thus resulting in an angle of ±90° for full
alignment. For the plots the absolute values of the elevation angles are used. The
closer the elevation angle of a spin vector is to ±90° the closer the corresponding
point is to the center of the plot. The azimuthal angle defines the orientation of the
spin vector around the field vector. The APB is positioned on the line connecting
azimuthal angles 90° and 270°. In general in such a statistical representation of
the spin vectors a concentration of points shows the alignment of many spins in
this particular direction, while scattered points show spin disorder.

3.7.2 Debye scattering equation program

The program to simulate X-ray powder diffraction patterns of nanoparticles via
the Debye Scattering Equation (DSE) was written for this work entirely in Python.
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Tab. 3.1 Coefficients for the form factor interpolation according to eq. 3.1 taken from the
international tables for crystallography [206] and from Tokonami [207].

Ion a1 a2 a3 a4 b1 b2 b3 b4 c
Fe2+ 11.0424 7.3740 4.1346 0.4399 4.6538 0.30530 12.0546 31.2809 1.0097
Fe3+ 11.1764 7.3863 3.3948 0.00724 4.6147 0.3005 11.6729 38.5566 0.9707
O2− 4.758 3.637 0.0 0.0 7.831 30.05 0.0 0.0 1.594

The central part is a crystal class containing atom objects, similar to the Monte
Carlo program. In fact a slight variation of the crystal.py module of this program
was used as the crystal generator for the MC-program and the crystal generation
for the DSE calculations is very similar to the previous description. The only
difference is that here also the oxygen atomic positions are considered. The DSE
involves a pair-wise sum over all atoms in the particle (see eq. 2.85) but since
the distances between atoms do not change these distances can be computed in
advance. Additionally, an array is set up containing labels for the form factor
products to be used later for the calculation. Here atom pairs are associated with
a number obtained from numbers corresponding to the elements. E.g. Fe = 2
and O = 3 thus the pair Fe−Fe = 2 + 2 = 4 and Fe−O = 2 + 3 = 5. This array
contains numbers representing the product in the same order as the distances.
The module dse.py is used to perform the calculations. It contains two classes,
namely the AtomicFormfactorCalculator and the DseCalculator. The former is
used to calculate the form factors for the elements in the different valence states
present in the structure from the Cromer-Mann coefficients ai, bi and c according
to

f(Q) = c+
4∑
i=1

aie
(−bi(Q/4π)2), (3.1)

where Q = 4π/λ sin θ/2, with the scattering angle θ and the X-ray wavelength
λ. [206] The coefficients are taken from the international tables of crystallography
vol. C [206] except for the O2− ion which is not included in the tables, but given

by Tokonami. [207] This parametrization is accurate for Q < 25 Å
−1

. Although for

O2− some deviation occurs already at Q = 10 Å
−1

(fig. 3.7), this is still well above
the Q-range needed for this work.

An AtomicFormfactorCalculator object is initialized in the constructor of the
DseCalculator with the elements present in the input structure. Global variables
are set up for the possible combinations of elements containing the pre-computed
product of the respective form factor arrays. E.g. the atom pair Fe− O is given
the variable FeO = fFe(Q)fO(Q). The actual calculation of the powder diffraction
pattern is then performed by setting up a list containing all the corresponding form
factor pairs by filling in the form factor products for the numbers representing the
pairs as well as taking the previously computed list of the distances and evaluating
the expression

Iij(Q) =
fij(Q) sin (Qrij)

Qrij
, (3.2)
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where fij and rij contain the form factor products and the distances, respectively,
in the same order. For the evaluation the Python module numexpr by David M.
Cooke et al. is used. [208] This module is able to evaluate expressions involving
numpy arrays very fast by using parallel computing on a virtual machine written
in C and by avoiding allocation of memory for intermediate results, yielding faster
computation times than numpy. Finally, to obtain the scattered intensity the
individual contributions Iij(Q) are added and the diagonal elements of the form
factor product matrix are calculated separately and added to the final intensity
array. The implementation of the function is given in the following code snippet.

1 def calculate_Dse(self , distances , f_ij):

2 aa = eval(list((self.atom_numbers.keys()))[0]*2)

3 ab = eval(list((self.atom_numbers.keys()))[0]

4 +list((self.atom_numbers.keys()))[1])

5 bb = eval(list((self.atom_numbers.keys()))[1]*2)

6

7 f_ij_e = [ab if i == 5 else bb if i == 6 else aa for i in f_ij]

8 f_ij_e = np.array(f_ij_e)

9

10 rij_reshaped = distances.reshape(len(distances) ,1)

11

12 q = self.q

13

14 fijsincqr = ne.evaluate("f_ij_e*sin(q*rij_reshaped)/(q*rij_reshaped)")

15 I_sum = fijsincqr.sum(axis =0)

16

17 return 2* I_sum

The function arguments are the distance and the form factor product label arrays.
These arrays are the flattened upper triangle of the pairwise matrix. Since the matrix is
symmetric computation of the upper triangle is sufficient. The diagonal elements are not
included and are added in a later step. The variables aa, ab and bb are lists of the form
factor arrays for all the possible pairwise products. These are obtained by retrieving
the atom element labels, e.g. Fe or O, stored in the dictionary atom numbers. For a
FexOy structure atom numbers.keys() returns dict keys([’Fe’,’O’]), where the first key
is extracted by converting the dict keys object to a list and using list indexing [0]. The
value inside eval() is thus ’Fe’*2 which gives ’FeFe’. Since FeFe was defined as global
variable the eval function returns the form factor array associated with the variable. In
line 7 the input form factor product array that contains only the place holder numbers
4, 5 or 6 is used to fill f ij e with the appropriate form factor arrays. The distances are
obtained from the crystal.py module in Å. The Q = 4π sin θ/2/λ array is obtained from
the class attribute in line 12. The variable fijsincqr contains a nested numpy array as a
result of the evaluation of the expression eq. 3.2 via the numexpr module imported as
ne. Each array in fijsincqr corresponds to one pair of atoms, thus the scattered intensity
is obtained by summing all these individual contributions giving an array of intensities
as a function of q stored in I sum. Finally this array is multiplied by 2 to account for
the lower triangle of the pairwise matrix. To obtain the complete diffraction pattern the
diagonal elements of the pairwise matrix are added later. This method of simulating
powder diffraction patterns described here could be optimized by the use of several
tricks, however the direct method is preferred for this work to not introduce artefacts.
The methods used in other implementations of the Debye scattering equation include
the grouping of terms with the same interatomic distances, using the crystal symmetry
to reduce the number of terms and sampling the interatomic distances. [112] The latter
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method is called histogram approximation [209], implemented e.g. in DEBUSSY [112,210]

and DISCUS [211].

Fig. 3.8 Simulated powder diffraction patterns for the NIST standard CeO2 − 674b using
the code of this work (10.8 nm sphere) and the program VESTA (bulk). Peak broadening
due to the finite size of the particle is visible. The peak positions of both program outputs
match.

Fig. 3.9 Fit to the simulated powder diffraction pattern of the 10.8 nm spherical CeO2

particle using eq. 2.149. The input size parameter is recovered with high precision.

The code has been tested by comparing the calculated powder diffraction patterns
with bulk patterns obtained from VESTA. [153] In fig. 3.8 the simulated patterns are
shown for CeO2− 674b, a NIST standard sample. A spherical particle with diameter of
10.8 nm was generated with the code developed for this work and the powder diffraction
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pattern was calculated as described above. The peak positions as well as the relative
peak intensities match well for small Q. Some deviations in the relative peak intensities
are present at large Q due to the fact that in the code of this work thermal displacements
are not considered. The thermal displacements of atoms would lead to a decrease in
peak intensity with increasing scattering angle. [109] To further check the correctness of
the code a fit to the simulated data was performed using the peak profile for a spherical
nanoparticle as given in eq. 2.149 (fig. 3.9). The input parameter of the simulation for
the particle size is obtained by the fit. Additionally, the small satellite peaks originating
from the spherical shape and the finite size are also reproduced precisely.
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Chapter 4
SPIONs: Internal Magnetization
Distribution

The study of the magnetization distribution within superparamagnetic iron oxide nan-
oparticles (SPIONs) is the subject of this thesis. As mentioned in the introduction
chapter (section 1.2) there is a large body of previous works that addressed different
parts of this problem for particles of various sizes, shapes and synthesis routes. In this
work a number of different techniques is used to obtain an as complete as possible pic-
ture of the the different contributing effects. The focus here lies on particles synthesized
by the thermal decomposition route, which allows the production of particles in large
quantities and with narrow size distributions. As noted previously [45,46] however these
kinds of particles are prone to develop antiphase boundaries that are proposed to be
responsible in large parts to an often observed reduced saturation magnetization. Simu-
lations of the influence of these defects on the spin structure and the net magnetization
for magnetite nanoparticles were performed by Nedelkoski et al. [47] In this thesis simu-
lations are performed for maghemite nanoparticles, also under explicit consideration of
dipole-dipole interactions between atomic magnetic moments that were only approxim-
ated in the cited work. The Debye scattering equation is used to study the effect of the
finite size and of APBs on X-ray powder diffraction patterns. In the third part of this
chapter the investigation of nanoparticle samples with nominal sizes of 5, 10, 12, 15 and
20 nm is performed, where the previously established results from the simulations are
used to help interpret the findings.

Parts of this chapter have been published previously. The Monte Carlo and Debye
scattering equation simulation results were published under the title ”Signature of an-
tiphase boundaries in iron oxide nanoparticles” in the Journal of Applied Crystallo-
graphy. [212] The present author developed the concept of the manuscript, wrote the
simulation software, performed the analysis and interpretation of the simulated and
experimental data, visualized the data, created the figures and wrote the manuscript.
Review and editing of the original draft was done with the help of the co-authors. The
right hand part of fig. 4.4 appears in the publication as fig. 2 and is reproduced here, the
left part is shown in the supplementary fig. S5. Parts of fig. 4.6 are present in modified
form in fig. 5 and supplementary figs. S6, S7 and S8 of the publication. Figs. 4.8a, 4.9
and 4.12 appear in modified form in fig. 6 of the publication. The derivation of the
Fourier transform of the APB peak profile as shown in appendix B of the published
work was performed by the present author and is presented in section 4.2.2.

The analysis of data for sample OC15 (see tab. 4.2) has been published in Nanoscale
under the title Mechanism of magnetization reduction in iron oxide nanoparticles. [84]

The present author contributed to the investigation by performing the experiments and
analysing the data of the SAXS, magnetometry, X-ray, PDF, SANS and HRTEM (with
the help of Tanvi Bathnagar-Schöffmann at the instrument) measurements. Mössbauer
experiments were performed by Dr. Joachim Landers. Data analysis of the Mössbauer
experiments was performed with the help of Dr. Joachim Landers. The data was
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visualized and the published figures were created by the present author. The original
draft of the manuscript was written by the present author. Review and editing of the
original draft was done with the help of the co-authors. Fig. 2 of the publication appears
in a modified version in fig. 4.52 of the present work. Figs. 3a, 3b and 3c appear in the
present work in figs. 4.33 and 4.34. Fig. 6 of the publication is shown in a modified form
as part of fig. 4.24 of the present work. Fig. 7 of the publication is shown in a modified
form in figs. 4.44 and 4.45.

4.1 Monte Carlo simulation results

In this section the effect of antiphase boundaries on the spin structure and the mac-
roscopic magnetization are studied with Monte Carlo simulations. These results are
part of an submitted manuscript entitled ”Signature of antiphase boundaries in iron
oxide nanoparticles”. In the last part also the influence of vacancy ordering on the
magnetization is investigated.

4.1.1 Simulation parameters

Monte Carlo simulations using the Metropolis algorithm (see section 2.2) are performed
in order to study the influence of antiphase boundaries on the spin structure of iron oxide
nanoparticles. For more details on the program see section 3.7.1. Several approximations
were used to keep the number of parameters at a minimum and not distract from the
main goal, i.e. the study of the effect of an antiphase boundary. To this end the
cubic space group Fd3̄m with a random vacancy distribution on the octahedral sites is
assumed. However, the effect of vacancy ordering was also studied separately.

Additionally, idealized nanoparticles are simulated, meaning that no gradients of iron,
oxygen or vacancy concentration were considered. The lattice was also assumed to be
not distorted towards the particle surface as is likely for small real particles. Surface
anisotropy was also not considered. The ground state structures are of interest, hence
the temperature was set to a small value of 0.01 K. It should be mentioned here that at
this temperature the Boltzmann factor in eq. 2.64 mostly vanishes and new states are
almost always only accepted if the energy of the new state is lower than in the previous
configuration. Additionally, the system might be trapped in a local minimum without
finding the global minimum and thus the true ground state. To address this problem
the simulated annealing approach has been proposed, where the system is cooled from
high temperatures to the target temperature. [213] However, with the strong field of 5 T
used in the simulations the energy landscape is expected to be rather smooth and in
a first approximation the resulting configuration is assumed to be reasonably close to
the true ground state. A test simulation without dipole-dipole interactions but with
an annealing phase from 300 to 0.01 K with equilibration of 5000 Monte Carlo steps
every 10 K temperature step resulted in very similar spin structures compared to results
obtained from simulations without prior cooling of the system.

APBs of type I were created by shifting one half of the crystal structure by 1/4a along
[110], where a is the cubic lattice parameter. This results in a planar APB through the
particle center. As mentioned in section 2.6.3 the APB is expected to be planar after
full equilibration of the system due to interfacial energies. [188] For real particles this
is an additional approximation. However, as can be seen from the experimental data
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Fig. 4.1 Test of particle magnetization convergence towards saturation. A field of 5 T was
applied along x at a temperature of 0.01 K. For three particle diameters of 5 to 9 nm the
sum of all spin vector components along x was calculated as a function of Monte Carlo steps
and for different opening angles of the Gaussian trial move defined by the parameter σ (see
section 2.2.3). Twenty independent relaxation measurements were averaged to obtain each
curve.

Fig. 4.2 Test of particle magnetization convergence towards saturation for particles with
an APB in the center. A field of 5 T was applied along x at a temperature of 0.01 K.
For three particle diameters of 5 to 9 nm the sum of all spin vector components along x
was calculated as a function of Monte Carlo steps and for different opening angles of the
Gaussian trial move defined by the parameter σ (see section 2.2.3). Twenty independent
relaxation measurements were averaged to obtain each curve.
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shown in section 4.3 a single planar APB not in the particle center is not in agreement
with experimental data, but most likely a more complex arrangement of multiple APBs
is present in real particles. For such kinds of particles the introduced spin structure
disorder will be stronger than for the simulated particles with a single planar APB.
Thus the present simulation model can be considered as a lower limit of the possible
APB influence on the magnetization distribution. Finally, it should be mentioned that
the dipole-dipole interactions are computed directly for the spin structure simulations
without further approximations such as the macrocell-method or cutoffs. This implicitly
also considers shape anisotropy of the particles. Theoretically shape anisotropy is not
present for a perfectly spherical sample, however especially for the smaller considered
particles atomic columns might introduce step like features on the particle surface which
could lead to a small contribution of shape anisotropy.

For reliable simulation results it is important to make sure that the system has con-
verged to equilibrium. Therefore, a test was performed by recording the sum of the spin
components parallel to the applied field as a function of the Monte Carlo steps. Different
opening angles for the Gaussian trial move (see section 2.2.3) were also considered. The
results are shown in fig. 4.1. For all particle sizes it can be seen that the opening angle
influences the approach to equilibrium. A larger opening angle (larger σ) allows the spin
vector to rotate farther from the previous orientation, leading to slower convergence. For
a smaller σ of 0.10 the approach to equilibrium is faster at first, but the resulting sat-
uration after approx. 1500 Monte Carlo steps is smaller than that obtained by an even
smaller opening angle. Therefore, to reduce computation times and ensure equilibrium
for the following spin structure simulations σ was set to 0.03. Performing the same test
with particles containing an APB (fig. 4.2) shows that for σ = 0.03 equilibrium is only
reached at approximately 5000 Monte Carlo steps for particles larger than 7 nm. For
smaller sizes even more Monte Carlo steps are needed to fully equilibrate the system.
This is likely due to the stronger influence of the APB on the particle in this size range.

4.1.2 Effect of APBs on the spin structure

Simulated spin structures for particles with diameters of 6.7 and 9.2 nm with an APB
through the center are shown in fig. 4.3. The ferrimagnetic alignment of the octahedral
and the tetrahedral sub-lattices is visible from the red and blue spin arrows denoting
parallel and antiparallel alignment with the applied field of 5 T along the x-direction.
The structures are viewed along the z-direction thus the lattice shift due to the APB is
not immediately visible. However, the resulting spin disorder can be clearly seen from
the differently colored spins near the APB showing deviations in the alignment. This
disorder is better visible in the close-up views of the 9.2 nm particle shown in fig. 4.4
with the APB in the center. For the 6.7 nm the spin structure around the APB is
very similar. At the applied field of 5 T the spins on both octahedral and tetrahedral
lattice sites are canted. However this effect is confined to the octahedral iron magnetic
moments directly affected by the modified exchange interactions and the moments of
adjacent tetrahedral iron ions. On this local scale the dipole interactions appear to not
have a large influence on the observed spin canting, which is expected considering the
much larger energies involved in the exchange interactions.

To gain a better understanding of the spin structure on a larger scale polar plots
are useful. The construction of these plots is described in section 3.7.1.3. From this
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Fig. 4.3 Simulated spin structures for particles of different sizes with an APB through the
particle center. A field of 5 T is applied along the x-direction. Full parallel and antiparallel
alignment of spins are indicated with red and blue arrows, respectively. Clearly visible is the
ferrimagnetic order that is disturbed by the APB as can be seen by the change of the colors.
A close-up of the spin structure at the APB for the largest particle is shown in fig. 4.4.

Fig. 4.4 Close-up view of the spin structure around the APB in the center. The view is along
atomic columns in the z direction. A field of 5 T is applied vertically along the x direction,
thus full parallel and antiparallel alignment are shown in red and blue, respectively. Spin
disorder is clearly visible around the APB but order is restored at larger distances from the
APB. The inclusion of dipole-dipole interactions in the simulations has only a small influence
onto the result.
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Fig. 4.5 Illustration of the labeling of slices
shown in fig. 4.6. The APB lies in the x − z
plane. Each slice has a thickness of one unit
cell.

statistical point of view collective spin misalignment can be more easily identified. To
also be able to see the spatial variation of the spin structure the simulated particles are
cut into slices parallel to the APB plane (fig. 4.5). For both considered particle sizes
it can be seen that collective canting in the left and right slices in the very vicinity of
the APB, i.e. slice 0-1, is present (fig. 4.6). Upon increasing the distance to the APB
no difference between the net magnetic moment orientation in the left and right slices
from the APB can be seen. The very small net transverse moment for the slice 0 − 1
in the simulations of the 6.7 nm particles (fig. 4.6b) is a consequence of the strong spin
disorder around the APB.

For both considered particle sizes it can be seen that the APB introduces a significant
disorder in the spin structure that is also localized in the sense that collective spin canting
is not observed already one unit cell distance away from the APB. A similar behavior
was found experimentally in magnetite thin films. [187] This indicates that the APB does
not lead to a magnetic multi-domain state as has been proposed in the literature [47,48],
but that the particle as a whole remains in the single domain state, at least for the
particle sizes examined here.

The inclusion of dipole-dipole interactions in the simulations in general leads to spin
canting oriented more along the APB plane (along the 90°-270° line in fig. 4.6), while
in the simulations without this energetic contribution the spin canting appears to be
spatially more isotropic.

4.1.3 Effect of APBs on the macroscopic magnetization

To study the effect of APBs on the macroscopic magnetic properties of iron oxide nano-
particles M(H) curves were simulated. No significant difference in the saturation mag-
netization can be observed between structures calculated with and without dipole-dipole
interactions. The spin structure in the fields considered here is mainly a result of the
exchange interactions. Due to the spherical shape of the particles the shape anisotropy
effect is negligible and with the small particle size below the superparamagnetic limit
domain formation is not energetically favorable. Therefore, atomic dipole-dipole inter-
actions are neglected in the following. To obtain data that is better comparable to
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Fig. 4.6 a) Polar plots of slices to the left and the right of the APB in the particle center for
particles of 9.2 nm in diameter. Twenty independent simulated configurations were averaged.
Red and blue triangles correspond to atomic spin vectors in a slab to the left or to the right
from the APB. The black triangles show the net magnetization of the slabs, where again
a left facing triangle corresponds to a slab to the left and vice versa. Collective canting of
the magnetic moment in the slices is only observed directly at the APB as indicated by the
difference in placement of the net magnetization triangles. In addition spin disorder is clearly
visible in the region around the APB. b) Polar plots of slices for particles with a diameter of
6.7 nm. Spin canting of the net magnetic moment in a slice is again only observed directly
at the APB (0 − 1) as indicated by the difference in placement of the net magnetization
triangles. Also similar to the larger particles depicted in a) significant spin disorder is present
in the region around the APB.
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Fig. 4.7 Simulated M(H) curves for three different particle sizes (5.0, 6.7 and 9.2 nm) with
(blue lines) and without APBs through the center (pink lines). Only the first quadrant is
shown. Simulations results from averaging over twenty particle configurations for twenty
different orientations each, thus giving 400 hysteresis loops. At each field step of 0.1 T the
spin structure of the particle was allowed to relax for 8000 MCS.

real measurements twenty particle configurations each with twenty randomly selected
orientations in space are averaged. The simulation was performed over a field range of
−1.5 to 1.5 T with 8000 MCS per field step of 0.1 T at a temperature of 5 K. With 8000
MCS every spin in the structure is statistically rotated 8000 times thus allowing the
relaxation of the particle spin structure at each field step. More steps would result in
a smaller coercive field of the hysteresis loops as the relaxation time-scale approaches
that of the measurement. The simulations were performed for three particle sizes with
diameters of 5.0, 6.7 and 9.2 nm (i.e. 6, 8 and 11 unit cells in diameter). The net mass
magnetization, M , of the simulated particles in units of Am2/kgFerrite is obtained from
the sum of the spin vectors according to

M =
µ

V ρ

N∑
i

Sx,i, (4.1)

where µ is the magnetic moment of the iron ion taken as 5µB, V = 4/3πR3 is the
spherical particle volume with the radius R, ρ = 4.9 g/cm3 is the mass density and Sx
is the x-component of the spin vector, i.e. the component along the applied field. The
results of this simulation are shown in fig. 4.7.

A reduced saturation magnetization for particles containing an APB compared to
those without one can be observed. For the smallest particles the magnetization at 1.5 T
is reduced by about 8.1 % and 8.5 % at 1 T. For the intermediate particle size a reduction
of 5.9 % at the maximum field is obtained that is slightly increased to 6.5 % at 1 T. For
the largest particles this reduction in magnetization is by about 4.8 % at the largest field
and 5.1 % at 1 T. The dependence of the relative reduction of saturation magnetization
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on the particle size is correlated with the relative volume of the APB inside the particle.
As seen in the previous section the spin disorder is spatially confined at saturation fields
and thus the relative amount of disordered spins decreases with increasing particle size.
The decrease in magnetization reduction with increasing magnetic fields suggests also a
field dependence of this effect, which is linked to the gradual alignment of spins at the
APB for larger fields.

Experimentally perfectly crystalline nanoparticles were found with almost bulk mag-
netization, [33,35,214] while particles with proven APB presence show strongly reduced
magnetization. [46,47,84] E.g. a reduction of about 13 % for 15.6 nm particles was attrib-
uted mostly to APBs. [84] This is more than what is observed for the largest particle
size considered in the simulation. However, as mentioned in the beginning, the as-
sumption of a single planar APB with no additional lattice distortions has to be taken
as the lower limit of the possible influence of APBs on the magnetization. For larger
particles it is possible that multiple APBs form that would lead to a stronger reduction
in magnetization.

4.1.4 Simulation of vacancy ordering

As described in section 2.6.2 the vacancies present in the maghemite structure can
be ordered, which leads to a reduction of the space group symmetry from cubic to
tetragonal. Ordering of vacancies was found to increase the saturation magnetization of
otherwise defect free nanoparticles up to the bulk values. [31,33]

To investigate the effect of vacancy ordering on the saturation magnetization particles
with randomly placed vacancies and particles with vacancies restricted to certain iron
sites were simulated. For the random placement in the P43212 space group that means
setting the occupancy of Fe2, Fe3 and Fe4 to 0.83 and leaving Fe1 fully occupied.
Vacancy ordering while keeping the bulk occupancy, i.e. an average iron site occupancy
of 0.89, was introduced by setting the occupancy for Fe2 to 0.33 and leaving all other
iron sites fully occupied. Twenty simulations at 5 T, 0.01 K and with 5000 MCS were
averaged for each particle size. Dipole-dipole interactions were considered as the vacancy
ordering is expected to produce a long range influence on the spin structure. For 5.0 nm
particles with random vacancy distribution the net magnetization obtained by a sum over
the spin vector components parallel to the applied field is reduced by 1.2 % compared to
the particles with vacancy ordering. Similarly, for 6.7 nm a reduction of 1.4 % is found
and for 9.2 nm particles of 1.0 %.

The simulations suggest that vacancy ordering does increase the saturation magnetiza-
tion, however this effect is relatively weak. Li et al. [33] correlate an increase in saturation
magnetization from 20 to about 65 Am2/kg at 300 K to an increase in vacancy ordering
from fully random vacancy placement for particles of size 6 nm to complete vacancy order
in the tetragonal space group P43212 for particles with diameters of 53 nm. However, the
maximum observed saturation is already reached for particles with diameters of 13 nm,
where full vacancy ordering is not yet reached. Morales et al. [31] relate an increase in
saturation magnetization from 64 to 72 Am2/kg to an increase in vacancy ordering from
fully random to fully ordered. In this work the studied particles were different in shape
and much larger. The highest saturation magnetization was found for spherical particles
with diameters of 120 nm, while lower magnetization was found in elongated particles
with partial vacancy order and length and width of 295 nm and 98 nm, respectively.
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The lowest saturation magnetization was found in the largest elongated particles with
dimensions of 530 nm and 84 nm with fully random vacancy placement.

4.1.5 Summary

The influence of APBs on the spin structure of maghemite nanoparticles at applied fields
of 5 T was shown to be confined to the immediate vicinity to the APB without indication
for a magnetic multi-domain structure. For the single APB considered the reduction in
the saturation magnetization is size dependent and largest for the smallest particles. At
1.5 T and 5 K the relative reduction changes from 8.1 % for 5.0 nm particles to 4.8 % for
9.2 nm particles. Application of a weaker magnetic field leads to a larger reduction in
the saturation magnetization. Finally, simulations of vacancy ordering showed that a
higher degree of ordering in perfectly crystalline structures leads to a slight increase in
saturation magnetization.

4.2 Debye Scattering Equation Simulation Results

Experimental X-ray powder diffraction patterns are the result of the convolution of
many different effects originating from the sample and from the instrument. [133] In the
context of nanoparticles, line broadening due to the particle size and shape is especially
important. An additional effect that is considered in this work is the line broadening due
to structural defects such as APBs. As mentioned in section 2.3.3 the use of the Debye
scattering equation (DSE) results in powder diffraction patterns that contain all features
originating from the finite size and structural disorder. Thus, as the first step to check
the correctness of the program output and to gain a proper understanding of the finite
size effect the resulting patterns obtained from spherical particles with different sizes
are analyzed in the following. The model particles for this part do not contain further
defects. In the second part of this section the influence of APBs on the line profiles is
investigated. Finally, the influence of APBs on the pair distribution function is analyzed.
With the exception of this last part the presented results are a part of an submitted
manuscript entitled ”Signature of antiphase boundaries in iron oxide nanoparticles”.

4.2.1 Finite size effect

In fig. 4.8 the simulated powder diffraction patterns for spherical particles with sizes
of 5.0 nm, 6.7 nm and 9.2 nm are shown. The fit curves in fig. 4.8a) are obtained by a
superposition of peak profiles according to

I(Q,Qpeak, D) =

D∫
0

Asize(L,D)eiπ(Q−Qpeak)LdL, (4.2)

where Asize(L,D) is given for a sphere in section 2.3.5.3, D is the particle diameter and
Qpeak is the peak position. The peak positions are fixed to the theoretically expected
values for the implemented unit cell. The resulting particle diameters are in excellent
agreement with the input parameters of the simulation with 5.0(1), 6.7(1) and 9.2(1) nm.
The use of the Scherrer equation (eq. 2.146) to determine the particle size gives 5.3(1),
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Fig. 4.8 a) Simulated powder diffraction patterns for different sizes of spherical maghemite
nanoparticles using the Debye scattering equation (eq. 2.85), normalized to the number of
atoms in the structure. The fit curves are obtained by a superposition of Patterson peak
profiles according to eq. 2.149. The difference curves for the three fits are shown below
with an offset for clarity, with the fit difference for the smallest particle at the top and for
the largest at the bottom. The parameter Q is defined as Q = 4π/λ sin θ/2. b) The same
simulated data as shown in a) fit with a superposition of Voigtian peak profiles according to
eq. 2.154. The difference curves for the three fits are shown below with an offset for clarity,
with the fit difference for the smallest particle at the top and for the largest at the bottom.

7.2(1) and 9.9(1) nm for K = 0.94. These values are larger than the input parameters.
As described in section 2.3.5.3 this discrepancy is due to the Voigtian peak profiles used
to determine the full width at half-maximum (FWHM), which have no physical relation
to the observed peak shape of the nanospheres and lead to larger mismatch in the fits
(fig. 4.8b). Therefore, eq. 4.2 is preferred. The use of the integral form also allows the
inclusion of further Fourier coefficients to describe other effects in a process called whole
powder pattern modelling (WPPM) proposed by Scardi and Leoni. [215]

99



Chapter 4 SPIONs: Internal Magnetization Distribution

4.2.2 APB effect

Fig. 4.9 Simulated powder diffraction patterns for different sizes of spherical maghemite
nanoparticles without (solid lines) and with APB (dotted lines) through the particle center
using the Debye scattering equation (eq. 2.85). From the difference curves (no APB - APB)
it can be seen that some peaks are completely unaffected by the APB. These are marked with
”u” below in contrast to the affected peaks marked with ”a”. The patterns are normalized
to the number of atoms in the particle and offset for clarity. The difference curves are in the
same order as the simulated patterns and also offset for better visibility.

From the difference of patterns obtained for particles with and without APB through
the particle center a distinct hkl-dependence of peak broadening can be observed (fig. 4.9).
Certain peaks appear to not have changed upon introduction of the APB, while others
are significantly broadened. The powder diffraction pattern calculated from the DSE
contains all effects resulting from the structural properties of the input structure. For
the simulated particles this means that only a finite size effect and the effect of antiphase
boundaries is expected since no other defects have been introduced into the model struc-
ture. Additionally, no superstructure peaks due to vacancy ordering are expected as the
vacancies were distributed randomly. The resulting diffraction pattern is therefore a
convolution of the profile originating from the finite size and from the APB according
to

I(Q) =

D∫
0

AAPB(L)Asize(L,D)ei(Q−Qpeak)LdL, (4.3)

whereQpeak is the peak position, AAPB(L) is the Fourier transform of the profile function
resulting from the APB and Asize(L,D) corresponds to the Fourier transform of the
profile function originating from the finite size. The integral is over the real space
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Fig. 4.10 Simulations of the effect of both the presence of an APB and a small crystallite
size with diameter D = 6 nm. a) Real space Fourier coefficients. b) Resulting peak profile
after Fourier transformation.

distance L with an upper integration limit of the particle diameter D. As shown by
Scardi et al. [175] the integration over the APB component results in a Lorentzian peak
profile, while the integration over the size component results in the previously mentioned
Patterson peak profile (eq. 2.149). [135] A simulation of the individual components and
the resulting peak profile is shown in fig. 4.10, where the decrease in intensity and
increase in peak width can be seen.

To be able to completely model the simulated powder diffraction pattern the pre-
cise form of AAPB has to be known, which is developed later in this section. A first
understanding of the influence of APBs can be obtained by fitting all peaks with the
Patterson peak profile or with eq. 2.147 and determine the coherent structural sizes, in
this case directly obtained from the fitting parameter. For each peak a coherent domain
size in the direction perpendicular to the lattice planes corresponding to this peak can
be determined. Deviations of the coherent sizes from the previously determined particle
sizes thus show the influence of the APB. As seen from fig. 4.9 the affected peaks are
broadened and are reduced in intensity. Warren [109] pointed out that this is due to the
fact that the integral intensity of the peaks is not influenced by the presence of APBs,
thus in order to conserve the integral intensity a broader peak must have a smaller max-
imum peak height, which is also shown in the simulation of the peak profile in fig. 4.10.
The existence of unaffected peaks can be explained by considering the phase changes
originating from the displacement of atoms in a crystal structure. For example across
the APB the oxygen sub-lattice does not change, therefore no phase shift is expected
and the corresponding peak should not be affected by the antiphase boundary, which is
indeed the case for the (400) peak whose corresponding lattice spacing coincides with
the oxygen lattice (fig. 4.9). Other unaffected peaks in the considered Q-range are the
peaks (222) and (440).

The coherent sizes determined from a fit to the peaks (fig. 4.11) are given in tab. 4.1.
The affected peaks show different degrees of broadening and the coherent size ratios are
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Fig. 4.11 Simulated powder diffraction patterns for different sizes of spherical maghemite
nanoparticles with an APB through the particle center using the Debye scattering equation
(eq. 2.85). The fit curves are obtained by a superposition of peak profiles according to
eq. 2.149. The difference curves are shown below, corresponding from top to bottom to
9.2 nm,6.7 nm and 5.0 nm. The patterns are normalized to the number of atoms in the
particle.

almost independent of the particle size, differing only slightly for the smallest simulated
particles. Since the APB was introduced in the center of the particles the coherent
domain size perpendicular to the APB plane is halved for all particle sizes, thus the
relative decrease in the coherent structure size is the same for all particle sizes. The
slightly different values obtained for the smallest particles are most likely related to
a non-ideal spherical particle shape and a stronger influence of the origin choice for
the generation of the particle structure from periodic repetition of the unit cell. The
feature of the independence of the coherent size ratios from the particle size is useful
for a comparison between peak widths obtained from different particle sizes. For the
same amount of APBs in a particle regardless of the size similar coherent size ratios are
expected. However, as seen in fig. 4.11 the fits show some deviations, which is due to
the modification of the peak profile due to the APBs as seen in fig. 4.10, that are not
correctly described by eq. 2.149.

To explain the difference in the degree of broadening and the resulting peak shapes
for the affected peaks the theory by Wilson, Zsoldos and Warren can be used. [109,172,174]

The approach of Wilson and Zsoldos is based on infinitesimal increments of the distance
within the structure along a certain crystallographic direction. The approach of Warren
is based on finite differences of distances. As shown by Scardi et al. [175] both approaches
are almost equivalent, however the finite differences are closer to the physical reality of
distinct atomic positions in a crystal. Therefore, for this work the theory of Warren is
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Tab. 4.1 Results of the fits depicted in fig. 4.11. For the APB-patterns a single particle size
was refined for the unaffected peaks (u) and for affected peaks (a) it was left unconstrained.
The ratio of apparent size Dapp. to the nominal particle size D is also shown. Standard
deviations are given in parentheses.

Particle size 5.0 nm 6.7 nm 9.2 nm
hkl refl. type Dapp. [nm] Dapp./D Dapp. [nm] Dapp./D Dapp. [nm] Dapp./D

220 a.1 3.20(5) 0.64(1) 4.08(8) 0.61(1) 5.86(11) 0.63(2)
311 a.2.1 3.46(3) 0.69(1) 4.75(4) 0.71(1) 6.58(4) 0.71(1)
222 u 49.6(3) 0.99(1) 6.74(4) 1.00(1) 9.28(4) 1.00(1)
400 u 49.6(3) 0.99(1) 6.74(4) 1.00(1) 9.28(4) 1.00(1)
422 a.1 3.32(13) 0.66(3) 4.16(16) 0.62(3) 6.00(18) 0.63(3)
511/333 a.2.2 4.49(5) 0.90(1) 5.90(7) 0.88(1) 8.10(7) 0.88(1)
440 u 5.04(5) 1.01(1) 6.74(4) 1.00(1) 9.28(4) 1.00(1)

followed. As seen before the 1/4a[110] APB leads to a phase shift in the diffracted wave
from some lattice planes resulting from the difference in the spatial arrangement of the
atoms. The scattered intensity from a coherent crystal (eq. 2.139) is modified by the
phase shift resulting from the APB. The scattered intensity for the crystal is obtained
by the absolute square of the sum over the amplitudes from all unit cells. Each cell
has an associated phase factor that depends on the position of the cell in the crystal.
The phase difference between a cell at the origin and a cell at n1n2n3 can be expressed
by an average phase factor 〈eiΦ(n1n2n3)〉, where Φ(n1n2n3) denotes the change in phase
between the two cells. Noticing that the phase changes along the three directions in real
space are independent of each other the phase factor can be written as the product of
the average phase factor in each direction according to

〈eiΦ(n1n2n3)〉 = 〈eiΦ(n1)〉〈eiΦ(n2)〉〈eiΦ(n3)〉. (4.4)

Furthermore, the average phase factor along one direction can be described as an average
factor 〈eiΦ〉 between pairs of cells that occurs n times, thus resulting in

〈eiΦ(n1n2n3)〉 = 〈eiΦ〉|n1|
a 〈eiΦ〉

|n2|
b 〈e

iΦ〉|n3|
c , (4.5)

where n1 is the number of unit cells traversed per unit distance along [hkl] by the
component of the vector [hkl] parallel to a and correspondingly for the other direc-
tions. Along the a direction the possible phase changes due to a type-I APB, i.e.
a sublattice displacement by 1

4a[110] (section 2.6.3) are Φ = 0, i.e. no change and
Φ = 2π

(
1
4(k + l)

)
= π 1

2(k+ l) if change occurs. Thus for all three directions the follow-
ing relations can be set up

〈eiΦ〉a = (1− δ)e0 + δeiπ
1
2

(k+l)

〈eiΦ〉b = (1− δ)e0 + δeiπ
1
2

(h+l)

〈eiΦ〉c = (1− δ)e0 + δeiπ
1
2

(h+k),

(4.6)

where δ is the probability for the occurrence of a change in phase, i.e. the probability of
crossing an APB, that in this theory is assumed to be equal for all directions. For certain
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Chapter 4 SPIONs: Internal Magnetization Distribution

combinations of hkl a phase factor equal to 1 is obtained, i.e. no observable difference in
the peak width compared to a structure without APB. These are the unaffected peaks
with indices h+ k = 4n, k + l = 4n and h+ l = 4n (see fig. 4.9).

The different degrees of broadening for the affected peaks observed in the simulated
pattern can be understood by considering different groups of peaks which lead to different
phase factors. A first distinction can be made between peaks with only even (a.1) or
only odd indices (a.2). For the a.1 peaks eq. 4.5 gives

〈eiΦ〉a = (1− δ)e0 + δeiπ
1
2

(4n−2) = 1− 2δ

〈eiΦ〉b = (1− δ)e0 + δeiπ
1
2

(4n−2) = 1− 2δ

〈eiΦ〉c = (1− δ)e0 + δeiπ
1
2

(4n) = 1− δ + δ = 1,

(4.7)

exploiting the fact that for these reflections one pair of indices is divisible by four. The
cubic symmetry allows rearrangement of the indices for this pair to always be h + k.
Thus using eq. 4.5 yields

〈eiΦ(n1n2n3)〉 = (1− 2δ)|n1|+|n2|. (4.8)

The peaks of group a.2 can further be subdivided into those peaks with two pairs of
indices divisible by four (a.2.1) and peaks where no sum of pairs is divisible by four
(a.2.2). For a.2.1 using the same reasoning as before eq. 4.5 gives

〈eiΦ(n1n2n3)〉 = (1− 2δ)|n1|. (4.9)

Similarly, for a.2.2
〈eiΦ(n1n2n3)〉 = (1− 2δ)|n1|+|n2|+|n3| (4.10)

is obtained. The equations for the average phase factors are the Fourier coefficients to
be used in eq. 4.3, i.e.

AAPB(L) = (1− 2δ)nL, (4.11)

where n is the appropriate exponent for the average phase factor, e.g. |n1|+ |n2| and L
is a distance in real space in the direction perpendicular to the respective lattice planes,
i.e. in direction [hkl]. The associated apparent domain size due to the APBs can then
be obtained via [175]

Deff. = 2

∞∫
0

(1− 2δ)nLdL = − 2

ln (1− 2δ)

1

n
≈ 1

δn
, (4.12)

For the last equality the approximation ln(1 − 2δ) = −2δ was used, valid for small
δ. This contribution is convoluted with the finite size broadening, but the observed
difference in the degree of peak broadening can be seen to be related to the different
average phase factors for the kinds of reflections and the APB probability δ.

Quantification of the number of APBs is possible by fitting the diffraction pattern
with a superposition of peak profiles generated by eq. 4.3 and extracting the parameter
δ. For this the precise exponents |n1| + |n2|, |n1| and |n1| + |n2| + |n3| expressed in
terms of the hkl-indices of the respective lattice planes have to be known resulting in
the parameter n of eq. 4.11. Adapting considerations of Wilson and Zsoldos [174] for the
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4.2 Debye Scattering Equation Simulation Results

Fig. 4.12 Comparison of a model diffraction pattern and the simulated pattern for 5.0, 6.7
and 9.2 nm particles with one APB in the center. The model was calculated with peak profiles
according to eq. 4.3 using the hkl-dependence of the APB effect as given in eqs. 4.17, 4.18
and 4.19 and δ values of 0.760, 0.567 and 0.413 with increasing particle size. The scaling
factors, peak positions and the particle size were kept fixed from a fit to the patterns of a
particles without APB (fig. 4.8).

use in Warren’s theory the number of cells along [HKL] traversed by dL pointing in the
direction [hkl] is proportional to the cosine of the angle α between [hkl] and [HKL], i.e.

cosα =
a · b
ab

=
|Hh+Kk + Ll|√

H2 +K2 + L2
√
h2 + k2 + l2

, (4.13)

where a denotes the vector in direction [HKL] and b corresponds to the vector in
direction [hkl]. The cosines obtained for different orientations of [HKL] that are related
by symmetry have to be added. For the case |n1| + |n2| these are the orientations of
〈110〉. Due the cubic symmetry only six orientations have to be considered, namely [110],
[101], [011], [011̄], [1̄01], and [11̄0]. The sum of the equations obtained by inserting the
respective [HKL] is thus

[(h+ k + 0) + (h+ 0 + l) + (0 + k + l) + (0 + k − l) + (−h+ 0 + l)

+(h− k + 0)] /
√

2(h2 + k2 + l2) =
2h+ 2k + 2l√
2(h2 + k2 + l2)

. (4.14)
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Similarly for the case |n1| the orientations are [100], [010], [001] and the corresponding
cosines are

[(h+ 0 + 0) + (0 + k + 0)

+(0 + 0 + l)] /
√

(h2 + k2 + l2) =
h+ k + l√

(h2 + k2 + l2)
. (4.15)

Finally, for |n1| + |n2| + |n3| the orientations are [1̄11], [1̄1̄1], [11̄1], and [111] resulting
in

[(−h+ k + l) + (−h− k + l) + (h− k + l)

+(h+ k + l)] /
√

3(h2 + k2 + l2) =
4l√

3(h2 + k2 + l2)
. (4.16)

With these considerations the Fourier coefficients of the APB contribution for the dif-
ferent groups of peaks are

AAPB(L,D)a.1 = (1− 2δ)
L(2h+2k+2l)

a0

√
2(h2+k2+l2) (4.17)

AAPB(L,D)a.2.1 = (1− 2δ)
L(h+k+l)

a0

√
(h2+k2+l2) (4.18)

AAPB(L,D)a.2.2 = (1− 2δ)
L(4l)

a0

√
3(h2+k2+l2) . (4.19)

An implementation of eq. 4.3 is given in appendix E. A fit using eq. 4.3, with the
appropriate AAPB for the different groups inserted, is shown in fig. 4.12. For the fit
the peak positions, the particle sizes and the scaling factors for the peaks were fixed to
the values obtained from the simulation of particles without APBs (fig. 4.8). Only the
parameter δ was varied, which gave values of 0.760, 0.567 and 0.413 for the three particle
sizes of 5.0, 6.7 and 9.2 nm. To determine the actual number of APBs within the particle
it can be assumed that an APB of the type considered in this work is always parallel to
one real-space direction. The total probability of crossing an APB is obtained from the
sum of the individual probabilities along x, y and z. Assuming the APB lies parallel
to the z direction the probability along this direction is zero. Further assuming that
the probability along x and y is equal, the total probability is given by δ = 2

3δx. The
probability of crossing an APB along a direction is given by the number of APBs nAPB

divided by the number of unit cells along the sphere diameter D, i.e. nunit cells = D/a0.
Thus,

δx =
nAPB

nunit cells
=

nAPB

(D/a0)
. (4.20)

Solving for the number of APBs gives

nAPB =
3

2
δ
D

a0
, (4.21)

where δx has been substituted for 3
2δ since δ is the fitting variable. Finally, the APB

is parallel to (110) crystallographic planes in the crystal structure and hence forms a
45° angle with the x-axis. Due to this angle not all paths along x through the particle
cross the APB. Viewing the particle along the direction x only 1/

√
2 of the total cross
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4.2 Debye Scattering Equation Simulation Results

Fig. 4.13 Sketch of the APB orientation in the center of a spherical nanoparticle. On the
right hand side the top view is shown. The APB, drawn with a red line, forms a 45° angle
with the x-axis. In a) the APB is placed in the center, while in b) the APB is moved away
from the center leading to a smaller fraction of the APB projection plane onto the yz-plane
to the particle cross section.

sectional area is covered by the projection of the APB onto the yz-plane (see fig. 4.13)
and the resulting number of APBs from eq. 4.21 has to be divided by this fraction.
Hence, the number of APBs in the center of a spherical nanoparticle can be estimated
with

nAPB =
3

2

√
2
D

a0
δ. (4.22)

Application of this equation to the values determined for the three simulated particle
sizes results in numbers of APBs in the particle center of 0.96 for all particle diameters.
The small deviation from the expected value of one APB in the particle center might
be related to the assumption of large crystals in the theory of Warren and Wilson to
describe the APB peak broadening. With respect to real data, additional contributions
to the peak profile may have to be considered that are convoluted with the effects
discussed here. These contributions include surface relaxation of the crystal lattice,
strains, dislocations and twin faults. An estimate on the severity of these additional
contributions can be made by studying the peak shape and width of the peaks that
are not affected by the APB (e.g. peaks (400) and (440)). As shown by Nunes and
Lin [216,217] surface relaxation leads to an asymmetry of the peak shape, where the low-
angle peak tail is increased in intensity compared to the higher angle tail. Leoni and
Scardi [217] note that surface relaxation also leads to a peak shift of the large Q peaks
towards lower angles. No significant peak broadening results from surface relaxations.
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Dislocations and strain lead to an hkl-dependent line broadening. [218] However, all peaks
are affected to some degree [219] and for cubic crystal systems the effect is different for
h00 and hk0 reflections. [220,221] Hence, a comparison of the profiles obtained from peak
(400) and (440) should reveal this contribution if present. The typical {111} twin faults
observed for magnetite and maghemite nanoparticles [222,223] lead to a change also in the
oxygen sub-lattice and should therefore affect the peaks (400) and (440) as well. Thus,
if the coherent structure sizes obtained from peaks (400) and (440) coincide well with
each other and with expected values for the studied particles additional effects may be
ignored in a first approximation. For the use of eq. 4.3 this means if satisfactory fits
can be produced by considering only one particle size, these additional contributions
are likely negligible. For most of the described effects Fourier coefficients have been
given in the literature, which means they can be included in eq. 4.3 if necessary. It
has to be noted, that a large background may make the assessment of the coherent
sizes difficult. Additionally instrumental broadening might be strong for laboratory
X-ray sources. Synchrotron data is thus preferred. The inclusion of the instrumental
broadening in eq. 4.3 is straight forward with the normalized Fourier transform of a
pesudo-Voigt function as given in eq. 2.155.

