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Zusammenfassung

Weyl-Halbmetalle stellen vielversprechende Kandidaten fiir effiziente spintronische
Gerate dar, und stehen aufgrund ihrer exotischen elektrischen und thermischen Trans-
porteigenschaften im Fokus heutiger wissenschaftlicher Studien. Besonderes Augen-
merk liegt aktuell auf dem Halbmetall Mn3Ge, welches anomale Transporteffekte und
Weyl-Punkte nahe der Fermi-Oberfléche zeigt.

Die magnetischen Momente des Mn in Mn3Ge besitzen unterhalb der Néel Tem-
peratur im Bereich von 365 K — 2 K eine planare dreieckige magnetische Struktur,
mit einer geringen Neigung hin zur leichten Achse innerhalb der a-b Ebene. Die sich
ergebenden kleinen (~20 mug/f.u.) ferromagnetischen (FM) Momente innerhalb der
a-b Ebene resultieren in einer leichten Drehung des Mn-Spin-Dreiecks. Es bildet sich
eine kleine Hysterese in den Magnetisierungs-, Nernst- und Hall-Effekt-Messungen
wenn das Feld umgekehrt wird, was auf einen sehr geringen Wéarmeverlust wiahrend
der Umkehrung des Magnetfeldes hindeutet. Diese Eigenschaften machen Mn3Ge zu
einem hervorragenden Kandidaten fiir Schaltgeréte und andere spintronische Gerite.
Zudem besitzt Mn3zGe zwei weitere wichtige Eigenschaften: (i) Die Position der
Weyl-Punkte und dessen resultierende Berry-Kriimmung fiithrt zu einem intrinsis-
chen Magnetfeld von Hunderten von Tesla. (ii) Der anomale Hall-Effekt (AHE) wird
im gesamten Temperaturbereich der nicht-kollinearen antiferromagnetischen Struk-
tur (365 K - 2 K) beobachtet, wodurch sich Mn3zGe gut fiir Raumtemperatur-, als
auch fiir Niedertemperaturanwendungen eignet. Zusammengefasst sind diese Eigen-
schaften ideal, um in Mn3Ge die Dynamik von Weyl-Punkten in Abhéangigkeit von

Temperaturveranderungen zu untersuchen.

Die Stéarke der exotischen Transporteffekte wird durch die Lage der Weyl-Punkte
relativ zur Fermi-Energie und dem Abstand der Weyl-Punkte zueinander bestimmt.
In dieser Dissertation wird eine detaillierte Analyse der Transport- und der magnetis-
chen Eigenschaften in Abhéngigkeit verschiedener Parameter durchgefithrt und die

Auswirkung auf die Position der Weyl-Punkte untersucht.

Diese Arbeit ist in zwei Abschnitte eingeteilt: Erstens wurde eine detaillierte Unter-
suchung der Transporteigenschaften von MnsGe unternommen, in Abhangigkeit der
Magnetfeldorientierung entlang verschiedener kristallographischer Achsen. Zweitens
wurden die magnetischen und die Transporteigenschaften des mit Fe dotierten Mn3Ge
analysiert. Im Folgenden werden beide Studien im Detail beschrieben und dessen

Ergebnisse vorgestellt:



Im Rahmen der ersten Studie wurden Magnettransportstudien durchgefithrt, um
nach dem Vorhandensein der chiralen Anomalie zu suchen. Wir haben die posi-
tive longitudinale Magnetleitfahigkeit (LMC) und den planaren Hall-Effekt insbeson-
dere in den Fallen analysiert, in denen das Feld in der a-b Ebene angelegt wurde.
Die temperatur- und magnetfeldabhingigen Transportstudien haben gezeigt, dass
die positive LMC unter 1,5 T hochstwahrscheinlich durch den Effekt der chiralen
Anomalie induziert wird. Die Stdarke der chiralen Anomalie nimmt mit der Tem-
peratur ab und verschwindet fast nahezu bei Raumtemperatur. Im Gegensatz zur
chiralen Anomalie bleibt der signifikant grofe AHE auch weit iiber Raumtemperatur
hinaus bestehen. Daraus kann geschlossen werden, dass die Lage der Weyl-Punkte
relativ zur Fermi-Oberfliche mit der Anderung der Temperatur der Probe variiert.
Dariiber hinaus zeigt die Entwicklung des Hall-Koeffizienten mit der Temperatur eine
Anderung des dominanten Ladungstrigerkonzentrationstyps nahe 190 K. Eine An-
derung in der Natur des Hochfeld-Magnetwiderstandsverhaltens wird auch nahe 200
K beobachtet, wo mit Hilfe von Widerstandsmessungen ein Metall-zu-Halbmetall-
Ubergang beobachtet wurde. Diese Merkmale deuten auf einen topologischen elek-
tronischen Phasentibergang in Mn3Ge nahe 200 K hin, der moglicherweise durch den
Metall-zu-Halbmetall-Ubergang der Probe bei 200 K angetrieben wird.