Finally, the APB in a real particle might not be positioned exactly in the center. The
effect of different degrees of off-centering is shown in fig. 4.14. The peak broadening is
reduced significantly for larger distances of the APB to the particle center. The number
of APBs in this case is reduced to smaller values than 1 due to a decreasing ratio of the
APB-plane projected onto the yz-plane to the particle cross section (fig. 4.13b)). The
number of APBs estimated with eq. 4.22 thus corresponds to the theoretical number of
APBs placed in the particle center that could lead to the observed peak broadening. It
has to be noted, however, that more APBs might be present at varying distances to the
particle center leading to a similar peak broadening.

4.2.3 Influence of APBs on the PDF

The effect of an antiphase boundary on the PDF of the particle is shown in fig. 4.15. The
PDF for two particle sizes was calculated from powder diffraction patterns simulated
with the Debye scattering equation. Particles with diameters of 5 and 6.7 nm were

used. The patterns were calculated over a Q-range of 0.01 and 20.0 Å
−1

. The PDF
was calculated from these patterns by excluding the small-angle scattering region of the
diffraction pattern, i.e. setting Qmin to 1.0. Since the simulated patterns have no strong
decay in peak intensity towards higher Q, a damping was introduced that reduces cutoff
artefacts. Finally the PDF, G(r), was calculated via eq. 2.161, i.e.

G(r) =
2

π

Qmax∫
Qmin

F (Q) sinQrdQ. (4.23)

As can be seen from the difference between both calculated PDFs and from the calcu-
lated R-values, there is a significant difference in the medium and large r-range. The first
coordination sphere is almost not affected (fig. 4.16). A very small difference is observed
for the first maximum of the PDF, that corresponds to the distance between tetrahed-
ral iron (FeA) and oxygen. With the idealized structure used for the simulations the
interatomic distances between octahedral iron (FeB) and oxygen is not modified (max-
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4.2 Debye Scattering Equation Simulation Results

Fig. 4.14 Simulation of powder diffraction patterns for different positioning of the APB
within a particle of 9.2 nm in diameter. The peak broadening depends on the position and
is strongest for an APB through the particle center.

imum 2). The oxygen to oxygen distance as well as the distances between FeB atoms
is also not affected by the APB (maximum 3). A slight increase in G(r) due to the
APB is visible for the maximum 4 corresponding to the interatomic distances between
iron atoms on both sites as well as FeB-O and FeA-O (octahedral oxygen). However,
all these differences are negligible compared to the strong deviations observed at larger
interatomic distances. For both particles also the PDF decays to zero at the maximum
interatomic distance possible, i.e. the particle diameter. This is also expected as the
APB leaves the total particle size unchanged.

If a fit of the PDFs is performed with a small-box approach, as used by PDFGui [142],
the features originating from the APB cannot be described, since in this approach a
periodic arrangement of unit cells is assumed. This leads to a decrease in the fit quality
especially at medium, i.e. larger than the first coordination sphere, to large interatomic
distances, where the differences between the PDF with and without APB are strongest.

4.2.4 Summary

In this section it was demonstrated that the finite size broadening of peaks in X-ray
powder diffraction patterns can be well described by the Fourier transform of the particle
shape function. The APB was shown to produce a distinct hkl-dependent peak broaden-
ing that leaves certain peaks completely unchanged. This effect can be used to determine
the presence of APBs in real samples. With the developed APB Fourier coefficient a
correct description of the resulting peak profiles is achieved and the number of APBs
can be assessed with the fitting parameter related to the APB probability. The value
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Fig. 4.15 Comparison of PDFs calculated from simulated powder diffraction patterns of
particles with and without APB. The difference (no APB - APB) is shown below. Two
particle sizes were simulated: a) diameter of 5 nm with 6103 (with APB) and 6106 (without
APB) atoms in the structure and b) diameter 6.7 nm with 14 527 (with APB) and 14 537
(without APB) atoms. The first coordination sphere, i.e. the low r peaks are not significantly
affected, however some difference becomes apparent at larger interatomic distances. R values
are given below to quantify the difference in the curves.

for a single APB in the center of a spherical particle may provide a reference point for
experimental studies on real samples. Finally, the calculation of PDF for particles with
and without APB showed a significant difference in the curves, possibly complicating
fits to real data from particles containing such defects.
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Fig. 4.16 Close up of the comparison of PDFs calculated from simulated powder diffraction
patterns of particles with and without APB for 6.7 nm particles shown in fig. 4.15b). The
difference (no APB - APB) is shown below. The maxima of the PDF marked with num-
bers correspond to interatomic distances between tetrahedral iron (FeA) and oxygen (1),
octahedral iron (FeB) and oxygen (2), oxygen and oxygen as well as FeB-FeB (3) and
FeA-FeB, FeA-FeA, FeB-O and FeA-O (4).

4.3 Experimental results for varying particle sizes

In this section the results of complementary experimental techniques applied to study
particles of various sizes are presented. First an overview of the samples used and
the applied techniques is given. A precise analysis of the inorganic core sizes and size
distributions using SAXS and TEM follows. SANS is used to determine the organic
shell and the non-magnetic surface layer thickness. With Mössbauer spectroscopy the
particle composition is determined. X-ray powder diffraction and PDF analysis are
used to determine the structural properties both on a larger scale and in the local
environment. The presence of APBs is checked with the previously developed method
(see section 4.2). This is complemented by HRTEM data. The combined information
allows the evaluation and interpretation of the SQUID magnetometry data.

4.3.1 Overview of samples and techniques

The samples of spherical iron oxide nanoparticles used in this work were in part obtained
from Ocean NanoTech LLC and also synthesized by Dr. Sascha Ehlert at JCNS-1
(Forschungszentrum Jülich GmbH). From Ocean NanoTech particles with nominal sizes
of 5, 10, 15 and 20 nm were purchased. Two bottles from the same batch were obtained
for each particle size, in the following labelled with B1 and B2. Two bottles with
particles of nominal size 15 nm were available from a previous order, labelled with lower-
case ”b”. From JCNS-1 two samples were used with sizes of around 12 nm (SE11 and
SEs12). The sample names as well as the nominal sizes and further information are
presented in tab. 4.2. All nanoparticles in this work are coated with oleic acid to prevent
agglomeration by steric repulsion and are dispersed in toluene.

The samples SE11 and OC15b1 were used for SANS experiments on KWS-1 operated
by JCNS at MLZ. Synchrotron X-ray powder diffraction experiments were performed
on samples OC05B2, OC10B2, OC20B2 and SE11 at APS remotely and for samples
OC05B2, OC10B1, OC15b1, OC15b2 and OC20B1 on site at PSI. SEs12 and OC15b1
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were used for HRTEM measurements at ER-C (Forschungszentrum Jülich GmbH) with
the help of Tanvi Bathnagar-Schöffmann. Additional TEM measurements were per-
formed at JCNS-4 (Forschungszentrum Jülich GmbH) with the help of Dr. Marie-Sousai
Appavou on samples OC05B2, OC10B2, SE11 and OC20B2. Mössbauer spectroscopy
was performed by Dr. Joachim Landers (University of Duisburg-Essen) on samples
OC10B1, OC15b1, SEs12 and OC20B1. SAXS measurements were performed for all
samples at JCNS-2 (Forschungszentrum Jülich GmbH). SQUID magnetometry data was
recorded at JCNS-2 as well, for the samples as indicated in tab. 4.2.

The particles of samples SEs12 were originally dispersed in tetrahydrofuran (THF).
Since all other particles are dispersed in toluene a solvent exchange was attempted for
sample SEs12. However, during this procedure the particles agglomerated making them
unusable for the subsequent experiments. The results for sample OC15b1 have been
published in Nanoscale under the title ”Mechanism of magnetization reduction in iron
oxide nanoparticles”. [84]

Tab. 4.2 Table of the samples used in this work. The nominal particle diameters in nm are
given which might deviate from the actual particle sizes. The manufacturer abbreviations
OC and SE in the sample names stand for Ocean NanoTech LLC and Dr. Sascha Ehlert,
respectively. Mössbauer spectroscopy is abbreviated with Mössb.

Name size comment SAXS TEM SQUID Mössb. SANS XRD

OC05B1 5 Bottle 1 X X
OC05B2 5 Bottle 2 X X X
OC10B1 10 Bottle 1 X X X X
OC10B2 10 Bottle 2 X X X
OC15b1 15 old batch bottle 1 X X X X X X
OC15b2 15 old batch bottle 2 X X
OC20B1 20 Bottle 1 X X X
OC20B2 20 Bottle 2 X X X X
SEs12 12 aggregation dur-

ing solvent ex-
change

X X X

SE11 12 same synthesis
procedure as
SEs12

X X X X X

4.3.2 Particle sizes and size distributions

In this section the particle sizes and size distributions of the samples listed in the previous
section are determined with SAXS and TEM. First, the smallest particles of sample
OC05 are considered.

4.3.2.1 OC05

SAXS measurements were performed on two samples from each bottle of the purchased
nanoparticles (OC05B1 and OC05B2 in tab. 4.2). Ocean NanoTech provided the nom-
inal size as 5 nm. For the SAXS experiments the as purchased nanoparticle dispersion
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Fig. 4.17 Comparison of P(r) func-
tions obtained from SAXS curves
from OC05 and SE11. The curves
have been normalized to their max-
imum value. The yellow dashed line
corresponds to an ideal sphere with
radius 5.9 nm. The dashed pink line
is a fit with a superposition of two
sphere models.

was diluted to 1 vol. % to reduce inter-particle interactions. The results are depicted in
fig. 4.18a). The Guinier fit shown in the inset gives a particle radius of 3(1) nm. The
linear behaviour suggests the absence of particle aggregates which indicates negligible
inter-particle interactions. However, from the scattered intensity it can be seen that
a simple sphere model is not able to fully describe the data. The dip in intensity at

around Q = 0.1 Å
−1

indicates the presence of two particle sizes or of particle clusters.
A superposition of two sphere models with different particle sizes would capture all
features yielding the same parameters for both bottles. Differences in total scale are
due to slightly different concentrations resulting from the dilution of the original dis-
persion. The sphere models result in a majority contribution of particles with a radius
of 2.4(1) nm and a smaller fraction (15(1) %) of particles with a radius of 3.9(1) nm.
A single log-normal distribution parameter σ = 0.12(1) was determined. However, as
mentioned, it is also possible that not two particle sizes are present but that particles
with diameters of 2.4(1) nm form clusters, i.e. two particles aggregate before the oleic
acid can prevent this. To check this possibility the pair distribution function from the
SAXS curve was calculated via

P (r) =
r2

2π2

∞∫
0

Q2I(Q)
sinQr

Qr
dQ, (4.24)

where r is the distance between electrons in Å. From the shape of this function con-
clusions can be drawn on the morphology of the particles. In fig. 4.17 two P (r) curves
are shown calculated from the SAXS curves of sample OC05B2 and SE11. The latter
is highly monodisperse and thus leads to an almost symmetric P (r) function with a
central peak corresponding to the mean particle radius following the ideal case of a
monodisperse sphere. The pair distribution function for a sphere is given by

P (r) =

(
1− 3

2

r

D
+

1

2

( r
D

)2
)
r2, (4.25)

with the particle diameter D. The term in the brackets is the shape function of a sphere
as given in section 2.3.5.3. For sample OC05B2 a slanting towards smaller r leading
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to an asymmetric function shape is observed. A P (r) function with two maxima is
attributed to dumbbell particles. [224] However, for this sample only a small shoulder is
visible. The P (r) function can be reproduced either with strongly intersecting dumbbells
or by assuming a superposition of particle sizes similar to the SAXS fit, here this yields
particle radii of 2.5(1) nm with σ = 0.09(1) and 4.1(1) nm with σ = 0.09(1). The latter
seems more likely since if two particles had aggregated to form a dumbbell the individual
particle centres would be farther apart. Indeed, TEM images obtained for this sample
clearly show that multiple particle sizes are present instead of dumbbell shaped particles
(fig. 4.18b)). The two peaks in the particle size histogram match well with the obtained
sizes from SAXS. Differences can be attributed to the limited statistical information
provided by TEM as only 322 particles could be measured.

4.3.2.2 OC10

The next particles under consideration are those of samples OC10B1 and OC10B2 with
a nominal core size of 10 nm according to Ocean NanoTech. For the experiments the as
purchased nanoparticle dispersion was again diluted to 1 vol. % to reduce inter-particle
interactions. Despite the dilution of the sample some particle aggregations are still
present as evident from the deviation of linear behaviour in the Guinier plot shown
in the inset on the lower left (fig. 4.19a). The slope of the scattering curve in this
region shows a Q−0.5 dependency. Ignoring this linear region a solid sphere model
with a log-normal size distribution gives R0 = 5.8(1) nm with σ = 0.10(1) for both
bottles. Differences in the SAXS curves of the two samples are again due to concentration
deviations originating from the sample preparation. From TEM a size distribution with
parameters R0 = 5.5 nm and σ = 0.10 is obtained in agreement with the SAXS results,
however with a slightly smaller particle radius (fig. 4.19b). This difference is likely due
to a region of smaller particles being sampled by TEM, whereas SAXS provides the
average particle size of a much larger number of particles.

4.3.2.3 SE11 and SEs12

In the same way as for the previous samples a diluted dispersion of nanoparticles was
used for a size determination of the particles of sample SE11. The fit is presented in
fig. 4.20a). Here no deviation from linear behaviour can be seen in the Guinier plot
shown in the inset. The solid sphere model fit with a log-normal distribution of particle
sizes gives the parameters R0 = 5.9(1) nm and σ = 0.06(1). This very narrow size
distribution is also reflected in the large number of oscillations visible in the SAXS curve
as well as the well defined minima. A comparison of the P (r) function with that of an
ideal sphere is shown in fig. 4.17. Here only very small differences can be observed. From
TEM a log-normal size distribution with parameters R0 = 6.0(1) nm and σ = 0.07(1)
is obtained, in good agreement with the SAXS results (fig. 4.20b). These particles are
very similar in size to the previously analysed OC10 sample (R0 = 5.8(1) nm), however
the size distribution is narrower for SE11. As mentioned in section 4.3.1 the particles
of SEs12 aggregated during the solvent exchange making the evaluation of SAXS data
very difficult. TEM data suggest a mean particle radius of 6.6(1) nm with a log-normal
size distribution parameter σ = 0.05(1). The particles of SEs12 were synthesized under
similar conditions as SE11 yielding slightly larger particle sizes. Mössbauer data is only
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available for sample SEs12 but conclusions may be drawn on the composition of particles
of sample SE11, however the difference in size has to be taken into account.

4.3.2.4 OC15

The next sample in the size series is OC15 with a nominal core size of 15 nm. Again the
inorganic particle size as well as the size distribution were determined via SAXS from a
diluted dispersion of nanoparticles, where the original dispersion was diluted to 1 vol. %.
The fit is presented in fig. 4.21a). No deviation from linear behaviour can be seen in
the Guinier plot shown in the inset, indicating the absence of particle aggregation and
thereby negligible inter-particle interactions. The radius of gyration, Rg, of 6.4(1) nm
is obtained, which corresponds to a spherical radius of 8.1(2) nm in agreement with the
particle radius determined from a solid sphere model with R0 = 7.8(1) nm and a log-
normal distribution parameter σ = 0.07(1). The different background levels for both
curves are related to an overestimation of the particle number density in sample OC15b1,
thus not enough of the solvent background has been subtracted. This background does
however not influence the particle size determination. Similar to sample SE11 this very
narrow size distribution is also reflected in the large number of oscillations visible in the
SAXS curve as well as in the well defined minima. TEM data is in agreement with the
SAXS results, however only 75 particles could be analyzed due to lack of larger scale
images and thus the differences to the size distribution from SAXS may be attributed
to insufficient statistics (fig. 4.21b). Still, the TEM images provide a confirmation of
the spherical shape and particle size distribution.

4.3.2.5 OC20

Finally, the particles of sample OC20 are analyzed. Their nominal core size was given by
Ocean NanoTech as 20 nm. For the experiments the as purchased nanoparticle dispersion
was diluted to 1 vol. % to reduce inter-particle interactions. The results are depicted
in fig. 4.22a). Differences in the scaling of the SAXS curves may again be attributed
to concentration deviations originating from the sample preparation. A solid sphere
fit provided the parameters of the log-normal distribution according to eq. 2.98, giving
R0 = 10.7(1) nm with σ = 0.09(1) for both bottles. The radius of gyration from the
Guinier fit constitutes 9.5(2) nm, which corresponds to a particle radius of 12.2(2) nm.
This is slightly larger than the value determined from the solid sphere fit, which is due
to the small deviation from linear behavior at small Q in a log I vs. Q2 plot. This
indicates the onset of particle aggregation. From TEM images the parameters for the
log-normal distribution a determined to R0 = 11.1(1) nm and σ = 0.08(1) in agreement
with the SAXS data, with a slightly larger radius (fig. 4.22b). This might be due to
non-perfect spherical particle shapes that are not entirely correctly reproduced by the
solid sphere model used for the SAXS data. Additionally, an error might be introduced
by the calculation of the particle radius from the dark areas determined from TEM
under the assumption of a perfect circle.
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Fig. 4.18 a) Small-angle X-ray scattering curves for samples OC05B1 and OC05B2. A solid
sphere model with two particle sizes was used for the fits (solid lines). The inset shows
a ln(I) vs. Q2 plot of the Guinier region with Guinier fits shown with dashed lines. b)
Representative TEM micrograph obtained for sample OC05. On the left a histogram of
322 measured particles is shown. The solid and dashed line correspond to the log-normal
distributions determined from SAXS and TEM, respectively.
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Fig. 4.19 a) OC10B1 and OC10B2 SAXS fit. A certain particle aggregation is present in
the sample as seen from the slope of Q−0.5 in the scattering curves and in the non-linear
behaviour in the Guinier plot on the lower left. Excluding the small Q region from the fit
allows the extraction of the particle size with a solid sphere form factor model. The fit
parameters are given in the text. b) A representative TEM image of sample OC10 is shown
in the right. The histogram of the particle sizes obtained from 2482 measured particles is
given on the left with a solid line corresponding to the log-normal size distribution determined
from the histogram and a dashed line that shows the distribution obtained from SAXS.
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Fig. 4.20 a) SE11 SAXS fit with a solid sphere model with log-normal size distribution.
The inset shows the Guinier region. b) On the left the histograms corresponding to the
particle sizes determined from TEM images for samples SE11 and SEs12 are shown. For
SE11 1445 particles were analysed, for SEs12 only 801. The solid lines are fits of a log-
normal distribution to the data, the dashed ones correspond to the distribution determined
from SAXS. On the right a representative image of the particles in SE11 is shown.
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Fig. 4.21 a) OC15b1 and OC15b2 SAXS fit. Both curves result in the same fitting paramet-
ers of a log-normal size distribution with R0 = 7.8(1) nm and σ = 0.07(1). b) Histogram
of the particle sizes in sample OC15 determined from 75 particles. On the right an image
of the particles is shown. The dashed line shows the log-normal distribution obtained from
SAXS, the solid line is a fit to the histogram data.
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Fig. 4.22 a) OC20B1 and OC20B2 SAXS fit. Both samples result in the same core radius
of 10.7(1) nm with log-normal σ = 0.085. The difference in intensity of the curves is due to
a different amount of particles in the sample, either because of a difference in concentration
between the bottles or the diluted samples. b) Histogram of the particle sizes in sample
OC20 determined from 450 particles. On the right hand side an image of the particles is
shown. The solid line is a fit to the data and the dashed line corresponds to the results from
SAXS.
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4.3.2.6 Summary

Fig. 4.23 Distribution of the particle sizes for the samples used in this thesis based on SAXS.
The parameters of the distributions are given in tab. 4.3. The area beneath each curve is
equal to 1.

The particle sizes and size distributions were determined by the use of SAXS and
TEM, with consistent results. However, in the following the parameters as determined
from SAXS are used since the statistics are superior compared to the analysis by TEM.
The particle size distributions obtained from SAXS are shown in fig. 4.23 and listed
together with the parameters obtained from TEM in tab. 4.3. For OC05 a bi-modal
size distribution was found. The sample with the narrowest distribution of particle sizes
is SE11. The broadest distribution is detected for OC20. However, all samples except
OC05 can be considered reasonably monodisperse. For sample OC10 some particle
aggregation is present even in the diluted sample used for SAXS. These results serve as
the basis for the subsequent chapters.

Tab. 4.3 Particle sizes and lognormal size distribution parameter σ as determined from
SAXS and TEM for the samples of this work.

Sample R (TEM) [nm] σTEM R (SAXS) [nm] σSAXS

OC05 55 % 2.5(1), 45 % 4.1(1) 0.13(1) 85 % 2.4(1), 15 % 3.9(1) 0.12(1)
OC10 5.5(1) 0.10(1) 5.8(1) 0.10(1)
SE11 6.0(1) 0.07(1) 5.9(1) 0.06(1)
SEs12 6.6(1) 0.05(1) - -
OC15 7.7(1) 0.05(1) 7.8(1) 0.07(1)
OC20 11.1(1) 0.08(1) 10.7(1) 0.09(1)
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4.3.3 Particle composition

Fig. 4.24 Mössbauer spectra recorded for samples OC10, SEs12, OC15 and OC20 at 4.3 K.
For all samples the sextet splitting due to the hyperfine field can be observed. An Fe2+

contribution (green line) is only visible for samples SEs12, OC15 and OC20. The individual
sextet contributions corresponding to the different iron cations in different lattice positions
are offset for better visibility.

In addition to the particle sizes and the size distribution another important property to
be considered is the chemical composition of the particles, especially the relative amounts
of the various iron oxide phases presented in section 2.6. As established in section 2.5,
Mössbauer spectroscopy is particularly well suited to distinguish the different phases.
The presented data was recorded and analysed with the help of Dr. Joachim Landers
(University of Duisburg-Essen).

Low temperature (4.3 K) Mössbauer spectra for samples OC10, SEs12, OC15 and
OC20 are shown in fig. 4.24. For samples OC05 and SE11 no data is available. The
spectrum of OC10 (upper left) can be modelled by two sextets corresponding to Fe3+

ions on octahedral and tetrahedral lattice sites. This suggests that no Fe2+ ions are
present indicating that these particles consist entirely of maghemite. For SEs12 a relat-
ively strong contribution of the Fe2+ sextet is detected, corresponding to a magnetite
contribution of about 40 %. As shown in the previous sections the particles of sample
SE11 produced by the same method as SEs12 are slightly smaller. Thus for this sample
the magnetite contribution is likely to be smaller, but can still be expected to be much
larger than what was observed for OC10. The spectrum of OC15 can be reproduced
again by a superposition of three symmetric sextets. The Fe2+ contribution yields
an estimate of the magnetite content in the particle of 15 %. For OC20 the highest
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Fig. 4.25 Determined magnetite
fractions drawn as a function of the
particle diameters. The line illus-
trates the trend towards increasing
magnetite content with increasing
particle size for the samples obtained
from Ocean NanoTech LLC.

magnetite fraction with 70 vol. % is obtained. However, the statistics for this sample
is not as good as for the previous samples and the magnetite fraction is thus only a
rough estimate. Still, it can be concluded that for these particles, which are the largest
ones considered for this work the magnetite contribution is the highest compared to the
other samples. This is also consistent with the model of nanoparticles oxidizing from
the surface to the core by transforming magnetite to maghemite during the synthesis
process. If equal oxidation rates are assumed for all particles more magnetite will remain
in larger particles. The oleic acid coating seems to prevent further fast oxidation [225],
however slower long-term oxidation has been observed for oleic acid coated iron oxide
nanoparticles. [226] A wüstite contribution is not detected in any of the samples. A trend
towards an increased magnetite content with increasing particle size can be concluded.
However, it is apparent that the synthesis conditions have a strong influence on the
degree of particle oxidation as the sample with different synthesis conditions (SEs12)
shows a much higher magnetite contribution as expected from the trend observed for the
particle obtained from Ocean NanoTech (fig. 4.25). For sample OC05 a composition of
purely maghemite can be expected considering that this is reached already for particles
of roughly 12 nm in diameter.
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4.3.4 Structural properties

In this section the structural and crystallographic properties of the particles are ad-
dressed. X-ray powder diffraction is used to determine the lattice parameters and to
draw conclusions on the vacancy distribution on a larger scale and the presence of an-
tiphase boundaries. Where available HRTEM is used to support these findings. PDF
analysis is applied to check for local disorder and determine the iron site occupancy. The
analysis starts again with the smallest particle size and subsequently the larger particles
are considered.

4.3.4.1 OC05

Fig. 4.26 X-ray powder diffraction data of OC05. The profile was fit with a superposition
of peak profiles according to eq. 4.3. The inset on the right hand side shows the calculated
cubic lattice parameter from each Bragg peak. The upper and lower dashed lines correspond
to bulk magnetite and maghemite, respectively. The inset on the left hand side gives an
enlarged view of the small Q region where the vacancy ordering superstructure peaks are
marked with asterisks. A fit with the Rietveld method, performed with GSAS-II, is shown
with the green dashed line. The corresponding difference between data and fit is given with
the yellow dashed line.

In the powder diffraction pattern of OC05 (fig. 4.26) very small superstructure peaks

very likely related to vacancy ordering are visible in the Q-range of 1 to 2 Å
−1

(inset
on the left hand side of fig. 4.26). The main peak positions translate into cubic lattice
parameters close to the values expected for maghemite, albeit slightly larger. Deviations
of the peak positions at small Q from the average structure indicate a strained lattice.
No additional peaks relating to wüstite or other phases can be seen. The profile can be
reproduced with a superposition of peak profiles according to eq. 4.3, with δ = 0.0, i.e.
no APBs are present, and a particle radius of 2.3 nm. The determined radius is slightly
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Fig. 4.27 a) PDF fit for sample OC05 using the tetragonal unit cell with space group
symmetry P43212 (see tab. 2.5). The difference between fit and data is given below, where
dashed lines correspond to two standard deviations. The fit parameters are shown in tab. A.1.
b) Fits to Q-ranges of 5 Å. The fit quality is given by the R-values in each section. The
R-values corresponding to each section are also given for the total range fit in a).

smaller than that obtained from SAXS and TEM. This might be related to a residual
oleic acid background and the presence of lattice strains.

A Rietveld fit to the Q-range of 1.6 to 6.0 Å
−1

(dashed green line in fig. 4.26 results
in a strongly tetragonally distorted unit cell with lattice parameters a = b = 8.256 Å
and c = 8.386 Å, which is likely the cause for the deviations in small Q observed for
the cubic lattice parameter determined from the peak positions (inset of fig. 4.26). The
Fe-site occupancies were constrained to reduce the number of refinement parameters,
giving a total iron site occupancy of 0.82. To study the lattice distortions and iron site
occupancies on a more local scale PDF analysis is performed in the following.

The best fit to the PDF data is achieved with the tetragonal unit cell P43212 (fig. 4.27a).
The fit parameters are given in tab. A.1. Different occupancies on the iron sites were
considered, showing a preference of vacancies on the Fe2 and Fe4 sites with occupancy
factors of 0.75(3) and 0.60(2), respectively. The occupancy factors for Fe1 and Fe3 are
0.98(2) and 0.95(2), respectively. This results in a total iron occupancy of 0.81(2), which
is reduced compared to the theoretical value of 0.89 for maghemite but within errors of
the value obtained from the Rietveld refinement. The refined unit cell parameters indic-
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Fig. 4.28 OC05 Fe site occupancies (a) and lattice parameters (b) as determined from a
PDF fit to intervals corresponding to different inter-atomic distances. The data points are
drawn at the mean inter-atomic distance considered in each interval.

ate a stretched unit cell along the c-direction, resulting in a strained crystal lattice as
was concluded from the analysis of the peak positions and was also seen in the Rietveld
refinement. The fit does not capture all features perfectly, as is typical for a disordered
structure. Thus, to gain a better understanding of the crystal structure a length-scale
dependent fit was performed over intervals of 5 Å (fig. 4.27b). The largest mismatch
between the model structure and the data is found for inter-atomic distances below
6.5 Å, indicated by a larger R-value. This suggests disorder in the first coordination
spheres that averages out over larger inter-atomic distances. This structural disorder
may be related to surface effects as well as lattice rearrangements around vacancies. The
resulting changes in the bond lengths and angles may also affect the spin structure and
subsequently reduce the magnetization.

Additionally, a refinement of the Fe-site occupancy factors shows that at this length
scale strong vacancy ordering can be observed (fig. 4.28a), where vacancies are preferen-
tially placed on octahedral Fe3 sites. Upon increasing the length scale, i.e. performing
the fits at larger r a decrease in this vacancy ordering can be seen. This suggests that
within the particles there exist spatially confined regions with high vacancy ordering
while for the entire particle on average this ordering is less pronounced. The total iron
site occupancy remains constant over all considered length scales. The lattice constants
remain relatively unchanged over the considered r-ranges with a slight trend towards a
less stretched unit cell (fig. 4.28b).

4.3.4.2 OC10

Similar to the previously considered sample OC05 also for OC10 only very small su-
perstructure peaks related to vacancy ordering and subsequent symmetry reduction are
visible in the powder diffraction pattern (inset on the left hand side of fig. 4.29). Ana-
lysis of the peak positions shows a high degree of variance in the associated cubic lattice
constants indicating a strained crystal lattice, while the mean value would suggest the
presence of some magnetite. However, no magnetite contribution was observed in both
Mössbauer spectroscopy and SQUID-magnetometry. Taking also into account that even
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Fig. 4.29 X-ray powder diffraction data of OC10. The profile was fit with a superposition
of peak profiles according to eq. 4.3. The inset on the right-hand side shows the calculated
cubic lattice parameter for each Bragg peak. The upper and lower dashed lines correspond
to bulk magnetite and maghemite, respectively. The inset on the left-hand side gives an
enlarged view of the low-Q region, where very small superstructure peaks are marked with
asterisks.

for the OC05 particles a lattice parameter larger than the bulk value was observed, the
enlarged unit cell for the particles of OC10 can be attributed to lattice strain. Further-
more, no peaks related to the presence of wüstite are present. The best fit to the peak
profile using eq. 4.3 is obtained with an APB probability parameter δ of 1.017. With
eq. 4.22 this relates to 2.9(1) APBs. Some deviations are still present, which are likely
related to additional lattice strains that have not been modeled.

The best fit to the PDF data is achieved with the tetragonal unit cell P43212 (fig. 4.30).
The fit parameters for a fit over the inter-atomic distance range of 1.5 to 21.5 Å are
given in tab. A.2. Vacancy ordering persists up to the maximum inter-atomic distance
considered of 21.5 Å, however, as mentioned before no significant superstructure peaks
are visible in the powder diffraction suggesting that vacancy ordering is not present
in the whole particle but confined to smaller regions on the particle surface or in the
core separated by regions with random vacancy placement. In the ordered regions
the vacancies are placed mainly on the octahedral Fe2 positions, while the other iron
positions also show a reduced occupancy. The total iron occupancy evaluates to 0.69,
which is strongly reduced compared to the theoretical value of 0.89 for maghemite. In
addition the unit cell is elongated along the c-direction. A fit to sections in different r-
ranges is shown in fig. 4.30b). Contrary to what was observed for the smaller particle size
considered in the previous section here the fit quality gets worse with increasing inter-
atomic distance. This can be attributed to the deviations introduced by the APBs.
As seen from fig. 4.15 differences between the ideal PDF and the one obtained from a
particle with an APB through the center become strong at atomic distances of approx.
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Fig. 4.30 a) PDF fit for sample OC10 using the tetragonal unit cell with space group
symmetry P43212 (see tab. 2.5). The difference between fit and data is shown below, where
dashed lines correspond to two standard deviations. The fit parameters are given in tab. A.2.
b) Fits to Q-ranges of 5 Å. The fit quality is given by the R-values in each section. The
R-values corresponding to each section are also given for the total fit in fig. a).

8 Å, i.e. starting to become significant in the second r-section considered. Additionally,
some local disorder can also be observed in the first r-section, which is slightly less
pronounced than for the smaller particles.

4.3.4.3 SE11

In the powder diffraction pattern (fig. 4.31) no superstructure peaks related to vacancy
ordering are visible. Very similar to sample OC10 the cubic lattice parameters obtained
from the low angle peaks show a large variance indicating a strained or stretched lattice.
Here the mean lattice parameter is closer to the theoretical value of magnetite, consistent
with the previous considerations on the magnetite content. Again, no peaks related to
the presence of wüstite can be found. Analysing the pattern with eq. 4.3 results in the
best fit by using an APB probability parameter δ of 1.017, which using eq. 4.22 leads
to a number of APBs of 3.0(1) that is comparable to the value obtained for sample
OC10. To fit the PDF again the tetragonal unit cell with space group P43212 is chosen
(fig. 4.32a). The fit parameters for a fit over the inter-atomic distance range of 1.5
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Fig. 4.31 X-ray powder diffraction data of SE11. The profile was fit with a superposition
of peak profiles according to eq. 4.3. The inset shows the calculated cubic lattice parameter
for each Bragg peak. The upper and lower dashed lines correspond to bulk magnetite and
maghemite, respectively.

to 21.5 Å are given in tab. A.3. Vacancy ordering can be seen up to the maximum
inter-atomic distance considered of 21.5 Å, however, as mentioned before, no significant
superstructure peaks are visible in the powder diffraction suggesting that, very similar to
sample OC10, vacancy ordering is not present in the whole particle but smaller regions
on the particle surface or in the core are separated by regions with random vacancy
placement. The vacancies in the ordered regions are placed mainly on the octahedral
Fe3 positions, while the other iron positions also show a reduced occupancy. The total
iron occupancy evaluates to 0.78, which is strongly reduced compared to the theoretical
value of 0.89 for maghemite but larger than what was observed for OC10. In addition
the unit cell is elongated along the c-direction. Again the influence of the APBs on
the PDF can be seen from a smaller refined particle size, as well as an increase in the
R-value for increasing inter-atomic distances (fig. 4.32b).
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Fig. 4.32 a) PDF fit for sample SE11 using the tetragonal unit cell with space group
symmetry P43212 (see tab. 2.5). The difference between fit and data is shown below,
where dashed lines correspond to two standard deviations. The fit parameters are shown in
tab. A.3. b) Fits to Q-ranges of 5 Å. The fit quality is given by the R-values in each section.
The R-values corresponding to each section are also given for the total fit in fig. a).

4.3.4.4 OC15

HRTEM data for these samples allow an additional complementary confirmation of
the presence of APBs (fig. 4.33). The resulting iron sub-lattice shift can be seen in
fig. 4.34. It is important to note that although it appears like bright spots correspond to
atomic columns, image simulations show that for this particle thickness and the electron
microscope settings dark spots relate to the atomic columns. The model structure with
the APB then coincides reasonably well with the observed data. The APBs can be more
easily identified by masking the Bragg peak of the lattice planes that are affected by
this translation (lower row of fig. 4.33). E.g. for the left most image of fig. 4.33 the
(220) reflection can be chosen (marked with the red circle in the inset). Masking instead
the (440) peak leads to no observable lattice shifts, in agreement with the simulations
and theoretical considerations on the peak broadening in the XRD pattern (section 4.2).
Here, the peak (440) is not affected by the APB while the peak (220) is broadened. A
drawback of relying only on HRTEM is the limited statistical information that can be
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Fig. 4.33 HRTEM micrographs of nanoparticles of sample OC15 containing APBs as indic-
ated with the red dashed lines. To make the lattice shifts more apparent below the inverse
Fast Fourier Transformed (iFFT) images are shown. These are obtained by masking a certain
peak (marked with the red circle) in the fast Fourier transformed image and performing the
iFFT.

obtained. Such statistical information can be obtained from the analysis of the peak
broadening in XRD as was done for the previous samples as well.

A part of the powder diffraction pattern measured at SLS on the beamline X04SA
(section 3.2.1) is shown in fig. 4.35. Clearly superstructure peaks related to vacancy
ordering are present, indicated with the asterisks. The cubic lattice parameters ob-
tained from the major peak positions are more uniform than for the previously observed
samples, however some variance in the parameters form the low-Q peaks remains. Again
no wüstite peaks are present, in agreement with the Mössbauer results. A good fit to
the experimental data is obtained by eq. 4.3, giving an APB probability parameter
δ = 0.506. This evaluates to 2.0(1) APBs using eq. 4.22, which is lower than what was
observed for samples OC10 and SE11.

Fig. 4.34 Closeup of the APB structure in the particle
shown in fig. 4.33 on the left. A model of the crystal
structure is overlayed. The atom positions were veri-
fied by multislice TEM image simulations shown in the
inset. The APB-plane is indicated with the white rect-
angle. Blue and red dots represent the tetrahedral and
octahedral iron positions, respectively.
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Fig. 4.35 X-ray powder diffraction data of OC15. The profile was fit with a superposition
of peak profiles according to eq. 4.3. The inset shows the calculated cubic lattice parameter
for each Bragg peak. The upper and lower dashed lines correspond to bulk magnetite and
maghemite, respectively. Asterisks correspond to peak positions of superstructure peaks
originating from vacancy ordering in the P43212 unit cell.

As for the previous samples, the PDF is best reproduced using a tetragonal unit cell
with space group P43212 (fig. 4.36a). The parameters for a fit over a r-range of 1.5 to
21.5 Å are given in tab. A.4. The obtained lattice parameters are almost equal resulting
in a pseudocubic unit cell. Vacancy ordering is observed with preferred placement on
octahedral Fe3 sites. Some vacancies are also detected on the Fe2 position, while the
tetrahedral Fe1 and octahedral Fe4 sites seem to be fully occupied. This results in
a total iron site occupancy of 0.87(2), which is only slightly lower than the theoretical
maghemite Fe-occupancy of 0.89. The presence of clear vacancy ordering superstructure
peaks in the XRD pattern indicates that this vacancy ordering persists over a long range
within the nanoparticles, i.e. the regions with vacancy ordering are much larger than for
the previous samples. More detailed insights into the vacancy ordering are provided from
the fit to sections of different inter-atomic distances shown in fig. 4.36b). From the R-
values of the fit to the whole range it can be seen that the low r-section from 1.5 to 6.5 Å
is not well described by the model. However, this is most likely due to a larger degree of
vacancy ordering on this length scale and not due to structural distortions. Refining the
Fe-site occupancies in this atomic distance range reveals a completely empty Fe3-site,
while the other iron positions are almost fully occupied (fig. 4.37a). This is accompanied
by an elongated unit cell along the c-direction (fig. 4.37b). It should be noted that this
is a distortion on a local scale, while for the particle as a whole the difference in lattice
parameters is very small as seen from the powder diffraction pattern. Upon increasing
the inter-atomic distance r the Fe3 position gets gradually filled while simultaneously
the occupancies of the other iron positions decrease slightly. Thereby the total iron
occupancy remains constant. Correspondingly the lattice distortion is decreased showing
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Fig. 4.36 a) PDF fit for sample OC15 using the tetragonal unit cell with space group
symmetry P43212 (see tab. 2.5). The difference between fit and data is shown below,
where dashed lines correspond to two standard deviations. The fit parameters are shown

in tab. A.4. For the generation of the PDF a maximum Q of 18 Å
−1

and rpoly = 1.3 Å
were chosen. b) Fits to Q-ranges of 5 Å with the R values for each section indicated at the
bottom.

only a slight difference at the largest considered distances. It can clearly be seen that
still at the largest considered inter-atomic distance vacancy ordering can be detected.
Compared to the other samples the OC15 particles exhibit a much less distorted crystal
structure, which is reflected in the better fit quality. As mentioned in section 4.3.1, these
particles were already stored for several years, while the other samples were fresh. This
might have allowed the crystal structure to relax more compared to the other samples.
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Fig. 4.37 a)Fe site occupancy of OC15 as determined from a PDF fit to sections correspond-
ing to different inter-atomic distances (fig. 4.36b). b) Development of the lattice parameters
with increasing inter-atomic distance.

4.3.4.5 OC20

The powder diffraction pattern is shown in fig. 4.38. Very strong vacancy-ordering super-
structure peaks are visible at positions close to the theoretically expected positions for
vacancy ordered maghemite/magnetite structures with space group P43212. Regarding
the presence of wüstite, only the small peak between peaks (222) and (400) in fig. 4.38
may be attributed to this phase. However, it is more likely that this is a superstructure
peak related to vacancy ordering, since the peak is shifted to the left compared to the
theoretical wüstite position and the new position could only be achieved by a larger
wüstite unit cell. This is unlikely as the mismatch between the lattice parameters of
magnetite and wüstite would be quite large. Additionally, if wüstite was present another
peak should appear between peaks (511) and (440), which is not observed. The cubic
lattice parameters obtained from the positions of the major peaks are shown in the inset.
Again the deviation for the low angle peaks can be seen, hinting at a stretched unit cell.
The average lattice parameter is closer to the theoretical value expected for magnetite,
in agreement with the composition estimate from Mössbauer spectroscopy. From a fit
to the major Bragg peaks clearly the hkl-dependent peak broadening is visible, where
only some peaks are significantly broadened, while others remain relatively unaffected.
By fitting the profile with eq. 4.3 the parameter δ = 0.664 was determined, giving a
number of APBs of 3.6(1) via eq. 4.22. This is the highest number of APBs of all the
samples considered.

The best fit to the PDF data is achieved with the tetragonal unit cell P43212 (fig. 4.39a),
however the overall fit quality is not very good (R = 0.198), which is likely related to the
large amount of APBs deduced from the significant peak broadening. Although super-
structure peaks are strong in the XRD-pattern, the use of the P41212 unit cell did not
lead to a better fit. The fit parameters for space group P43212 are given in tab. A.2. For
the fit spanning an inter-atomic distance range of 1.5 to 21.5 Å the determined lattice
parameters show a slight elongation of the unit cell along the c-direction, similar to the
previous samples. The total iron site occupancy evaluates to 0.75(3), which is strongly
reduced compared to the theoretical value of maghemite and even stronger reduced con-
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Fig. 4.38 X-ray powder diffraction data of OC20. The profile was fit with a superposition
of peak profiles according to eq. 4.3. The inset shows the calculated cubic lattice parameter
for each Bragg peak. The upper and lower dashed lines correspond to bulk magnetite and
maghemite, respectively. Asterisks correspond to peak positions of superstructure peaks
originating from vacancy ordering in the P43212 unit cell. The hats show the theoretical
peak positions of wüstite.

sidering a mixture of magnetite and maghemite. The site occupancies for all positions
are reduced but a preference of vacancies on the Fe3-site can be seen. From a fit to
sections of inter-atomic distances shown in fig. 4.39b) a trend of decreasing vacancy
ordering with increasing inter-atomic distance can be observed (fig. 4.40 left). The dif-
ference in the lattice parameters decreases with increasing distance (fig. 4.40b), although
not as uniformly as observed for sample OC15. This indicates that the crystal lattice is
strained over a larger range. Additionally, large deviations between the model and the
data are observed in the section corresponding to small inter-atomic distances (1.5 to
6.5 Å). This may indicate larger local disorder, likely resulting from stronger vacancy
ordering than can be modelled with the space group P43212. Locally the symmetry
could be further reduced to the tetragonal space group P41212.
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Fig. 4.39 PDF fit for sample OC20 using the tetragonal unit cell with space group symmetry
P43212 (see tab. 2.5). The difference between fit and data is shown below, where dashed
lines correspond to two standard deviations. The fit parameters are shown in tab. A.5.

Fig. 4.40 a) Fe site occupancy of OC20 as determined from a PDF fit to sections corres-
ponding to different inter-atomic distances (fig. 4.39b). b) Lattice parameters as a function
of the inter-atomic distance.
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4.3.4.6 Summary

Fig. 4.41 Comparison of the structural properties. a) Cubic lattice parameters determined
from PDF fits. b) Iron site occupancies determined from PDF fits. Open symbols correspond
to tetrahedral iron positions, filled symbols - to octahedral positions. c) Number of APBs
within the particles determined from fits to the powder diffraction data using eq. 4.22.

Consideration of the mean lattice parameters determined from the PDF analysis and
the magnetite content estimated from the Mössbauer spectroscopy shows that there
is some correlation between magnetite content and the lattice parameter (fig. 4.41a).
However, sample OC10 shows an enlarged cubic lattice parameter, while no evidence
for magnetite was found in the Mössbauer spectrum. A reason for this could be the
significant local tetragonal distortions that were determined from PDF analysis and are
in agreement with literature results of similar sized particles. [25] Such a large apparent
unit cell is thus more likely a result of lattice strains. This would be supported by
considering the particles of OC15, which show a smaller cubic lattice parameter than
the other samples. In this case also the determined magnetite content from the lattice
parameter matches that of the Mössbauer spectroscopy.

Also for sample OC20 the agreement between both methods is quite good, although
the estimate from Mössbauer spectroscopy is rough due to the low signal-to-noise ratio.
It can be concluded that the magnetite content increases with increasing particle size,
however the lattice parameters alone are not sufficient to estimate the amount if signi-
ficant lattice strains are present. The total iron site occupancy is determined via PDF
analysis (fig. 4.41b). The lowest value is observed for sample OC10. All samples show
a certain number of vacancies also on the tetrahedral lattice sites, but the majority is
placed on octahedral sites. Different degrees of vacancy ordering are also detected with
varying spatial extents. In the X-ray powder diffraction patterns the vacancy ordering
superstructure peaks are strongly visible for samples OC15 and OC20 and to a much
lesser degree also in the other samples. The inter-atomic distance dependent PDF re-
finements suggest the presence of vacancy ordered regions within disordered structures
for the smaller particles of samples OC05, OC10 and SE11. For samples OC15 and
OC20 these regions seem to be much larger possibly spanning the whole particle for
sample OC15.

For the smallest particles no significant APB peak broadening is detected thus sug-
gesting the lack of these defects for this particle size. Samples OC10 and SE11 show
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almost identical values, the determined value for OC20 is even larger. For OC15 the
second lowest number of APBs is detected. For all samples with the exception of OC05
more than one APB is present in all particles (fig. 4.41c). These findings are similar to
the ones reported by Levy et al. [158] Here, the presented XRD pattern clearly show the
simulated APB effect (section 4.2). The authors focused, however only on the major
peak (311) and mention that for particles ranging in diameter from 10 to 18 nm the
coherent structure size is significantly reduced, while for smaller particles the determ-
ined structure size roughly matches that of TEM images. As shown in section 4.2 the
peak (311) is affected by the APB broadening. Thus, this would indicate the onset of
a significant APB contribution at a particle size of about 10 nm, in agreement with the
data of this work. It has to be noted, however, that for the cited work a seeded growth
method was used to synthesize the particles whereas for the particles of this work a
thermal decomposition route was used.

4.3.5 SANS results

In this section contrast variation in SANS with polarized neutrons is used to accurately
determine the organic shell thickness and the magnetic particle radius of samples SE11
and OC15, allowing conclusions on the presence and thickness of a magnetically dead
surface layer. In the following a description of the fitting procedure is given that is
based on the explanation given in the supplementary material to Köhler et al., [84] which
applies to both investigated samples.

To enable the determination of the thickness of a non-magnetic surface layer first
the organic shell thickness has to be determined precisely. This is due to the small
influence a non-magnetic surface layer has on the scattering intensity. The best contrast
for the nuclear-magnetic interference term is achieved by a high deuteration of the
organic solvent. This compensates the nuclear scattering length density of the core
thus the sensitivity for the magnetic signal in the q-range of interest is enhanced. The
largest contrast used in this work is 80 % deuterated toluene. A higher contrast would
require the concentration of the original dispersion by evaporation of the non-deuterated
solvent. However, this might introduce particle aggregation and was thus not chosen
for this work. At this deuteration level also the contrast between the organic shell
and the solvent is large. Therefore the organic shell thickness needs to be determined
accurately prior to investigating the non-magnetic surface layer. The use of different
solvent deuterations in a simultaneous fit finally gives more reliable parameters. To
determine the organic shell thickness the parallel sector is used, i.e. a sector of 10° in
the direction parallel to the applied saturation magnetic field (1.3 T for SE11 and 0.5 T
for OC15). As shown in section 2.3.4.6, if Q is parallel to the applied field, i.e. α = 0°
or 180°, only nuclear scattering contributes to the observed intensity. For sectors of 10°
around this parallel orientation the magnetic contribution is still small enough to be
neglected. The data for both spin channels is averaged to improve the statistics. A
core-shell sphere model (eq. 2.133) was used in combination with a sticky hard sphere
structure factor accounting for weak interactions between the nanoparticles induced by
the magnetic field. The sticky hard sphere structure factor introduces three additional
fitting parameters, which are the effective particle radius obtained by the addition of
a small radius rshs to the total particle radius, i.e. the inorganic core radius plus the
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organic shell thickness. Additionally, a volume faction and a stickiness parameter are
used.

From simulations of the effect of these parameters it can be seen that for the 80 %
scattering curve the volume fraction and the stickiness have no effect on the position of
the first minimum (see appendix A). The radius rshs has a small influence, however a
change of this parameter changes the first maximum shape significantly. These obser-
vations are important as from this it can be concluded that the first minimum of the
80 % scattering curve provides a first estimate of the organic shell thickness that is not
modified by the presence of the sticky hard sphere structure factor. The organic shell
thickness thus obtained can be fixed at first and a simultaneous refinement of all scat-
tering curves gives the parameters for the structure factor. The next parameters that
are needed for an accurate determination of the non-magnetic surface layer thickness
(tsurf) are the scaling factors for each curve. With these parameters the perpendicular
sectors are finally used to obtain the nuclear-magnetic interference terms by subtracting
the spin-down data from the spin-up data (eq. 2.113). Again the 80 % scattering curve
is used at first, where only tsurf is refined in a core-shell sphere model used for the mag-
netic form factor. The subsequent incorporation of the other data yields the magnetic
scattering length density (SLDm). In the final step the surface layer thickness is refined
simultaneously for all contrasts.

4.3.5.1 SE11

Fig. 4.42 Sector analysis of the SANS data on SE11 samples with varying solvent isotope
composition given in volume percentage of deuterated toluene. a) Purely nuclear scattering
data obtained from the parallel sectors. A small contribution of a sticky hard sphere structure
factor was included for the fits to the nuclear scattering curves (shown in the inset). A
contribution from oleic acid micelles in the scattering was necessary to take into account in
order to properly fit the data, especially at higher contrasts. b) Fits to the nuclear-magnetic
interference terms obtained from the perpendicular sectors are shown. The fit parameters
are given in the text.

From the extrapolated intensities at Q = 0 Å
−1

obtained from Guinier fits to the low-
Q regions after correction for the sticky hard sphere structure factor contribution the
match point can be determined. For this sample the solvent SLD approximately matches
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Fig. 4.43 Contrast matching for sample SE11.
Extrapolated intensities at Q = 0 are obtained
from Guinier fits to the SANS measurements
with different SLD contrasts after correction
for the sticky hard sphere structure factor.
The minimum of a parabolic fit corresponds to
the solvent contrast where the average particle
SLD is almost compensated.

Tab. 4.4 Contrasts in the samples of SE11 prepared for SANS. The last columns gives
the calculated SLD contrast for the entire particle using a volume weighted average of the
particle core SLD and the organic shell SLD, assuming Rcore = 5.9 nm and tshell = 1.1 nm.

deuteration SLDsolvent ∆SLDcore ∆SLDshell ∆SLD2
particle

(vol. percent) (10−6 Å
−2

) (10−6Å
−2

) (10−6 Å
−2

) (10−6 Å
−2

)2

0.0 0.939 5.861 0.861 9.382
24.41(1) 2.092 4.708 2.014 3.648
34.60(1) 2.574 4.226 2.496 2.039
49.77(1) 3.291 3.509 3.213 0.506
79.72(1) 4.706 2.094 4.628 0.496

SLDC7H8 = 0.939 · 10−6 Å
−2

, SLDC7D8 = 5.664 · 10−6 Å
−2

SLDshell = 0.078 · 10−6 Å
−2

, SLDa
core = 6.8 · 10−6Å

−2

the volume weighted average particle SLD at 66(1) % deuterated toluene (fig. 4.43). Full
matching is not possible due to the particle size distribution leading to different ratios
of organic shell SLD to inorganic core SLD. To calculate the core SLD from the match
point the thickness of the organic shell has to be known, which is determined in the
following.

The parallel sector fit to the data of SE11 is shown in fig. 4.42 on the left. To
properly describe the data especially at higher deuteration a contribution of oleic acid
micelles had to be included via an additional solid sphere form factor. Due to the
small size of the micelles a Guinier contribution would also be sufficient. As seen from
tab. 4.4 the contrast between oleic acid and solvent is largest for high deuteration,
thus a micelle contribution affects the samples with higher deuterated solvents more
strongly. With the solvent contrasts and the SLDs for the particle core estimated from
the approximate composition obtained from XRD/PDF and Mössbauer spectroscopy
and the organic shell given in tab. 4.4 the parameters for the organic shell, the sticky
hard sphere structure factor and the micelles could be obtained. The particle core
radius and size distribution were fixed to the values obtained from SAXS. This gives an
oleic acid surface layer thickness of 1.2(1) nm, which is slightly smaller than the values
previously reported [43,125,227]. The micelle radius was found to be 2.4 nm, which is
close to the reported values for oleic acid micelles. [228] The sticky hard sphere structure

140



4.3 Experimental results for varying particle sizes

factor parameters are evaluated to 0.021 95 for the volume fraction and 0.386 85 for
the stickiness. An addition to the total particle radius was not needed. With these

parameters the core SLD via eq. 2.121 evaluates to 6.8(1)× 10−6 Å
−2

, which would
indicate the presence of some magnetite as was also concluded from Mössbauer data.

It is also possible to determine a non-magnetic surface thickness as described pre-
viously. From the fit shown on the right of fig. 4.42 a non-magnetic shell thickness
of 0.48(10) nm is obtained, with a magnetic scattering length density in the particle

core of 5.8(1)× 10−7 Å
−2

. This corresponds to a magnetic particle moment of 14 970µB
using the particle size as determined from SAXS reduced by the dead layer thickness.
The magnetic moment per iron atom in the magnetic core can be determined using the
relation

µFe =
SLDmVm
CnFe

, (4.26)

where C = e2γ
2mc2

= 2.7× 10−5 Å is the scattering length of 1µB
[229] and Vm is the

magnetic volume. The number of Fe-atoms nFe in the volume V can be estimated with

nFe =
V

Vunit cell
nUC. (4.27)

With the number of Fe atoms per unit cell nUC = nFUZ = 2.34 · 8, where Z is the
number of formula units per unit cell and nFU is the number of Fe atoms per formula unit
obtained from PDF analysis. The mean cubic lattice parameter a = 8.393 Å is also taken
from the PDF results (section 4.3.4). With these parameters a magnetic moment per
iron atom in the magnetic particle core of 0.68µB was calculated, which is significantly
lower than the estimated bulk maghemite and magnetite room temperature iron atom
moment of 1.10µB and 1.17µB, respectively (estimated from the room temperature
saturation magnetization values given in tab. 2.3 by Msat.ρVuc/(nFe,ucµB), where ρ is
the density, Vuc is the unit cell volume and nFe,uc is the number of Fe atoms in the
unit cell). The determined iron magnetic moment indicates the presence of significant
spin disorder in the particle core. For the entire particle, i.e. including the magnetically
dead surface, a net magnetic iron moment of 0.55µB is obtained, which would relate
to a saturation magnetization of 39(2) Am2/kgFerrite assuming the same density, lattice
parameter and iron site occupancy as the bulk material as was implicitly done by the
normalization of the SQUID-magnetometry data to the weight of the ferrite.

4.3.5.2 OC15

The contrasts for sample OC15 are given in tab. 4.5. For this sample the solvent SLD
approximately matches the volume weighted average particle SLD at 69(2) % deuterated
toluene (fig. 4.45). Again full matching is not possible due to the presence of a particle
size distribution. With the particle core radius and the lognormal size distribution
parameters from SAXS the organic shell thickness was determined to 1.4(1) nm (fig. 4.44
left). This is in agreement with previously reported values [43,125,227] and slightly larger
than the value found for sample SE11. With these parameters it is possible to calculate

the core SLD via eq. 2.121, giving 6.8(2)× 10−6 Å
−2

, which again indicates the presence
of some magnetite and is in the range of the expected value using the composition
determined from Mössbauer spectroscopy. The parameters of the sticky hard sphere
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Fig. 4.44 Sector analysis of the SANS data on OC15 samples with varying solvent isotope
composition given in volume percentage of deuterated toluene. a) Parallel sector yielding
the purely nuclear scattering. The fit gives the organic shell thickness to 1.4(1) nm. A

nuclear core SLD of 6.8× 10−6 Å
−2

was used. A small contribution of a sticky hard sphere
structure factor (inset) was also included for the parallel sector with a volume fraction of
0.0284, a stickiness of 0.1623 . An addition to the particle radius was not needed. b)
Nuclear-magnetic interference term fits obtained from the perpendicular sectors are shown.
From this a non-magnetic shell thickness of 0.3(1) nm is obtained with a magnetic scattering

length density in the particle core of 9.5(2)× 10−7 Å
−2

.

structure factor were also determined with stickiness of 0.344 56 and volume fraction of
0.059 44. Again an addition to the total particle size was not needed.

From the difference of the integrated data in sectors perpendicular to the applied field
of 0.5 T the nuclear-magnetic interference terms are obtained. As mentioned previously
this data can be used to determine the thickness of a non-magnetic surface layer. From
the magnetic form factor using a core-shell sphere model the non-magnetic shell thick-

ness tsurf was determined to 0.3(1) nm with a magnetic SLD of 9.3(2)× 10−7 Å
−2

. This
corresponds to a magnetic particle moment of 59 363µB using the particle size as de-
termined from SAXS reduced by the dead layer thickness. With eq. 4.26 the magnetic
moment per iron atom in the particle core is determined to 0.96(2)µB, which is still
reduced compared to the estimated bulk value of 1.1µB, although not as strongly as for
sample SE11. Again, the reduced magnetic moment in the particle core is an indication

Fig. 4.45 Contrast matching for sample
OC15. Extrapolated intensities at Q = 0 are
obtained from Guinier fits to the SANS meas-
urements with different SLD contrasts after
correction for the sticky hard sphere structure
factor. The minimum of a parabolic fit corres-
ponds to the solvent contrast where the aver-
age particle SLD is almost compensated.
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Tab. 4.5 Contrasts in the samples of OC15 prepared for SANS. The last column gives
the calculated SLD contrast for the entire particle using a volume weighted average of the
particle core SLD and the organic shell SLD, assuming Rcore = 7.8 nm and tshell = 1.4 nm.

deuteration SLDsolvent ∆SLDcore ∆SLDshell ∆SLD2
particle

(vol. percent) (10−6 Å
−2

) (10−6Å
−2

) (10−6 Å
−2

) (10−6 Å
−2

)2

0.0 0.939 5.717 0.861 10.469
24.8(1) 2.111 4.545 2.033 4.258
34.7(1) 2.579 4.077 2.501 2.548
49.6(1) 3.283 3.373 3.205 0.795
79.8(1) 4.710 1.946 4.632 0.287

SLDC7H8 = 0.939 · 10−6 Å
−2

, SLDC7D8 = 5.664 · 10−6 Å
−2

SLDshell = 0.078 · 10−6 Å
−2

, SLDa
core = 6.8 · 10−6Å

−2

for spin canting and disorder. For the entire inorganic particle, i.e. the inorganic core
size determined from SAXS, an average magnetic iron moment of 0.86(2)µB is obtained,
which relates to a saturation magnetization of 61(2) Am2/kgFerrite.

4.3.5.3 Summary and discussion

Fig. 4.46 Non-magnetic surface layer thick-
nesses given in the literature and determined
in this work as a function of the particle dia-
meter. Data from Zákutná et al. [44] was recor-
ded with cobalt ferrite nanoparticles. All other
cited works refer to iron oxide nanoparticles.

The organic shell thickness and the non-magnetic surface layer thickness could be
determined for both samples with the help of contrast variation in SANSPOL. For the
smaller particles of sample SE11 a slightly larger dead layer thickness of 0.5(1) nm was
found than for sample OC15 with 0.3(1) nm, suggesting an increase of the dead layer with
decreasing particle size. Comparison with literature values may provide a more complete
picture of the size dependence of this surface layer (fig. 4.46). For monodisperse spherical
iron oxide nanoparticles with radius of 4.97 nm and oleic acid coating, i.e. very similar
to the particles of this work, Disch et al. [43] found a surface layer thickness of 0.3(1) nm,
in agreement with the results obtained for sample OC15. Additionally, in the cited
work a similar reduced core iron magnetic moment of 0.67µB was found. Considering
the results for these three particle sizes no significant size dependence of the surface
layer thickness can be seen. Herlitschke et al. [51] studied iron oxide nanoparticles with
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a radius of 3.7 nm and found no evidence for a non-magnetic surface layer. For cobalt
ferrite nanoparticles with mean radius of 7.04 nm a surface layer with spin disorder of
0.28(6) nm was found by Zákutná et al. [44] at an applied field of 1.2 T. While this value
is also in agreement with the results of this work due to the different composition these
particles may not be comparable to the samples used for this work. Additionally, in
the cited work a field dependence of the thickness of the non-magnetic surface layer was
found, where it increases with decreasing field. Krycka et al. [37] report surface layer
of 1.0(2) nm thickness, where the net magnetization of this surface region is rotated
compared to the particle core for iron oxide nanoparticles with radii of 4.5 nm. However,
again comparability to the samples presented in this work is limited due to the presence
of significant particle interactions as the experiments in the cited work were performed
on self assembled particles. Additionally, as mentioned in the introduction of this work,
their results are strongly debated in the literature and it is argued that the reported
results are not supported by the presented data. [40] Nevertheless, the comparison of
all available data suggests a relatively constant surface layer thickness independent of
particle size around 0.3 nm for particles in saturation fields.

4.3.6 Magnetometry results

In this section the SQUID-magnetometry data obtained for the different samples is
presented and discussed in light of the previously shown results. Starting with the
smallest particle sizes the same order as in the previous sections is followed. At the end
of this section a direct comparison of all samples is given.

4.3.6.1 OC05

Tab. 4.6 Results of the inductively coupled plasma optical emission spectroscopy (ICP-OES)
for the same sample of OC05 that was used for the magnetometry measurements. The total
weight is the weight of the sample including the paraffin matrix.

Sample Mean standard deviation

Total mg 33.35 -
Co µg <0.01 -
Fe µg 2.79 0.02
Ni µg <0.03 -
Gd µg <0.03 -
Cr µg <0.03 -
Al µg 0.984 0.018

Magnetization curves, M(H) and M(T ), normalized to the amount of iron present in
sample of OC05 as determined by ICP-OES (tab. 4.6), are shown in fig. 4.47. Other
possible impurity elements were also considered in the elemental analysis but with the
exception of Al their contribution was found to be very small. The Al content possibly
originates from impurities in the used paraffin or the scotch tape, from the used ceramic
tools or from the sample bottle cap. It is likely present in the oxidized form of Al2O3

in the sample, which only leads to a diamagnetic background for larger aggregates or a
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Fig. 4.47 Magnetometry results of sample OC05. a) Magnetization vs. field curves. The
cooling to 10 K was performed without external field. Due to the small particle size even at
low temperatures no significant loop opening corresponding to the blocked state is observed.
As seen from figure b) the blocking temperature is at about 15 K. The discontinuity in
the data for the 10 K M(H) curve is due to the zero crossing of the data prior to the
subtraction of the diamagnetic background. A 1/MFC(T ) curve is also shown where a
non-linear behaviour with increasing temperature can be seen. The inset in fig. b) shows a
close-up of the temperature range between 0 K to 50 K.

four orders of magnitude smaller magnetization than iron oxide nanoparticles [230] and
therefore does not influence the magnetometry results. From the M(T ) measurements
the blocking temperature can be obtained as the temperature where the ZFC curve has
its maximum (section 2.1.3.1). For the applied measurement field of 5 mT the blocking
temperature TB lies at 16 K. Together with the particle volume V , the measurement
time τm (taken as ca. 30 s) and the elementary spin flip time τ0, which is typically
on the order of 10−9 s for superparamagnetic systems in ZFC/FC measurements, the
magnetic anisotropy energy constant K can be determined according to eq. 2.50. This
results in a magnetic anisotropy energy of 92(1) kJ/m3 assuming a particle radius of
2.4 nm and 21(1) kJ/m3 assuming a particle radius of 3.9 nm. These two particle sizes
are the mean sizes of the bi-modal size distribution determined in the previous sec-
tion. Thus, using the volume fractions of both particle sizes an effective anisotropy
constant of 82(1) kJ/m3 is obtained, which is comparable to previously reported values
for similar particles [150,231] and significantly larger than the maghemite magnetocrystal-
line anisotropy of K = 4.7 kJ/m3 obtained from measurements on single crystal films
and powders [232]. From the inverse of the field cooled magnetization vs. temperature
curve a deviation from the ideal linear temperature dependence can be observed. This
deviation may be due to a measurement field that is too large for this particle size. In
addition there might be an internal phase transition from ferrimagnetic to paramagnetic
order with increasing temperature due to the small size of the particles.

At 300 K the saturation magnetization is determined to 67(1) Am2/kgFe (using the
amount of iron of 2.79(2) µg in the sample as obtained by ICP-OES (tab. 4.6)). As-
suming pure γ-Fe2O3, which is reasonable for these particle sizes as shown in sec-
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Fig. 4.48 a) Magnetization curves measured at different temperatures as indicated by the
colors. The discontinuities correspond to zero crossings prior to the subtraction of the linear
diamagnetic background contribution. The data was normalized to the iron oxide weight as
concluded from the elemental analysis. b) Saturation magnetization values as determined
from the M(H) curves depicted in a) are plotted against the measurement temperature.
The lines correspond to theoretical models used to describe the temperature dependence.
The approximation from Kuz’min et al. [233] is given in eq. 4.28.

tion 4.3.3, this yields 47(1) Am2/kgγ-Fe2O3. This value is significantly lower than the
room temperature bulk values for γ-Fe2O3 (76 Am2/kg [164]) suggesting a decrease in
saturation magnetization of about 38 %. At 10 K the saturation magnetization is larger
with 60(1) Am2/kgγ-Fe2O3, but still reduced by 25 % compared to the bulk. The decrease
in saturation magnetization with increasing temperature does not follow the expected
path for the bulk material estimated by a mean field approximation (MFA) (fig. 4.48b)).
Instead the curvature can be better described by a semi-empirical expression given by
Kuz’min et al. [233] according to

M(T ) = M(0)

[
1− s

(
T

TC

)3/2

− (1− s)
(
T

TC

)5/2
]1/3

, (4.28)

where TC is the Curie temperature and 0 < s < 5/2 is a shape parameter to adjust
the curve. For sample OC05 the parameter s was determined to 2.4 leading to a Curie
temperature of 590 K, which is lower than the expected bulk TC of approx. 900 K
(tab. 2.3), but in accordance with previous observations on similar sized particles [234].
Although the curve appears to have a non-vanishing slope as the temperature approaches
0 K in the closeup of fig. 4.48b it can be seen that the slope decreases with decreasing
temperature and vanishes at temperatures around 0 K as expected from the laws of
equilibrium thermodynamics.

From a Langevin fit including the lognormal size distribution the superspin moment
was determined to 4034(5)µB corresponding to a mean magnetic radius of 3.5(1) nm.
A superposition of two Langevin curves corresponding to superspins with moments of
1416(5)µB and 6456(5)µB leads to a better fit in the small field region, where the single
Langevin fit deviates from the data. In the presence of two particle sizes or a large size
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Fig. 4.49 Magnetization vs µ0H/T plot for the OC05 particles (approx. 5 nm in diameter).
The curves obtained at different temperatures coincide well indicating superparamagnetic
behaviour. [58,235] The deviation of some curves from ideal superposition suggests the pres-
ence of two particle sizes as confirmed by SAXS measurements on these particles.

distribution the initial slope of the magnetization curve is more strongly influenced by
the particles with larger size, where the magnetic moments can be aligned more easily.
In contrast the smaller particles have a stronger influence at the approach to satura-
tion. [235] This observation is consistent with the two particle sizes observed in the SAXS
curves and TEM images. The magnetic moments correspond to magnetic volumes of
52 and 256 nm3, comparable to the particle volumes from SAXS constituting 58(5) and
248(20) nm3. The presence of two particle sizes is also visible from a superposition of
magnetization curves measured at different temperatures. For ideal monodisperse su-
perparamagnetic samples it would be expected that all curves coincide. [58,235] However,
clearly two slightly smeared out features are visible (fig. 4.49).

To achieve the measured saturation magnetization at room temperature a magnet-
ically dead surface layer would have to be approx. 0.5 nm thick for the mean particle
radius of 3 nm at room temperature, which reduces to 0.3 nm at 10 K. This estimate
is, however, neglecting the bi-modal size distribution that was found with SAXS and
TEM. With the assumption of an equally thick surface layer for particles of both sizes
and under the consideration of the volume fractions a magnetically dead surface layer
of 0.2 nm would be sufficient to give the measured saturation magnetization at 10 K and
a thickness of 0.4 nm for the room temperature value.

As shown in section 4.3.4 for this sample APBs are not present. However, the total
iron occupancy is reduced compared to the bulk material and vacancy ordering is only
observed for small regions in the particles. Additionally, local structural disorder was
also found. The observed reduced saturation magnetization is thus likely a combination
of a magnetically depleted surface layer and the reduced iron site occupancy as well as
the structural disorder. It has to be noted, however, that these effects likely do not
occur individually but are linked. Meaning that the iron occupancy could be reduced
in the particle surface leading to a magnetically depleted and disordered surface layer.
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Likewise the structural disorder is probably linked to the presence of an increased amount
of vacancies.

4.3.6.2 OC10

Fig. 4.50 Magnetometry data of sample OC10. a) Magnetization vs. field measurements.
The low temperature curves were recorded after cooling in different fields as given in the
legend. The inset shows the central region of the plot, where a loop shift of the low
temperature magnetization curves after field cooling is clearly visible. b) Magnetization vs.
temperature. At measurement fields of 5 mT the blocking temperature is at 132 K. No sign
of a Verwey transition is visible. The disturbance at around 30 K is due to the zero crossing
prior to the diamagnetic background correction.

Tab. 4.7 Results of the inductively coupled plasma optical emission spectroscopy (ICP-OES)
for the same sample of OC10 that was used for the magnetometry measurements. The total
weight is the weight of the sample including the paraffin matrix.

Sample Mean standard deviation

Total mg 38.51 -
Co µg <0.01 -
Fe µg 1.04 0.02
Ni µg <0.06 -
Gd µg <0.07 -
Cr µg <0.08 -
Al µg 0.64 0.02

Magnetization curves, M(H) and M(T ), normalized to the amount of iron oxide
present in the sample as determined from the iron content obtained by ICP-OES (tab. 4.7),
are displayed in fig. 4.50. Again impurity contributions were also considered in the ele-
mental analysis. Similar to sample OC05 with the exception of Al the relative weight is
very small. As mentioned before the Al content likely originates from impurities in the
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used paraffin or the scotch tape, from the used ceramic tools or from the sample bottle
cap. At an applied measurement field of 5 mT fig. 4.50b) the blocking temperature TB
lies at 132 K. The magnetic anisotropy energy constant K is determined according to
eq. 2.50. With TB from the SQUID measurement this results in a magnetic anisotropy
energy of 54(1) kJ/m3, which is comparable to previously reported values for similar
particles [150] and again significantly larger than the maghemite magnetocrystalline an-
isotropy. It is also smaller than the value obtained for the OC05 particles consistent
with previously reported trends of decreasing anisotropy energy with increasing particle
size. [150,231] The close proximity of the splitting of the curves to the maximum of the
ZFC curve points to a narrow particle size distribution [86], which is consistent with the
results obtained from SAXS experiments. The constant, i.e. not decreasing part of
the FC curve for temperatures smaller than the ZFC peak temperature indicates the
absence of a significant interparticle interaction [86] and the absence of an additional
paramagnetic signal from impurity atoms or clusters dispersed between the particles [87].
No Verwey transition is visible in the M(T ) curves. A small exchange bias field of
µ0HE = 51 mT in the 0.1 T field cooled M(H) curve and of µ0HE = 42 mT at 1 T was
detected (inset in fig. 4.50a)). At 300 K the saturation magnetization was determined
to 58(1) Am2/kgFe (using the amount of iron of 1.04(2) µg per sample as obtained by
ICP-OES (tab. 4.7). Assuming pure γ-Fe2O3, as is supported by Mössbauer spectro-
scopy, this yields 41(1) Am2/kgγ-Fe2O3. The value for the saturation magnetization is
significantly lower than the room temperature bulk values for γ-Fe2O3 (76 Am2/kg [164])
suggesting a decrease in saturation magnetization of about 46 %. At 10 K the saturation
magnetization is slightly larger with 46(1) Am2/kgγ-Fe2O3. For this sample the temper-
ature dependence is much less pronounced than observed for the smaller OC05 particles.
From a Langevin fit to the room temperature data the superspin moment was determ-
ined to 9530µB. This would correspond to a magnetic radius of 4.7(1) nm, i.e. a dead
surface layer thickness of 1.1(2) nm. However, it has to be emphasized that not all of
the magnetically dead or depleted volume has to be on the particle surface. The SANS
results for the similar sized particles of SE11 suggest a surface layer thickness of about
0.4 nm. The comparison with literature data also showed that in this size range the
surface layer thickness remains rather constant. It is therefore possible to assume that
for this sample the surface layer has a similar thickness and is smaller than from the
magnetometry data alone. The remaining volume with reduced magnetization is thus
distributed within the particle core. As seen in section 4.3.4 for this sample a high
degree of APB-superstructure peak broadening was detected, that was attributed to an
increased number of APBs in the particle core, which would introduce significant spin
disorder in the particle core. Additionally, similar to sample OC05 a reduced iron site
occupancy was found that is even more pronounced for this sample.

4.3.6.3 SE11

Magnetization curves, M(H) and M(T ), normalized to the amount of iron oxide present
in the sample as determined from the iron content obtained by ICP-OES (tab. 4.8), are
displayed in fig. 4.51. The relative amounts of the different considered elements are
comparable to the previous samples, again with an elevated contribution of Al. At
an applied measurement field of 5 mT (fig. 4.51b) the blocking temperature TB lies at
106 K, which is much lower than the value observed for OC10 despite the similar particle
size. This points to a difference in the magnetic anisotropy energy constant determined
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Tab. 4.8 Results of the inductively coupled plasma optical emission spectroscopy (ICP-OES)
for the same sample of SE11 that was used for the magnetometry measurements. The total
weight is the weight of the sample including the paraffin matrix.

Sample Mean standard deviation

Total mg 36.33 -
Co µg <0.08 -
Fe µg 1.8 0.2
Ni µg <0.03 -
Gd µg <0.1 -
Cr µg <0.04 -
Al µg 2.6 1.4

according to eq. 2.50. With TB from the SQUID measurement this results in a magnetic
anisotropy energy of 41(1) kJ/m3, which is smaller than the value obtained for the
OC10 particles. The very narrow size distribution found from the SAXS data is again
reflected in the close proximity of the splitting of the curves to the maximum of the ZFC
curve. [86] As noted previously also for sample OC10 the constant, i.e. not decreasing
part of the FC curve for temperatures smaller than the ZFC peak temperature indicates
the absence of a significant interparticle interaction [86] and the absence of an additional
paramagnetic signal from impurity atoms or clusters dispersed between the particles [87].
The Verwey transition indicating the presence of magnetite would be expected at 120 K,
however it would be near or above the blocking temperature. It has been suggested
that the transition temperature may be shifted towards smaller temperatures for non-
stoichiometric magnetite. [169] In the 0.05 T zero field cooled curve a feature is visible
at around 100 K, that is absent in the purely maghemite particles of sample OC10 (fig.
4.50b). Additionally, a small hump in the ZFC curve is detected at around 50 K visible at
both fields. This has been attributed to a spin glass transition or spin reorientation. [236]

However, it could also be attributed to the freezing of oxygen in the sample environment
at around 50 K. Against this speaks the lack of this feature in the curves obtained for
sample OC10 shown in fig. 4.50b) of the preceding section. Since for both samples data
was recorded with the same instrument under the same conditions a sample environment
effect should be visible in both. A small exchange bias field of µ0HE = 35 mT in the 0.1 T
field cooled M(H) curve and of µ0HE = 30 mT at 1 T was detected (inset in fig. 4.51a).
As mentioned in section 2.1.2.7 this may be due to the presence of antiferromagnetic
wüstite or of APBs. However, the wüstite contribution was excluded based on both X-
ray diffraction and Mössbauer spectroscopy. These exchange bias fields are also slightly
smaller than the ones observed for OC10.

At 300 K the saturation magnetization was determined to 62(6) Am2/kgFe (using the
amount of iron of 1.8(2) µg in the sample as obtained by ICP-OES (tab. 4.7). With a
particle composition of 70 % γ-Fe2O3 and 30 % Fe3O4 as estimated from Mössbauer
spectroscopy of the slightly larger particles of SEs12 this yields
44(5) Am2/kgferrite. Within the errors this is in agreement with the result obtained
from SANS. It has to be noted that the difference in saturation magnetization assuming
different particle compositions is smaller than the uncertainty introduced by the meas-
urement of the elemental analysis. The large standard deviation is probably due to a

150



4.3 Experimental results for varying particle sizes

Fig. 4.51 Magnetometry data of sample SE11. a) Magnetization vs. field measurements.
The low temperature curves were recorded after cooling in different fields as given in the
legend. The inset shows the central region of the plot, where a loop shift of the low
temperature magnetization curves after field cooling is clearly visible. b) Magnetization vs.
temperature. At measurement fields of 5 mT the blocking temperature is at 106 K. A small
additional peak lies at approx. 50 K.

stronger dilution of the as-prepared sample compared to the Ocean NanoTech particles
leading to an overall weaker signal.

The value for the saturation magnetization is significantly lower than the room tem-
perature bulk values for magnetite and maghemite, suggesting a decrease in saturation
magnetization of about 42(6) % compared to maghemite and 49(6) % compared to mag-
netite. Assuming the mixture of ferrites gives an average reduction of 44(6) %. At 10 K
the saturation magnetization is slightly larger with 52(5) Am2/kgferrite. From a Langevin
fit to the room temperature M(H) curve the magnetic particle moment is determined
to 11 774µB, corresponding to a magnetic radius of 4.9 nm, i.e. a magnetically dead sur-
face layer thickness of about 1.0 nm. The same considerations as for sample OC10 apply,
namely that the magnetically depleted volume is not necessarily placed at the particle
surface but can also correspond to spin disordered regions within the particle. For this
sample also SANS data is available, that was presented in section 4.3.5. A magnetically
dead surface layer of approx. 0.4 nm was found with SANS, which is less than half the
value obtained from SQUID. As mentioned before the reason for this discrepancy may
be the presence of APBs and disorder around defects. This is supported by the small
iron magnetic moment in the particle core that was deduced from the SANS data. From
the magnetic scattering length density of the particle core a moment of 14 660µB was
calculated, which is larger than the obtained value from SQUID magnetometry. How-
ever, the SANS data was recorded at an applied field of 1.3 T. A field dependence of
the magnetic moment via a field dependence of the magnetic volume could account for
this difference. [44] The reduced moment even at high fields indicates the prevalence of
spin disorder at the surface and in the particle core.
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Tab. 4.9 Results of the inductively coupled plasma optical emission spectroscopy (ICP-OES)
for the same sample of OC15 that was used for the magnetometry measurements. The total
weight is the weight of the sample including the paraffin matrix.

Sample Mean standard deviation

Total mg 33.35 -
Co µg <0.01 -
Fe µg 1.363 0.017
Ni µg <0.03 -
Gd µg <0.06 -
Cr µg <0.001 -
Al µg 0.7 0.03

Fig. 4.52 Magnetometry data of sample OC15. a) Magnetization vs. field measurements.
The low temperature curves were recorded after cooling in different fields as given in the
legend. The inset shows the central region of the plot, where a loop shift of the low
temperature magnetization curves after field cooling is clearly visible. b) Magnetization vs.
temperature. At measurement fields of 5 mT the blocking temperature lies at 172 K. No
sign of a Verwey transition is visible.

4.3.6.4 OC15

Magnetization curves, M(H) and M(T ), normalized to the amount of iron oxide present
in sample OC15 as determined from the iron content obtained by ICP-OES (tab. 4.8),
are displayed in fig. 4.52. The relative amounts of the different considered elements are
again comparable to the previous samples. The elevated contribution of Al was also
found for this sample. At an applied measurement field of 5 mT (fig. 4.52b) the blocking
temperature TB lies at 172 K. The blocking temperature from the SQUID measurement
corresponds to the magnetic anisotropy energy of 28.9(1) kJ/m3, which is comparable
to previously reported values for similar particles [150] and again significantly larger than
the maghemite magnetocrystalline anisotropy. The very narrow size distribution found
from the SAXS data is reflected again in a small difference between the ZFC peak and
the FC/ZFC splitting temperature. As noted previously also for samples OC10 and
SE11 the constant, i.e. not decreasing part of the FC curve for temperatures smaller
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than the ZFC peak temperature indicates the absence of a significant interparticle in-
teraction [86] and the absence of an additional paramagnetic signal from impurity atoms
or clusters dispersed between the particles [87]. No Verwey transition can be observed
in the ZFC curve and no other features are visible. From Mössbauer spectroscopy a
magnetite content of about 15 % was estimated, however for this particle size the Ver-
wey transition might be suppressed. [64] A small exchange bias field of µ0HE = 8 mT
in the 0.1 T field cooled M(H) curve and of µ0HE = 6 mT at 1 T was detected (inset
in fig. 4.52). These values are much smaller than observed for the previous samples.
Again, a wüstite contribution as an explanation for the presence of the exchange bias
effect was ruled out on the basis of Mössbauer spectroscopy and X-ray diffraction.
At 300 K the saturation magnetization was determined to 88(2) Am2/kgFe (using the
amount of iron of 1.363(17) µg in the sample as obtained by ICP-OES (tab. 4.9).
Assuming pure γ-Fe2O3 this yields 62(1) Am2/kgγ-Fe2O3. For pure Fe3O4 a value of
64(1) Am2/kgFe3O4 is obtained. Using the composition obtained from Mössbauer spec-
troscopy gives 62(1) Am2/kgFerrite, in good agreement with the value determined by
SANS (section 4.3.5). At 10 K the saturation magnetization is slightly larger with
68(1) Am2/kgFerrite.
As observed for the previous samples, also for this particle size the value for the sat-
uration magnetization is significantly lower than the room temperature bulk values
suggesting a decrease in saturation magnetization of about 20 %. The Langevin fit to
the room temperature data results in a magnetic particle moment of 28 458µB corres-
ponding to a particle magnetic radius of 5.9 nm, i.e. a magnetically dead surface layer
thickness of 1.9 nm. However, SANS data (section 4.3.5) show a magnetically dead sur-
face layer of only 0.3 nm thickness. Furthermore, the magnetic moment of the particle
determined by SANS constituted 59 430µB. Such a large particle moment would not be
able to properly describe the curvature of the M(H) curve for low fields. Thus, similar
to sample SE11 a field dependence of the magnetic moment is proposed.
It is interesting that the reduction in saturation magnetization for this sample, while
still significant, is much less severe than for the other samples. This is likely linked to the
structural properties of sample OC15 determined in section 4.3.4. The degree of APB
induced peak broadening is less pronounced for this sample compared to samples OC10,
SE11 and OC20, suggesting the presence of fewer APBs. This would explain the larger
saturation magnetization compared to these samples. Additionally, the highest iron site
occupancy was found for this sample, leading to a higher saturation magnetization as
well. Finally, the influence of the non-magnetic surface layer is smaller than for the
particles of sample OC05 due to the smaller relative volume ratio in OC15, assuming a
similar thickness of the magnetically dead surface layer for both samples.

4.3.6.5 OC20

Despite the large magnetite content concluded from Mössbauer spectroscopy no Verwey
transition is visible in the ZFC curve (fig. 4.53b) of sample OC20. However, again a
small feature is visible at about 50 K similar to sample SE11 where a larger magnetite
content was also expected. At an applied measurement field of 5 mT (fig. 4.52b) the
blocking temperature TB lies above 300 K, i.e. outside the measurement range. An
extrapolation suggests a blocking temperature of about 310 K. With this the magnetic
anisotropy energy results in 20.1(1) kJ/m3. This value is still significantly larger than
the maghemite manetocrystalline anisotropy, but smaller than the values observed for
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Fig. 4.53 Magnetometry data of sample OC20. a) Magnetization vs. field measurements.
The low temperature curves were recorded after cooling in different fields as given in the
legend. The inset shows the central region of the plot, where a loop shift of the low
temperature magnetization curves after field cooling is clearly visible. b) Magnetization vs.
temperature is shown. At measurement fields of 5 mT the blocking temperature is above
300 K, i.e. outside the measurement range.

the smaller particle sizes. At 300 K the saturation magnetization was determined to
51(1) Am2/kgFe, using the amount of iron of 4.68(5) µg in the sample as obtained by
ICP-OES (tab. 4.7). As for the previous samples no significant impurities were found
from the elemental analysis, with the exception of Al. Assuming pure γ-Fe2O3 or Fe3O4

this yields 35(1) Am2/kgγ-Fe2O3 or 37(1) Am2/kgFe3O4, respectively. Assuming a com-
position of 70 % Fe3O4 and 30 % γ-Fe2O3 as indicated by Mössbauer spectroscopy a
value of 36(1) Am2/kgFerrite is obtained. This is significantly lower than the room tem-
perature bulk values for γ-Fe2O3 (76 Am2/kg [164]) and Fe3O4 (86 Am2/kg [163]) suggest-
ing a decrease in saturation magnetization of about 57 %. A slightly larger saturation
magnetization is recorded at 10 K with 41(1) Am2/kgFerrite. The superspin moment was
determined to 27 960(5)µB. This would correspond to a magnetic radius of 7.0(1) nm,
i.e. a dead surface layer thickness of 3.7(2) nm. As seen from the SANSPOL data on

Tab. 4.10 Results of the inductively coupled plasma optical emission spectroscopy (ICP-
OES) for the same sample of OC20 that was used for the magnetometry measurements.
The total weight is the weight of the sample including the paraffin matrix.

Sample Mean standard deviation

Total mg 36.33 -
Co µg <0.01 -
Fe µg 4.68 0.05
Ni µg <0.06 -
Gd µg <0.07 -
Cr µg <0.08 -
Al µg 0.57 0.05
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smaller particles this is unreasonably large. More likely is a smaller non-magnetic sur-
face layer in combination with significant spin disorder due to the large amount of APBs
concluded from the X-ray diffraction peak broadening.

Exchange bias fields of µ0HE = 22 mT in the 0.1 T field cooled M(H) curve and of
µ0HE = 15 mT at 1 T were detected (inset in fig. 4.52). Additionally, a small shift
of 3 mT can be observed for the curve after cooling in zero field. The approach to
saturation for the 10 K curves also differs significantly. While the curves recorded after
cooling fields of 0 T and 0.1 T almost coincide the 1 T curve shows a more rectangular
hysteresis loop. A similar feature was observed for sample SE11 that also exhibited an
increased amount of magnetite. Sample OC15 that also contains magnetite does not
show this feature. In the purely maghemite containing particles of OC10 a slightly less
pronounced yet similar effect can also be observed.

4.3.6.6 Comparison of the samples

Fig. 4.54 a) Blocking temperature determined from ZFC M(T )-curves as a function of
the particle diameter. b) Effective anisotropy constants for the samples as a function of
the particle diameter. The lines correspond to fits according to eq. 4.29. The dashed line
represents a fit excluding sample OC10. The error bars on the particle sizes correspond
to the standard deviations calculated from the lognormal size distributions obtained from
SAXS.

A size dependence of the effective magnetic anisotropy calculated from the blocking
temperatures given in fig. 4.54a) is visible in the data shown in fig. 4.54b). The ef-
fective anisotropy constant can be phenomenologically expressed as a sum of a volume
contribution KV and a surface contribution KS according to

Keff = KV +
6

d
KS , (4.29)

where d is the particle diameter. [64,237] A fit to the experimental data using the bulk
maghemite magnetocrystalline anisotropy constant of KV = 4.7 kJ/m3 and the particle
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diameters as determined from SAXS results in a surface anisotropy of
KS = 7.1(2)× 10−8 kJ/m2. This value is similar but slightly larger compared to previ-
ously published data (2.9× 10−8 kJ/m2, [238] 6.9× 10−8 kJ/m2, [239] 5.8× 10−8 kJ/m2 [240]).
Sample OC10 exhibits a larger effective anisotropy constant than would be expected for
this particle size. This could either be related to a larger influence of the surface for
this sample, or more likely it is related to the fact that the particles of sample OC10
contain more vacancies than the particles of similar size of sample SE11. Thus, spin
canting around these defects might lead to the larger observed anisotropy. [241] Addi-
tionally, the observed aggregation for this sample might influence the magnetic aniso-
tropy. Excluding this sample from the fit results in a surface anisotropy constant of
KS = 6.7(1)× 10−8 kJ/m2, which is closer to the previously published data.

Fig. 4.55 Exchange bias (EB) fields determined from the 10 K M(H) curve coercivities for
the different particle sizes. For sample OC05 no exchange bias fields could be determined
because at 10 K the particles were not yet in the blocked state. Filled and empty symbols
relate to EB-fields determined for cooling fields of 0.1 T and 1.0 T, respectively.

Exchange bias fields shown in fig. 4.55. Exchange bias in iron oxide compounds is
commonly attributed to the presence of an interface of antiferromagnetic wüstite with
ferrimagnetic magnetite/maghemite. [69,72] However, no indications for the presence of
wüstite were found in the Mössbauer spectra as well as the SQUID-data. Furthermore,
the development of the exchange bias fields with the particle size would suggest an
increase in wüstite content with decreasing particle size, which is not plausible con-
sidering the oxidation sequence of the iron oxides (see section 2.6). An exchange bias
effect originating from the interface of a magnetically disordered spin-glass like surface
layer and the particle core has also been proposed. [74,75] However, Mart́ınez-Boubeta
et al. [74] observed an increasing exchange bias field with increasing particle size and
increasing magnetite content, which is not observed here. Their largest particle size of
13 nm showed a saturation magnetization close to the bulk magnetization of magnetite,
thus suggesting these particles lack the structural defects of the particles investigated
in this thesis and the results may not be comparable. Increasing exchange bias fields
have also been linked to increasing vacancy disorder [33] as well as to the presence of
APBs [46]. In the work of Levy et al. [45] exchange bias observed for 18 nm particles was
ascribed to lattice strain and antiphase boundaries. However, comparison of the size
dependence of the APB peak broadening and the exchange bias fields shows no direct
correspondence. Especially for samples OC10 and SE11 that showed almost identical
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values for the number of APBs (fig. 4.41c) different exchange bias fields are detected.
Considering different degrees of vacancy ordering as the source of differing exchange
bias fields as proposed by Li et al. [33] would explain the smaller exchange bias field for
samples OC15 and OC20, as for these sample the vacancy ordering was found to persist
over larger distances than for the other samples (section 4.3.4). For OC10 the onset of
small superstructure peaks was found, whereas for SE11 this was not the case, which
would suggest that for OC10 the exchange bias field should be smaller. However, the
opposite is the case which could be related to the presence of aggregates in the sample of
OC10 as found by SAXS (section 4.3.2) that were absent for sample SE11, leading to a
larger exchange bias due to the interaction of particles in OC10. The observed difference
in the exchange bias fields for the samples may thus be the result of the interplay of a
non-magnetic surface layer, the presence of APBs, particle interactions and the degree
of vacancy ordering. A study of the exchange bias field as a function of these individual
parameters is however beyond the scope of this work.

Fig. 4.56 a) Room temperature M(H) curves for the different particle sizes. They are nor-
malized to the iron oxide weight obtained from the iron content in the sample as determined
by ICP-OES. b) Saturation magnetization obtained from Langevin fits to the magnetization
curves is shown in dependence of the particle size. The dashed and the dotted lines cor-
respond to the theoretical room temperature values of magnetite (Fe3O4) and maghemite
(γ-Fe2O3), respectively.

A comparison of the room temperature M(H) curves and the determined saturation
magnetizations is shown in fig 4.56. It is remarkable that for the particles considered
in this thesis a trend of decreasing saturation magnetization with increasing particle
size is observed, which is in contrast to previous systematic studies of the magnetic
properties of iron oxide nanoparticles, [33,48,241] but in agreement with results from Levy
et al. [45] An outlier is the sample OC15. As mentioned in section 4.3.1 these particles
have already aged in the bottle for several years when the experiments were performed.
Baaziz et al. noted already after 1 month an increased oxidation of iron oxide nano-
particle samples. [241] This increased oxidation and the subsequent lattice rearrangements
and relaxations lead to less structural disorder and a larger degree of vacancy ordering
as observed with X-ray diffraction and PDF analysis for sample OC15. Nevertheless,
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for all particles a reduced magnetization compared to the bulk materials is observed.
The larger error on the saturation magnetization of SE11 is due to a larger error in
the Fe-content determination with ICP-OES. However, the saturation magnetization
determined from the magnetic scattering length density suggests a value close to the
one obtained for OC10. As seen in section 4.3.3, the magnetite content increases with
increasing particle size. Thus, compositional variations cannot explain the observed
trend. Another possibility is an increasing thickness of a magnetically dead layer on the
particle surface with increasing particle size. As shown in section 4.3.5 this is not in
agreement with experimental results obtained from SANS measurements. Most likely
is therefore a complex interplay of different effects that superimpose to varying degrees
depending on the particle size. One contribution is spin disorder in the particle core. As
mentioned before, APBs introduce significant disorder in the spin structure. From the
fits to the X-ray powder diffraction data the amounts of APBs were determined, with
the lowest value for sample OC15 (apart from OC05 where no APB contribution was
found) and the largest for OC20. Additionally, samples OC10 and SE11 were found to
exhibit very similar broadening of peaks relating to a similar amount of APBs, which
is reflected in the similarity of the determined saturation magnetizations. For sample
OC05 no significant APB broadening was observed, thus the reduction of the magnet-
ization for this sample must be of different origin. For this sample likely surface effects
are important due to the small particle size. Moreover, the increased amount of iron
vacancies on octahedral lattice sites further reduces the magnetization. The iron site
occupancy is also reduced for samples OC10, SE11 and OC20 adding to the effect of
APBs on the magnetization. For sample OC15 a larger iron site occupancy was found.
As mentioned previously vacancies are ordered to varying degrees for the samples of this
work, with the most ordered structures found in samples OC15 and OC20.

4.3.7 Conclusive remarks

Some conclusions may be drawn based on the results and considerations. The non-
magnetic surface layer likely remains of similar thickness for all particle sizes, thereby
explaining the often observed increase in magnetization for otherwise defect-free particles
as the surface-to-volume ratio decreases. Further SANSPOL experiments are needed to
conclusively show this also for smaller particles, but SQUID-measurements on the smal-
lest particles do not suggest a significantly larger surface layer. Additionally, APBs have
a strong effect on the magnetization being mainly responsible for the size dependence
of the magnetization observed for the particles used in this work. APBs seem to be
absent for particles smaller than about 10 nm in diameter. Structural disorder and the
amount of vacancies contribute to the magnetic behaviour as well. However, as previ-
ously noted these are likely linked to the presence of a disordered surface layer as well
as some structural distortions at the APBs and thus an individual assessment of their
influence on the magnetization is difficult. Vacancy ordering appears to be related to the
observed exchange bias fields, where a higher degree of ordering corresponds to smaller
detected exchange bias effects. Finally, the magnetite content seems to have only a
small influence on the saturation magnetization for the particles considered here but in
general it increases with increasing particle size. For otherwise defect-free particles the
increasing magnetite content would likely lead to a higher saturation magnetization for
increasing particle sizes. The synthesis route most likely plays an important role in the
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exhibited particle properties. The particles used in the present work were synthesized
via the thermal decomposition route with an iron oleate precursor [52] that appears to
be prone to the formation of APBs. Kemp et al. [163] report almost bulk-like magnetiz-
ation values for particles produced by a slightly modified route based on the approach
published by Park et al. [52]. The main difference in their approach is that they used and
Ar-atmosphere during the synthesis and controlled the particle oxidation very precisely
by adding 1 % of O2. However, they also observe reduced magnetizations for larger
particles (59 Am2/kg for particles with diameters of 28.6 nm). Large magnetization val-
ues in the range of 70 Am2/kg to 82 Am2/kg were observed by Sun et al. [3], who used
Fe(acac)3 as iron precursor instead of iron oleate. This observation was confirmed by
Nedelkoski et al. [47] suggesting that this precursor should be preferred if the reduction
of APB formation and the increase of saturation magnetization is desired.
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Chapter 5
Summary and conclusion

In this work the complex interplay of structural, compositional, and magnetic proper-
ties of superparamagnetic iron oxide nanoparticles was studied by the combined use of
computer simulations and experiments on nanoparticle samples with various sizes. In
the approach followed here a wealth of complementary techniques was employed to ob-
tain an as complete as possible picture of the different contributing effects. Antiphase
boundaries (APBs) as a main factor were especially considered.

Monte Carlo simulations provide insights into the effect of APBs on the local spin
structure and the macroscopic magnetization of iron oxide nanoparticles. In saturation
fields the induced spin disorder is spatially confined to the region close to the APB plane
and the particle as a whole remains in the single domain state as would be expected
for the considered particle sizes. The effect on the net saturation magnetization of the
particles at an applied field of 1.5 T is found to be that of a reduction by about 8 % for
the smallest particles (5.0 nm). It is less severe for the largest particles (9.2 nm) with
about 5 %. This drop in magnetization is dependent on the applied field strength, where
the difference between the magnetization of particles with APB and those without is
less pronounced for larger fields. In addition to the studied effect of APBs it is shown
that vacancy ordering in an otherwise defect free particle leads to a slight increase in
the saturation magnetization. In this work for the first time simulations of iron oxide
nanoparticle powder diffraction patterns with APBs are performed that show a distinct
peak broadening effect in X-ray powder diffraction patterns that differs from peak to
peak. This unique property and its connection to APBs known already from different
compounds has found until now no attention in the literature on iron oxide nanoparticles.
Fourier coefficients, that describe the observed peak broadening, to be used in a whole
powder pattern modeling approach are validated by the simulations. In addition, an
expression is developed on the basis of the simulations that allows the quantification
of APBs from the fitting parameter. Furthermore also the effect of APBs on the pair
distribution function (PDF) is studied revealing a mismatch between PDFs calculated
from particles with and without these defects, that gets more severe with increasing
interatomic distance. This has to be considered in the fitting of real data and may
provide an additional explanation for the difficulties in obtaining good fits to iron oxide
nanoparticle samples. As a third part of this thesis a comprehensive investigation of
iron oxide nanoparticle samples with particle sizes of 4.8, 11.6, 11.8, 15.6 and 21.4 nm
is reported. The particle samples are first characterized by small-angle X-ray scattering
and transmission electron microscopy (TEM), which shows that with the exception of the
smallest particle sample the particle size distribution is reasonably monodisperse. For
the 4.8 nm particles a bi-modal size distribution is found. Further characterization was
performed via Mössbauer spectroscopy, which shows a size dependence of the magnetite
content, where this contribution is larger for increasing particle sizes. For the 11.6 nm
sample no magnetite is found and a composition entirely of maghemite is concluded.
Structural studies of all particle sizes were performed with X-ray powder diffraction and
PDF analysis. The previously mentioned APB line broadening effect is used to estimate
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Chapter 5 Summary and conclusion

the amount of APBs in the particle structures. From the PDF analysis information
on the amount and ordering of vacancies is obtained. For the 15.6 nm particles high-
resolution TEM offers a direct way the confirm the presence of APBs. In this part
it is shown that the peak broadening related to APBs generally becomes stronger with
increasing particle size and is virtually absent for the smallest particle sample. A detailed
study of the magnetization distribution within the particle is performed for the 11.8 and
15.6 nm particles with the help of small-angle neutron scattering with polarized neutrons.
A non-magnetic surface layer of 0.4(1) nm and 0.3(1) nm exists respectively. Within
errors and by comparison with literature values it seems that the surface layer thickness is
rather independent of the particle size, at least for particles larger than 10 nm. A peculiar
trend of decreasing saturation magnetization with increasing particle size is evidenced
from SQUID-magnetometry. An exception are the 15.6 nm particles, where the largest
magnetization is present. Based on the previous findings it could be concluded that the
decrease in saturation magnetization for the other samples is connected to an increase
in the number of APBs as concluded from the X-ray powder diffraction measurements.
The non-magnetic surface layer also contributes to the magnetic properties explaining
the low magnetization of the smallest particles, where no APB-related broadening of the
diffraction peaks occurs. Other effects such as an increased saturation magnetization due
to an increased contribution of magnetite to the particle composition are overshadowed
by the presence of the APBs. The large saturation magnetization observed for the
15.6 nm particles is in agreement with the observed smaller peak broadening and the
less distorted crystal structure compared to the other samples.

In conclusion the strong influence of APBs on the spin structure and subsequently on
the macroscopic magnetization could be shown with Monte Carlo simulations. Simula-
tions of X-ray powder diffraction patterns allowed the development of a method to detect
and assess the amount of APBs in real samples. With experiments on particle samples
with various sizes the influences of the particle size, the composition, the number and
ordering of defects, the presence and thickness of a non-magnetic surface layer as well as
the presence and quantity of APBs was investigated. It was shown that while for smaller
particles the non-magnetic surface and canting around vacancies plays the major role,
for increasing particle sizes the effects of APBs become increasingly important.
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Chapter 6
Outlook

Some questions remain that could be addressed in future works. The presented experi-
mental findings as well as the simulations, especially the signature of antiphase boundar-
ies in the X-ray diffraction patterns provide a solid basis for these possible investigations.
For example further small-angle neutron scattering with polarized neutrons (SANSPOL)
especially on small particles with sizes below 10 nm will help to conclusively answer the
question of the size dependence of a non-magnetic surface layer. However, a challenge
will be the small signal generated by these small nanoparticles as well as the difficulties
in preparing samples with a small size distribution that is necessary for a precise ana-
lysis of the subtle contribution of the surface layer. With the distinct APB signature
in XRD patterns an in-situ heating study could be performed, where the development
of the peak widths is monitored with increasing temperature. It is possible that the
increased temperature allows the rearrangement of the crystal lattice thereby removing
APBs, which would lead to an increase in the saturation magnetization and thus an
improvement of the particle performance for several applications. Finally, neutron pair
distribution function analysis could be used to study the local magnetic structure and
the spin structure disturbances introduced by antiphase boundaries or other structural
defects. The developed programs can be used for further simulation studies, e.g. of
surface effects, mutliple APBs and different particle shapes. Further development might
include the introduction of lattice strains, thermal displacements or core-shell structures.
The adaptation to different systems is also possible.
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Appendix A
PDF analysis results

Tab. A.1 Results of the total PDF fit for sample OC05 as shown in fig. 4.27a). The
tetragonal unit cell with space group symmetry P43212 was used. Only a single isotropic
displacement parameter was refined for all oxygen positions to reduce the number of para-
meters.

Position mult. x/a y/a z/c occ. Uiso

Fe1(tet.) 8 0.7587(5) 0.0021(5) 0.1208(5) 0.98(3) 0.0044(5)
Fe2(oct.) 4 0.3717(5) 0.6283(5) 0.75 0.75(3) 0.0085(5)
Fe3(oct.) 4 0.1283(5) 0.8714(5) 0.25 0.95(3) 0.0085(5)
Fe4(oct.) 8 0.3789(5) 0.8749(5) -0.0102(5) 0.598(3) 0.0095(5)
O1 8 0.1275(5) 0.3725(5) 0.5090(5) 1 0.0090(5)
O2 8 0.3530(5) 0.1209(5) -0.0181(5) 1 0.0090(5)
O3 8 0.1441(5) 0.8894(5) 0.0023(5) 1 0.0090(5)
O4 8 0.3907(5) 0.6061(5) -0.0175(5) 1 0.0090(5)

a=b (Å) 8.339(2)
c 8.411(2)
δ (Å−1) 1.28(1)
Particle size (Å) 52(5)
Rw 0.172
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Tab. A.2 Results of the PDF fit for sample OC10 as shown in fig. 4.30a). The tetragonal
unit cell with space group symmetry P43212 was used. Only a single isotropic displacement
parameter was refined for all oxygen positions to reduce the number of parameters.

Position mult. x/a y/a z/c occ. Uiso

Fe1(tet.) 8 0.7422(5) 0.9970(5) 0.1239(5) 0.80(3) 0.0057(5)
Fe2(oct.) 4 0.3597(5) 0.6403(5) 0.75 0.089(3) 0.0134(5)
Fe3(oct.) 4 0.1180(5) 0.8820(5) 0.25 0.87(3) 0.0109(5)
Fe4(oct.) 8 0.3711(5) 0.8747(5) 0.9880(5) 0.78(3) 0.0052(5)
O1 8 0.1332(5) 0.3940(5) 0.5008(5) 1 0.0144(5)
O2 8 0.3665(5) 0.1076(5) -0.0017(5) 1 0.0144(5)
O3 8 0.1258(5) 0.8750(5) -0.0008(5) 1 0.0144(5)
O4 8 0.3766(5) 0.6267(5) 0.0006(5) 1 0.0144(5)

a=b (Å) 8.356(2)
c 8.427(2)
δ (Å−1) 1.86(1)
Particle size (Å) 99(5)
Rw 0.190

Tab. A.3 Results of the PDF fit for sample SE11 as shown in fig. 4.32a). The tetragonal
unit cell with space group symmetry P43212 was used. Only a single isotropic displacement
parameter was refined for all oxygen positions to reduce the number of parameters. It should
be noted that the particle size determined for the PDF is not very reliable as it compensates
for imperfections in the fit resulting from the presence of APBs and other structural defects.

Position mult. x/a y/a z/c occ. Uiso

Fe1(tet.) 8 0.7448(5) 0.0038(5) 0.1276(5) 0.89(3) 0.0060(5)
Fe2(oct.) 4 0.3771(5) 0.6229(5) 0.75 1.00(3) 0.0083(5)
Fe3(oct.) 4 0.1247(5) 0.8753(5) 0.25 0.17(3) 0.0073(5)
Fe4(oct.) 8 0.3723(5) 0.8716(5) 0.0139(5) 0.87(3) 0.0063(5)
O1 8 0.1236(5) 0.3960(5) 0.5002(5) 1 0.0076(5)
O2 8 0.3692(5) 0.1107(5) 0.0044(5) 1 0.0076(5)
O3 8 0.1310(5) 0.0872(5) 0.0012(5) 1 0.0076(5)
O4 8 0.3759(5) 0.6335(5) 0.0028(5) 1 0.0076(5)

a=b (Å) 8.378(2)
c 8.421(2)
δ (Å−1) 1.49(1)
Particle size (Å) 78(5)
Rw 0.194
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Tab. A.4 Results of the PDF fit for sample OC15 as shown in fig. 4.36a). The tetragonal
unit cell with space group symmetry P43212 was used. Only a single isotropic displacement
parameter was refined for all oxygen positions to reduce the number of parameters.

Position mult. x/a y/a z/c occ. Uiso

Fe1(tet.) 8 0.7438(5) 0.0005(5) 0.1242(5) 0.99(3) 0.0070(5)
Fe2(oct.) 4 0.3799(5) 0.6201(5) 0.75 0.86(3) 0.0086(5)
Fe3(oct.) 4 0.1234(5) 0.8766(5) 0.25 0.37(3) 0.0070(5)
Fe4(oct.) 8 0.3696(5) 0.8660(5) 0.9900(5) 0.99(3) 0.0068(5)
O1 8 0.1423(5) 0.3965(5) 0.4498(5) 1 0.0103(5)
O2 8 0.3713(5) 0.1274(5) 0.0037(5) 1 0.0103(5)
O3 8 0.1277(5) 0.8564(5) 0.0235(5) 1 0.0103(5)
O4 8 0.3749(5) 0.6303(5) 0.9950(5) 1 0.0103(5)

a=b (Å) 8.358(2)
c 8.359(2)
δ (Å−1) 1.78(1)
Particle size (Å) 97(5)
Rw 0.134

Tab. A.5 Results of the PDF fit for sample OC20 as shown in fig. 4.39a). The tetragonal
unit cell with space group symmetry P43212 was used. Only a single isotropic displacement
parameter was refined for all oxygen positions to reduce the number of parameters.

Position mult. x/a y/a z/c occ. Uiso

Fe1(tet.) 8 0.7457(5) 0.0013(5) 0.1263(5) 0.87(3) 0.0071(5)
Fe2(oct.) 4 0.3830(5) 0.6170(5) 0.75 0.67(3) 0.0047(5)
Fe3(oct.) 4 0.1215(5) 0.8786(5) 0.25 0.25(3) 0.0026(5)
Fe4(oct.) 8 0.3765(5) 0.8692(5) 0.0047(5) 0.93(3) 0.0080(5)
O1 8 0.1228(5) 0.3884(5) 0.5108(5) 1 0.0175(5)
O2 8 0.3740(5) 0.1108(5) 0.0044(5) 1 0.0175(5)
O3 8 0.1280(5) 0.8785(5) 0.0054(5) 1 0.0175(5)
O4 8 0.3781(5) 0.6283(5) 0.9991(5) 1 0.0175(5)

a=b (Å) 8.386(2)
c 8.391(2)
δ (Å−1) 1.39(1)
Particle size (Å) 118(5)
Rw 0.198
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Appendix B
Debye scattering equation
simulation program

The source code for the Debye scattering equation simulation program as described
in section 3.7.2 is shown here. The file Example.py contains an example on how
to use this program to simulate powder patterns.

B.1 crystal.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Crystal building module

5

6 Generate a nanocrystal from input CIF file with vacancies ,cube or sphere shape

7 and antiphase boundaries.

8

9 Classes:

10 Atom

11 Crystal

12 """

13 import numpy as np

14 from itertools import product

15 from scipy.spatial.distance import pdist

16 import sys

17 import plotting

18 from pympler import asizeof

19

20 class Atom():

21 """

22 Class to store atom information.

23

24 Attributes

25 ----------

26 coordinates : ndarray

27 Fractional x,y,z coordinates of the atom.

28 element : str

29 String label of the atoms element.

30 label : str

31 Position label , e.g. ’Fe1 ’.

32 probability : float

33 Selection probability if a gradient is applied for vacancy generation.

34 isAPB : int

35 set to 1 if the atom is involved in the modified exchange interactions.

36 ucn : int

37 unit cell number the atom belongs to.

38

39 """

40 __slots__ = {"coordinates", "element", "label", "probability", "isAPB", "ucn"

}

41

42 def __init__(self , coordinates =(0.0 ,0.0 ,0.0), element="Fe",

43 label=None ,isAPB=0, ucn=0):

44 self.coordinates = np.array(coordinates)

45 self.element = element

46 self.label = label
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47 self.probability = 0

48 self.isAPB = isAPB

49 self.ucn = ucn

50

51 class Crystal ():

52 """

53 Class to store crystal information and perform calculations to build the

54 nanocrystal.

55 """

56 def __init__(self , diameter , unitcell ,occupancies , shape , n_APBs , offset ,

output_dir):

57 """

58 The unit cell contents are provided as parameters , and the crystal is

built up

59 by repeating the unit cell in all dimensions n times , where n is

60 specified by the parameter diameter. In the repitiion loop Atom objects

61 are initialized and stored in self.Atoms.

62

63 Parameters

64 ----------

65 diameter : Int

66 Number of unit cell repititions in x,y and z.

67 unitcell : unitcell object

68 Object containing the unitcell information obtained from CifParser.

69 shape : str

70 If "Sphere" cut the crystal in spherical shape with diameter

71 specified in crystal initialization.

72 If "Cube" cut into cube shape with same volume as a sphere of

diameter

73 specified in crystal initialization.

74 """

75 self.diameter = diameter

76 valid_shapes = ["Sphere", "Cube"]

77 if shape not in valid_shapes:

78 raise ValueError("The input shape is not valid.")

79 else:

80 self.shape = shape

81 self.radius = diameter /2.0

82 self.offset = offset

83 self.atoms = list()

84 self.unitcell = unitcell.positions

85 self.elements = unitcell.elements

86 self.labels = unitcell.labels

87 self.n_APBs = n_APBs

88 self.cif_filename = (( unitcell.filename).split(’/’))[-1]

89 self.atom_numbers = {}

90 self.lattice_a = unitcell.lattice_a

91 self.lattice_b = unitcell.lattice_b

92 self.lattice_c = unitcell.lattice_c

93 self.occupancies = occupancies

94 self.formfactor_array = []

95 self.a_numbers = 0

96 self.output_dir = output_dir

97

98 for i in self.elements:

99 self.atom_numbers[i] = 0

100

101 for a,e,l in zip(self.unitcell , self.elements , self.labels):

102 for f in product(range(self.diameter +1),

103 range(self.diameter +1),

104 range(self.diameter +1)):

105 self.atoms.append(Atom(coordinates= a + np.array(f),

106 element = e, label = l, ucn = f))

107 self.atom_numbers[e] += 1

108

109 self.atoms = np.array(self.atoms)

110 print("\nCrystal initialized")

111 for key in self.atom_numbers.keys():
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112 print("\t %s: %d"%(key ,self.atom_numbers[key]))

113

114 def gaussian(self ,x,sig):

115 """ Gaussian distribution """

116 n = 1/(np.sqrt (2*np.pi)*sig)

117 e = np.exp(-(x/sig)**2 / 2)

118 return n*e

119

120 def lorentzian(self ,x,gamma):

121 """ Lorentzian distribution """

122 return (1/np.pi)*( gamma /2) /((x**2)+( gamma /2) **2)

123

124 def gradient(self ,gradient_sig , plot=False):

125 """

126 Setup a probability gradient for vacancy formation.

127

128 The Gradient is used to calculate a selection probability for every

129 atom in the structure.

130

131 Parameters

132 ----------

133 gradient_sig : float

134 Sigma parameter for distribution functions.

135 plot : Bool , optional

136 Plot the probabilities against the distance from particle center.

137 The default is False.

138 """

139 ps = []

140 ds = []

141 xp = np.arange(0,self.diameter ,0.01)

142 #g = self.gaussian(xp,gradient_sig)

143 g = self.lorentzian(xp,gradient_sig)

144 fp = (-1*g)+g.max()

145 for atom in self.atoms:

146 atom.coordinates -= self.radius

147 d = np.linalg.norm(atom.coordinates)

148 ds.append(d)

149 p = np.interp(d, xp,fp)

150 ps.append(p)

151 atom.probability = p

152 atom.coordinates += self.radius

153 if plot:

154 data = {}

155 data["PDF"] = (xp,fp ,1,’’)

156 data["Probabilites for atoms"] = (ds,ps ,0,’.’)

157 plotting.plot(data ,"Radius [unit cells]", "Probability")

158

159 def generate_vacancies(self , occ ,gradient=None , SEED =0):

160 """

161 Generate vacancies on iron sites.

162

163 This is only intended for maghemite or magnetite structures.

164

165 First the list of atom labels is generated from the list of atoms. Then

166 the unique labels and their occurrances are determined with np.unique ().

167 Dictionaries are set up for the atom labels , the indices and the

vacancies.

168 After that the keys relating to oxygen in the structure are stored in

169 O_keys. Now in an iteration over all atoms the atom indices corresponding

170 to the labels determined previously are stored in indices_dict. The keys

171 relating to oxygen are removed. A check is performed if the input keys

172 match the ones determined from the crystal. If not the program is

173 terminated. Random indices are drawn from the indices lists corresponding

174 to the iron positions. The number of atoms to be removed is determined

175 from the occupancy factor given in the input dictionary. The retrieved

176 indices are stored all together in vacancies_merged , which is finally

177 used to remove the selected atoms from the crystal.

178
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179 Parameters

180 ----------

181 occ : Dictionary

182 Dictionary containing the site labels with occupancies.

183 gradient : Bool

184 Use a gradient to determine the probability of selection.

185 SEED : Int

186 Seed value for numpy random.

187 """

188 np.random.seed(SEED)

189

190 if gradient != None:

191 self.gradient(gradient_sig=gradient ,plot = True)

192

193 label_dict = {}

194 indices_dict = {}

195 vacancies_dict = {}

196

197 label_list = np.array([atom.label for atom in self.atoms])

198 uniq , counts = np.unique(label_list , return_counts=True)

199

200 for n,l in enumerate(uniq):

201 label_dict[l] = counts[n]

202 indices_dict[l] = []

203 vacancies_dict[l] = []

204

205 O_keys = []

206 for i in indices_dict.keys():

207 if "O" in i:

208 O_keys.append(i)

209

210 for c,a in enumerate(self.atoms):

211 for n in range(len(uniq)):

212 if a.label == uniq[n]:

213 indices_dict[a.label]. append(c)

214

215 for i in O_keys:

216 indices_dict.pop(i)

217 vacancies_dict.pop(i)

218

219 for i in occ.keys():

220 if i not in vacancies_dict.keys():

221 print("Occupancy dict contains wrong labels!")

222 print("Valid keys are: ", vacancies_dict.keys())

223 print("Vacancies were not set up.")

224 return 1

225

226 for i in indices_dict.keys():

227 if gradient:

228 p = []

229 for a in indices_dict[i]:

230 p.append(self.atoms[a]. probability)

231 p=np.array(p)

232 p/=p.sum()

233 vacancies_dict[i] = np.random.choice(indices_dict[i],

234 int((1-occ[i])*

235 len(indices_dict[i])),

236 replace=False , p=p)

237 else:

238 vacancies_dict[i] = np.random.choice(indices_dict[i],

239 int((1-occ[i])*

240 len(indices_dict[i])),

241 replace=False)

242 vacancies = []

243 vacancies_merged = []

244 print(" generating vacancies ...")

245 for i in vacancies_dict.keys():

246 vacancies.append(vacancies_dict[i])
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247 occ_calc = (1-(len(vacancies_dict[i])/len(indices_dict[i])))

248 print("\t\t%s: %d/%d -> occ: %.2f" %(i,len(vacancies_dict[i]),

249 len(indices_dict[i]),occ_calc))

250

251 for i in vacancies:

252 vacancies_merged += i.tolist ()

253

254 self.atoms = np.delete(self.atoms , vacancies_merged)

255

256 return 0

257

258 def generate_APB(self ,APB , n):

259 """

260 Generate antiphase boundary (APB).

261

262 Generate an antiphase boundary through the center of the particle. First

263 set the particle into the origin , then for all atoms on one side of

264 the space diagonal , i.e. atoms whose x coordinate is larger than the y

265 coordinate , get shifted along the APB by one quarter of a unit cell.

266 Finally the particle is shifted back to the original position. With n=2

267 two APBs are produced

268 """

269 if n == 2:

270 for atom in self.atoms:

271 atom.coordinates -= self.radius

272 if (atom.coordinates [0]- atom.coordinates [1] > (-np.sqrt (2))):

273 atom.coordinates += np.array ([0.25 , 0.25, 0.0])

274 if (atom.coordinates [0]- atom.coordinates [1] > (np.sqrt (2))):

275 atom.coordinates += np.array ([0.25 , 0.25, 0.0])

276 atom.coordinates += self.radius

277

278 if n == 1:

279 for atom in self.atoms:

280 atom.coordinates -= self.radius

281

282 if (atom.coordinates [0]-atom.coordinates [1]) > 0.0:

283 atom.coordinates += np.array ([0.25 , 0.25, 0.0])

284 if ((( atom.coordinates [0]-atom.coordinates [1] < 0.0) and

285 (atom.coordinates [0]-atom.coordinates [1] > -0.4))

286 or ((atom.coordinates [0]-atom.coordinates [1] < 0.4) and

287 (atom.coordinates [0]-atom.coordinates [1] > 0.0))):

288 atom.isAPB = 1

289 atom.coordinates += self.radius

290

291 def cut_sphere(self , diameter ,offset):

292 """

293 Generate sphere shape.

294

295 Cut the particle into a spherical shape by appending only atoms with

296 x^2 + y^2 + z^2 < r^2 to the new structure.

297

298 Parameters

299 ----------

300 diameter : Float

301 Diameter of the nanocrystal after shaping in fractions of unit cells.

302 """

303

304 radius = diameter /2.0 * self.lattice_a

305 cut_crystal = []

306 for atom in self.atoms:

307 atom.coordinates *= np.array([self.lattice_a , self.lattice_b , self.

lattice_c ])

308 atom.coordinates -= radius

309 atom.coordinates -= offset

310 if (np.dot(atom.coordinates , atom.coordinates) < radius **2):

311 atom.coordinates /= np.array([self.lattice_a , self.lattice_b ,

self.lattice_c ])

312 atom.coordinates += radius
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313 atom.coordinates += offset

314 cut_crystal.append(atom)

315 self.atoms = cut_crystal

316

317 def cut_cube(self , edgelength):

318 """

319 Generate cube shape.

320

321 Remove atoms from initialized crystal to generate a cube shaped crystal

322 with specified edgelength.

323

324 Parameters

325 ----------

326 edgelength : Float

327 Edge length of the nanocrystal after shaping in fractions of unit

328 cells.

329 """

330 cut_crystal = []

331 for atom in self.atoms:

332 atom.coordinates -= (edgelength /2)

333 if (abs(atom.coordinates [0]) <= (edgelength /2)

334 and abs(atom.coordinates [1]) <= (edgelength /2)

335 and abs(atom.coordinates [2]) <= (edgelength /2)):

336 atom.coordinates += (edgelength /2)

337 cut_crystal.append(atom)

338 self.atoms = cut_crystal

339

340 def return_coordinate_list(self):

341 """

342 Return coordinates and elements.

343

344 Return the coordinates of all atoms as list to be used in

345 other methods , e.g. calculate_distance_array ,

346 calculate_formfactor_matrix and 3D plotting. Elements contains the

347 strings designating the elements in the same order as the atomic

348 coordinates.

349

350 Returns

351 -------

352 coordinates : List of lists of floats

353 list containing the x,y,z coordinates for every atom.

354 elements_all_atoms : List of strings

355 element symbols.

356

357 """

358 coordinates = []

359 elements_all_atoms = []

360 for atom in self.atoms:

361 coordinates.append(atom.coordinates.tolist ())

362 elements_all_atoms.append(atom.element)

363

364 return coordinates ,elements_all_atoms

365

366 def calculate_distance_array(self):

367 """

368 Calculate the distances for every atom pair.

369

370 Calculate the pair distances r_ij in the crystal structure in unitcells

371 using the scipy.spatial.distance method pdist that takes a list of

372 coordinates as argument and returns the upper triangle of the euclidian

373 pair distance matrix as a flattened array.

374 """

375 coordinates ,elements = self.return_coordinate_list ()

376 #coordinates *= np.array ([self.lattice_a , self.lattice_b , self.lattice_c

])

377 coords = coordinates * np.array ([self.lattice_a , self.lattice_b , self.

lattice_c ])

378 self.distance_array = pdist(coords)
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379

380 def calculate_formfactor_matrix(self):

381 """

382 Calculate the formfactor products for each atom pair.

383

384 First the element symbols in the same order as the atomic coordinates

385 are retrieved from the return_coordinate_list method.

386

387 Depending on the type of element numbers 2 or 3 are stored in ff_nums.

388 The pariwise matrix is constructed directly as a

389 flattened array via the double for loop , where values of 4, 5 and 6

corrspond

390 to Fe -Fe, Fe-O and O-O. The diagonal elements are not

391 present in this array due to the "+1" in the list argument. They are

392 calculated directly in the calculate_Dse_total method of the dse.py

module

393 from the number of atoms in the structure.

394 """

395 coordinates ,formfactors = self.return_coordinate_list ()

396 ff_nums = []

397 keys= list(self.atom_numbers.keys())

398

399 for i in formfactors:

400 if i == keys [0]:

401 ff_nums.append (2)

402 else:

403 ff_nums.append (3)

404

405 formfactor_matrix = []

406 for n,i in enumerate(ff_nums):

407 for k in ff_nums[n+1:]:

408 formfactor_matrix.append(i+k)

409

410 self.formfactor_array = np.array(formfactor_matrix)

411

412 def build_nanoparticle(self , APB , occ ,gradient , plot ,SEED):

413 """

414 Setup the nanoparticle shape and calculate all parameters.

415

416 Parameters

417 ----------

418 APB : Bool

419 If True generate an APB along [110] through the particle center.

420 occ : dictionary

421 Set the occupancies iron positions.

422 gradient : Float

423 Set sigma parameter of gaussian distribution for probabilities.

424 plot : Bool

425 If True the crystal is plotted in 3D

426 """

427 print("\nBuilding Nanoparticle ...")

428 if occ:

429 res = self.generate_vacancies(self.occupancies ,gradient , SEED=SEED)

430 if res == 1:

431 sys.exit("terminating program")

432 elif res == 0:

433 print(" - vacancies generated")

434

435 if APB:

436 self.generate_APB(APB ,self.n_APBs)

437 print(" - APB generated")

438

439 if self.shape == "Sphere":

440 self.cut_sphere(self.diameter ,self.offset)

441 volume = 4/3*np.pi*(self.diameter /2)**3

442 self.diameter = self.diameter*self.lattice_a /10

443 print(" - sphere shape generated")
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444 print("\t\tdiameter: %.1f nm \n\t\tvolume: %.2f" %(self.diameter ,

volume))

445 elif self.shape == "Cube":

446 edgelength = (4/3* np.pi*(self.diameter /2) **3) **(1/3)

447 self.diameter = edgelength*self.lattice_a /10

448 volume = edgelength **3

449 self.cut_cube(edgelength)

450 print(" - cube shape generated , edge length: %.1f unit cells ,

volume: %.2f"

451 %(self.diameter , volume))

452

453 self.calculate_formfactor_matrix ()

454 print(" - formfactor matrix generated")

455

456 self.calculate_distance_array ()

457 print(" - pair distances calculated")

458

459 print("Nanoparticle generated.")

460 atom_el_numbers = {}

461

462 for i in self.elements:

463 atom_el_numbers[i] = 0

464 for i in self.atoms:

465 self.a_numbers += 1

466 atom_el_numbers[i.element] += 1

467

468 self.atom_numbers = atom_el_numbers

469

470 print(atom_el_numbers)

471

472 if plot:

473 a,b = self.return_coordinate_list ()

474 plotting.plot_3D(coordinates=a ,element_list=b)

475

476 def get_properties(self):

477 """

478 Return the calculated crystal properties for further use.

479

480 Returns

481 -------

482 numpy.ndarray

483 Array containing pair wise distances.

484 numpy.ndarray

485 Array containing pair wise form factor string -placeholders.

486 numpy.chararray

487 Array containing pair wise form factor string -placeholders of the

488 diagonal elements , i.e. the entries with equal indices.

489 """

490 return self.distance_array , self.formfactor_array

491

492 def output_crystal_structure(self , filename , oxygen):

493 Fe_atoms = [atom for atom in self.atoms if atom.element == "Fe"]

494 O_atoms = [atom for atom in self.atoms if atom.element == "O"]

495

496 x = [atom.coordinates [0] for atom in Fe_atoms]

497 y = [atom.coordinates [1] for atom in Fe_atoms]

498 z = [atom.coordinates [2] for atom in Fe_atoms]

499

500 position = [1 if (atom.label == "Fe(tet)" or atom.label == "Fe1")

501 else 0 for atom in Fe_atoms]

502

503 isAPB = [atom.isAPB for atom in Fe_atoms]

504 unit_cell = [atom.ucn for atom in Fe_atoms]

505

506 if oxygen:

507 for i in O_atoms:

508 x.append(i.coordinates [0])

509 y.append(i.coordinates [1])
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510 z.append(i.coordinates [2])

511 position.append (2)

512 isAPB.append (0)

513 unit_cell.append(i.ucn)

514

515 data = np.column_stack ((x,y,z,position ,isAPB ,unit_cell))

516 np.savetxt(slef.output_dir+filename , data , fmt=’%.5f’)

517

518 def rotate(self ,alpha ,beta ,gamma):

519 alpha = np.pi /180.0

520 beta = np.pi /180.0

521 gamma = np.pi /180.0

522

523 rotation_x = np.array ([[1.0 ,0.0 ,0.0] ,

524 [0.0, np.cos(alpha), -np.sin(alpha)],

525 [0.0, np.sin(alpha), np.cos(alpha)]])

526

527 rotation_y = np.array ([[np.cos(beta), 0.0, np.sin(beta)],

528 [0.0, 1.0, 0.0],

529 [-np.sin(beta), 0.0, np.cos(beta)]])

530

531 rotation_z = np.array ([[np.cos(gamma),-np.sin(gamma) ,0.0],

532 [np.sin(gamma), np.cos(gamma), 0.0],

533 [0.0, 0.0 ,1.0]])

534

535 for atom in self.atoms:

536 atom.coordinates -= self.radius

537 atom.coordinates = rotation_x.dot(atom.coordinates)

538 atom.coordinates = rotation_y.dot(atom.coordinates)

539 atom.coordinates = rotation_z.dot(atom.coordinates)

540 atom.coordinates += self.radius

B.2 parsers.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3

4 class CifParser ():

5 """

6 Class to retrieve information from input CIF files. Currently only

7 VESTA Cifs are supported.

8 """

9 def __init__(self , filename):

10 self.filename = filename

11 file = open(filename , "r")

12 lines = file.readlines ()

13 space = []

14 symmetry_elements = []

15 unitcell = []

16 coordinatelist = []

17 expanded = []

18 elementlist = []

19 expanded_elements = []

20 labels = []

21 expanded_labels = []

22 self.lattice_a = 0.0

23 self.lattice_b = 0.0

24 self.lattice_c = 0.0

25

26 for n,line in enumerate(lines):

27 if "cell_length_a" in line:

28 self.lattice_a = float(line.split ()[1])

29 if "cell_length_b" in line:

30 self.lattice_b = float(line.split ()[1])

31 if "cell_length_c" in line:
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32 self.lattice_c = float(line.split ()[1])

33 if "space_group_name" in line:

34 self.spcgr = line.split()[1]

35 if line == "\n":

36 space.append(n)

37

38 for line in lines[space [2]+3: space [3]]:

39 l = line.strip()

40 l = l[1:-1]

41 symmetry_elements.append(l)

42

43 for line in lines[space [3]+10:]:

44 unitcell.append(line.split())

45

46 for i in unitcell:

47 coordinatelist.append ([float(i[2]),float(i[3]),float(i[4])])

48 elementlist.append(i[-1])

49 labels.append(i[0])

50

51 for k,i in enumerate(coordinatelist):

52 for n in symmetry_elements:

53 x = i[0]

54 y = i[1]

55 z = i[2]

56

57 # calculate symmetry equivalent positions

58 symm = n.split(’,’)

59 new_x = eval(symm [0])

60 new_y = eval(symm [1])

61 new_z = eval(symm [2])

62

63 if new_x < 0:

64 new_x = 1+ new_x

65 if new_y < 0:

66 new_y = 1+ new_y

67 if new_z < 0:

68 new_z = 1+ new_z

69

70 if new_x == -0.0:

71 new_x = 0.0

72 if new_y == -0.0:

73 new_y = 0.0

74 if new_z == -0.0:

75 new_z = 0.0

76

77 if new_x >= 1.0:

78 new_x -= 1.0

79 if new_y >= 1.0:

80 new_y -= 1.0

81 if new_z >= 1.0:

82 new_z -= 1.0

83

84 new_x = round(new_x ,4)

85 new_y = round(new_y ,4)

86 new_z = round(new_z ,4)

87

88 expanded.append ([new_x , new_y , new_z ])

89 expanded_elements.append(elementlist[k])

90 expanded_labels.append(labels[k])

91

92 self.positions = []

93 self.elements = []

94 self.labels = []

95 for n,i in enumerate(expanded):

96 if i not in self.positions:

97 self.positions.append(i)

98 self.elements.append(expanded_elements[n])

99 self.labels.append(expanded_labels[n])
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100

101 for n,i in enumerate(self.positions):

102 for k,l in enumerate(self.positions):

103 if i == l and n != k:

104 print("duplicate at %d, %d"% (n,k))

105 print(i, l)

106

107 print("\nCif import succesful\n")

B.3 debye.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3

4 import crystal

5 import dse

6 import plotting

7 import parsers

8 import sys

9 from pympler import asizeof

10

11 class Experiment ():

12 def __init__(self ,wavelength ,

13 x_step ,

14 x_min ,

15 x_max ,

16 partitions ,

17 diameter ,

18 cif_file ,

19 filename ,

20 n_APBs = 1,

21 offset = 0.0,

22 x_par = "Theta",

23 occupancies = {},

24 shape="Sphere",

25 APB=False ,

26 gradient=None ,

27 plot_crystal=False ,

28 plot_results=None ,

29 output_path = "output/",

30 plot_2D_crystal = False ,

31 dry_run = False ,

32 calculate = True ,

33 saveStructure = False ,

34 oxygen=False ,

35 SEED = 0,

36 selfscattering = True):

37

38 if dry_run:

39 diameter = 1

40 partitions = 2

41

42 if occupancies == {}:

43 occ = False

44 else:

45 occ = True

46

47 print("===============================")

48 print("Experiment started")

49 print("===============================")

50

51 unitcell = parsers.CifParser(cif_file)

52

53 Crystal = crystal.Crystal(diameter , unitcell , occupancies , shape , n_APBs ,

54 offset , output_path)
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55

56 Crystal.build_nanoparticle(APB = APB ,

57 occ = occ ,

58 gradient = gradient ,

59 plot = plot_crystal ,

60 SEED = SEED)

61

62 if saveStructure:

63 Crystal.output_crystal_structure(saveStructure , oxygen=oxygen)

64

65 if plot_2D_crystal:

66 plotting.plot_2D(Crystal)

67

68 if calculate == True:

69 DSE_calculator = dse.DseCalculator(Crystal ,x_par , x_min , x_max ,

70 x_step , wavelength ,

71 partitions , output_path ,

selfscattering)

72 DSE_calculator.perform_calculation(filename = filename , plot =

plot_results)

73

74 print("===============================")

75 print("Experiment finished")

76 print("===============================")

B.4 dse.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Debye scattering equation (Dse) module

5

6 Generate atomic formfactors and calculate the Debye scattering equation for

7 nanocrystals.

8

9 Classes:

10 AtomicFormfactorCalculator

11 DseCalculator

12 """

13 import numpy as np

14 import matplotlib.pyplot as plt

15 from collections import defaultdict

16 import numexpr as ne

17 import plotting

18

19 #Cromer -Mann coefficients for atomic formfactor from

20 # https ://www.classe.cornell.edu/~dms79/x-rays/f0_CromerMann.txt

21

22 Fe3p_coeff = [11.17640 , 7.386300 , 3.394800 , 7.2400004E-02 ,

23 4.614700 , 0.3005000 , 11.67290 , 38.55660 ,

24 0.9707000]

25 Fe2p_coeff = [11.04240 , 7.374000 , 4.134600 , 0.4399000 ,

26 4.653800 , 0.3053000 , 12.05460 , 31.28090 ,

27 1.009700]

28 Fe_coeff = [11.76950 , 7.357300 , 3.522200 , 2.304500 ,

29 4.761100 , 0.3072000 , 15.35350 , 76.88050 ,

30 1.036900]

31

32 Ce4p_coeff = [20.32350 , 19.81860 , 12.12330 , 0.1445830 ,

33 2.659410 , 0.2188500 , 15.79920 , 62.23550 ,

34 1.591800]

35

36 O2m_coeff = [4.758000 , 3.637000 , 0.000000 , 0.000000 ,

37 7.831000 , 30.05000 , 0.000000 , 0.000000 ,

38 1.594000]
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39

40 F1m_coeff = [3.632200 , 3.510570 , 1.260640 , 0.9407060 ,

41 5.277560 , 14.73530 , 0.4422580 , 47.34370 ,

42 0.6533960]

43

44 Ca2p_coeff = [15.63480 , 7.951800 , 8.437200 , 0.8537000 ,

45 -7.4000000E-03 , 0.6089000 , 10.31160 , 25.99050 ,

46 -14.87500]

47

48 class AtomicFormfactorCalculator ():

49 """

50 Class to generate formfactors.

51

52 Attributes

53 ----------

54 formfactors : defaultdict(list)

55 formfactors stored in a dictionary , can be retrieved with the element key

.

56 theta : ndarray

57 Theta angles in degrees between min and max values and step size

specified

58 in input.

59 theta_rad : ndarray

60 Theta angles in rad.

61 q : ndarray

62 Scattering vector q defined as 4pi*sin(theta)/lambda.

63 q_4pi : ndarray

64 Scattering vector q defined as sin(theta)/lambda.

65 elements : list(str)

66 List of strings representing the elements/ions to be calculated.

67

68 Methods

69 -------

70 formfactor(q,element):

71 Calculate the formfactor in range q of element.

72 get_formfactor(element):

73 Return formfactor array of element.

74 get_theta ():

75 Return theta array.

76 get_q():

77 Return q array.

78 plot_formfactors ():

79 Plot all formfactors in the range they were calculated.

80 """

81 def __init__(self ,x_par , x_min , x_max , x_step , wavelength , elements):

82 """

83 Initialize the AtomicFormfactorCalculator with a specified q or Theta

84 range.

85

86 Parameters

87 ----------

88 x_par : str

89 String label to set which x-values to use (2Theta or Q).

90 x_min : float

91 Lower limit for x.

92 x_max : float

93 Upper limit for x.

94 x_step : float

95 Step size of x..

96 wavelength : float

97 X-ray wavelength in Angstrom.

98 elements : list of str

99 List containing str labels of the elements to be calculated.

100 """

101 self.formfactors = defaultdict(list)

102 if x_par == "Theta":

103 self.theta = np.arange(x_min , x_max , x_step)

104 self.theta_rad = np.arange(x_min , x_max , x_step)*np.pi/180
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105 self.q = 4*np.pi*np.sin(self.theta*np.pi /180)/wavelength

106 self.q_4pi = np.sin(self.theta*np.pi/180)/wavelength

107 elif x_par == "Q":

108 self.q = np.arange(x_min , x_max , x_step)

109 self.q_4pi = self.q/(4*np.pi)

110 self.theta_rad = np.arcsin(self.q*wavelength /(4*np.pi))

111 self.theta = self.theta_rad * 180/np.pi

112

113 # set up form factors for all elements present in structure

114 self.elements = elements

115 for i in self.elements:

116 self.formfactors[i]. append(self.formfactor(self.q_4pi , i))

117

118 def formfactor(self , q, element):

119 """

120 Calculate the formfactor in range q of element.

121

122 The non -dispersive part of the atomic scattering factor is calculated

123 in the specified q range according to

124 f(k) = c+[SUM a_i*EXP(-b_i*(k^2))]; i=1,4

125 with k = sin(theta)/lambda and c,a_i and b_i the Cromer -Mann coefficients

126 given in the International Tables of Crystallography vol. 4 or vol C

127 (pg 500 -502) and tabulated in

128 https ://www.classe.cornell.edu/~dms79/x-rays/f0_CromerMann.txt. This

129 parametrization is only good up to sin(theta)/lambda < 2.0 [Angstrom ^-1].

130 For lambda = 0.21148 this means an upper limit of theta of 25 [ ]. The

131 correct parameters are chosen according to the element/ion name provided

132 in the function argument.

133

134 Parameters

135 ----------

136 q : ndarray

137 Q array used for the calculation.

138 element : str

139 Element/Ion to be calculated.

140

141 Returns

142 -------

143 ndarray

144 Formfactor of element in the specified q range.

145 """

146 coeff = None

147 if element == "Fe3+":

148 coeff = Fe3p_coeff

149

150 elif element == "Fe2+":

151 coeff = Fe2p_coeff

152

153 elif element =="O2 -":

154 coeff = O2m_coeff

155

156 elif element =="Ce4+":

157 coeff = Ce4p_coeff

158

159 elif element =="F1 -":

160 coeff = F1m_coeff

161

162 elif element =="Ca2+":

163 coeff = Ca2p_coeff

164

165 f = (coeff [0]*np.exp(-coeff [4]*q**2) +

166 coeff [1]*np.exp(-coeff [5]*q**2) +

167 coeff [2]*np.exp(-coeff [6]*q**2) +

168 coeff [3]*np.exp(-coeff [7]*q**2) + coeff [8])

169 return np.array(f)

170

171 def get_formfactor(self , element):

172 return np.array(self.formfactors[element ][0])
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173

174 def get_theta(self):

175 return self.theta

176

177 def get_q(self):

178 return self.q

179

180 def plot_formfactors(self):

181 fig ,ax = plt.subplots (1,1)

182

183 for i in self.elements:

184 ax.plot(self.theta*2, self.get_formfactor(i), label=i)

185

186 ax.legend ()

187 ax.set_xlim(left =0)

188 ax.set_xlabel("$2\Theta ( )$")
189 ax.set_ylabel("f (electrons)")

190 plt.show()

191

192 class DseCalculator ():

193 """

194 Class to calculate the Debye scattering equation.

195

196 Attributes

197 ----------

198 distances : ndarray

199 Array containing the pair wise distances.

200 f_ij : chararray

201 Array containing the numbers corresponding to atomic scattering factor

202 products in the same order as the distances.

203 latticepar : float

204 Lattice parameter a of the unit cell.

205 atom_numbers : dictionary

206 Dictionary containing the total number of atoms grouped by elements.

207 t_min : float

208 Lower limit of the theta range.

209 t_max : float

210 Upper limit of the theta range.

211 step : float

212 Theta step.

213 wavelength : float

214 X-ray wavelength in Angstrom.

215 num_partitions : int

216 Number of partitions to be performed prior to calculation.

217 intensity : ndarray

218 Array containing the I(theta).

219 selfscattering: bool

220 Decide if the self scattering contribution should be calculated.

221

222 Methods

223 -------

224 partition_crystal ():

225 Divide the crystal into parts to keep memory usage within RAM limits.

226 calculate_Dse(distances , f_ij):

227 Calculate the Debye scattering equation for non -equal pairs of atoms.

228 calculate_Dse_total ():

229 Calculate the scattered intensity from all parts , including the self

230 correlations.

231 perform_calculation(filename=None , plot=True):

232 Wrapper function to ensure results are saved and plotted or intentionally

233 discarded.

234 save_to_text(filename):

235 Utility function to save q,theta and I to text file.

236

237 """

238

239 def __init__(self , crystal , x_par , x_min , x_max ,x_step , wavelength ,

240 num_partitions , output_path , selfscattering):
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241 """

242 Initialize the DseCalculator.

243

244 Parameters

245 ----------

246 crystal : Crystal object

247 Crystal object obtained from crystal module.

248 x_par : str

249 Parameter to specify the x-values to be used (Theta or Q).

250 x_min : float

251 Lower limit of x range.

252 x_max : TYPE

253 Upper limit of x range.

254 x_step : float

255 Step size of x.

256 wavelength : float

257 X-ray wavelength in Angstrom.

258 num_partitions : int

259 Number of partitions to be performed prior to calculation.

260 output_path: str

261 Path for output files , only existing directories are accepted.

262 """

263 self.cif_filename = crystal.cif_filename

264 self.occupancies = crystal.occupancies

265 self.diameter = crystal.diameter

266 self.shape = crystal.shape

267 self.distances , self.f_ij = crystal.get_properties ()

268 self.latticepar = crystal.lattice_a

269 self.atom_numbers = crystal.atom_numbers

270 self.x_par = x_par

271 self.x_min = x_min

272 self.x_max = x_max

273 self.x_step = x_step

274 self.wavelength = wavelength

275 self.num_partitions = num_partitions

276 self.intensity = 0

277 self.output_path = output_path

278 self.num_Atoms = crystal.a_numbers

279 self.selfscattering = selfscattering

280

281 elements = ["O2 -", "Fe3+", "Fe2+", "Ce4+", "Ca2+", "F1-"]

282

283 formfactors = AtomicFormfactorCalculator(self.x_par ,self.x_min ,

284 self.x_max ,

285 self.x_step ,

286 self.wavelength ,

287 elements)

288 #formfactors.plot_formfactors ()

289 self.q = formfactors.get_q()

290 self.theta = formfactors.get_theta ()

291

292 global CaF , FCa , CaCa , FF , CeO , OCe , CeCe , FeFe , FeO , OFe , OO

293

294 CaF = formfactors.get_formfactor("Ca2+") * formfactors.get_formfactor("F1

-")

295 FCa = CaF

296 CaCa = formfactors.get_formfactor("Ca2+") * formfactors.get_formfactor("

Ca2+")

297 FF = formfactors.get_formfactor("F1-") * formfactors.get_formfactor("F1 -"

)

298 CeO = formfactors.get_formfactor("Ce4+") * formfactors.get_formfactor("O2

-")

299 OCe = CeO

300 CeCe = formfactors.get_formfactor("Ce4+") * formfactors.get_formfactor("

Ce4+")

301 FeFe = formfactors.get_formfactor("Fe3+") * formfactors.get_formfactor("

Fe3+")
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302 FeO = formfactors.get_formfactor("Fe3+") * formfactors.get_formfactor("O2

-")

303 OFe = FeO

304 OO = formfactors.get_formfactor("O2-") * formfactors.get_formfactor("O2 -"

)

305

306 print("\nDSE calculator initialized")

307 print("\t 2\u03B8 -range: %.2f-%.2f" % (self.theta.min()*2, self.theta.max

()*2))

308 print("\t Q-range: %.2f-%.2f" % (self.q.min(), self.q.max()))

309 print("\t wavelength: %.5f \u212B" % (self.wavelength))

310

311 def partition_crystal(self):

312 """

313 Slice the crystal.

314

315 Divides the distance and f_ij arrays into parts. The number of the

316 partitions is specified during initialization of the DseCalculator

317 with the num_partitions parameter.

318

319 Returns

320 -------

321 sliced_crystal : ndarray

322 Array containing the distances in num_partitions separate arrays.

323 sliced_formfactors : chararray

324 Array containing the str labels for the formfactor products in

325 num_partitions separate chararrays.

326 """

327 num_distances = len(self.distances)

328 step_size = int(num_distances/self.num_partitions)

329 sliced_crystal = []

330 sliced_formfactors = []

331

332 for i in range(self.num_partitions):

333 if i == self.num_partitions -1:

334 sliced_crystal.append(self.distances[step_size*i:])

335 sliced_formfactors.append(self.f_ij[step_size*i:])

336 else:

337 sliced_crystal.append(self.distances[step_size*i:step_size *(i+1)

])

338 sliced_formfactors.append(self.f_ij[step_size*i:step_size *(i+1)])

339 return sliced_crystal , sliced_formfactors

340

341 def calculate_Dse(self , distances , f_ij):

342 """

343 Calculate the Debye scattering equation for non -equal indices.

344

345 The str labels of the formfactor products are evaluated with the built -in

346 function eval(). f_ij_e now contains f(q) arrayis for every pair of

indices.

347 f_ij_e has shape (num_pairs , q_steps).

348 Distances in angstrom are calculated by multiplying the distances

349 obtained previously with the lattice parameter. This distance array is

350 reshaped into a column vector with the numpy method reshape () in order

351 to allow broadcasting with f_ij_e array and q array. q*rij_reshaped

352 results in an array with shape (num_pairs , q_steps).

353 The Debye scattering equation is evaluated for the upper triangle of

indices

354 using the numexpr module , afterwards all I_ij(q) arrays are summed up

355 to obtain I(q). Numexpr is a fast numerical expression evaluator for

NumPy

356 developed by David M. Cooke et al., making use of all cores to do as many

357 calculations in parallel as possible. Additionally better performance

than

358 NumPy is achieved by avoiding allocation of memory for intermediate

results

359 and making use of a virtual machine written in C.

360 For more information see the documentation
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361 http :// numexpr.readthedocs.io/en/latest/ .

362

363 Parameters

364 ----------

365 distances : ndarray

366 Array containing the pair wise distances.

367 f_ij : chararray

368 Array containing the formfactor product str labels in same order as

369 the distances.

370

371 Returns

372 -------

373 ndarray

374 Scattered intensity of the sum over non -equal indices.

375 """

376

377 f_ij_e = []

378 aa = eval(list((self.atom_numbers.keys()))[0]*2)

379 ab = eval(list((self.atom_numbers.keys()))[0]+ list((self.atom_numbers.

keys()))[1])

380 bb = eval(list((self.atom_numbers.keys()))[1]*2)

381

382 f_ij_e = [ab if i == 5 else bb if i == 6 else aa for i in f_ij]

383

384 f_ij_e = np.array(f_ij_e)

385 rij_reshaped = distances.reshape(len(distances) ,1)

386 q = self.q

387

388 fijsincqr = ne.evaluate("f_ij_e*sin(q*rij_reshaped)/(q*rij_reshaped)")

389 I_sum = fijsincqr.sum(axis =0)

390

391 return 2* I_sum

392

393 def calculate_Dse_total(self):

394 """

395 Calculate the Debye scattering equation for the whole nanocrystal.

396

397 The partitioned distance and formfactor arrays are retrieved from the

398 partition_crystal method. The for loop is over the number of partitions

399 set during initialization. The intensities obtained from the parts are

400 summed up and stored in I_ne (intensity for non -equal indices). The

401 contributions from pairs with equal indices is obtained by summing over

402 the kinds of atoms and adding the product of the number of atoms and the

403 squared formfactor to I_diagonal. The numbers of atoms are stored in the

404 atom_numbers dictionary. The squared formfactors are retrieved from the

405 global variables corresponding to the str label. The string label is

406 obtained by doubling the respective element label , e.g. eval(i*2) with

407 i = ’Fe’ --> eval(’FeFe ’) = FeFe = ndarray.

408

409 Returns

410 -------

411 ndarray

412 Total scattered intensity as a function of q.

413

414 """

415 sliced_crystal , sliced_formfactors = self.partition_crystal ()

416

417 I_ne = 0

418 for i in range(self.num_partitions):

419 I_ne += self.calculate_Dse(sliced_crystal[i], sliced_formfactors[i])

420 print("\t\t %d/%d finished" % (i+1, self.num_partitions))

421

422 I_diagonal = 0

423 if self.selfscattering:

424 for i in self.atom_numbers.keys():

425 print(self.atom_numbers[i], i)

426 I_diagonal += self.atom_numbers[i]*eval(i*2)

427
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428 self.intensity = I_diagonal + I_ne

429 return self.intensity

430

431 def save_to_text(self , filename):

432 """

433 Saves the data in ASCII columns file , with columns q, 2Theta and I.

434

435 Parameters

436 ----------

437 filename : str

438 The filename under which the data will be saved. If no output path

439 is given the file will be stored in the package folder.

440 """

441 data = np.column_stack ((self.q,self.theta*2,self.intensity))

442 header = "CIF -file: "+ self.cif_filename

443 header += "\nOccupancies: "

444 for key in self.occupancies.keys():

445 header += key + ": " + str(self.occupancies[key])+ " "

446 header += "\nCrystal shape: " + self.shape

447 if self.shape == "cube":

448 header += "\nEdgelength: %.2f nm" % (self.diameter)

449 else:

450 header += "\nDiameter: %.2f nm" % (self.diameter)

451

452 header += "\nWavelength: %.5f" % (self.wavelength)

453 header += " \u212B \nq\t\t\t\t2Theta\t\t\tIntensity\n"

454 header += "\nTotal number of atoms: %d" %(self.num_Atoms)

455 np.savetxt(self.output_path+filename , data , header=header)

456 print("\nFile saved: " + self.output_path+filename)

457

458 def perform_calculation(self , filename=None , plot=None):

459 """

460 Wrapper function to ensure results are saved and plotted or intentionally

461 discarded.

462

463 Parameters

464 ----------

465 filename : str , optional

466 Filename used for saving the data. The default is None.

467 plot : bool , optional

468 Bool flag for plotting the result. The default is True.

469 """

470 print("\n\t starting calculation ...")

471 I = self.calculate_Dse_total ()

472 print("\t calculation finished.")

473 if plot != None:

474 if plot == "Q":

475 plotting.plot_results("Q",self.q, self.intensity)

476 elif plot == "2Theta":

477 plotting.plot_results("2Theta",self.theta*2, self.intensity)

478 if filename != None:

479 self.save_to_text(filename)

480 if filename == None:

481 input1 = input("Do you want to save the file? [y/n]\n")

482 if input1 == "y":

483 input2 = input("Please enter a filename: ")

484 self.save_to_text(input2)

485 elif input1 == "n":

486 return

B.5 plotting.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3
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4 import matplotlib.pyplot as plt

5 import numpy as np

6

7 def plot_3D(crystal=None , coordinates = None , element_list = None):

8 if crystal != None:

9 coordinates , element_list = crystal.return_coordinate_list ()

10 else:

11 coordinates = coordinates

12 element_list = element_list

13

14 colors = []

15 for e in element_list:

16 if e =="Fe":

17 colors.append ((0.2 ,0.2 ,0.0))

18 elif e == "O":

19 colors.append ((0.8 ,0.0 ,0.0))

20 else:

21 colors.append ((0.0 ,0.0 ,0.0))

22 colors = np.array(colors)

23

24 fig = plt.figure ()

25 ax = fig.gca(projection=’3d’, proj_type=’ortho ’)

26

27 x,y,z = zip(* coordinates)

28 ax.scatter(x,y,z, color=colors)

29 ax.xaxis.set_pane_color ((1.0 , 1.0, 1.0, 0.0))

30 ax.yaxis.set_pane_color ((1.0 , 1.0, 1.0, 0.0))

31 ax.zaxis.set_pane_color ((1.0 , 1.0, 1.0, 0.0))

32 ax.xaxis._axinfo["grid"][’color ’] = (1,1,1,0)

33 ax.yaxis._axinfo["grid"][’color ’] = (1,1,1,0)

34 ax.zaxis._axinfo["grid"][’color ’] = (1,1,1,0)

35

36 plt.show()

37

38 def plot_2D(crystal=None , coordinates = None , element_list = None):

39 if crystal != None:

40 coordinates , element_list = crystal.return_coordinate_list ()

41 else:

42 coordinates = coordinates

43 element_list = element_list

44

45 colors = []

46 for e in element_list:

47 if e =="Fe":

48 colors.append ((0.2 ,0.2 ,0.0 ,0.5))

49 elif e == "O":

50 colors.append ((0.8 ,0.0 ,0.0 ,0.0))

51 else:

52 colors.append ((0.0 ,0.0 ,0.0))

53 colors = np.array(colors)

54

55 fig ,ax = plt.subplots (1,1)

56

57 x,y,z = zip(* coordinates)

58 indices = []

59 lim = crystal.diameter /2

60 for n,i in enumerate(z):

61 if i >= (crystal.diameter /2)-lim and i <= (crystal.diameter /2)+lim:

62 indices.append(n)

63 xs = []

64 ys = []

65 cs = []

66

67 for i in indices:

68 xs.append(x[i])

69 ys.append(y[i])

70 cs.append(colors[i])

71
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72 ax.scatter(xs,ys , color=cs)

73 ax.set_aspect(’equal’)

74 plt.show()

75

76 def plot(data ,xlabel ,ylabel):

77 fig ,ax = plt.subplots (1,1)

78 for d in data.keys():

79 x,y,linewidth , marker = data[d]

80 ax.plot(x,y,linewidth=linewidth , marker=marker ,label=d)

81 ax.legend ()

82 ax.set_xlabel(xlabel)

83 ax.set_ylabel(ylabel)

84 plt.show()

85

86 def plot_results(x_par ,x,y):

87 fig ,ax = plt.subplots (1,1)

88 ax.plot(x,y)

89 if x_par == "Q":

90 ax.set_xlabel("$Q [\AA^{-1}]$")
91 elif x_par == "2Theta":

92 ax.set_xlabel("$2\Theta$ [ ]")

93 ax.set_ylabel("Intensity [a.u.]")

94 plt.show()

B.6 Example.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3

4 import debye

5

6 Fe3O4_Fd3m = "/CIF -path/Fd -3m.cif"

7

8 debye.Experiment(wavelength = 0.21148 ,

9 occupancies = {’Fe(oct)’:0.88, ’Fe(tet)’:1.0} ,

10 gradient = None ,

11 x_par = "Q",

12 x_min = 0.1,

13 x_max = 20.0,

14 x_step = 0.01,

15 partitions = 600,

16 diameter = 8,

17 offset = np.array ([0.5 ,0.5 ,0.5]),

18 shape = ’Sphere ’,

19 cif_file = Fe3O4_Fd3m ,

20 filename = "D8_APB_Fd3m_center_1",

21 plot_crystal=False ,

22 APB = True ,

23 plot_results= "Q",

24 plot_2D_crystal = False ,

25 calculate = True ,

26 output_path="output/path/",

27 dry_run=False ,

28 saveStructure = "D8_APB_Fd3m_center" ,

29 SEED =20200104 ,

30 selfscattering=True)
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Appendix C
Monte Carlo simulation program
In this appendix the source code for the Monte Carlo simulation program is given
as described in section 3.7.1. The files crystal.py and parsers.py of the Debye
scattering equation program were also used for the Monte Carlo program to build
the nanoparticle structures and are not repeated here. The files randNumGen-
erator.hpp and randNumGenerator.cpp contain the random number generator
developed by Ralf Meyer and Fred Hucht (Copyright 1995 Ralf Meyer, 47058
Duisburg, Germany) adapted for the use in this program. The Gaussian random
number generator using the Ziggurat method developed by Jochen Voss is also con-
tained in this file. The JSON parser (version 3.9.1) developed by Niels Lohmann
is not printed here as it comprises almost 26 000 lines of code. The reader is
referred to the GitHub repository at https://github.com/nlohmann/json. For
the program the file json.hpp from this repository was included as JSON.h.

C.1 main.cpp

1 #include <iostream >

2 #include "randNumGenerator.hpp"

3 #include "Crystal.hpp"

4 #include "constants.h"

5 #include "Measurement.hpp"

6 #include "JSON.h"

7 #include "testing.hpp"

8 #include <chrono >

9

10 int main(int argc , char* argv []) {

11 seed250(SEEED);

12

13 if(argv [1] != NULL){

14 // read configuration file

15 std:: string configfile = argv [1];

16 std:: ifstream ifs(configfile);

17 nlohmann ::json jf = nlohmann ::json:: parse(ifs);

18

19 double macrocell_size;

20 if(jf["dipole_interactions"]=="macrocell_method"){

21 macrocell_size = jf["macrocell_size"];

22 } else {

23 macrocell_size = 0.0;

24 }

25

26 if(jf["Measurement"] == "M vs B"){

27 run_MvsB(jf["output_dir"],

28 jf["structure_file"],

29 jf["dipole_interactions"],

30 jf["steps"],

31 jf["num_orientations"],

32 jf["temperature"],

33 jf["B_upper"],

34 jf["B_lower"],

35 jf["B_step"],

36 jf["cooling_field"],

37 jf["cooling_steps"],

38 jf["start_temperature"],

39 jf["temperature_step"],

40 jf["FeTT"],
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41 jf["FeOO"],

42 jf["FeTO"],

43 jf["FeOO_APB"],

44 jf["anisotropy constant"],

45 macrocell_size ,

46 jf["lattice_a"],

47 jf["lattice_b"],

48 jf["lattice_c"],

49 jf["particle center"],

50 jf["sigma"]);

51 } else if (jf["Measurement"] == "spin structure"){

52 run_spinstructure(jf["dipole_interactions"],

53 jf["steps"],

54 jf["magnetic field"],

55 jf["temperature"],

56 jf["output_dir"],

57 jf["structure_file"],

58 jf["FeTT"],

59 jf["FeOO"],

60 jf["FeTO"],

61 jf["FeOO_APB"],

62 jf["anisotropy constant"],

63 jf["alpha"],

64 jf["beta"],

65 jf["gamma"],

66 macrocell_size ,

67 jf["particle center"],

68 jf["lattice_a"],

69 jf["lattice_b"],

70 jf["lattice_c"],

71 jf["sigma"]);

72 } else if(jf["Measurement"] == "M vs T"){

73 run_MvsT(jf["output_dir"],

74 jf["structure_file"],

75 jf["dipole_interactions"],

76 jf["steps"],

77 jf["averaging steps"],

78 jf["num_orientations"],

79 jf["measurement_field"],

80 jf["cooling_field"],

81 jf["TUpperLimit"],

82 jf["TLowerLimit"],

83 jf["TstepSize"],

84 jf["FeTT"],

85 jf["FeOO"],

86 jf["FeTO"],

87 jf["FeOO_APB"],

88 jf["anisotropy constant"],

89 jf["ZFC"],

90 jf["FC"],

91 macrocell_size ,

92 jf["particle center"],

93 jf["lattice_a"],

94 jf["lattice_b"],

95 jf["lattice_c"],

96 jf["sigma"]);

97 }

98 else if (jf["Measurement"] == "test"){

99 run_MvsB(jf["output_dir"],

100 jf["structure_file"],

101 "None",

102 jf["steps"],

103 jf["num_orientations"],

104 jf["temperature"],

105 jf["B_upper"],

106 jf["B_lower"],

107 jf["B_step"],

108 jf["cooling_field"],

C-2



C.2 Atom.hpp

109 jf["cooling_steps"],

110 jf["start_temperature"],

111 jf["temperature_step"],

112 jf["FeTT"],

113 jf["FeOO"],

114 jf["FeTO"],

115 jf["FeOO_APB"],

116 jf["anisotropy constant"],

117 macrocell_size ,

118 jf["lattice_a"],

119 jf["lattice_b"],

120 jf["lattice_c"],

121 jf["particle center"],

122 jf["sigma"]);

123 }

124 } else{

125 // dipole_calcs(false , 3, 4);

126

127

128 // dipole_calcs(true);

129

130

131 // relaxation_test (6, 0.03, 5000);

132 // relaxation_test (6, 0.1, 5000);

133 // relaxation_test (6, 0.3, 5000);

134 //

135 // relaxation_test (8, 0.03, 5000);

136 // relaxation_test (8, 0.1, 5000);

137 // relaxation_test (8, 0.3, 5000);

138

139 // relaxation_test (11, 0.03, 5000);

140 // relaxation_test (11, 0.1, 5000);

141 // relaxation_test (11, 0.3, 5000);

142

143 // sigma_tests (0.4);

144 }

145

146 return 0;

147 }

C.2 Atom.hpp

1 #ifndef Atom_hpp

2 #define Atom_hpp

3

4 #include <stdio.h>

5 #include <vector >

6 #include <iostream >

7 #include <cmath >

8 #include "constants.h"

9 #include "randNumGenerator.hpp"

10 #include "omp.h"

11

12 class Atom;

13

14 class Macrocell{

15 public:

16 double center_x;

17 double center_y;

18 double center_z;

19 double total_moment [3];

20 double previous_total_moment [3];

21 double inv_effective_volume;

22 bool isEmpty = true;

23 std::vector <Atom*> macrocell_atoms;
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24 std::vector <Macrocell*> all_other_macrocells;

25

26 std::vector <double > inv_distances_cubed;

27 std::vector <double > distVecX;

28 std::vector <double > distVecY;

29 std::vector <double > distVecZ;

30

31 Macrocell(double x,double y,double z);

32 void update_total_moment ();

33 void get_demag_field(double*, double);

34 void reset_total_moment ();

35 };

36

37 class Atom {

38 /*

39 class to represent atomic magnetic moments with spatial position

40 x,y and z, spin vector components spinx , spiny and spinz and

41 other magnetic properties.

42 */

43 public:

44 double x = 0; // atom coordinates

45 double y = 0;

46 double z = 0;

47 double spinx = 0; // spin components

48 double spiny = 0;

49 double spinz = 0;

50 double uc_x = 0.0; // unitCell_comp

51 double uc_y = 0.0;

52 double uc_z = 0.0;

53

54 // exchange interaction constants

55 double FeTT = 0.0;

56 double FeOO = 0.0;

57 double FeTO = 0.0;

58 double FeOO_APB = 0.0;

59

60 double anisotropyConstant = 0.0;

61

62 int APB =0; // APB=1 --> APB position

63 int position = 0;// Octahedral = 0 or tetrahedral = 1 position

64 bool isApbAtom = false;

65 bool isSurfaceAtom = false;

66 int dipole_interactions; // 0 --> brute force ,

67 //1 --> macrocell method , 2 --> no dipole interactions

68 bool macrocell_method;

69

70 double sigma = 0.0; // defines opening angle of Gaussian cone

71 double MagMagMu0 = MAGFE3*MAGFE3*MU0;

72

73 Macrocell* macrocell_link = NULL;

74 double H_demag [3] = {0.0 ,0.0 ,0.0};

75

76 // Arrays containing pointers to Atom objects needed for the calculations

77 std::vector <Atom*> neighboursAntiparallel;

78 std::vector <Atom*> neighboursParallel;

79 std::vector <Atom*> allOtherAtomsInCrystal;

80 std::vector <double > inv_distances_cubed;

81 std::vector <double > inv_distances_five;

82 std::vector <double > distVecX;

83 std::vector <double > distVecY;

84 std::vector <double > distVecZ;

85 std::vector <double > magmag;

86

87 // initializer

88 Atom(int dipole_interactions ,

89 double x, double y, double z,

90 int position , int APB ,

91 double FeTT , double FeOO , double FeTO , double FeOO_APB ,
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92 double anisotropyConstant);

93

94 // energy functions

95 double anisotropy ();

96 double exchange ();

97 double zeeman(double);

98 double zeeman3D(double *);

99 double dipole ();

100

101 void dipole_field(double *);

102

103 // trial move functions

104 void uniform(double *old_spin);

105 void uniform_ziggurat(double *old_spin);

106 void spin_flip(double *);

107 void angle(double *old_spin);

108 void hinzke_nowak(double *old_spin);

109 void cattaneo_sun(double *old_spin);

110

111 void MonteCarloStep(double Bx, double temperature);

112 };

113

114 #endif /* Atom_hpp */

C.3 Atom.cpp

1 #include "Atom.hpp"

2

3 Atom::Atom(int dipole_interactions ,

4 double x, double y , double z,

5 int position , int APB ,

6 double FeTT , double FeOO , double FeTO , double FeOO_APB ,

7 double anisotropyConstant):

8 dipole_interactions(dipole_interactions),

9 x(x), y(y), z(z),

10 position(position), APB(APB),

11 FeTT(FeTT), FeOO(FeOO), FeTO(FeTO), FeOO_APB(FeOO_APB),

12 anisotropyConstant(anisotropyConstant){

13

14 if (APB == 1){

15 isApbAtom = true;

16 }

17

18 /* when an atom object gets initialized , the spin vector is

19 set to a random orientation */

20 double s[3];

21 marsaglia(s);

22 spinx = s[0];

23 spiny = s[1];

24 spinz = s[2];

25

26 }

27

28 double Atom:: anisotropy () {

29 /* magnetocrystalline anisotropy according to

30 E_anis = -k/2 (S_x^4 + S_y^4 + S_z^4),

31 where k is the anisotropy constant per magnetic moment.

32 */

33 return -anisotropyConstant *0.5 * (spinx*spinx*spinx*spinx +

34 spiny*spiny*spiny*spiny +

35 spinz*spinz*spinz*spinz);

36 }

37

38 double Atom:: exchange () {

39 double Enna = 0.0;
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40 double Ennp = 0.0;

41

42 for(unsigned int i = 0; i < neighboursParallel.size(); i++){

43 if(( neighboursParallel[i]->isApbAtom == true) && (isApbAtom == true)){

44 Ennp += -FeOO_APB *( neighboursParallel[i]->spinx * spinx +

45 neighboursParallel[i]->spiny * spiny +

46 neighboursParallel[i]->spinz * spinz);

47 }

48

49 else if(position == 0){

50 Ennp += -FeOO *( neighboursParallel[i]->spinx * spinx +

51 neighboursParallel[i]->spiny * spiny +

52 neighboursParallel[i]->spinz * spinz);

53 }

54 else if(position == 1){

55 Ennp += -FeTT * (neighboursParallel[i]->spinx * spinx +

56 neighboursParallel[i]->spiny * spiny +

57 neighboursParallel[i]->spinz * spinz);

58 }

59

60 }

61 for(unsigned int i = 0; i < neighboursAntiparallel.size(); i++){

62 Enna += -FeTO * (neighboursAntiparallel[i]->spinx * spinx +

63 neighboursAntiparallel[i]->spiny * spiny +

64 neighboursAntiparallel[i]->spinz * spinz);

65 }

66 return ((Enna + Ennp)*KB);

67 }

68

69 double Atom:: zeeman(double Bx) {

70 return (-Bx * spinx * MAGFE3);

71 }

72

73 double Atom:: zeeman3D(double *B) {

74 return (-B[0] * spinx * MAGFE3 + -B[1] * spiny * MAGFE3 + -B[2] * spinz *

MAGFE3);

75 }

76

77 void Atom:: dipole_field(double *H_dip){

78 H_dip [0] = 0.0;

79 H_dip [1] = 0.0;

80 H_dip [2] = 0.0;

81

82 double A, Ax, Ay, Az;

83 double Bx, By, Bz;

84

85 for(int i=0; i<(int)inv_distances_cubed.size(); i++){

86 A = allOtherAtomsInCrystal[i]->spinx * distVecX[i] +

87 allOtherAtomsInCrystal[i]->spiny * distVecY[i] +

88 allOtherAtomsInCrystal[i]->spinz * distVecZ[i];

89 Bx = allOtherAtomsInCrystal[i]->spinx * inv_distances_cubed[i];

90 By = allOtherAtomsInCrystal[i]->spiny * inv_distances_cubed[i];

91 Bz = allOtherAtomsInCrystal[i]->spinz * inv_distances_cubed[i];

92 Ax = 3.0 * A * distVecX[i] * inv_distances_five[i];

93 Ay = 3.0 * A * distVecY[i] * inv_distances_five[i];

94 Az = 3.0 * A * distVecZ[i] * inv_distances_five[i];

95

96 H_dip [0] += Ax - Bx;

97 H_dip [1] += Ay - By;

98 H_dip [2] += Az - Bz;

99 }

100 }

101

102

103 double Atom:: dipole (){

104 /*

105 function to calculate the dipole energy of a magnetic moment by brute force ,

106 i.e. summing all contributions from each pair wise interaction. By looping
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107 over all other atoms in the structue no pairs are counted double.

108 */

109 long double E_d = 0.0;

110 // loop through the list that contains all the distances from this atom to

every other in the crystal

111 // omp_set_dynamic disables automatic adjustment of the number of threads

112 // 6 threads seemed to work best

113 omp_set_dynamic (0);

114 # pragma omp parallel for reduction (+:E_d) num_threads (6)

115 {

116 for(int i=0; i<(int)inv_distances_cubed.size(); i++){

117 /* allOtherAtomsInCrystal contains the memory addresses of every

118 atom in the crystal in the

119 same order as the distances are stored in distances ,

120 dereferencing the addresses by "->" gives

121 access to the spin porperties of these atoms spinx , spiny ,

122 spinz refer to the spin properties

123 of the current atom object */

124

125 double dotProd = spinx * allOtherAtomsInCrystal[i]->spinx +

126 spiny * allOtherAtomsInCrystal[i]->spiny +

127 spinz * allOtherAtomsInCrystal[i]->spinz;

128 double m1r = spinx * distVecX[i] +

129 spiny * distVecY[i] +

130 spinz * distVecZ[i];

131 double m2r = allOtherAtomsInCrystal[i]->spinx * distVecX[i] +

132 allOtherAtomsInCrystal[i]->spiny * distVecY[i] +

133 allOtherAtomsInCrystal[i]->spinz * distVecZ[i];

134

135 /* constants are precomputed and pulled out of the for loop

136 to increase speed:

137 (5uB^2*u0 =2.7019978...e-51) /(... distances_cubed *1e-30) */

138 E_d += inv_distances_cubed[i]*((3.0* m1r*m2r)-dotProd);

139 }

140 } // end of parallel

141 /* mu0*5uB*5uB/(4PI*1e-30) =

142 ( -2.701997855309151e-21) /(4.0*3.14159265358979323846264338)

143 = -2.150181574480756e-22

144 the factor 1e-30 is due to the distances being computed in Angstroms */

145 return -2.150181574480756e-22* E_d;

146 }

147

148 void Atom::angle(double *old_spin){

149 old_spin [0] = spinx;

150 old_spin [1] = spiny;

151 old_spin [2] = spinz;

152 spinx += gaussian_ziggurat ()*sigma;

153 spiny += gaussian_ziggurat ()*sigma;

154 spinz += gaussian_ziggurat ()*sigma;

155 double vectorLength = 1.0/ std::sqrt(spinx*spinx+spiny*spiny+spinz*spinz);

156 spinx *= vectorLength;

157 spiny *= vectorLength;

158 spinz *= vectorLength;

159 }

160

161 void Atom:: uniform_ziggurat(double *old_spin){

162 old_spin [0] = spinx;

163 old_spin [1] = spiny;

164 old_spin [2] = spinz;

165 spinx = gaussian_ziggurat ();

166 spiny = gaussian_ziggurat ();

167 spinz = gaussian_ziggurat ();

168 }

169

170 void Atom:: uniform(double *old_spin){

171 old_spin [0] = spinx;

172 old_spin [1] = spiny;

173 old_spin [2] = spinz;
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174 double spinRotationVector [3];

175 marsaglia(spinRotationVector);

176 spinx = spinRotationVector [0];

177 spiny = spinRotationVector [1];

178 spinz = spinRotationVector [2];

179 }

180

181 void Atom:: spin_flip(double* old_spin){

182 old_spin [0] = spinx;

183 old_spin [1] = spiny;

184 old_spin [2] = spinz;

185 spinx = -spinx;

186 spiny = -spiny;

187 spinz = -spinz;

188 }

189

190 void Atom:: cattaneo_sun(double *old_spin){

191 old_spin [0] = spinx;

192 old_spin [1] = spiny;

193 old_spin [2] = spinz;

194 double spinRotationVector [3];

195 marsaglia(spinRotationVector);

196 spinx += (testRotationVectorLength * spinRotationVector [0]);

197 spiny += (testRotationVectorLength * spinRotationVector [1]);

198 spinz += (testRotationVectorLength * spinRotationVector [2]);

199 double vectorLength = 1.0/ std::sqrt(spinx*spinx+spiny*spiny+spinz*spinz);

200 spinx *= vectorLength;

201 spiny *= vectorLength;

202 spinz *= vectorLength;

203 }

204

205 void Atom:: hinzke_nowak(double *old_spin){

206 const int pick_move=int (3.0* rand0_1 ());

207

208 switch(pick_move){

209 case 0:

210 spin_flip(old_spin);

211 break;

212 case 1:

213 uniform(old_spin);

214 break;

215 case 2:

216 angle(old_spin);

217 break;

218 default:

219 angle(old_spin);

220 break;

221 }

222 }

223

224

225 void Atom:: MonteCarloStep(double Bx, double temperature){

226

227 double Ez = 0.0;

228 double Ea = 0.0;

229 double Ee = 0.0;

230 double Ed = 0.0;

231 double E0 = 0.0;

232 double E1 = 0.0;

233 double tempSpinVector [3];

234

235 switch(dipole_interactions){

236 case 0:

237 // brute force

238 Ea = anisotropy ();

239 Ee = exchange ();

240 Ez = zeeman(Bx);

241 Ed = dipole ();
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242 E0 = Ez + Ea + Ee + Ed;

243

244 hinzke_nowak(tempSpinVector);

245

246 Ea = anisotropy ();

247 Ee = exchange ();

248 Ez = zeeman(Bx);

249 Ed = dipole ();

250 E1 = Ez + Ea + Ee + Ed;

251

252 if(E1 > E0){

253 if(rand0_1 () > std::exp((E0 -E1)/(KB*temperature))){

254 spinx = tempSpinVector [0];

255 spiny = tempSpinVector [1];

256 spinz = tempSpinVector [2];

257 }

258 }

259 break;

260 case 1:

261 // macrocell method

262 macrocell_link ->get_demag_field(H_demag ,Bx);

263

264 Ea = anisotropy ();

265 Ee = exchange ();

266 Ez = zeeman3D(H_demag);

267 E0 = Ez + Ea + Ee;

268

269 hinzke_nowak(tempSpinVector);

270

271 macrocell_link ->update_total_moment ();

272 macrocell_link ->get_demag_field(H_demag ,Bx);

273

274 Ea = anisotropy ();

275 Ee = exchange ();

276 Ez = zeeman3D(H_demag);

277 E1 = Ez + Ea + Ee;

278

279 if(E1 > E0){

280 if(rand0_1 () > std::exp((E0 -E1)/(KB*temperature))){

281 macrocell_link ->reset_total_moment ();

282

283 spinx = tempSpinVector [0];

284 spiny = tempSpinVector [1];

285 spinz = tempSpinVector [2];

286 }

287 }

288 break;

289 default:

290 // no dipole interactions

291 Ea = anisotropy ();

292 Ee = exchange ();

293 Ez = zeeman(Bx);

294 E0 = Ez + Ea + Ee;

295

296 // cattaneo_sun(tempSpinVector);

297 hinzke_nowak(tempSpinVector);

298

299 Ea = anisotropy ();

300 Ee = exchange ();

301 Ez = zeeman(Bx);

302 E1 = Ez + Ea + Ee;

303

304 if(E1 > E0){

305 if(rand0_1 () > std::exp((E0 -E1)/(KB*temperature))){

306 spinx = tempSpinVector [0];

307 spiny = tempSpinVector [1];

308 spinz = tempSpinVector [2];

309 }

C-9



Appendix C Monte Carlo simulation program

310 }

311 }

312 }

313

314

315

316 Macrocell :: Macrocell(double x,double y,double z):center_x(x),center_y(y),center_z

(z){}

317

318 void Macrocell :: update_total_moment (){

319 previous_total_moment [0] = total_moment [0];

320 previous_total_moment [1] = total_moment [1];

321 previous_total_moment [2] = total_moment [2];

322 total_moment [0] = 0.0;

323 total_moment [1] = 0.0;

324 total_moment [2] = 0.0;

325 for(int i=0; i<macrocell_atoms.size(); i++){

326 total_moment [0] += macrocell_atoms[i]->spinx*MAGFE3;

327 total_moment [1] += macrocell_atoms[i]->spiny*MAGFE3;

328 total_moment [2] += macrocell_atoms[i]->spinz*MAGFE3;

329 }

330 }

331

332 void Macrocell :: reset_total_moment (){

333 total_moment [0] = previous_total_moment [0];

334 total_moment [1] = previous_total_moment [1];

335 total_moment [2] = previous_total_moment [2];

336

337 }

338

339 void Macrocell :: get_demag_field(double *H_demag , double Bx){

340

341 double Hd_x = 0.0;

342 double Hd_y = 0.0;

343 double Hd_z = 0.0;

344 double R;

345

346 omp_set_dynamic (0);

347 # pragma omp parallel for reduction (+:Hd_x ,Hd_y ,Hd_z) num_threads (6)

348 {

349 for(int i=0; i<(int)inv_distances_cubed.size(); i++){

350 R = 3.0*( all_other_macrocells[i]->total_moment [0] * distVecX[i]

351 + all_other_macrocells[i]->total_moment [1] * distVecY[i]

352 + all_other_macrocells[i]->total_moment [2] * distVecZ[i]);

353 Hd_x += (R*distVecX[i] - all_other_macrocells[i]->total_moment [0])

354 *inv_distances_cubed[i];

355 Hd_y += (R*distVecY[i] - all_other_macrocells[i]->total_moment [1])

356 *inv_distances_cubed[i];

357 Hd_z += (R*distVecZ[i] - all_other_macrocells[i]->total_moment [2])

358 *inv_distances_cubed[i];

359 }

360 } // end of parallel

361 double f1 =MU0*1e30 /(4.0* PI);

362 Hd_x *=f1;

363 Hd_y *=f1;

364 Hd_z *=f1;

365

366 H_demag [0] = Bx + (Hd_x - MU0 /3.0* total_moment [0]* inv_effective_volume);

367 H_demag [1] =(Hd_y - MU0 /3.0* total_moment [1]* inv_effective_volume);

368 H_demag [2] =(Hd_z - MU0 /3.0* total_moment [2]* inv_effective_volume);

369 }

C.4 Crystal.hpp

1 #ifndef Crystal_hpp
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2 #define Crystal_hpp

3

4 #include <stdio.h>

5 #include <vector >

6 #include <cmath >

7 #include <fstream >

8 #include <string >

9

10 #include "Atom.hpp"

11 #include "randNumGenerator.hpp"

12 #include "constants.h"

13

14

15

16 class Crystal{

17 public:

18 std::vector <Atom > atoms;

19 // lattice parameters

20 double lattice_a;

21 double lattice_b;

22 double lattice_c;

23 double center;

24

25 Crystal(std:: string filename , std:: string dipole_interactions ,

26 double FeTT , double FeOO , double FeTO , double FeOO_APB ,

27 double anisotropyConstant , double alpha , double beta ,

28 double gamma , double macrocell_size , double center ,

29 double lattice_a , double lattice_b , double lattice_c , double sigma);

30 void rotateCrystal(double , double , double , double);

31 void random_orientation ();

32 void align_along_random_vector ();

33 void structure_snapshot(std:: string filename);

34 void reset_structure ();

35 int outputStats ();

36 void set_sigma(double sigma);

37 void generate_dipole_lists ();

38 void generate_neighbour_lists ();

39 void read_structure_from_file(std:: string filename ,

40 std:: string dipole_interactions ,

41 double FeTT , double FeOO , double FeTO , double

FeOO_APB ,

42 double anisotropyConstant);

43

44 std::vector <Macrocell > macrocells;

45 void generate_macrocells(double macrocell_size);

46 void save_macrocells(std:: string filename);

47

48 };

49

50 #endif /* Crystal2_hpp */

C.5 Crystal.cpp

1 #include "Crystal.hpp"

2

3

4 Crystal :: Crystal(std:: string filename , std:: string dipole_interactions ,

5 double FeTT , double FeOO , double FeTO , double FeOO_APB ,

6 double anisotropyConstant , double alpha , double beta ,

7 double gamma , double macrocell_size , double center ,

8 double lattice_a , double lattice_b , double lattice_c , double

sigma):

9 lattice_a(lattice_a), lattice_b(lattice_b),

10 lattice_c(lattice_c), center(center){

11
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12 read_structure_from_file(filename , dipole_interactions ,

13 FeTT , FeOO , FeTO , FeOO_APB ,

14 anisotropyConstant);

15 set_sigma(sigma);

16 rotateCrystal(alpha , beta , gamma , center);

17 generate_neighbour_lists ();

18

19 if(dipole_interactions == "brute_force"){

20 generate_dipole_lists ();

21 } else if(dipole_interactions == "macrocell_method"){

22 generate_macrocells(macrocell_size);

23 }

24 }

25

26 void Crystal :: read_structure_from_file(std:: string filename ,

27 std:: string dipole_interactions ,

28 double FeTT , double FeOO , double FeTO ,

29 double FeOO_APB ,

30 double anisotropyConstant){

31

32 std::vector <double > x;

33 std::vector <double > y;

34 std::vector <double > z;

35 std::vector <int > pos;

36 std::vector <int > apb;

37

38 std:: ifstream inFile;

39 inFile.open(filename);

40 std:: string line;

41 int num = 0;

42 while (std:: getline(inFile , line)){

43 ++num;

44 }

45 inFile.close();

46

47 x.resize(num); y.resize(num); z.resize(num);

48 pos.resize(num); apb.resize(num);

49

50 inFile.open(filename);

51 for(int i =0; i<num; i++){

52 double xr,yr,zr;

53 double posr ,apbr ,uc_xr ,uc_yr ,uc_zr;

54 inFile >> xr >> yr >> zr >> posr >> apbr >> uc_xr >> uc_yr >> uc_zr ;

55 x[i] = xr;

56 y[i] = yr;

57 z[i] = zr;

58 pos[i] = posr;

59 apb[i] = apbr;

60 }

61 inFile.close();

62

63 int dip;

64 if(dipole_interactions == "brute_force"){

65 dip = 0;

66 } else if(dipole_interactions == "macrocell_method"){

67 dip = 1;

68 } else {

69 dip = 2;

70 }

71

72 for(int i=0; i<num; i++){

73 atoms.push_back(Atom(dip ,

74 x[i], y[i], z[i],

75 pos[i], apb[i],

76 FeTT , FeOO , FeTO , FeOO_APB ,

77 anisotropyConstant));

78 }

79 }
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80

81 void Crystal :: generate_neighbour_lists (){

82 double xx, yy, zz;

83

84 for(int i=0; i<atoms.size(); i++){

85 atoms[i]. neighboursAntiparallel.reserve (12);

86 atoms[i]. neighboursParallel.reserve (12);

87

88 for(int j=0; j<atoms.size(); j++){

89 xx = atoms[j].x - atoms[i].x;

90 yy = atoms[j].y - atoms[i].y;

91 zz = atoms[j].z - atoms[i].z;

92

93 if((i!=j) and ((xx*xx + yy*yy + zz*zz) < 0.2505)){

94 if(atoms[i]. position == atoms[j]. position){

95 atoms[i]. neighboursParallel.push_back (&atoms[j]);

96 }

97 else{

98 atoms[i]. neighboursAntiparallel.push_back (&atoms[j]);

99 }

100 }

101 }

102 }

103 }

104

105 void Crystal :: generate_dipole_lists (){

106 double x, y, z;

107 double a_sq , b_sq , c_sq;

108 double distance;

109 double rx, ry, rz;

110

111 a_sq = lattice_a*lattice_a;

112 b_sq = lattice_b*lattice_b;

113 c_sq = lattice_c*lattice_c;

114

115 for(unsigned int i=0; i< atoms.size(); i++){

116 x = atoms[i].x;

117 y = atoms[i].y;

118 z = atoms[i].z;

119 for(unsigned int j=0; j< atoms.size(); j++){

120 if(& atoms[i] != &atoms[j]){

121 distance = std::sqrt((atoms[j].x - x)*( atoms[j].x - x)*a_sq+

122 (atoms[j].y - y)*(atoms[j].y - y)*b_sq+

123 (atoms[j].z - z)*(atoms[j].z - z)*c_sq);

124

125 //unit vectors

126 rx = (atoms[j].x - x)*lattice_a/distance;

127 ry = (atoms[j].y - y)*lattice_b/distance;

128 rz = (atoms[j].z - z)*lattice_c/distance;

129

130 atoms[i]. inv_distances_cubed.push_back (1.0/( std::pow(( distance)

,3)));

131 atoms[i]. inv_distances_five.push_back (1.0/( std::pow(( distance) ,5)

));

132 atoms[i]. distVecX.push_back(rx);

133 atoms[i]. distVecY.push_back(ry);

134 atoms[i]. distVecZ.push_back(rz);

135

136 atoms[i]. magmag.push_back(MAGFE3*MAGFE3);

137

138 atoms[i]. allOtherAtomsInCrystal.push_back (&atoms[j]);

139 } // end of distance calculation

140 } // end of loop over other atoms

141 } // end of loop over all atoms

142 }

143

144 int Crystal :: outputStats (){

145 int totalAtoms = (int)atoms.size();
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146 int apbAtoms = 0;

147 int oct = 0;

148 int tet = 0;

149

150 for(int i =0; i< totalAtoms; i++){

151 if(atoms[i]. isApbAtom){

152 apbAtoms ++;

153 if(atoms[i]. position == 0){

154 oct ++;

155 } else if(atoms[i]. position == 1){

156 tet ++;

157 }

158 }

159 }

160 std::cout << "\nTotal number of Atoms: " << totalAtoms << std::endl;

161 std::cout << "Number of APB atoms: " << apbAtoms << " (tet: "<< tet

162 << "; oct: "<< oct << ")\n"<< std::endl;

163 return totalAtoms;

164 }

165

166 void Crystal :: structure_snapshot(std:: string filename){

167 std:: ofstream structure;

168 structure.open(filename , std:: fstream ::out);

169 for(int i=0; i< atoms.size(); i++){

170 structure << atoms[i].x << ", " << atoms[i].y << ", " << atoms[i].z

171 <<", "<< atoms[i].spinx << ", " << atoms[i].spiny << ", " << atoms[i].

spinz

172 << ", " << atoms[i]. position << ", " << atoms[i]. isApbAtom << "\n";

173 }

174 }

175

176 void Crystal :: generate_macrocells(double macrocell_size){

177

178 // find minimum position

179 double x_min=atoms [0].x, y_min=atoms [0].y, z_min=atoms [0].z;

180 for(int i=0; i<atoms.size(); i++){

181 if(atoms[i].x < x_min){

182 x_min = atoms[i].x;

183 }

184 if(atoms[i].y < y_min){

185 y_min = atoms[i].y;

186 }

187 if(atoms[i].z < z_min){

188 z_min = atoms[i].z;

189 }

190 }

191 // find maximum position

192 double x_max=atoms [0].x, y_max=atoms [0].y, z_max=atoms [0].z;

193 for(int i=0; i<atoms.size(); i++){

194 if(atoms[i].x > x_max){

195 x_max = atoms[i].x;

196 }

197 if(atoms[i].y > y_max){

198 y_max = atoms[i].y;

199 }

200 if(atoms[i].z > z_max){

201 z_max = atoms[i].z;

202 }

203 }

204

205 // determine number of macrocells needed

206 int num_macrocells = 5;

207 while(num_macrocells*macrocell_size <= x_max +0.2){

208 num_macrocells ++;

209 }

210

211 // initialize Macrocell instances

212 for(int i=0; i<num_macrocells; i++){
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213 for(int j=0; j<num_macrocells; j++){

214 for(int k=0; k<num_macrocells; k++){

215 Macrocell macrocell(macrocell_size /2.0+( double)i*macrocell_size ,

216 macrocell_size /2.0+( double)j*macrocell_size ,

217 macrocell_size /2.0+( double)k*macrocell_size);

218 macrocells.push_back(macrocell);

219 }

220 }

221 }

222

223 // assign atoms to macrocells

224 double w = macrocell_size /2.0;

225 for(int j=0; j<atoms.size(); j++){

226 for(int i=0; i<macrocells.size(); i++){

227 if(atoms[j].x < macrocells[i]. center_x+w and

228 atoms[j].x >= macrocells[i].center_x -w and

229 atoms[j].y < macrocells[i]. center_y+w and

230 atoms[j].y >= macrocells[i].center_y -w and

231 atoms[j].z < macrocells[i]. center_z+w and

232 atoms[j].z >= macrocells[i].center_z -w){

233 macrocells[i]. macrocell_atoms.push_back (& atoms[j]);

234 }

235 }

236 }

237

238 // flag and remove empty cells

239 for(int i=0; i<macrocells.size(); i++){

240 if(macrocells[i]. macrocell_atoms.size()!=0){

241 macrocells[i]. isEmpty = false;

242 } else {

243 macrocells[i]. isEmpty = true;

244 }

245 }

246 macrocells.erase(std:: remove_if(macrocells.begin (),

247 macrocells.end(),

248 []( Macrocell i){ return i.isEmpty ==true ;}),

249 macrocells.end());

250

251 // Set pointers to macrocells for atoms

252 for(int i=0; i<macrocells.size(); i++){

253 for(int j=0; j<macrocells[i]. macrocell_atoms.size(); j++){

254 macrocells[i]. macrocell_atoms[j]->macrocell_link = &macrocells[i];

255 }

256 }

257

258 // shift macrocell center to center of mass and calculate effective volume

259 for(int i=0; i<macrocells.size(); i++){

260 double n = 0.0;

261 macrocells[i]. center_x = 0.0;

262 macrocells[i]. center_y = 0.0;

263 macrocells[i]. center_z = 0.0;

264 // effective volume = N_atoms_per_macrocell*V_atom =

N_atoms_per_macrocell * V_unit_cell/N_atoms_per_unit_cell

265 macrocells[i]. inv_effective_volume = 1.0/(( macrocells[i]. macrocell_atoms.

size()*std::pow (8.3965 ,3) /24.0) *1e-30);

266 for(int j=0; j<macrocells[i]. macrocell_atoms.size(); j++){

267 macrocells[i]. center_x += macrocells[i]. macrocell_atoms[j]->x;

268 macrocells[i]. center_y += macrocells[i]. macrocell_atoms[j]->y;

269 macrocells[i]. center_z += macrocells[i]. macrocell_atoms[j]->z;

270 n+=1.0;

271 }

272 macrocells[i]. center_x /= n;

273 macrocells[i]. center_y /= n;

274 macrocells[i]. center_z /= n;

275 }

276

277 // precalculate distances and distance vectors and initialize macrocell

moment
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278 for(int i=0; i< macrocells.size(); i++){

279 double x = macrocells[i]. center_x;

280 double y = macrocells[i]. center_y;

281 double z = macrocells[i]. center_z;

282 double distance = 0.0;

283 double rx = 0.0, ry = 0.0, rz = 0.0;

284 for(int j=0; j< macrocells.size(); j++){

285 if(& macrocells[i] != &macrocells[j]){

286 distance = std::sqrt(( macrocells[j]. center_x - x)*( macrocells[j].

center_x - x)+

287 (macrocells[j]. center_y - y)*( macrocells[j].

center_y - y)+

288 (macrocells[j]. center_z - z)*( macrocells[j].

center_z - z));

289

290 //unit vectors

291 rx = (macrocells[j]. center_x - x)/distance;

292 ry = (macrocells[j]. center_y - y)/distance;

293 rz = (macrocells[j]. center_z - z)/distance;

294

295 macrocells[i]. inv_distances_cubed.push_back (1.0/( std::pow((

distance *8.3965) ,3)));

296 macrocells[i]. distVecX.push_back(rx);

297 macrocells[i]. distVecY.push_back(ry);

298 macrocells[i]. distVecZ.push_back(rz);

299

300 macrocells[i]. all_other_macrocells.push_back (& macrocells[j]);

301 }

302 }

303 macrocells[i]. total_moment [0] = 0.0;

304 macrocells[i]. total_moment [1] = 0.0;

305 macrocells[i]. total_moment [2] = 0.0;

306 for(int k=0; k<macrocells[i]. macrocell_atoms.size(); k++){

307 macrocells[i]. total_moment [0] += macrocells[i]. macrocell_atoms[k]->

spinx*MAGFE3;

308 macrocells[i]. total_moment [1] += macrocells[i]. macrocell_atoms[k]->

spiny*MAGFE3;

309 macrocells[i]. total_moment [2] += macrocells[i]. macrocell_atoms[k]->

spinz*MAGFE3;

310 }

311 }

312 }

313

314 void Crystal :: save_macrocells(std:: string filename){

315 std:: ofstream macrocells_centers;

316 macrocells_centers.open(filename , std:: fstream ::out);

317 for(int i=0; i< macrocells.size(); i++){

318 macrocells_centers << macrocells[i]. center_x << " "

319 << macrocells[i]. center_y << " "

320 << macrocells[i]. center_z << std::endl;

321 }

322 }

323

324 void Crystal :: reset_structure (){

325 for(int i=0; i<atoms.size(); i++){

326 double s[3];

327 marsaglia(s);

328 atoms[i].spinx = s[0];

329 atoms[i].spiny = s[1];

330 atoms[i].spinz = s[2];

331 }

332 }

333

334 void Crystal :: set_sigma(double sigma){

335 for(int i=0; i< atoms.size(); i++){

336 atoms[i].sigma = sigma;

337 }

338 }
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339

340 void Crystal :: rotateCrystal(double alpha ,double beta ,double gamma , double center)

{

341

342 double alphaRad = alpha * PI/180;

343 double betaRad = beta * PI /180;

344 double gammaRad = gamma * PI/180;

345

346 double center_x = center;

347 double center_y = center;

348 double center_z = center;

349

350 double x, y, z;

351 double x2, y2, z2;

352 double x3, y3, z3;

353

354

355 for (unsigned int i = 0 ; i< atoms.size(); i++){

356 // set particle into coordinate system origin

357 x = atoms[i].x - center_x;

358 y = atoms[i].y - center_y;

359 z = atoms[i].z - center_z;

360

361 // x-rotation with rotation matrix

362 atoms[i].x = x*1.0 + y*0.0 + z*0.0;

363 atoms[i].y = x*0.0 + y*std::cos(alphaRad) + z*-(std::sin(alphaRad));

364 atoms[i].z = x*0.0 + y*std::sin(alphaRad) + z*std::cos(alphaRad);

365

366 // temporary storing the new coordinates

367 x2 = atoms[i].x;

368 y2 = atoms[i].y;

369 z2 = atoms[i].z;

370

371 // y-rotation

372 atoms[i].x = x2*std::cos(betaRad) + y2*0.0 + z2*std::sin(betaRad);

373 atoms[i].y = x2*0.0 + y2*1.0 + z2*0.0;

374 atoms[i].z = x2*-(std::sin(betaRad)) + y2*0.0 + z2*std::cos(betaRad);

375

376 x3 = atoms[i].x;

377 y3 = atoms[i].y;

378 z3 = atoms[i].z;

379

380 // z-rotation

381 atoms[i].x = x3*std::cos(gammaRad) + y3*-(std::sin(gammaRad)) + z3*0.0;

382 atoms[i].y = x3*std::sin(gammaRad) + y3*std::cos(gammaRad) + z3*0.0;

383 atoms[i].z = x3*0.0 + y3*0.0 + z3*1.0;

384

385 // particle gets set back to original position in space

386 atoms[i].x = atoms[i].x + center_x;

387 atoms[i].y = atoms[i].y + center_y;

388 atoms[i].z = atoms[i].z + center_z;

389 }

390 }

391

392 void Crystal :: random_orientation (){

393 double angles [3];

394 rand0_360(angles);

395 rotateCrystal(angles [0], angles [1], angles [2], center);

396 }

397

398 void Crystal :: align_along_random_vector (){

399 reset_structure ();

400 double random_magnetization_vector [3];

401 marsaglia(random_magnetization_vector);

402 for(int atom = 0; atom <(int)atoms.size(); atom ++){

403 if( atoms[atom]. position == 0){

404 atoms[atom]. spinx = random_magnetization_vector [0];

405 atoms[atom]. spiny = random_magnetization_vector [1];
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406 atoms[atom]. spinz = random_magnetization_vector [2];

407 } else {

408 atoms[atom]. spinx = -random_magnetization_vector [0];

409 atoms[atom]. spiny = -random_magnetization_vector [1];

410 atoms[atom]. spinz = -random_magnetization_vector [2];

411 }

412 }

413 }

C.6 Measurement.hpp

1 #ifndef Measurement_hpp

2 #define Measurement_hpp

3

4 #include <iostream >

5 #include <fstream >

6 #include <vector >

7 #include <string >

8 #include "Crystal.hpp"

9 #include "randNumGenerator.hpp"

10 #include "omp.h"

11 #include "ProgressBar.hpp"

12

13 class MvsTMeasurement{

14 // Class for M(T) simulations.

15 public:

16 // general settings

17 std:: string dipoleInteractions;

18 double steps;

19 int averaging_steps;

20 int numOrientations;

21 double measurement_field;

22 double cooling_field;

23 double macrocell_size;

24

25 // temperature sweep settings

26 double TUpperLimit;

27 double TLowerLimit;

28 double TstepSize;

29

30 // arrays to record the magnetization

31 std::vector <double > mxZFC; // Zero field cooled

32 std::vector <double > myZFC;

33 std::vector <double > mzZFC;

34

35 std::vector <double > mxCFZ; // cooling zero field

36 std::vector <double > myCFZ;

37 std::vector <double > mzCFZ;

38

39 std::vector <double > mxFC; // field cooled

40 std::vector <double > myFC;

41 std::vector <double > mzFC;

42

43 // class initializer

44 MvsTMeasurement(std:: string dipoleInteractions , double steps ,

45 int averaging_steps , int numOrientations ,

46 double measurement_field , double cooling_field ,

47 double TUpperLimit , double TLowerLimit ,

48 double TstepSize , double macrocell_size);

49

50 // function to run the simulation

51 void temperatureSweep(std:: string output_dir , std:: string structure_filename ,

52 double FeTT , double FeOO , double FeTO , double FeOO_APB ,

53 double anisotropyConstant ,bool ZFC , bool FC, double

center ,
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54 double lattice_a , double lattice_b , double lattice_c ,

55 double sigma);

56 };

57

58

59 class MvsBMeasurement{

60 // Class for M(B) simulations.

61 public:

62 // general settings

63 std:: string dipoleInteractions;

64 int steps;

65 int numOrientations;

66 double temperature;

67 double macrocell_size;

68

69 // cooling setup

70 double startTemp;

71 double tempStep;

72 double coolingField;

73 int coolingSteps;

74

75 // field sweep settings

76 int BnumberOfSteps;

77 double BUpperLimit;

78 double BLowerLimit;

79 double BstepSize;

80 std::vector <double > magneticField;

81

82 // MvsB arrays for the x, y and z components

83 std::vector <double > mX;

84 std::vector <double > mY;

85 std::vector <double > mZ;

86

87 // class initializer

88 MvsBMeasurement(std:: string dipoleInteractions ,

89 int steps , int numOrientations ,

90 double temperature , double BUpperLimit ,

91 double BLowerLimit , double BstepSize ,

92 double startTemp , double tempStep ,

93 double coolingField , int coolingSteps ,

94 double macrocell_size);

95

96 // function to run the simulation

97 void fieldSweep(std:: string output_dir , std:: string structure_filename ,

98 double FeTT , double FeOO , double FeTO , double FeOO_APB ,

99 double anisotropyConstant ,

100 double lattice_a , double lattice_b , double lattice_c ,

101 double center , double sigma);

102 };

103

104 class spinStructure{

105 // Class for spin structure simulations

106 public:

107 std:: string output_dir;

108 std:: string structure_filename;

109

110 std:: string dipoleInteractions;

111 int steps;

112 double magneticField;

113 double temperature;

114 double macrocell_size;

115

116 spinStructure(std:: string dipoleInteractions ,

117 int steps , double magneticField ,

118 double temperature , double macrocell_size ,

119 std:: string output_dir , std:: string structure_filename);

120
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121 void spinStructureMeasurement(double FeTT ,double FeOO , double FeTO , double

FeOO_APB ,

122 double anisotropyConstant ,

123 double alpha , double beta , double gamma ,

124 double center ,

125 double lattice_a , double lattice_b , double

lattice_c ,

126 double sigma);

127 };

128

129 // wrapper function for M vs. B measurements

130 void run_MvsB(std:: string output_dir ,

131 std:: string structure_filename ,

132 std:: string dipoleInteractions ,

133 int steps , int numOrientations ,

134 double temperature ,

135 double BUpperLimit , double BLowerLimit , double BstepSize ,

136 double coolingField , int coolingSteps ,

137 double startTemp , double tempStep ,

138 double FeTT , double FeOO , double FeTO , double FeOO_APB ,

139 double anisotropyConstant ,

140 double macrocell_size ,

141 double center ,

142 double lattice_a , double lattice_b , double lattice_c ,

143 double sigma);

144

145 // wrapper function for M vs. T measurements

146 void run_MvsT(std:: string output_dir ,

147 std:: string structure_filename ,

148 std:: string dipoleInteractions ,

149 double steps , int averaging_steps ,

150 int numOrientations ,

151 double measurement_field , double cooling_field ,

152 double TUpperLimit , double TLowerLimit , double TstepSize ,

153 double FeTT , double FeOO , double FeTO , double FeOO_APB ,

154 double anisotropyConstant ,

155 bool ZFC , bool FC ,

156 double macrocell_size ,

157 double center ,

158 double lattice_a , double lattice_b , double lattice_c ,

159 double sigma);

160

161 // wrapper function for spin structure calculations

162 void run_spinstructure(std:: string dipoleInteractions ,

163 int steps ,

164 double magneticField ,

165 double temperature ,

166 std:: string output_dir ,

167 std:: string structure_filename ,

168 double FeTT ,double FeOO , double FeTO , double FeOO_APB ,

169 double anisotropyConstant ,

170 double alpha ,double beta , double gamma ,

171 double macrocell_size ,

172 double center ,

173 double lattice_a , double lattice_b , double lattice_c ,

174 double sigma);

175

176

177

178 #endif /* Measurement_hpp */

C.7 Measurement.cpp

1 #include "Measurement.hpp"

2
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3 // function to generate field and temperature arrays

4 template <typename T>

5 std::vector <T> arange(T start , T stop , T step = 1) {

6 std::vector <T> values;

7 if(start < stop){

8 for (T value = start; value < stop; value += step)

9 values.push_back(value);

10 } else{

11 for (T value = start; value > stop; value -= step)

12 values.push_back(value);

13 }

14 return values;

15 }

16

17 // helper function to convert doubles to string for filenames

18 std:: string num_to_string(double number , int precision){

19 std:: string double_string = std:: to_string ((int)(number))+"d";

20 double multiplier = 10.0;

21 int A = 0;

22 for(int i=0; i<precision; i++){

23 A = (int)(number*multiplier - (int)(number*multiplier /10.0) *10);

24 double_string += std:: to_string(A);

25 multiplier *= 10.0;

26 }

27 return double_string;

28 }

29

30

31

32

33 MvsTMeasurement :: MvsTMeasurement(std:: string dipoleInteractions ,

34 double steps ,

35 int averaging_steps ,

36 int numOrientations ,

37 double measurement_field ,

38 double cooling_field ,

39 double TUpperLimit ,

40 double TLowerLimit ,

41 double TstepSize ,

42 double macrocell_size):

43 dipoleInteractions(dipoleInteractions),

44 steps(steps),

45 averaging_steps(averaging_steps),

46 numOrientations(numOrientations),

47 measurement_field(measurement_field),

48 cooling_field(cooling_field),

49 TUpperLimit(TUpperLimit),

50 TLowerLimit(TLowerLimit),

51 TstepSize(TstepSize),

52 macrocell_size(macrocell_size){

53 }

54

55 void MvsTMeasurement :: temperatureSweep(std:: string output_dir , std:: string

structure_filename ,

56 double FeTT , double FeOO , double FeTO ,

double FeOO_APB ,

57 double anisotropyConstant ,

58 bool ZFC , bool FC ,

59 double center ,

60 double lattice_a , double lattice_b , double

lattice_c ,

61 double sigma){

62

63 std:: string output_filename = output_dir;

64 output_filename += structure_filename.substr(structure_filename.find_last_of(

"/")+1);

65

66 output_filename += "_MvsT_sim_cF" + num_to_string(cooling_field , 2);
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67 output_filename += "T_mF" + num_to_string(measurement_field , 3);

68 output_filename += "T_" + num_to_string(steps , 1) + "steps";

69 output_filename += "_" + std:: to_string ((int)averaging_steps) + "avsteps";

70 output_filename += "_" + std:: to_string ((int)numOrientations) + "or";

71 output_filename += "_" + num_to_string(sigma , 2) + "sig";

72

73 if(dipoleInteractions == "macrocell_method"){

74 output_filename += "_0d" + std:: to_string ((int)(macrocell_size *100)) + "

mcsize";

75 }

76

77 auto temperature_arr_down = arange <double >( TUpperLimit ,TLowerLimit ,TstepSize)

;

78 auto temperature_arr_up = arange <double >( TLowerLimit ,TUpperLimit ,TstepSize);

79

80 for(int i=0; i< temperature_arr_up.size();i++){

81 mxZFC.push_back (0.0);

82 myZFC.push_back (0.0);

83 mzZFC.push_back (0.0);

84 }

85 for(int i=0; i< temperature_arr_down.size();i++){

86 mxFC.push_back (0.0);

87 myFC.push_back (0.0);

88 mzFC.push_back (0.0);

89 }

90

91 ProgressBar bar;

92 bar.set_bar_width (50);

93 bar.fill_bar_progress_with(" ");

94 bar.fill_bar_remainder_with(" ");

95 bar.update (0);

96

97 Crystal crystal(structure_filename ,

98 dipoleInteractions ,

99 FeTT , FeOO , FeTO , FeOO_APB ,

100 anisotropyConstant ,

101 0.0, 0.0, 0.0, // orientation angles

102 macrocell_size , center ,

103 lattice_a , lattice_b , lattice_c , sigma);

104

105 for(int i = 0; i < numOrientations; i++){

106 bar.update (( double)(i)/( double)(numOrientations));

107 bar.set_status_text("orientation " + std:: to_string(i+1));

108

109 // set random particle orientation

110 crystal.random_orientation ();

111 // set spin structure fully aligned along random field

112 crystal.align_along_random_vector ();

113

114 int totalNumAtoms = (int)crystal.atoms.size();

115

116 if(ZFC){

117 for(int j=0; j<temperature_arr_up.size(); j++){

118

119 // relaxation steps

120 for(int k = 0; k<(int)(steps*totalNumAtoms); k++){

121 crystal.atoms[rand0_crystalAtoms(totalNumAtoms)].

MonteCarloStep(

122 measurement_field ,temperature_arr_up[j]);

123 }

124

125 double mx_temp = 0.0;

126 double my_temp = 0.0;

127 double mz_temp = 0.0;

128

129 // averaging steps

130 if(averaging_steps == 0){

131 for(int a=0; a<(int)crystal.atoms.size(); a++){
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132 mx_temp += MAGFE3*crystal.atoms[a]. spinx;

133 my_temp += MAGFE3*crystal.atoms[a]. spiny;

134 mz_temp += MAGFE3*crystal.atoms[a]. spinz;

135 }

136 mxZFC[j] += (mx_temp /( double)(totalNumAtoms))/( double)

numOrientations;

137 myZFC[j] += (my_temp /( double)(totalNumAtoms))/( double)

numOrientations;

138 mzZFC[j] += (mz_temp /( double)(totalNumAtoms))/( double)

numOrientations;

139 } else{

140 for(int m=0; m<averaging_steps*totalNumAtoms; m++){

141 crystal.atoms[rand0_crystalAtoms(totalNumAtoms)].

MonteCarloStep(

142 measurement_field ,

temperature_arr_up[j

]);

143

144 for(int a=0; a<(int)crystal.atoms.size(); a++){

145 mx_temp += MAGFE3*crystal.atoms[a]. spinx;

146 my_temp += MAGFE3*crystal.atoms[a]. spiny;

147 mz_temp += MAGFE3*crystal.atoms[a]. spinz;

148 }

149 }

150 mxZFC[j] += (mx_temp /( double)(averaging_steps*totalNumAtoms))

/( double)numOrientations;

151 myZFC[j] += (my_temp /( double)(averaging_steps*totalNumAtoms))

/( double)numOrientations;

152 mzZFC[j] += (mz_temp /( double)(averaging_steps*totalNumAtoms))

/( double)numOrientations;

153 } // end of averaging steps

154 } // end of ZFC measurement

155

156 // write parameters and results to file

157 std:: ofstream tSweepZfc;

158 tSweepZfc.open (output_filename + "_ZFC.txt", std:: fstream ::out);

159 tSweepZfc << "# structure_file: " << structure_filename << std::endl;

160 tSweepZfc << "# dipole_interactions: " << dipoleInteractions << std::

endl;

161 tSweepZfc << "# steps: " << steps << std::endl;

162 tSweepZfc << "# num_orientations: " << numOrientations << std::endl;

163 tSweepZfc << "# measurement_field: " << measurement_field << std::

endl;

164 tSweepZfc << "# cooling_field: " << cooling_field << std::endl;

165 tSweepZfc << "# TUpperLimit: " << TUpperLimit << std::endl;

166 tSweepZfc << "# TLowerLimit: " << TLowerLimit << std::endl;

167 tSweepZfc << "# TstepSize: " << TstepSize << std::endl;

168 tSweepZfc << "# FeTT: " << FeTT << std::endl;

169 tSweepZfc << "# FeTO: " << FeTO << std::endl;

170 tSweepZfc << "# FeOO: " << FeOO << std::endl;

171 tSweepZfc << "# FeOO_APB: " << FeOO_APB << std::endl;

172 tSweepZfc << "# lattice parameters: " << lattice_a << ", " <<

lattice_b << ", "

173 << lattice_c << std::endl;

174 tSweepZfc << "# sigma: " << sigma << std::endl;

175 for(int currentStep = 0; currentStep < temperature_arr_up.size();

currentStep ++){

176 tSweepZfc << temperature_arr_up[currentStep] << " "

177 << mxZFC[currentStep] << " "

178 << myZFC[currentStep] << " "

179 << mzZFC[currentStep] << "\n";

180 }

181 } // end of ZFC

182

183 if(FC){

184 for(int j=0; j<temperature_arr_down.size(); j++){

185

186 // relaxation steps
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187 for(int k = 0; k< (int)(steps*totalNumAtoms); k++){

188 crystal.atoms[rand0_crystalAtoms(totalNumAtoms)].

MonteCarloStep(

189 measurement_field ,

temperature_arr_down[j]);

190 }

191

192 double mx_temp_fc = 0.0;

193 double my_temp_fc = 0.0;

194 double mz_temp_fc = 0.0;

195

196 // averaging steps

197 if(averaging_steps == 0){

198 for(int a=0; a<(int)crystal.atoms.size(); a++){

199 mx_temp_fc += MAGFE3*crystal.atoms[a]. spinx;

200 my_temp_fc += MAGFE3*crystal.atoms[a]. spiny;

201 mz_temp_fc += MAGFE3*crystal.atoms[a]. spinz;

202 }

203 mxFC[j] += (mx_temp_fc /( double)(totalNumAtoms))/( double)

numOrientations;

204 myFC[j] += (my_temp_fc /( double)(totalNumAtoms))/( double)

numOrientations;

205 mzFC[j] += (mz_temp_fc /( double)(totalNumAtoms))/( double)

numOrientations;

206 } else{

207 for(int m=0; m<averaging_steps*totalNumAtoms; m++){

208 crystal.atoms[rand0_crystalAtoms(totalNumAtoms)].

MonteCarloStep(

209 measurement_field ,

temperature_arr_down[j]);

210 for(int a=0; a<(int)crystal.atoms.size(); a++){

211 mx_temp_fc += MAGFE3*crystal.atoms[a]. spinx;

212 my_temp_fc += MAGFE3*crystal.atoms[a]. spiny;

213 mz_temp_fc += MAGFE3*crystal.atoms[a]. spinz;

214 }

215 }

216 mxFC[j] += (mx_temp_fc /( double)(averaging_steps*totalNumAtoms

))/

217 (double)numOrientations;

218 myFC[j] += (my_temp_fc /( double)(averaging_steps*totalNumAtoms

))/

219 (double)numOrientations;

220 mzFC[j] += (mz_temp_fc /( double)(averaging_steps*totalNumAtoms

))/

221 (double)numOrientations;

222 } // end of averaging steps

223 } // end of FC measurement

224

225 // write results and parameters to file

226 std:: ofstream tSweepFc;

227 tSweepFc.open (output_filename + "_FC.txt", std:: fstream ::out);

228 tSweepFc << "# structure_file: " << structure_filename << std::endl;

229 tSweepFc << "# dipole_interactions: " << dipoleInteractions << std::

endl;

230 tSweepFc << "# steps: " << steps << std::endl;

231 tSweepFc << "# num_orientations: " << numOrientations << std::endl;

232 tSweepFc << "# measurement_field: " << measurement_field << std::endl

;

233 tSweepFc << "# cooling_field: " << cooling_field << std::endl;

234 tSweepFc << "# TUpperLimit: " << TUpperLimit << std::endl;

235 tSweepFc << "# TLowerLimit: " << TLowerLimit << std::endl;

236 tSweepFc << "# TstepSize: " << TstepSize << std::endl;

237 tSweepFc << "# FeTT: " << FeTT << std::endl;

238 tSweepFc << "# FeTO: " << FeTO << std::endl;

239 tSweepFc << "# FeOO: " << FeOO << std::endl;

240 tSweepFc << "# FeOO_APB: " << FeOO_APB << std::endl;

241 tSweepFc << "# sigma: " << sigma << std::endl;
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242 tSweepFc << "# lattice parameters: " << lattice_a << ", " <<

lattice_b << ", "

243 << lattice_c << std::endl;

244 tSweepFc << "# " << std::endl;

245 tSweepFc << "# field (T) M_x(B) M_y(B) M_z(B)" << std

::endl;

246 for(int currentStep = 0; currentStep < temperature_arr_down.size();

currentStep ++){

247 tSweepFc << temperature_arr_down[currentStep] << " "

248 << mxFC[currentStep] << " "

249 << myFC[currentStep] << " "

250 << mzFC[currentStep] << "\n";

251 }

252 } // end of FC

253 } // end of orientation

254 } // end of temperature sweep

255

256 void run_MvsT(std:: string output_dir , std:: string structure_filename ,

257 std:: string dipoleInteractions ,

258 double steps , int averaging_steps , int numOrientations ,

259 double measurement_field ,

260 double cooling_field , double TUpperLimit ,

261 double TLowerLimit , double TstepSize ,

262 double FeTT , double FeOO , double FeTO ,

263 double FeOO_APB , double anisotropyConstant ,

264 bool ZFC , bool FC , double macrocell_size , double center ,

265 double lattice_a ,double lattice_b ,

266 double lattice_c , double sigma){

267

268 MvsTMeasurement MvsTMeasurement(dipoleInteractions ,

269 steps ,

270 averaging_steps ,

271 numOrientations ,

272 measurement_field ,

273 cooling_field ,

274 TUpperLimit ,

275 TLowerLimit ,

276 TstepSize , macrocell_size);

277 MvsTMeasurement.temperatureSweep(output_dir ,structure_filename ,

278 FeTT , FeOO , FeTO , FeOO_APB ,

279 anisotropyConstant , ZFC , FC, center ,

280 lattice_a , lattice_b , lattice_c ,

281 sigma);

282 }

283

284

285 MvsBMeasurement :: MvsBMeasurement(std:: string dipoleInteractions ,

286 int steps ,

287 int numOrientations ,

288 double temperature ,

289 double BUpperLimit ,

290 double BLowerLimit ,

291 double BstepSize ,

292 double startTemp ,

293 double tempStep ,

294 double coolingField ,

295 int coolingSteps , double macrocell_size):

296 dipoleInteractions(dipoleInteractions),

297 steps(steps),

298 numOrientations(numOrientations),

299 temperature(temperature),

300 BUpperLimit(BUpperLimit), BLowerLimit(BLowerLimit), BstepSize(BstepSize),

301 startTemp(startTemp), tempStep(tempStep),

302 coolingField(coolingField), coolingSteps(coolingSteps),

303 macrocell_size(macrocell_size) {

304

305 // generate field arrays
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306 BnumberOfSteps = (BUpperLimit/BstepSize)+2*(( BUpperLimit -BLowerLimit)/

BstepSize);

307 int BstepsUpStart = BUpperLimit/BstepSize;

308 int BstepsDown = (BUpperLimit - BLowerLimit)/BstepSize;

309 for(int i = 0; i<BstepsUpStart; i++){

310 magneticField.push_back (0.0 + i*BstepSize);

311 }

312 for(int i = 0; i < BstepsDown; i++){

313 magneticField.push_back(BUpperLimit - i*BstepSize);

314 }

315 for(int i = 0; i < BstepsDown; i++){

316 magneticField.push_back(BLowerLimit + i*BstepSize);

317 }

318 magneticField.push_back(BUpperLimit);

319

320 // generate magnetization vectors for each field step

321 for(int i = 0; i <= BnumberOfSteps; i++){

322 mX.push_back (0.0);

323 mY.push_back (0.0);

324 mZ.push_back (0.0);

325 }

326 }

327

328 void MvsBMeasurement :: fieldSweep(std:: string output_dir ,

329 std:: string structure_filename ,

330 double FeTT ,double FeOO , double FeTO , double

FeOO_APB ,

331 double anisotropyConstant ,

332 double lattice_a , double lattice_b , double

lattice_c ,

333 double center , double sigma){

334

335 std:: string output_filename = structure_filename.substr(

336 structure_filename.find_last_of("/")+1);

337 output_filename += "_Hysteresis_sim_"+num_to_string(temperature , 1);

338 output_filename += "K_"+std:: to_string ((int)(steps))+"steps";

339 output_filename += "_"+std:: to_string ((int)(numOrientations))+"or";

340 output_filename += "_"+num_to_string(coolingField , 2)+"T";

341 output_filename += "_"+num_to_string(coolingSteps , 2)+"cs";

342 output_filename += "_sT"+num_to_string(startTemp , 1)+"K";

343 output_filename += "_dip"+dipoleInteractions;

344 if(dipoleInteractions == "macrocell_method"){

345 output_filename += "_0d" + std:: to_string ((int)(macrocell_size *100)) + "

mcsize";

346 }

347

348 std::cout << "\nOutput filename: " << output_filename << std::endl;

349 std::cout << "\n ------- starting M vs B measurement -------\n" << std::endl;

350

351 output_filename = output_dir + output_filename;

352

353 for(int i=0; i <= BnumberOfSteps; i++){

354 mX[i] = 0.0;

355 mY[i] = 0.0;

356 mZ[i] = 0.0;

357 }

358

359 ProgressBar bar;

360 bar.set_bar_width (50);

361 bar.fill_bar_progress_with(" ");

362 bar.fill_bar_remainder_with(" ");

363 bar.update (0);

364

365 for(int i = 0; i < numOrientations; i++){

366 bar.update (( double)(i)/( double)(numOrientations));

367 bar.set_status_text("orientation " + std:: to_string(i+1));

368

369 double angles [3];
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370 rand0_360(angles);

371

372 Crystal crystal(structure_filename , dipoleInteractions ,

373 FeTT , FeOO , FeTO , FeOO_APB ,

374 anisotropyConstant ,

375 angles [0], angles [1], angles [2],

376 macrocell_size , center ,

377 lattice_a , lattice_b , lattice_c ,

378 sigma);

379

380 int totalNumAtoms = int(crystal.atoms.size());

381

382 // (field) cooling

383 auto temperature_arr = arange <double >(startTemp ,temperature ,tempStep);

384 for(int i=0; i<temperature_arr.size();i++){

385 for(int j=0; j<coolingSteps * totalNumAtoms; j++){

386 crystal.atoms[rand0_crystalAtoms(totalNumAtoms)]. MonteCarloStep(

387 coolingField ,

temperature_arr[i]);

388 }

389 }

390

391 // field sweep

392 for(int j=0; j<= BnumberOfSteps; j++){

393 for(int k = 0; k<steps*totalNumAtoms; k++){

394 crystal.atoms[rand0_crystalAtoms(totalNumAtoms)]. MonteCarloStep(

395 magneticField[j],

temperature);

396 }

397 for(unsigned int l=0; l<= crystal.atoms.size(); l++){

398 mX[j] += MAGFE3*crystal.atoms[l].spinx;

399 mY[j] += MAGFE3*crystal.atoms[l].spiny;

400 mZ[j] += MAGFE3*crystal.atoms[l].spinz;

401 }

402 }

403

404 std:: ofstream bSweep;

405 bSweep.open (output_filename + ".txt", std:: fstream ::out);

406 bSweep << "# structure_file: " << structure_filename << std::endl;

407 bSweep << "# dipole_interactions: " << dipoleInteractions << std::endl;

408 bSweep << "# steps: " << steps << std::endl;

409 bSweep << "# num_orientations: " << numOrientations << std::endl;

410 bSweep << "# temperature: " << temperature << std::endl;

411 bSweep << "# B_upper: " << BUpperLimit << std::endl;

412 bSweep << "# B_lower: " << BLowerLimit << std::endl;

413 bSweep << "# B_step: " << BstepSize << std::endl;

414 bSweep << "# cooling_field: " << coolingField << std::endl;

415 bSweep << "# start_temperature: " << startTemp << std::endl;

416 bSweep << "# temperature_step: " << tempStep << std::endl;

417 bSweep << "# FeTT: " << FeTT << std::endl;

418 bSweep << "# FeTO: " << FeTO << std::endl;

419 bSweep << "# FeOO: " << FeOO << std::endl;

420 bSweep << "# FeOO_APB: " << FeOO_APB << std::endl;

421 bSweep << "# lattice parameters: " << lattice_a << ", " << lattice_b << "

, "

422 << lattice_c << std::endl;

423 bSweep << "# " << std::endl;

424 bSweep << "# field (T) M_x(B) M_y(B) M_z(B)" << std::endl;

425 for(int currentStep = 0; currentStep <= BnumberOfSteps; currentStep ++){

426 bSweep << magneticField[currentStep] << " "

427 << mX[currentStep] << " "

428 << mY[currentStep] << " "

429 << mZ[currentStep] << "\n";

430 }

431 } // end of field sweep for one particle orientation

432 } // end of field sweep

433

434 void run_MvsB(std:: string output_dir ,
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435 std:: string structure_filename ,

436 std:: string dipoleInteractions ,

437 int steps , int numOrientations ,

438 double temperature ,

439 double BUpperLimit , double BLowerLimit , double BstepSize ,

440 double coolingField , int coolingSteps , double startTemp , double

tempStep ,

441 double FeTT , double FeOO , double FeTO , double FeOO_APB ,

442 double anisotropyConstant ,

443 double macrocell_size ,

444 double lattice_a , double lattice_b , double lattice_c ,

445 double center , double sigma){

446 MvsBMeasurement MvsBMeasurement(dipoleInteractions ,

447 steps ,

448 numOrientations ,

449 temperature ,

450 BUpperLimit ,

451 BLowerLimit ,

452 BstepSize ,

453 startTemp ,

454 tempStep ,

455 coolingField ,

456 coolingSteps ,

457 macrocell_size);

458 MvsBMeasurement.fieldSweep(output_dir , structure_filename ,

459 FeTT , FeOO , FeTO , FeOO_APB ,

460 anisotropyConstant ,

461 lattice_a , lattice_b , lattice_c ,

462 center , sigma);

463 }

464

465 spinStructure :: spinStructure(std:: string dipoleInteractions ,

466 int steps ,

467 double magneticField ,

468 double temperature ,

469 double macrocell_size ,

470 std:: string output_dir ,

471 std:: string structure_filename):

472 dipoleInteractions(dipoleInteractions),

473 steps(steps),

474 magneticField(magneticField),

475 temperature(temperature),

476 macrocell_size(macrocell_size),

477 output_dir(output_dir),

478 structure_filename(structure_filename){

479 };

480

481 void spinStructure :: spinStructureMeasurement(double FeTT ,double FeOO , double FeTO

,

482 double FeOO_APB ,

483 double anisotropyConstant ,

484 double alpha , double beta , double

gamma ,

485 double center ,

486 double lattice_a , double lattice_b ,

487 double lattice_c ,

488 double sigma){

489 Crystal crystal(structure_filename , dipoleInteractions ,

490 FeTT , FeOO , FeTO , FeOO_APB ,

491 anisotropyConstant ,

492 alpha , beta , gamma ,

493 macrocell_size , center ,

494 lattice_a , lattice_b , lattice_c ,

495 sigma);

496

497 int totalNumAtoms = int(crystal.atoms.size());

498

499 ProgressBar bar;
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500 bar.set_bar_width (50);

501 bar.fill_bar_progress_with(" ");

502 bar.fill_bar_remainder_with(" ");

503 bar.update (0);

504

505 {

506 for(int i =0; i < steps*totalNumAtoms; i++){

507 crystal.atoms[rand0_crystalAtoms(totalNumAtoms)]. MonteCarloStep(

508 magneticField ,temperature);

509 if(i % 100000 == 0){

510 bar.update (( double)(i)/( double)(steps*totalNumAtoms));

511 bar.set_status_text("trial move " + std:: to_string(i));

512 }

513 }

514

515

516 std:: string output_filename = output_dir;

517 output_filename += structure_filename.substr(structure_filename.

find_last_of("/")+1);

518 output_filename += "_spin_structure_"+std:: to_string ((int)(temperature));

519 output_filename += "K_"+std:: to_string ((int)(steps))+"MCS";

520 output_filename += "_"+num_to_string(magneticField , 2)+"T";

521 output_filename += "_dip"+dipoleInteractions;

522 if(dipoleInteractions == "macrocell_method"){

523 output_filename += "_0d" + std:: to_string ((int)(macrocell_size *100))

+ "mcsize";

524 }

525

526 std:: ofstream structure;

527 structure.open(output_filename + ".txt", std:: fstream ::out);

528

529 structure << "# structure_file: " << structure_filename << std::endl;

530 structure << "# dipole_interactions: " << dipoleInteractions << std::endl

;

531 if(dipoleInteractions == "macrocell_method"){

532 structure << "# macrocell_size: " << macrocell_size << std::endl;

533 }

534 structure << "# steps: " << steps << std::endl;

535 structure << "# Number of atoms: " << totalNumAtoms << std::endl;

536 structure << "# temperature: " << temperature << std::endl;

537 structure << "# field: " << magneticField << std::endl;

538 structure << "# FeTT: " << FeTT << std::endl;

539 structure << "# FeTO: " << FeTO << std::endl;

540 structure << "# FeOO: " << FeOO << std::endl;

541 structure << "# FeOO_APB: " << FeOO_APB << std::endl;

542 structure << "# anisotropy constant: " << anisotropyConstant << std::endl

;

543 structure << "# lattice parameters: " << lattice_a << ", " << lattice_b

<< ", "

544 << lattice_c << std::endl;

545 structure << "# Orientation: " << alpha << ", " << beta << ", " << gamma

<< std::endl;

546 structure << "# " << std::endl;

547 structure << "# x y z spinx spiny spinz pos APB"

<< std::endl;

548

549 for(int i=0; i< crystal.atoms.size(); i++){

550 structure << crystal.atoms[i].x << ", "

551 << crystal.atoms[i].y << ", "

552 << crystal.atoms[i].z << ", "

553 << crystal.atoms[i].spinx << ", "

554 << crystal.atoms[i].spiny << ", "

555 << crystal.atoms[i].spinz << ", "

556 << crystal.atoms[i]. position << ", "

557 << crystal.atoms[i]. isApbAtom << "\n";

558 }

559 } // end of spin structure simulation

560 }

C-29



Appendix C Monte Carlo simulation program

561

562 void run_spinstructure(std:: string dipoleInteractions ,

563 int steps , double magneticField ,

564 double temperature ,

565 std:: string output_dir ,

566 std:: string structure_filename ,

567 double FeTT ,double FeOO , double FeTO , double FeOO_APB ,

568 double anisotropyConstant ,

569 double alpha ,double beta , double gamma ,

570 double macrocell_size , double center ,

571 double lattice_a , double lattice_b , double lattice_c ,

572 double sigma){

573 spinStructure spinStructure(dipoleInteractions ,

574 steps ,

575 magneticField ,

576 temperature ,

577 macrocell_size ,

578 output_dir ,

579 structure_filename

580 );

581 spinStructure.spinStructureMeasurement(FeTT , FeOO , FeTO , FeOO_APB ,

582 anisotropyConstant , alpha ,

583 beta , gamma , center , lattice_a ,

584 lattice_b , lattice_c , sigma);

585 }

C.8 randNumGenerator.hpp

1 #ifndef randNumGenerator_h

2 #define randNumGenerator_h

3

4 #include <cmath >

5 #include <iostream >

6

7 long rnd250 ();

8 void seed250(long);

9 void marsaglia(double *);

10 double rand0001_0999 ();

11 int rand0_crystalSize(int dimension);

12 double rand0_1 ();

13 double rand0_90 ();

14 void rand0_360(double *);

15 int rand0_crystalAtoms(int totalNumAtoms);

16 double gaussian_marsaglia(double stdDev);

17 double gaussian_ziggurat ();

18

19 const int RND250_MAX = 0x7FFFFFFF;

20

21 static struct st_rnd250{

22 int point;

23 long field [256];

24 } Rnd250;

25

26 #endif /* randNumGenerator_h */

C.9 randNumGenerator.cpp

1 #include "randNumGenerator.hpp"

2 /*

3 * Original header information for the random number generator:

4 *

5 * "Zufallszahlengenerator nach dem Verfahren von Kirkpatrick und Stoll.

6 * Dieses C-modul enthaelt nur die globale Definition der Daten und die
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7 * Initialisierungsroutine. Der eignetliche Zufallszahlengenerator ist

8 * als Makro in der Datei RND250.H kodiert.

9 *

10 * Implementation: Ralf Meyer , Fred Hucht

11 * Version : 2.0

12 * entwickelt am : 14. Februar 1995

13 *

14 * Copyright (c) 1995 Ralf Meyer , 47058 Duisburg , Germany"

15 *

16 * The modifications for this program are the replacement of the macro

17 * with the function rnd250 () and the conversion of the initialization

18 * routine into a function called seed250(long seed).

19 */

20 long rnd250 (){

21 Rnd250.point = (Rnd250.point +1) &255;

22 Rnd250.field[Rnd250.point] =

23 Rnd250.field[( Rnd250.point -250) &255]^ Rnd250.field[( Rnd250.point -103) &255];

24 return Rnd250.field[Rnd250.point];

25 }

26

27 void seed250(long seed){

28 int i;

29 long j,k;

30

31 if(seed < 1){

32 seed = 1;

33 }

34

35 for(i = 0; i < 250; ++i){

36 k = seed / 127773;

37 seed = 16807 * (seed - k * 127773) - 2836 * k;

38 if(seed < 0){

39 seed += 0x7FFFFFFF;

40 }

41 Rnd250.field[i] = seed;

42 }

43

44 k = 0x7FFFFFFF;

45 j = 0x40000000;

46 for(i = 1; i < 250; i+= 8){

47 Rnd250.field[i] = (Rnd250.field[i] & k) | j;

48 }

49

50 Rnd250.point = 249;

51

52 for(i = 0; i < 4711; ++i){

53 rnd250 ();

54 }

55 }

56

57 double rand0001_0999 (){

58 return (( rnd250 () + 1.0) / (RND250_MAX + 2.0));

59 }

60

61 double gaussian_marsaglia(double stdDev){

62 static double spare;

63 static bool hasSpare = false;

64

65 if (hasSpare) {

66 hasSpare = false;

67 return spare * stdDev;

68 } else {

69 double u, v, s;

70 do {

71 u = (rand0_1 ()) * 2.0 - 1.0;

72 v = (rand0_1 ()) * 2.0 - 1.0;

73 s = u * u + v * v;

74 } while (s >= 1.0 || s == 0.0);
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75 s = std::sqrt (-2.0 * std::log(s) / s);

76 spare = v * s;

77 hasSpare = true;

78 return stdDev * u * s;

79 }

80 }

81

82 void marsaglia(double* V){

83 double rsq , y1 , y2;

84

85 do{

86 y1 = rand0001_0999 () * 2.0 - 1.0;

87 y2 = rand0001_0999 () * 2.0 - 1.0;

88 rsq = y1 * y1 + y2 * y2;

89 } while (rsq > 1.0);

90

91 V[0] = 2.0 * y1 * std::sqrt ((1.0 - rsq));

92 V[1] = 2.0 * y2 * std::sqrt ((1.0 - rsq));

93 V[2] = 1.0 - 2.0 * rsq;

94 }

95

96 int rand0_crystalSize(int dimension){

97 return(rnd250 () % (dimension*dimension*dimension *24));

98 }

99

100 int rand0_crystalAtoms(int totalNumAtoms){

101 return(rnd250 () % (totalNumAtoms));

102 }

103

104 double rand0_1 () // generate a random number in [0,1]

105 {

106 return (( double)rnd250 () / (double)RND250_MAX);

107 }

108

109 double rand0_90 (){

110 std::cout << (rnd250 () % 91) <<std::endl;

111 return(rnd250 () % 91);

112 }

113

114 void rand0_360(double *angles){

115 double V[3];

116 marsaglia(V);

117 angles [0] = std::acos(V[0]) *180.0/ M_PI;

118 angles [1] = std::acos(V[1]) *180.0/ M_PI;

119 angles [2] = std::acos(V[2]) *180.0/ M_PI;

120 }

121

122

123 /* gauss.c - gaussian random numbers , using the Ziggurat method

124 *

125 * Copyright (C) 2005 Jochen Voss.

126 *

127 * For details see the following article.

128 *

129 * George Marsaglia , Wai Wan Tsang

130 * The Ziggurat Method for Generating Random Variables

131 * Journal of Statistical Software , vol. 5 (2000) , no. 8

132 * http :// www.jstatsoft.org/v05/i08/

133 *

134 * This program is free software; you can redistribute it and/or modify

135 * it under the terms of the GNU General Public License as published by

136 * the Free Software Foundation; either version 2 of the License , or

137 * (at your option) any later version.

138 *

139 * This program is distributed in the hope that it will be useful ,

140 * but WITHOUT ANY WARRANTY; without even the implied warranty of

141 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

142 * GNU General Public License for more details.
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143 *

144 * You should have received a copy of the GNU General Public License

145 * along with this program; if not , write to the Free Software

146 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

147 *

148 * $Id: gauss.c 6739 2005 -11 -12 02:47:20Z voss $
149 */

150

151 //#include <math.h>

152 //#include <assert.h>

153

154 //#include <gsl/gsl_rng.h>

155

156

157 /// position of right -most step

158 #define PARAM_R 3.44428647676

159

160 /// tabulated values for the heigt of the Ziggurat levels

161 static const double ytab [128] = {

162 1, 0.963598623011 , 0.936280813353 , 0.913041104253 ,

163 0.892278506696 , 0.873239356919 , 0.855496407634 , 0.838778928349 ,

164 0.822902083699 , 0.807732738234 , 0.793171045519 , 0.779139726505 ,

165 0.765577436082 , 0.752434456248 , 0.739669787677 , 0.727249120285 ,

166 0.715143377413 , 0.703327646455 , 0.691780377035 , 0.68048276891 ,

167 0.669418297233 , 0.65857233912 , 0.647931876189 , 0.637485254896 ,

168 0.62722199145 , 0.617132611532 , 0.607208517467 , 0.597441877296 ,

169 0.587825531465 , 0.578352913803 , 0.569017984198 , 0.559815170911 ,

170 0.550739320877 , 0.541785656682 , 0.532949739145 , 0.524227434628 ,

171 0.515614886373 , 0.507108489253 , 0.498704867478 , 0.490400854812 ,

172 0.482193476986 , 0.47407993601 , 0.466057596125 , 0.458123971214 ,

173 0.450276713467 , 0.442513603171 , 0.434832539473 , 0.427231532022 ,

174 0.419708693379 , 0.41226223212 , 0.404890446548 , 0.397591718955 ,

175 0.390364510382 , 0.383207355816 , 0.376118859788 , 0.369097692334 ,

176 0.362142585282 , 0.355252328834 , 0.348425768415 , 0.341661801776 ,

177 0.334959376311 , 0.328317486588 , 0.321735172063 , 0.31521151497 ,

178 0.308745638367 , 0.302336704338 , 0.29598391232 , 0.289686497571 ,

179 0.283443729739 , 0.27725491156 , 0.271119377649 , 0.265036493387 ,

180 0.259005653912 , 0.253026283183 , 0.247097833139 , 0.241219782932 ,

181 0.235391638239 , 0.229612930649 , 0.223883217122 , 0.218202079518 ,

182 0.212569124201 , 0.206983981709 , 0.201446306496 , 0.195955776745 ,

183 0.190512094256 , 0.185114984406 , 0.179764196185 , 0.174459502324 ,

184 0.169200699492 , 0.1639876086 , 0.158820075195 , 0.153697969964 ,

185 0.148621189348 , 0.143589656295 , 0.138603321143 , 0.133662162669 ,

186 0.128766189309 , 0.123915440582 , 0.119109988745 , 0.114349940703 ,

187 0.10963544023 , 0.104966670533 , 0.100343857232 , 0.0957672718266 ,

188 0.0912372357329 , 0.0867541250127 , 0.082318375932 , 0.0779304915295 ,

189 0.0735910494266 , 0.0693007111742 , 0.065060233529 , 0.0608704821745 ,

190 0.056732448584 , 0.05264727098 , 0.0486162607163 , 0.0446409359769 ,

191 0.0407230655415 , 0.0368647267386 , 0.0330683839378 , 0.0293369977411 ,

192 0.0256741818288 , 0.0220844372634 , 0.0185735200577 , 0.0151490552854 ,

193 0.0118216532614 , 0.00860719483079 , 0.00553245272614 , 0.00265435214565

194 };

195

196 /// tabulated values for 2^24 times x[i]/x[i+1],

197 /// used to accept for U*x[i+1]<=x[i] without any floating point operations

198 static const unsigned long ktab [128] = {

199 0, 12590644 , 14272653 , 14988939 ,

200 15384584 , 15635009 , 15807561 , 15933577 ,

201 16029594 , 16105155 , 16166147 , 16216399 ,

202 16258508 , 16294295 , 16325078 , 16351831 ,

203 16375291 , 16396026 , 16414479 , 16431002 ,

204 16445880 , 16459343 , 16471578 , 16482744 ,

205 16492970 , 16502368 , 16511031 , 16519039 ,

206 16526459 , 16533352 , 16539769 , 16545755 ,

207 16551348 , 16556584 , 16561493 , 16566101 ,

208 16570433 , 16574511 , 16578353 , 16581977 ,

209 16585398 , 16588629 , 16591685 , 16594575 ,

210 16597311 , 16599901 , 16602354 , 16604679 ,
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211 16606881 , 16608968 , 16610945 , 16612818 ,

212 16614592 , 16616272 , 16617861 , 16619363 ,

213 16620782 , 16622121 , 16623383 , 16624570 ,

214 16625685 , 16626730 , 16627708 , 16628619 ,

215 16629465 , 16630248 , 16630969 , 16631628 ,

216 16632228 , 16632768 , 16633248 , 16633671 ,

217 16634034 , 16634340 , 16634586 , 16634774 ,

218 16634903 , 16634972 , 16634980 , 16634926 ,

219 16634810 , 16634628 , 16634381 , 16634066 ,

220 16633680 , 16633222 , 16632688 , 16632075 ,

221 16631380 , 16630598 , 16629726 , 16628757 ,

222 16627686 , 16626507 , 16625212 , 16623794 ,

223 16622243 , 16620548 , 16618698 , 16616679 ,

224 16614476 , 16612071 , 16609444 , 16606571 ,

225 16603425 , 16599973 , 16596178 , 16591995 ,

226 16587369 , 16582237 , 16576520 , 16570120 ,

227 16562917 , 16554758 , 16545450 , 16534739 ,

228 16522287 , 16507638 , 16490152 , 16468907 ,

229 16442518 , 16408804 , 16364095 , 16301683 ,

230 16207738 , 16047994 , 15704248 , 15472926

231 };

232

233 /// tabulated values of 2^{ -24}*x[i]

234 static const double wtab [128] = {

235 1.62318314817e-08, 2.16291505214e-08, 2.54246305087e-08, 2.84579525938e-08,

236 3.10340022482e-08, 3.33011726243e-08, 3.53439060345e-08, 3.72152672658e-08,

237 3.8950989572e-08, 4.05763964764e-08, 4.21101548915e-08, 4.35664624904e-08,

238 4.49563968336e-08, 4.62887864029e-08, 4.75707945735e-08, 4.88083237257e-08,

239 5.00063025384e-08, 5.11688950428e-08, 5.22996558616e-08, 5.34016475624e-08,

240 5.44775307871e-08, 5.55296344581e-08, 5.65600111659e-08, 5.75704813695e-08,

241 5.85626690412e-08, 5.95380306862e-08, 6.04978791776e-08, 6.14434034901e-08,

242 6.23756851626e-08, 6.32957121259e-08, 6.42043903937e-08, 6.51025540077e-08,

243 6.59909735447e-08, 6.68703634341e-08, 6.77413882848e-08, 6.8604668381e-08,

244 6.94607844804e-08, 7.03102820203e-08, 7.11536748229e-08, 7.1991448372e-08,

245 7.2824062723e-08, 7.36519550992e-08, 7.44755422158e-08, 7.52952223703e-08,

246 7.61113773308e-08, 7.69243740467e-08, 7.77345662086e-08, 7.85422956743e-08,

247 7.93478937793e-08, 8.01516825471e-08, 8.09539758128e-08, 8.17550802699e-08,

248 8.25552964535e-08, 8.33549196661e-08, 8.41542408569e-08, 8.49535474601e-08,

249 8.57531242006e-08, 8.65532538723e-08, 8.73542180955e-08, 8.8156298059e-08,

250 8.89597752521e-08, 8.97649321908e-08, 9.05720531451e-08, 9.138142487e-08,

251 9.21933373471e-08, 9.30080845407e-08, 9.38259651738e-08, 9.46472835298e-08,

252 9.54723502847e-08, 9.63014833769e-08, 9.71350089201e-08, 9.79732621669e-08,

253 9.88165885297e-08, 9.96653446693e-08, 1.00519899658e-07, 1.0138063623e-07,

254 1.02247952126e-07, 1.03122261554e-07, 1.04003996769e-07, 1.04893609795e-07,

255 1.05791574313e-07, 1.06698387725e-07, 1.07614573423e-07, 1.08540683296e-07,

256 1.09477300508e-07, 1.1042504257e-07, 1.11384564771e-07, 1.12356564007e-07,

257 1.13341783071e-07, 1.14341015475e-07, 1.15355110887e-07, 1.16384981291e-07,

258 1.17431607977e-07, 1.18496049514e-07, 1.19579450872e-07, 1.20683053909e-07,

259 1.21808209468e-07, 1.2295639141e-07, 1.24129212952e-07, 1.25328445797e-07,

260 1.26556042658e-07, 1.27814163916e-07, 1.29105209375e-07, 1.30431856341e-07,

261 1.31797105598e-07, 1.3320433736e-07, 1.34657379914e-07, 1.36160594606e-07,

262 1.37718982103e-07, 1.39338316679e-07, 1.41025317971e-07, 1.42787873535e-07,

263 1.44635331499e-07, 1.4657889173e-07, 1.48632138436e-07, 1.50811780719e-07,

264 1.53138707402e-07, 1.55639532047e-07, 1.58348931426e-07, 1.61313325908e-07,

265 1.64596952856e-07, 1.68292495203e-07, 1.72541128694e-07, 1.77574279496e-07,

266 1.83813550477e-07, 1.92166040885e-07, 2.05295471952e-07, 2.22600839893e-07

267 };

268

269 double gaussian_ziggurat (){

270 unsigned long U, sign , i, j;

271 double x, y;

272

273 while (1) {

274 U = rnd250 ();

275 i = U & 0x0000007F; /* 7 bit to choose the step */

276 sign = U & 0x00000080; /* 1 bit for the sign */

277 j = U>>8; /* 24 bit for the x-value */

278
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279 x = j*wtab[i];

280 if (j < ktab[i]) break;

281

282 if (i<127) {

283 double y0 , y1;

284 y0 = ytab[i];

285 y1 = ytab[i+1];

286 y = y1+(y0 -y1)*rand0_1 ();

287 } else {

288 x = PARAM_R - log(1.0- rand0_1 ())/PARAM_R;

289 y = exp(-PARAM_R *(x-0.5* PARAM_R))*rand0_1 ();

290 }

291 if (y < exp(-0.5*x*x)) break;

292 }

293 return sign ? x : -x;

294 }

C.10 ProgressBar.hpp

1 #ifndef ProgressBar_h

2 #define ProgressBar_h

3

4 #include <atomic >

5 #include <mutex >

6 #include <iostream >

7 #include <string >

8

9 class ProgressBar{

10 public:

11 void set_progress(double value){

12 //std:: unique_lock <std::mutex > lock{mutex_ };

13 progress_ = value;

14 }

15

16 void set_bar_width(size_t width) {

17 std:: unique_lock <std::mutex > lock{mutex_ };

18 bar_width_ = width;

19 }

20

21 void fill_bar_progress_with(const std:: string& chars) {

22 std:: unique_lock <std::mutex > lock{mutex_ };

23 fill_ = chars;

24 }

25

26 void fill_bar_remainder_with(const std:: string& chars) {

27 std:: unique_lock <std::mutex > lock{mutex_ };

28 remainder_ = chars;

29 }

30

31 void set_status_text(const std:: string& status) {

32 std:: unique_lock <std::mutex > lock{mutex_ };

33 status_text_ = status;

34 }

35

36 void update(float value , std:: ostream &os = std::cout) {

37 set_progress(value);

38 write_progress(os);

39 }

40

41 void write_progress(std:: ostream &os = std::cout) {

42 std:: unique_lock <std::mutex > lock{mutex_ };

43

44 // No need to write once progress is 100%

45 if (progress_ > 100.0f) return;

46
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47 // move up one line

48 os << "\033[A";

49 // erase current line

50 os << "\33[2K";

51 // Move cursor to the first position on the same line and flush

52 os << "\r" << std::flush;

53

54 // Start bar

55 os << "[";

56

57 const auto completed = static_cast <size_t >( progress_ * static_cast <float

>( bar_width_));

58 for (size_t i = 0; i < bar_width_; ++i) {

59 if (i <= completed)

60 os << fill_;

61 else

62 os << remainder_;

63 }

64

65 // End bar

66 os << "]";

67

68 // Write progress percentage

69 os << " " << std::min(static_cast <size_t >( progress_ *100.0) , size_t (100))

<< "%";

70

71 // Write status text

72 os << " " << status_text_;

73

74 os << "\n";

75 }

76

77 private:

78 std::mutex mutex_;

79 float progress_ {0.0f};

80 size_t bar_width_ {60};

81 std:: string fill_{"#"}, remainder_{" "}, status_text_{""};

82 };

83

84 #endif /* ProgressBar_h */

C.11 constants.h

1 #ifndef constants_h

2 #define constants_h

3

4 const double PI = 3.14159265358979323846264338;

5 const double MUB = 9.2740100783e-24; // J/T

6 const double KB = 1.380649e-23; // J/K

7 const double MU0 = 1.25663706212e-6; // N/A^2

8 const long SEEED = 27052020;

9 const double MAGFE3 = 5 * MUB;

10 const double testRotationVectorLength = 2.0;

11 const double CUTOFFRADIUS = 1.0;

12

13 #endif /* constants_h */

C.12 generate json files.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3

4 import sys
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5 import argparse

6

7 def main():

8 parser = argparse.ArgumentParser ()

9 parser.add_argument(’--measurement ’, type=str)

10 parser.add_argument(’--output ’, type=str)

11 parser.add_argument(’--structure_path ’, type=str)

12 parser.add_argument(’--num_particles ’, type=int)

13 parser.add_argument(’--particle_size ’, type=int)

14 parser.add_argument(’--meas_field ’, type=float)

15 parser.add_argument(’--temperature ’, type=float)

16 parser.add_argument(’--dipole ’, type=str)

17 parser.add_argument(’--steps ’, type=float)

18 parser.add_argument(’--av_steps ’, type=int)

19 parser.add_argument(’--num_or ’, type=int)

20 parser.add_argument(’--cool_field ’, type=float)

21 parser.add_argument(’--Tupper ’, type=float)

22 parser.add_argument(’--Tlower ’, type=float)

23 parser.add_argument(’--T_step ’, type=float)

24 parser.add_argument(’--alpha ’, type=float)

25 parser.add_argument(’--beta’, type=float)

26 parser.add_argument(’--gamma ’, type=float)

27 parser.add_argument(’--macrocell_size ’, type=float)

28 parser.add_argument(’--anisotropy_constant ’, type=float)

29 parser.add_argument(’--ZFC’, action=’store_true ’)

30 parser.add_argument(’--FC’, action=’store_true ’)

31 parser.add_argument(’--APB’, action=’store_true ’)

32 parser.add_argument(’--Bupper ’, type=float)

33 parser.add_argument(’--Blower ’, type=float)

34 parser.add_argument(’--Bstep ’, type=float)

35 parser.add_argument(’--start_temperature ’, type=float)

36 parser.add_argument(’--cooling_steps ’, type=float)

37 parser.add_argument(’--sigma ’, type=float)

38 parser.add_argument(’--latticepar ’, type=str)

39 parser.add_argument(’--exchangeconstants ’, type=str)

40 parser.add_argument(’--APB_constant ’, type=float)

41

42 args = parser.parse_args ()

43

44 measurement = args.measurement

45 save_path = args.output

46 structure_path = args.structure_path

47 num_particles = args.num_particles

48 particle_size = args.particle_size

49 measurement_field = args.meas_field

50 temperature = args.temperature

51 dipole = args.dipole

52 steps = args.steps

53 averaging_steps = args.av_steps

54 num_orientations = args.num_or

55 cooling_field = args.cool_field

56 T_upper = args.Tupper

57 T_lower = args.Tlower

58 T_stepsize = args.T_step

59 ZFC = args.ZFC

60 FC = args.FC

61 APB = args.APB

62 alpha = args.alpha

63 beta = args.beta

64 gamma = args.gamma

65 macrocell_size = args.macrocell_size

66 anisotropy_constant= args.anisotropy_constant

67 sigma = args.sigma

68

69 exchange_constants = (args.exchangeconstants).split(",")

70 Fe_TT = float(exchange_constants [0])

71 Fe_OO = float(exchange_constants [1])

72 Fe_TO = float(exchange_constants [2])
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73 APB_constant = args.APB_constant

74

75 latticepars = (args.latticepar).split(",")

76 lattice_a = float(latticepars [0])

77 lattice_b = float(latticepars [1])

78 lattice_c = float(latticepars [2])

79

80 Bupper = args.Bupper

81 Blower = args.Blower

82 Bstep = args.Bstep

83 start_T = args.start_temperature

84 cool_steps= args.cooling_steps

85

86

87 if measurement == "MvB":

88 print("\tStarting M vs B simulation\n")

89 print("Output path: ",save_path)

90 print("Number of particles: ",num_particles)

91 print("Number of orientations per particle: ", num_orientations)

92 print("Measurement field: ",measurement_field)

93 print("Cooling field: ", cooling_field)

94 print("Field range: %.1f - %.1f T (%.2f T steps)"%(Blower , Bupper , Bstep)

)

95 print("Monte Carlo steps per temperature step: ", steps)

96 print("Averaging Monte Carlo steps: ", averaging_steps)

97 print("Sigma (gaussian cone): ", sigma)

98 print(" ")

99 for i in range(1, num_particles +1):

100 if APB:

101 file_name = "%d_MvsB_simulation_APB_D%d.json"%(i, particle_size)

102 structure_file = structure_path + "D%d_structure_APB_%d"%(

particle_size ,i)

103 else:

104 file_name = "%d_MvsB_simulation_noAPB_D%d.json"%(i, particle_size

)

105 structure_file = structure_path + "D%d_structure_noAPB_%d"%(

particle_size ,i)

106

107 completeName = save_path+file_name

108

109 f = open(completeName , "w+")

110 f.write("{\n")

111 f.write(’"Measurement ": "M vs B",\n’)

112 f.write(’"output_dir ": "%s",\n’ %( save_path))

113 f.write(’"structure_file ": "%s",\n’%( structure_file))

114 f.write(’"dipole_interactions ": "%s",\n’%( dipole))

115 f.write(’"steps": %d,\n’%(steps))

116 f.write(’"num_orientations ": %d,\n’%( num_orientations))

117 f.write(’"temperature ": %.4f,\n’%( temperature))

118 f.write(’"B_upper ": %.4f,\n’%( Bupper))

119 f.write(’"B_lower ": %.4f,\n’%( Blower))

120 f.write(’"B_step ": %.4f,\n’%(Bstep))

121 f.write(’"cooling_field ": %.4f,\n’%( cooling_field))

122 f.write(’"cooling_steps ": %d,\n’%( cool_steps))

123 f.write(’"start_temperature ": %.4f,\n’%( start_T))

124 f.write(’"temperature_step ": %.4f,\n’%( T_stepsize))

125 f.write(’"FeTT": %.2f,\n’%( Fe_TT))

126 f.write(’"FeOO": %.2f,\n’%( Fe_OO))

127 f.write(’"FeTO": %.2f,\n’%( Fe_TO))

128 if APB:

129 f.write(’"FeOO_APB ": %.2f,\n’%( APB_constant))

130 else:

131 f.write(’"FeOO_APB ": 0.0,\n’)

132 f.write(’"anisotropy constant ": %.2e,\n’%( anisotropy_constant))

133 f.write(’"lattice_a ": %.4f,\n’%( lattice_a))

134 f.write(’"lattice_b ": %.4f,\n’%( lattice_b))

135 f.write(’"lattice_c ": %.4f,\n’%( lattice_c))

136 f.write(’"sigma": %.2f,\n’%( sigma))
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137 f.write(’"particle center ": %.2f\n}’%( particle_size /2.0+0.5))

138 f.close()

139

140 if measurement == "MvT":

141 print("\tStarting M vs T simulation\n")

142 print("Output path: ",save_path)

143 print("Number of particles: ",num_particles)

144 print("Number of orientations per particle: ", num_orientations)

145 print("Measurement field: ",measurement_field)

146 print("Cooling field: ", cooling_field)

147 print("Temperature range: %.4f - %.4f K (%.4f K steps)"%(T_lower , T_upper

, T_stepsize))

148 print("Monte Carlo steps per temperature step: ", steps)

149 print("Averaging Monte Carlo steps: ", averaging_steps)

150 print("Sigma (gaussian cone): ", sigma)

151 Meas_modes ="Measurements: "

152 if ZFC:

153 Meas_modes += "ZFC"

154 if FC:

155 Meas_modes += ", FC"

156 print(Meas_modes)

157 print(" ")

158

159 for i in range(1, num_particles +1):

160 if APB:

161 file_name = "%d_MvsT_simulation_APB_D%d.json"%(i, particle_size)

162 structure_file = structure_path + "D%d_structure_APB_%d"%(

particle_size ,i)

163 else:

164 file_name = "%d_MvsT_simulation_noAPB_D%d.json"%(i, particle_size

)

165 structure_file = structure_path + "D%d_structure_noAPB_%d"%(

particle_size ,i)

166

167 completeName = save_path+file_name

168

169 f = open(completeName , "w+")

170 f.write("{\n")

171 f.write(’"Measurement ": "M vs T",\n’)

172 f.write(’"output_dir ": "%s",\n’ %( save_path))

173 f.write(’"structure_file ": "%s",\n’%( structure_file))

174 f.write(’"dipole_interactions ": "%s",\n’%( dipole))

175 f.write(’"steps": %.2f,\n’%( steps))

176 f.write(’"averaging steps": %d,\n’%( averaging_steps))

177 f.write(’"num_orientations ": %d,\n’%( num_orientations))

178 f.write(’"measurement_field ": %.4f,\n’%( measurement_field))

179 f.write(’"cooling_field ": %.4f,\n’%( cooling_field))

180 f.write(’"TUpperLimit ": %.4f,\n’%( T_upper))

181 f.write(’"TLowerLimit ": %.4f,\n’%( T_lower))

182 f.write(’"TstepSize ": %.4f,\n’%( T_stepsize))

183 f.write(’"FeTT": %.2f,\n’%( Fe_TT))

184 f.write(’"FeOO": %.2f,\n’%( Fe_OO))

185 f.write(’"FeTO": %.2f,\n’%( Fe_TO))

186 if APB:

187 f.write(’"FeOO_APB ": %.2f,\n’%( APB_constant))

188 else:

189 f.write(’"FeOO_APB ": 0.0,\n’)

190 f.write(’"anisotropy constant ": %.2e,\n’%( anisotropy_constant))

191 if ZFC:

192 f.write(’"ZFC": true ,\n’)

193 else:

194 f.write(’"ZFC": false ,\n’)

195 if FC:

196 f.write(’"FC": true ,\n’)

197 else:

198 f.write(’"FC": false ,\n’)

199 f.write(’"particle center ": %.2f,\n’%( particle_size /2.0+0.5))

200 f.write(’"lattice_a ": %.4f,\n’%( lattice_a))
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201 f.write(’"lattice_b ": %.4f,\n’%( lattice_b))

202 f.write(’"lattice_c ": %.4f,\n’%( lattice_c))

203 f.write(’"sigma": %.2f\n}’%( sigma))

204 f.close()

205

206 if measurement == "spin_structure":

207 print("\tStarting spin structure simulation\n")

208 print("Output path: ",save_path)

209 print("Number of particles: ",num_particles)

210 print("Particle orientation angles: %.1 f , %.1 f , %.1 f "%(alpha , beta ,

gamma))

211 print("Measurement field: ",measurement_field)

212 print("Temperature: ", temperature)

213 print("Monte Carlo steps: ", steps)

214 print("Sigma (gaussian cone): ", sigma)

215 print("Dipole interactions: ", dipole)

216 print(" ")

217

218 if APB:

219 file_name = "spin_structure_APB_D%d_template.json"%( particle_size)

220 structure_file = structure_path + "D%d_structure_APB_template"%(

particle_size)

221 else:

222 file_name = "spin_structure_noAPB_D%d_template.json"%( particle_size)

223 structure_file = structure_path + "D%d_structure_noAPB_template"%(

particle_size)

224

225 completeName = save_path+file_name

226

227 f = open(completeName , "w+")

228 f.write("{\n")

229 f.write(’"Measurement ": "spin structure ",\n’)

230 f.write(’"output_dir ": "%s",\n’ %( save_path))

231 f.write(’"structure_file ": "%s",\n’%( structure_file))

232 f.write(’"dipole_interactions ": "None",\n’)

233 f.write(’"steps": %d,\n’%(steps))

234 f.write(’"magnetic field": %.4f,\n’%( measurement_field))

235 f.write(’"temperature ": %.4f,\n’%( temperature))

236 f.write(’"FeTT": %.2f,\n’%( Fe_TT))

237 f.write(’"FeOO": %.2f,\n’%( Fe_OO))

238 f.write(’"FeTO": %.2f,\n’%( Fe_TO))

239 if APB:

240 f.write(’"FeOO_APB ": %.2f,\n’%( APB_constant))

241 else:

242 f.write(’"FeOO_APB ": 0.0,\n’)

243 f.write(’"anisotropy constant ": %.2e,\n’%( anisotropy_constant))

244 #f.write(’" anisotropy constant ": %.2e,\n ’%( anisotropy_constant))

245 f.write(’"alpha": %.1f,\n’%( alpha))

246 f.write(’"beta": %.1f,\n’%(beta))

247 f.write(’"gamma": %.1f,\n’%( gamma))

248 f.write(’"macrocell_size ": %.2f,\n’%( macrocell_size))

249 f.write(’"particle center ": %.2f,\n’%( particle_size /2.0+0.5))

250 f.write(’"lattice_a ": %.4f,\n’%( lattice_a))

251 f.write(’"lattice_b ": %.4f,\n’%( lattice_b))

252 f.write(’"lattice_c ": %.4f,\n’%( lattice_c))

253 f.write(’"sigma": %.2f\n}’%( sigma))

254 f.close()

255

256 for i in range(1, num_particles +1):

257 if APB:

258 file_name = "%d_spin_structure_APB_D%d.json"%(i, particle_size)

259 structure_file = structure_path + "D%d_structure_APB_%d"%(

particle_size ,i)

260 else:

261 file_name = "%d_spin_structure_noAPB_D%d.json"%(i, particle_size)

262 structure_file = structure_path + "D%d_structure_noAPB_%d"%(

particle_size ,i)

263
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264 completeName = save_path+file_name

265

266 f = open(completeName , "w+")

267 f.write("{\n")

268 f.write(’"Measurement ": "spin structure ",\n’)

269 f.write(’"output_dir ": "%s",\n’ %( save_path))

270 f.write(’"structure_file ": "%s",\n’%( structure_file))

271 f.write(’"dipole_interactions ": "%s",\n’%( dipole))

272 f.write(’"steps": %d,\n’%(steps))

273 f.write(’"magnetic field": %.4f,\n’%( measurement_field))

274 f.write(’"temperature ": %.4f,\n’%( temperature))

275 f.write(’"FeTT": %.2f,\n’%( Fe_TT))

276 f.write(’"FeOO": %.2f,\n’%( Fe_OO))

277 f.write(’"FeTO": %.2f,\n’%( Fe_TO))

278 if APB:

279 f.write(’"FeOO_APB ": %.2f,\n’%( APB_constant))

280 else:

281 f.write(’"FeOO_APB ": 0.0,\n’)

282 f.write(’"anisotropy constant ": %.2e,\n’%( anisotropy_constant))

283 f.write(’"alpha": %.1f,\n’%( alpha))

284 f.write(’"beta": %.1f,\n’%(beta))

285 f.write(’"gamma": %.1f,\n’%( gamma))

286 f.write(’"macrocell_size ": %.2f,\n’%( macrocell_size))

287 f.write(’"particle center ": %.2f,\n’%( particle_size /2.0+0.5))

288 f.write(’"lattice_a ": %.4f,\n’%( lattice_a))

289 f.write(’"lattice_b ": %.4f,\n’%( lattice_b))

290 f.write(’"lattice_c ": %.4f,\n’%( lattice_c))

291 f.write(’"sigma": %.2f\n}’%( sigma))

292 f.close()

293

294

295 if __name__ == "__main__":

296 main()

C.13 generate nanoparticle.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3

4 import crystal

5 import parsers

6 import numpy as np

7 import sys

8 import argparse

9

10 def main():

11 parser = argparse.ArgumentParser ()

12 parser.add_argument(’--output ’, type=str)

13 parser.add_argument(’--occ_oct ’, type=float)

14 parser.add_argument(’--occ_tet ’, type=float)

15 parser.add_argument(’--diameter ’, type=int)

16 parser.add_argument(’--number ’, type=int)

17 parser.add_argument(’--seed’, type=int)

18 parser.add_argument(’--APB’, action="store_true")

19 parser.add_argument(’--template ’, action="store_true")

20 parser.add_argument(’--ciffile ’, type=str)

21 parser.add_argument(’--atomlabels ’, type=str)

22 parser.add_argument(’--occupancies ’, type=str)

23 parser.add_argument(’--shape ’, type=str)

24 parser.add_argument(’--latticepar ’, type=str)

25

26 args = parser.parse_args ()

27

28 cif_file = args.ciffile

29 shape = "Sphere"
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30 shape = args.shape

31 n_APBs = 1

32 offset = np.array ([0.5 ,0.5 ,0.5])

33 gradient = None

34

35 APB = args.APB

36 template = args.template

37 path = args.output

38 occ_oct = args.occ_oct

39 occ_tet = args.occ_tet

40 diameter = args.diameter

41 number = args.number

42 seed = args.seed

43

44 np.random.seed(seed)

45 rands = np.random.randint(low =16430104 , high =20210503 , size =100)

46

47 labels = (args.atomlabels).split(",")

48 occs = (args.occupancies).split(",")

49 occupancies = {}

50 for l,o in zip(labels ,occs):

51 occupancies[l] = float(o)

52

53 latticepars = (args.latticepar).split(",")

54

55 if occupancies == {}:

56 occ = False

57 else:

58 occ = True

59

60 saveStructure = path + "D%d_structure_" %( diameter)

61

62 if APB:

63 saveStructure += "APB"

64 else:

65 saveStructure += "noAPB"

66

67

68 if template:

69 saveStructure += "_template"

70 SEED = rands [0]

71 else:

72 saveStructure += "_%d"%( number)

73 SEED = rands[number]

74

75 unitcell = parsers.CifParser(cif_file)

76 unitcell.lattice_a = float(latticepars [0])

77 unitcell.lattice_b = float(latticepars [1])

78 unitcell.lattice_c = float(latticepars [2])

79

80 Crystal = crystal.Crystal(diameter , unitcell , occupancies , shape , n_APBs ,

offset)

81

82 Crystal.build_nanoparticle(APB = APB ,

83 occ = occ ,

84 gradient = gradient ,

85 plot = False ,

86 SEED = SEED)

87

88 Crystal.output_crystal_structure(saveStructure , oxygen=False)

89

90 print("----------------------------\n")

91

92 if __name__ == "__main__":

93 main()
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C.14 3dplot MC Mayavi.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Tue Jan 5 11:57:04 2021

5

6 @author: tobiaskohler

7

8 Running of this script requires MayaVi installed in python 3.7 environment.

9 The script has to be executed in this environment.

10 """

11

12 import numpy as np

13 from mayavi import mlab

14 import argparse

15 import os

16

17 parser = argparse.ArgumentParser ()

18

19 parser.add_argument(’--input_dir ’, type=str)

20 parser.add_argument(’--file’, type=str)

21 parser.add_argument(’--delimiter ’, type=str)

22

23 args = parser.parse_args ()

24

25 file = args.file

26 input_dir = args.input_dir

27

28 if args.delimiter == None:

29 delimiter=" "

30 else:

31 delimiter=args.delimiter

32

33 sfile = input_dir+file

34

35 file_r = os.path.splitext(sfile)[0]

36

37 def plot_mayavi(spins , size , x,y,z,u,v,w,t,a):

38

39 # setting up the data arrays

40 # octahedral iron positions

41 x_oct = np.array([xi for xi ,ti,ai in zip(x,t,a) if ti == 0 and ai == 0])

42 y_oct = np.array([yi for yi ,ti,ai in zip(y,t,a) if ti == 0 and ai == 0])

43 z_oct = np.array([zi for zi ,ti,ai in zip(z,t,a) if ti == 0 and ai == 0])

44 u_oct = np.array([ui for ui ,ti,ai in zip(u,t,a) if ti == 0 and ai == 0])

45 v_oct = np.array([vi for vi ,ti,ai in zip(v,t,a) if ti == 0 and ai == 0])

46 w_oct = np.array([wi for wi ,ti,ai in zip(w,t,a) if ti == 0 and ai == 0])

47

48 # tetrahedral iron positions

49 x_tet = np.array([xi for xi ,ti,ai in zip(x,t,a) if ti == 1 and ai == 0])

50 y_tet = np.array([yi for yi ,ti,ai in zip(y,t,a) if ti == 1 and ai == 0])

51 z_tet = np.array([zi for zi ,ti,ai in zip(z,t,a) if ti == 1 and ai == 0])

52 u_tet = np.array([ui for ui ,ti,ai in zip(u,t,a) if ti == 1 and ai == 0])

53 v_tet = np.array([vi for vi ,ti,ai in zip(v,t,a) if ti == 1 and ai == 0])

54 w_tet = np.array([wi for wi ,ti,ai in zip(w,t,a) if ti == 1 and ai == 0])

55

56 # APB positions

57 x_apb = np.array([xi for xi ,ai in zip(x,a) if ai == 1])

58 y_apb = np.array([yi for yi ,ai in zip(y,a) if ai == 1])

59 z_apb = np.array([zi for zi ,ai in zip(z,a) if ai == 1])

60 u_apb = np.array([ui for ui ,ai in zip(u,a) if ai == 1])

61 v_apb = np.array([vi for vi ,ai in zip(v,a) if ai == 1])

62 w_apb = np.array([wi for wi ,ai in zip(w,a) if ai == 1])

63

64 # plotting balls for the atomic positions and vectors for the spins with

transparency
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65 # and color coding according to the spin orientation (Sx (u) component)

66

67 transp = 0.4 # transparency setting for the balls

68 sf = 0.2 # scale factor for spin vectors

69

70 # APB atoms

71 if x_apb.size != 0:

72 apb_atom = mlab.points3d(x_apb , y_apb , z_apb , u_apb ,

73 scale_mode=’none’, scale_factor=size , resolution

=30, figure=fig)

74 apb_atom.glyph.color_mode = ’color_by_scalar ’

75 apb_atom.module_manager.scalar_lut_manager.data_range = np.array ([-1.,

1.])

76 apb_atom.module_manager.scalar_lut_manager.lut.alpha_range = np.array ([

transp , transp ])

77

78 apb_spin = mlab.quiver3d(x_apb ,y_apb ,z_apb ,

79 u_apb ,v_apb ,w_apb ,scalars=np.array(u_apb),mode=’

arrow’,

80 scale_factor=sf, resolution =30, figure=fig)

81 apb_spin.glyph.color_mode = ’color_by_scalar ’

82 apb_spin.module_manager.scalar_lut_manager.data_range = np.array ([-1.,

1.])

83

84 # tetrahedral positions

85 tet_atom = mlab.points3d(x_tet ,y_tet ,z_tet ,u_tet ,

86 scale_mode=’none’, scale_factor=size , resolution =30,

figure=fig)

87 tet_atom.glyph.color_mode = ’color_by_scalar ’

88 tet_atom.module_manager.scalar_lut_manager.data_range = np.array ([-1., 1.])

89 tet_atom.module_manager.scalar_lut_manager.lut.alpha_range = np.array ([transp

, transp ])

90

91 tet_spin = mlab.quiver3d(x_tet ,y_tet ,z_tet ,

92 u_tet ,v_tet , w_tet ,

93 scalars=np.array(u_tet),mode=’arrow’,

94 scale_factor=sf, resolution =30, figure=fig)

95 tet_spin.glyph.color_mode = ’color_by_scalar ’

96 tet_spin.module_manager.scalar_lut_manager.data_range = np.array ([-1., 1.])

97

98 # octahedral positions

99 oct_atom = mlab.points3d(x_oct ,y_oct ,z_oct ,u_oct ,

100 scale_mode=’none’, scale_factor=size , resolution =30,

figure=fig)

101 oct_atom.glyph.color_mode = ’color_by_scalar ’

102 oct_atom.module_manager.scalar_lut_manager.data_range = np.array ([-1., 1.])

103 oct_atom.module_manager.scalar_lut_manager.lut.alpha_range = np.array ([transp

, transp ])

104

105 oct_spin = mlab.quiver3d(x_oct ,y_oct ,z_oct ,

106 u_oct ,v_oct ,w_oct ,

107 scalars=np.array(u_oct),mode=’arrow’,

108 scale_factor=sf, resolution =30, figure=fig)

109 oct_spin.glyph.color_mode = ’color_by_scalar ’

110 oct_spin.module_manager.scalar_lut_manager.data_range = np.array ([-1., 1.])

111

112 # coordinate axis

113 mlab.quiver3d (0.5,0,1.0,1.5,0,0, color =(0.4 ,0.4 ,0.4),mode=’arrow’, resolution

=40)

114 mlab.quiver3d (0.5,0,1.0,0,1.5,0, color =(0.4 ,0.4 ,0.4),mode=’arrow’, resolution

=40)

115 mlab.quiver3d (0.5,0,1.0,0,0,1.5, color =(0.4 ,0.4 ,0.4),mode=’arrow’, resolution

=40)

116

117 # setting up the figure (size , lighting , camera position etc.)

118 fig = mlab.figure(size =(1000 ,1000) , bgcolor =(1,1,1))

119

120 # in case a colorbar is needed
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121 # get the current lut manager

122 #lut_manager = mlab.colorbar(orientation=’vertical ’)

123 # fix the range

124 #lut_manager.data_range = (-1, 1)

125

126 # these lines are needed for the lights to work properly , not sure what they do

though ..

127 from pyface.api import GUI

128 _gui = GUI()

129

130 while fig.scene.light_manager is None:

131 _gui.process_events ()

132

133 fig.scene.light_manager.lights [0]. elevation = 32.37

134 fig.scene.light_manager.lights [0]. azimuth = -5.0

135 fig.scene.light_manager.lights [0]. intensity = 0.9322

136

137 fig.scene.light_manager.lights [1]. elevation = -34.29

138 fig.scene.light_manager.lights [1]. azimuth = -10.0

139 fig.scene.light_manager.lights [1]. intensity = 0.1582

140

141 fig.scene.light_manager.lights [2]. elevation = -41.43

142 fig.scene.light_manager.lights [2]. azimuth = 15.48

143 fig.scene.light_manager.lights [2]. intensity = 0.4915

144

145 fig.scene.light_manager.lights [3]. elevation = 0.0

146 fig.scene.light_manager.lights [3]. azimuth = 0.0

147 fig.scene.light_manager.lights [3]. intensity = 0.0

148

149

150 x,y,z,u,v,w,t,a = np.loadtxt(sfile , usecols =(0,1,2,3,4,5,6,7), delimiter=

delimiter , unpack=True)

151 plot_mayavi(True ,0.15 ,x,y,z,u,v,w,t,a)

152

153 mlab.gcf().scene.parallel_projection = True

154

155 mlab.view(azimuth =90, elevation =180, distance =20)

156 #mlab.view(azimuth =90, elevation =160, distance =20)

157 #mlab.view(azimuth =10, elevation =10, distance =20)

158

159 fig.scene.anti_aliasing_frames = 20

160 mlab.draw()

161 fig.scene.camera.zoom (1.2)

162

163 mlab.savefig(file_r+".png", size =(2000 ,2000))

164 mlab.show()
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C.15 average spin structure.py

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3

4 import numpy as np

5 import scipy.stats as stats

6 import argparse

7

8

9 parser = argparse.ArgumentParser ()

10

11 parser.add_argument(’--input_dir ’, type=str)

12 parser.add_argument(’--template_file ’, type=str)

13 parser.add_argument(’--particle_size ’, type=int)

14 parser.add_argument(’--num_particles ’, type=int)

15 parser.add_argument(’--dipole ’, type=str)

16

17 args = parser.parse_args ()

18

19 template_file = args.template_file

20 particle_size = args.particle_size

21 num_particles = args.num_particles

22 dipole = args.dipole

23 center= particle_size /2.0+0.5

24 input_dir = args.input_dir

25

26 files = []

27 for i in range(1, num_particles +1):

28 fname = template_file.replace("template","%d"%(i))

29 fname = fname.replace("None", dipole)

30 files.append(input_dir+fname)

31

32 outfile = input_dir+template_file.replace("template", "averaged")

33 outfile = outfile.replace("None", dipole)

34

35 def averaging_spins(files , template_file , filename , center):

36 xt,yt,zt ,tt,at = np.loadtxt(input_dir+template_file ,delimiter=’,’,

37 usecols =(0,1,2,6,7), unpack = True)

38

39 ut = np.zeros_like(xt)

40 vt = np.zeros_like(xt)

41 wt = np.zeros_like(xt)

42

43 coord_spin_t = list(zip(xt,yt ,zt,ut,vt ,wt))

44 dict1 = {(x,y,z): (u,v,w) for x,y,z,u,v,w in coord_spin_t}

45

46 for file in files:

47

48 x,y,z,u,v,w,t,a = np.loadtxt(file ,delimiter=’,’, unpack=True)

49 print(len(x))

50

51 coord_spin = list(zip(x,y,z,u,v,w))

52 dict2 = {(x,y,z): (u,v,w) for x,y,z,u,v,w in coord_spin}

53

54 matchxyz = set(dict1) & set(dict2)

55

56 for xyz in matchxyz:

57 a = list(dict1[xyz])

58 b = list(dict2[xyz])

59 for n in range (3):

60 a[n] += b[n]

61 dict1[xyz] = a

62

63 uf,vf,wf = [],[],[]

64 xf,yf,zf = [],[],[]

65 for key in dict1:
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66 x,y,z = key

67 u,v,w = dict1[key]

68 uf.append(u)

69 vf.append(v)

70 wf.append(w)

71 xf.append(x)

72 yf.append(y)

73 zf.append(z)

74

75 uf,vf,wf = np.array(uf), np.array(vf), np.array(wf)

76 print(len(ut))

77 print(len(uf))

78 print(len(xf))

79

80 lengths = np.sqrt(uf**2+vf**2+wf**2)

81 uf /= lengths

82 vf /= lengths

83 wf /= lengths

84 np.savetxt(filename , np.column_stack ((xf,yf ,zf,uf,vf ,wf,tt,at)),

85 fmt=’%.5f’)

86

87 averaging_spins(files , template_file , outfile , center)

C.16 measurement script MvT.sh

1 #!/bin/bash

2

3 # *-----------------------------------*

4 # | shell script for M vs. T |

5 # | simulations |

6 # | |

7 # | please check the paths to the |

8 # | files before running |

9 # | |

10 # *-----------------------------------*

11

12

13 measurement="MvT"

14 echo $measurement
15

16 # directory for outputs

17 output_dir="/user/specified/output/path/"

18

19

20 #--------------------------

21 # particle settings

22 #--------------------------

23 outer_loop =1

24 # inner loop determines how many processes are started in parallel

25 # do not use too many for larger particles --> the system might crash!

26 inner_loop =1

27 # total number of particles to be calculated

28 num_particles=$(( $outer_loop*$inner_loop))
29

30 # cif -file for crystal structure (only Vesta cif supported)

31 # if needed import the cif -file in Vesta and save it again under a different

32 # name. This will generate the cif -file in the right format.

33 ciffile="/CIF_path/Fd -3 m_perfect.cif"

34 # atom labels from cif -file used for occupancies (need to be comma separated)

35 atomlabels="Fe(oct),Fe(tet)"

36 occupancies="0.83 ,1.0"

37 latticepars="8.3965 ,8.3965 ,8.3965"

38

39 # particle shape (either "Sphere" or "Cube")

40 shape="Sphere"
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41

42 # particle size (diameter) in unit cells

43 particle_size =6

44

45 # particle with or without APB

46 APB=false

47

48 # seed for particle generation

49 seed =20210503

50

51 # particle starting orientations

52 particle_orientations =9999

53

54 # magnetocrystalline anisotropy

55 anisotropy_constant =3.25e-25

56

57 # exchange constants: Fe_TT , Fe_OO , Fe_TO

58 exchange_constants=" -21.0,-8.6,-28.1"

59 # exchange constant across APB in K

60 APB_constant = -106.28

61

62 #--------------------------

63 # field settings

64 #--------------------------

65 measurement_field =0.005

66 cooling_field =0.0

67

68 #--------------------------

69 # temperature settings

70 #--------------------------

71 temperature_upper =30.0

72 temperature_lower =0.001

73 temperature_step =0.5

74

75 #--------------------------

76 # Measurement settings

77 #--------------------------

78 # number of complete Monte Carlo steps = steps x totalNumAtoms

79 relaxation_steps =500.0

80 averaging_steps =0

81

82 # sigma parameter for opening of Gaussian cone in trial move

83 sigma =0.03

84

85 # setting for method of dipole interaction calculation

86 #dipole_interactions =" brute_force"

87 dipole_interactions="None"

88 #dipole_interactions =" macrocell_method"

89

90 # macrocell size only used if macrocell method is selected

91 macrocell_size =0.2

92

93 # select the measurements

94 ZFC=true

95 FC=true

96

97

98 #----------------------------------

99 # generate crystal structure files

100 #----------------------------------

101 # change path to "generate_nanoparticle.py" if necessary

102 #

103 for (( c=1; c<= $num_particles; c++ ))

104 do

105 if [ "$APB" = true ] ; then

106 python /program_file_path/generate_nanoparticle.py \

107 --output=$output_dir --atomlabels=$atomlabels --occupancies=$occupancies
\
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108 --diameter=$particle_size --number=$c --seed=$seed --ciffile=$ciffile \

109 --shape=$shape --latticepar=$latticepars --APB

110 else

111 python /program_file_path/generate_nanoparticle.py \

112 --output=$output_dir --atomlabels=$atomlabels --occupancies=$occupancies
\

113 --diameter=$particle_size --number=$c --seed=$seed --ciffile=$ciffile \

114 --shape=$shape --latticepar=$latticepars
115 fi

116 done

117

118 #--------------------------

119 # generate JSON files

120 #--------------------------

121 # these files are used as input parameter files for the simulation program

122 # change path to "generate_json_files.py" if necessary

123 #

124 if [ "$APB" == true ] ; then

125 if [ "$ZFC" == true ] ; then

126 if [ "$FC" == true ] ; then

127 python /program_file_path/generate_json_files.py \

128 --measurement=$measurement \

129 --output=$output_dir \

130 --structure_path=$output_dir \

131 --num_particles=$num_particles \

132 --particle_size=$particle_size \

133 --meas_field=$measurement_field \

134 --dipole=$dipole_interactions \

135 --steps=$relaxation_steps \

136 --av_steps=$averaging_steps \

137 --num_or=$particle_orientations \

138 --cool_field=$cooling_field \

139 --Tupper=$temperature_upper \

140 --Tlower=$temperature_lower \

141 --T_step=$temperature_step \

142 --anisotropy_constant=$anisotropy_constant \

143 --sigma=$sigma --ZFC --FC --APB \

144 --latticepar=$latticepars \

145 --exchangeconstants=$exchange_constants \

146 --APB_constant=$APB_constant
147 else

148 python /program_file_path/generate_json_files.py \

149 --measurement=$measurement \

150 --output=$output_dir \

151 --structure_path=$output_dir \

152 --num_particles=$num_particles \

153 --particle_size=$particle_size \

154 --meas_field=$measurement_field \

155 --dipole=$dipole_interactions \

156 --steps=$relaxation_steps \

157 --av_steps=$averaging_steps \

158 --num_or=$particle_orientations \

159 --cool_field=$cooling_field \

160 --Tupper=$temperature_upper \

161 --Tlower=$temperature_lower \

162 --T_step=$temperature_step \

163 --anisotropy_constant=$anisotropy_constant \

164 --sigma=$sigma --ZFC --APB \

165 --latticepar=$latticepars \

166 --exchangeconstants=$exchange_constants \

167 --APB_constant=$APB_constant
168 fi

169 fi

170 else

171 if [ "$ZFC" == true ] ; then

172 if [ "$FC" == true ] ; then

173 python /program_file_path/generate_json_files.py \

174 --measurement=$measurement \
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175 --output=$output_dir \

176 --structure_path=$output_dir \

177 --num_particles=$num_particles \

178 --particle_size=$particle_size \

179 --meas_field=$measurement_field \

180 --dipole=$dipole_interactions \

181 --steps=$relaxation_steps \

182 --av_steps=$averaging_steps \

183 --num_or=$particle_orientations \

184 --cool_field=$cooling_field \

185 --Tupper=$temperature_upper \

186 --Tlower=$temperature_lower \

187 --T_step=$temperature_step \

188 --anisotropy_constant=$anisotropy_constant \

189 --sigma=$sigma --ZFC --FC \

190 --latticepar=$latticepars \

191 --exchangeconstants=$exchange_constants \

192 --APB_constant=$APB_constant
193 else

194 python /program_file_path/generate_json_files.py \

195 --measurement=$measurement \

196 --output=$output_dir \

197 --structure_path=$output_dir \

198 --num_particles=$num_particles \

199 --particle_size=$particle_size \

200 --meas_field=$measurement_field \

201 --dipole=$dipole_interactions \

202 --steps=$relaxation_steps \

203 --av_steps=$averaging_steps \

204 --num_or=$particle_orientations \

205 --cool_field=$cooling_field \

206 --Tupper=$temperature_upper \

207 --Tlower=$temperature_lower \

208 --T_step=$temperature_step \

209 --anisotropy_constant=$anisotropy_constant \

210 --sigma=$sigma --ZFC \

211 --latticepar=$latticepars \

212 --exchangeconstants=$exchange_constants \

213 --APB_constant=$APB_constant \

214 fi

215 fi

216 fi

217

218 #--------------------------

219 # Run Simulation

220 #--------------------------

221 # change path to the compiled simulation program if necessary

222 #

223 trap "kill 0" EXIT

224

225 count=0

226 for (( i=1; i<= $outer_loop; i++ )); do

227 for ((c=1; c<= $inner_loop; c++ )); do

228 ((count=count +1))

229 if [ "$APB" == true ] ; then

230 /compiled_program_path/MCS3P \

231 ${output_dir }/${count}_MvsT_simulation_APB_D${particle_size }.json &

232 else

233 /compiled_program_path/MCS3P \

234 ${output_dir }/${count}_MvsT_simulation_noAPB_D${particle_size }.json &

235 fi

236 done

237 wait

238 done

239 wait
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C.17 measurement script MvB.sh

1 #!/bin/bash

2

3 # *-----------------------------------*

4 # | shell script for hysteresis loop |

5 # | simulations |

6 # | |

7 # | please check the paths to the |

8 # | files before running |

9 # | |

10 # *-----------------------------------*

11

12

13 measurement="MvB"

14 echo $measurement
15

16 # directory for outputs

17 output_dir="/user/specified/output/path/"

18

19

20 #--------------------------

21 # particle settings

22 #--------------------------

23 outer_loop =1

24 # inner loop determines how many processes are started in parallel

25 # do not use too many for larger particles --> the system might crash!

26 inner_loop =2

27 # total number of particles to be calculated

28 num_particles=$(( $outer_loop*$inner_loop))
29

30 # cif -file for crystal structure (only Vesta cif supported)

31 # if needed import the cif -file in Vesta and save it again under a different

32 # name. This will generate the cif -file in the right format.

33 ciffile="/CIF_path/P4_32_12_perfect.cif"

34

35 # atom labels from cif -file used for occupancies (need to be comma separated)

36 atomlabels="Fe1 ,Fe2 ,Fe3 ,Fe4"

37 occupancies="1.0 ,0.33 ,1.0 ,1.0"

38

39 # unitcell parameters in Angstrom

40 latticepars="8.3965 ,8.3965 ,8.3965"

41

42 # particle shape (either "Sphere" or "Cube")

43 shape="Sphere"

44

45 # particle size in unit cells

46 particle_size =6

47

48 # particle orientations per configuration used for averaging

49 particle_orientations =20

50

51 # particle with or without APB

52 APB=false

53

54 # seed for particle generation

55 seed =20210503

56

57 anisotropy_constant =3.25e-25

58

59 # exchange constants: Fe_TT , Fe_TO , Fe_OO

60 exchange_constants=" -21.0,-8.6,-28.1"

61 # exchange constant across APB in K

62 APB_constant = -106.28

63

64 #--------------------------

65 # field (in tesla) and temperature (in Kelvin) settings
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66 #--------------------------

67 # settings used for the field sweep

68 lower_field_limit =-1.5

69 upper_field_limit =1.5

70 field_step =0.1

71

72 # settings for zero field/field cooling

73 # starting temp. and final temp. have to be different

74 cooling_field =0.0

75 starting_temperature =301.0

76 temperature_step =1.0

77 final_temperature =5.0

78

79 #--------------------------

80 # Monte -Carlo settings

81 #--------------------------

82 # Number of Monte Carlo steps per temperature or field step

83 steps =8000

84 cooling_steps =1

85

86 sigma =0.03

87

88 # setting for method of dipole interaction calculation

89 #dipole_interactions =" brute_force"

90 dipole_interactions="None"

91 #dipole_interactions =" macrocell_method"

92

93 # macrocell size only used if macrocell method is selected

94 macrocell_size =0.2

95

96

97 #----------------------------------

98 # generate crystal structure files

99 #----------------------------------

100 # change path to "generate_nanoparticle.py" if necessary

101

102 for (( c=1; c<= $num_particles; c++ ))

103 do

104 if [ "$APB" = true ] ; then

105 python /program_file_path/generate_nanoparticle.py \

106 --output=$output_dir --atomlabels=$atomlabels --occupancies=$occupancies
\

107 --diameter=$particle_size --number=$c --seed=$seed --ciffile=$ciffile \

108 --shape=$shape --latticepar=$latticepars --APB

109 else

110 python /program_file_path/generate_nanoparticle.py \

111 --output=$output_dir --atomlabels=$atomlabels --occupancies=$occupancies
\

112 --diameter=$particle_size --number=$c --seed=$seed --ciffile=$ciffile \

113 --shape=$shape --latticepar=$latticepars
114 fi

115 done

116

117 #--------------------------

118 # generate JSON files

119 #--------------------------

120 # these files are used as input parameter files for the simulation program

121 # change path to "generate_json_files.py" if necessary

122 #

123 if [ "$APB" == true ] ; then

124 python /program_file_path/generate_json_files.py \

125 --measurement=$measurement --output=$output_dir --structure_path=$output_dir
\

126 --num_particles=$num_particles --particle_size=$particle_size --steps=$steps
\

127 --dipole=$dipole_interactions --macrocell_size=$macrocell_size \

128 --num_or=$particle_orientations --Bupper=$upper_field_limit --Blower=

$lower_field_limit \
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129 --Bstep=$field_step --start_temperature=$starting_temperature \

130 --cooling_steps=$cooling_steps --temperature=$final_temperature \

131 --T_step=$temperature_step --cool_field=$cooling_field \

132 --anisotropy_constant=$anisotropy_constant --APB --sigma=$sigma \

133 --latticepar=$latticepars --exchangeconstants=$exchange_constants \

134 --APB_constant=$APB_constant
135 else

136 python /program_file_path/generate_json_files.py \

137 --measurement=$measurement --output=$output_dir --structure_path=$output_dir
\

138 --num_particles=$num_particles --particle_size=$particle_size --steps=$steps
\

139 --dipole=$dipole_interactions --macrocell_size=$macrocell_size \

140 --num_or=$particle_orientations --Bupper=$upper_field_limit --Blower=

$lower_field_limit \

141 --Bstep=$field_step --start_temperature=$starting_temperature \

142 --cooling_steps=$cooling_steps --temperature=$final_temperature \

143 --T_step=$temperature_step --cool_field=$cooling_field \

144 --anisotropy_constant=$anisotropy_constant --sigma=$sigma \

145 --latticepar=$latticepars --exchangeconstants=$exchange_constants
146 fi

147

148 #--------------------------

149 # Run Simulation

150 #--------------------------

151 # change path to the compiled simulation program if necessary

152 #

153 trap "kill 0" EXIT

154

155 count=0

156 for (( i=1; i<= $outer_loop; i++ )); do

157 for ((c=1; c<= $inner_loop; c++ )); do

158 ((count=count +1))

159 if [ "$APB" == true ] ; then

160 /compiled_program_path/MCS3P \

161 ${output_dir }/${count}_MvsB_simulation_APB_D${particle_size }.json &

162 else

163 /compiled_program_path/MCS3P \

164 ${output_dir }/${count}_MvsB_simulation_noAPB_D${particle_size }.json &

165 fi

166 done

167 wait

168 done

169 wait

C.18 measurement script spin structure.sh

1 #!/bin/bash

2

3 # *-----------------------------------*

4 # | shell script for spin structure |

5 # | simulations |

6 # | |

7 # | please check the paths to the |

8 # | files before running |

9 # | |

10 # | installation of Mayavi is |

11 # | required for the 3D plots |

12 # | (see description below) |

13 # *-----------------------------------*

14

15

16 measurement="spin_structure"

17 echo $measurement
18
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19 # directory for outputs

20 output_dir="/user/specified/output/path/"

21

22

23 #--------------------------

24 # particle settings

25 #--------------------------

26 outer_loop =20

27 # inner loop determines how many processes are started in parallel

28 # do not use too many for larger particles --> the system might crash!

29 inner_loop =1

30 # total number of particles to be calculated

31 num_particles=$(( $outer_loop*$inner_loop))
32

33 # cif -file for crystal structure (only Vesta cif supported)

34 # if needed import the cif -file in Vesta and save it again under a different

35 # name. This will generate the cif -file in the right format.

36 ciffile="/CIF_path/P4_32_12_perfect.cif"

37

38 # atom labels from cif -file used for occupancies (need to be comma separated)

39 atomlabels="Fe1 ,Fe2 ,Fe3 ,Fe4"

40 occupancies="1.0 ,0.83 ,0.83 ,0.83"

41

42 # unitcell parameters in Angstrom

43 latticepars="8.3965 ,8.3965 ,8.3965"

44

45 # particle shape (either "Sphere" or "Cube")

46 shape="Sphere"

47

48 # particle size in unit cells

49 particle_size =11

50

51 # particle orientation angles

52 alpha =0.0

53 beta =0.0

54 gamma = -45.0

55

56 # particle with or without APB

57 APB=true

58

59 # effective anisotropy constant: K[kJ/m^3] / N_atoms/particle_volume

60 anisotropy_constant =3.25e-25

61

62 # exchange constants: Fe_TT , Fe_OO , Fe_TO in K

63 exchange_constants=" -21.0,-8.6,-28.1"

64 # exchange constant across APB in K

65 APB_constant = -106.28

66

67 # seed for particle generation

68 seed =20210503

69

70 #--------------------------

71 # field settings

72 #--------------------------

73 measurement_field =5.0

74

75 #--------------------------

76 # temperature settings

77 #--------------------------

78 temperature =0.01

79

80

81 #--------------------------

82 # Monte -Carlo settings

83 #--------------------------

84 # Number of Monte Carlo steps

85 # (statistical number of trial moves on one spin in the structure)

86 steps =5000

C-54



C.18 measurement script spin structure.sh

87

88 # sigma parameter for opening of gaussian cone in trial move

89 sigma =0.03

90

91 # setting for method of dipole interaction calculation

92 #dipole_interactions =" brute_force"

93 dipole_interactions="None"

94 #dipole_interactions =" macrocell_method"

95

96 # macrocell size only used if macrocell method is selected

97 macrocell_size =0.2

98

99 #----------------------------------

100 # generate crystal structure files

101 #----------------------------------

102 # change path to "generate_nanoparticle.py" if necessary

103 #

104 if [ "$APB" = true ] ; then

105 python /program_file_path/generate_nanoparticle.py --output=$output_dir \

106 --atomlabels=$atomlabels --occupancies=$occupancies --diameter=$particle_size
\

107 --seed=$seed --ciffile=$ciffile --shape=$shape --latticepar=$latticepars \

108 --APB --template

109 else

110 python /program_file_path/generate_nanoparticle.py --output=$output_dir \

111 --atomlabels=$atomlabels --occupancies=$occupancies --diameter=$particle_size
\

112 --seed=$seed --ciffile=$ciffile --shape=$shape --latticepar=$latticepars\
113 --template

114 fi

115

116

117 for (( c=1; c<= $num_particles; c++ ))

118 do

119 if [ "$APB" = true ] ; then

120 python /program_file_path/generate_nanoparticle.py --output=$output_dir \

121 --atomlabels=$atomlabels --occupancies=$occupancies --diameter=

$particle_size \

122 --number=$c --seed=$seed --ciffile=$ciffile --shape=$shape \

123 --latticepar=$latticepars --APB

124 else

125 python /program_file_path/generate_nanoparticle.py --output=$output_dir \

126 --atomlabels=$atomlabels --occupancies=$occupancies --diameter=

$particle_size \

127 --number=$c --seed=$seed --ciffile=$ciffile --shape=$shape \

128 --latticepar=$latticepars
129 fi

130 done

131

132 #--------------------------

133 # generate JSON files

134 #--------------------------

135 # these files are used as input parameter files for the simulation program

136 # change path to "generate_json_files.py" if necessary

137 #

138 if [ "$APB" == true ] ; then

139 python /program_file_path/generate_json_files.py --measurement=$measurement \

140 --output=$output_dir --structure_path=$output_dir --num_particles=

$num_particles \

141 --particle_size=$particle_size --alpha=$alpha --beta=$beta --gamma=$gamma \

142 --meas_field=$measurement_field --temperature=$temperature --steps=$steps \

143 --dipole=$dipole_interactions --macrocell_size=$macrocell_size --sigma=$sigma
\

144 --latticepar=$latticepars --APB --anisotropy_constant=$anisotropy_constant \

145 --exchangeconstants=$exchange_constants --APB_constant=$APB_constant
146 else

147 python /program_file_path/generate_json_files.py --measurement=$measurement \
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148 --output=$output_dir --structure_path=$output_dir --num_particles=

$num_particles \

149 --particle_size=$particle_size --alpha=$alpha --beta=$beta --gamma=$gamma \

150 --meas_field=$measurement_field --temperature=$temperature --steps=$steps \

151 --dipole=$dipole_interactions --macrocell_size=$macrocell_size --sigma=$sigma
\

152 --latticepar=$latticepars --anisotropy_constant=$anisotropy_constant \

153 --exchangeconstants=$exchange_constants
154 fi

155

156 #--------------------------

157 # Run Simulation

158 #--------------------------

159 # change path to the compiled simulation program if necessary

160 #

161 trap "kill 0" EXIT

162

163 if [ "$APB" == true ] ; then

164 /compiled_program_path/MCS3P ${output_dir }/ spin_structure_APB_D${
particle_size}_template.json

165 else

166 /compiled_program_path/MCS3P ${output_dir }/ spin_structure_noAPB_D${
particle_size}_template.json

167 fi

168

169 count=0

170 for (( i=1; i<= $outer_loop; i++ )); do

171 for ((c=1; c<= $inner_loop; c++ )); do

172 ((count=count +1))

173 if [ "$APB" == true ] ; then

174 /compiled_program_path/MCS3P \

175 ${output_dir }/${count}_spin_structure_APB_D${particle_size }.json &

176 else

177 /compiled_program_path/MCS3P \

178 ${output_dir }/${count}_spin_structure_noAPB_D${particle_size }.json &

179 fi

180 done

181 wait

182 done

183 wait

184

185

186 #---------------------------------

187 # Calculate average spin structure

188 #---------------------------------

189

190 t=${temperature %.*}
191 mf=${measurement_field %.*}
192

193 if [ "$APB" == true ] ; then

194 template_filename=D${particle_size}_structure_APB_\
195 template_spin_structure_${t}K_${steps}MCS_${mf}T_dipNone.txt
196 else

197 template_filename=D${particle_size}_structure_noAPB\
198 _template_spin_structure_${t}K_${steps}MCS_${mf}T_dipNone.txt
199 fi

200

201 echo $template_filename
202

203 python /program_file_path/average_spin_structure.py --input_dir=$output_dir \

204 --template_file=$template_filename --particle_size=$particle_size --num_particles

=$num_particles \

205 --dipole=$dipole_interactions
206

207 if [ "$APB" == true ] ; then

208 averaged_file=D${particle_size}_structure_APB\
209 _averaged_spin_structure_${t}K_${steps}MCS_${mf}T_dip${dipole_interactions }.txt
210 else
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211 averaged_file=D${particle_size}_structure_noAPB\
212 _averaged_spin_structure_${t}K_${steps}MCS_${mf}T_dip${dipole_interactions }.txt
213 fi

214

215

216 #---------------------------------

217 # Generate 3D image with Mayavi

218 #---------------------------------

219 # Mayavi has to be installed

220 # use: pip install mayavi

221 # and: pip install PyQt5

222 # a conda environment with python version 3.7 is required

223 # create the environment with: conda create --name py37 python =3.7

224 source activate py37

225 python /program_file_path /3 dplot_MC_Mayavi.py\

226 --input_dir=$output_dir --file=$averaged_file
227 conda deactivate
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Sticky hard sphere structure factor
implementation
In this appendix an implementation of the sticky hard sphere structure factor
based on the implementation used in SasView is shown.

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Wed Jun 30 20:24:31 2021

5

6 Sticky hard sphere structure factor as implemented in SasView 5.0.

7 """

8 import numpy as np

9

10 def stickyHardSphere(q, particle_R , hardsphere_R , perturb ,stickiness , volfraction

):

11 if volfraction == 0.0:

12 return 1.0

13

14 onemineps = 1.0- perturb

15 eta = volfraction/onemineps/onemineps/onemineps

16 radius_effective = particle_R+hardsphere_R

17

18 sig = 2.0 * radius_effective

19 aa = sig/onemineps

20 etam1 = 1.0 - eta

21 etam1sq = etam1 **2

22

23 qa = eta /6.0

24 qb = stickiness + eta/etam1

25 qc = (1.0 + eta /2.0)/etam1sq

26 radic = qb*qb - 2.0*qa*qc

27

28 if(radic <0):

29 return (1.0)

30

31 radic = np.sqrt(radic)

32 lam = (qb-radic)/qa

33 lam2 = (qb+radic)/qa

34 if (lam2 <lam):

35 lam = lam2

36

37 test = 1.0 + 2.0* eta

38 mu = lam*eta*etam1

39 if(mu>test):

40 return (1.0)

41

42 alpha = (1.0 + 2.0* eta - mu)/etam1sq

43 beta = (mu - 3.0* eta)/(2.0* etam1sq)

44

45 kk = q*aa

46 k2 = kk*kk

47 k3 = kk*k2

48

49 ds = np.sin(kk)

50 dc = np.cos(kk)

51

52 aq1 = ((ds - kk*dc)*alpha)/k3

53 aq2 = (beta *(1.0-dc))/k2
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54 aq3 = (lam*ds)/(12.0* kk)

55 aq = 1.0 + 12.0* eta*(aq1+aq2 -aq3)

56

57 bq1 = alpha *(0.5/ kk - ds/k2 + (1.0 - dc)/k3)

58 bq2 = beta *(1.0/ kk - ds/k2)

59 bq3 = (lam /12.0) * ((1.0-dc)/kk)

60 bq = 12.0* eta*(bq1+bq2 -bq3)

61

62 sq = 1.0/( aq*aq + bq*bq)

63

64 return sq
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Peak profile implementation
An implementation of the peak profile as described in eq. 4.3 of section 4.2. The
implementation uses the numexpr package to speed up the calculations.

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3

4 import numpy as np

5 import numexpr as ne

6

7 # APB component

8 def A_APB(L, hkl , a0 , delta , D):

9 h,k,l = hkl

10 h,k,l = int(h), int(k), int(l)

11

12 # unaffected peaks

13 if (h+k)%4==0 and (h+l)%4==0 and (k+l)%4==0:

14 fac = 0

15

16 # a.1 (220) , (422)

17 elif (h)%2==0 and (k)%2==0 and (l)%2==0:

18 fac = 2*(h+k+l)/(a0*np.sqrt (2*(h**2+k**2+l**2)))

19

20 else:

21 # a.2.1 (311)

22 if (h+k)%4==0 and (h+l)%4==0:

23 fac = (h+k+l)/(a0*np.sqrt((h**2+k**2+l**2)))

24

25 # a.2.2 (511), (333)

26 else:

27 fac = (4*l)/(a0*np.sqrt (3*(h**2+k**2+l**2)))

28

29 return (1-2* delta/D)**(L*fac)

30

31 # size component

32 def A_S(L,D):

33 return 1 -3/2*(L/D)+1/2*(L/D)**3

34

35 # instrumental component

36 def A_IP(L, nu, sig):

37 k = 1/(1+(0.677622) *(1-nu)/nu)

38 A = (1-k)*np.exp(-np.pi**2* sig **2*L**2/np.log (2))

39 B = k * np.exp(-2*np.pi*sig*L)

40 return A+B

41

42 def peak_profile(Q, pos , D, hkl , delta , a0, sig):

43 N = 1000

44 L = np.linspace(0,D,N)

45 L = L[:, np.newaxis]

46

47 Fourier_coeff = A_S(L,D) * A_APB(L, hkl , a0 , delta , D) * A_IP(L, 0.5, sig)

48

49 exponent = ne.evaluate("exp(1j*L*(Q-pos)).real")

50 I = ne.evaluate("Fourier_coeff*exponent")

51 I = ne.evaluate("sum((I), axis =0)")

52 return I/N*D

53

54

55 if __name__ == "__main__":

56 import matplotlib.pyplot as plt

57
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58 positions = np.array ([2.1160 , 2.4813 , 2.5917 , 2.9927 ,

59 3.6654 , 3.8878 , 3.8878 , 4.2325])

60

61 hkl = [’220’, ’311’, ’222’, ’004’,

62 ’422’, ’333’, ’511’, ’440’]

63

64 intensities = [16.0 , 49.6, 1.4, 10.6,

65 7.5, 19.5, 1.0, 28.5]

66

67 Q = np.arange (1.0 ,5.0 ,0.01)

68

69 def whole_pattern(Q, positions , intensitites , hkl , delta , D, a0):

70 I = np.zeros_like(Q)

71 for pos ,hkl ,i in zip(positions , hkl , intensities):

72 I += i*peak_profile(Q, pos , D, hkl , delta , a0)

73 return I

74

75 pattern = whole_pattern(Q, positions , intensities , hkl , 0.0, 90, 8.3965)

76 plt.plot(Q, pattern)
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