Zweitens sind Weyl-Punkte aufgrund ihrer topologischen Natur sehr robust. In
dieser Arbeit werden die magnetischen und die Transporteigenschaften des mit Fe
dotierten Mn3Ge untersucht, um die Entwicklung der Weyl-Punkte in Bezug auf die
Verunreinigung und die Anderung der magnetischen Eigenschaften der Verbindung
zu bestimmen. Da zudem die magnetische Symmetrie des Kristallgitters eine fun-
damentale Rolle fiir die Existenz der Weyl-Punkte spielt, wurden Einkristall - Neu-
tronenbeugungsmessungen an der mit 22% Fe dotierten MnsGe-Probe durchgefiihrt.
Unsere Neutronenbeugungsdatenanalyse in Kombination mit der Magnetisierung der
verschiedenen Fe-dotierten Verbindungen hat ergeben, dass die Magnetstruktur des
Typs Mn3Ge bis zu einer Fe Dotierung von 26% bestehen bleibt. Interessanter-
weise werden der AHE und Signaturen des durch die chirale Anomalie induzierten
Effekts auch in den Fe-dotierten Proben beobachtet, jedoch nur innerhalb des Tem-
peraturbereichs, in dem die Probe eine Magnetstruktur des Typs Mn3Ge besitzt. Dies
bedeutet, dass die Weyl-Punkte in den Fe-dotierten Verbindungen existieren, solange
die magnetische Struktur der dotierten Verbindungen die gleiche bleibt wie die der
Stammverbindung. Im Fall einer mit 22% Fe dotierten Verbindung verschwindet der

AHE in einem Temperaturbereich, in dem die magnetische Struktur kollinear anti-



ferromagnetisch ist. Dies impliziert, dass die Existenz der Weyl-Punkte eng mit der
magnetischen Symmetrie der Verbindung verkniipft ist. Wir haben beobachtet, dass
die Grofle des AHE signifikant mit der Fe-Dotierung abnimmt. Die positive longitudi-
nale Magnetleitfahigkeit (die Signatur des chiralen Anomalieeffekts) nimmt ebenfalls
drastisch mit einer Zunahme der Fe-Dotierung ab. Daraus kann geschlossen werden,
dass sich die Lage der Weyl-Punkte mit zunehmender Fe-Dotierung weiter von der
Fermi-Oberfldche entfernt. Die Schwéichung des AHE bei Fe-Dotierung legt eben-
falls nahe, dass der Abstand zwischen den Paaren der Weyl-Punkte mit zunehmender

Fe-Dotierung abnimmt.






Abstract

The discovery of Weyl semimetals has shed light on the promising opportunity for
the scientific community to develop very efficient spintronic devices. Weyl semimetals
are widely studied because of their exotic electrical and thermal transport properties.
Among different Weyl semimetals, Mn3Ge has gained a lot of attention in recent years
because of large anomalous transport effects owing to the presence of Weyl points near

the Fermi surface.

In the case of Mn3Ge, Mn moments possess an in-plane triangular magnetic struc-
ture below the Néel temperature of 365 K, down to the lowest measured temperature
(2 K). The Mn moments possess slight canting towards the easy axis within the a-b
plane, giving rise to small (~ 20 mug/f.u.) ferromagnetic (FM) moments within the a-
b plane. Small FM moment helps in the easy rotation of the Mn spin triangle, leading
to a very small hysteresis in the magnetization, Nernst, and Hall effect measurements
when the field is reversed. This suggests very small heat loss while reversing the
magnetic field direction, which makes it an excellent candidate for switching devices,
and other spintronic devices. Also, the location of Weyl points in Mn3Ge is such that
the intrinsic magnetic field originated due to Berry curvature can be equivalent to
the hundreds of Tesla. The anomalous Hall effect (AHE) is observed in the entire
temperature regime where non-collinear antiferromagnetic structure persists (365 K -
2 K), which makes it a good candidate for room temperature and low-temperature ap-
plications. The existence of Weyl points in a large temperature regime makes MnzGe
an ideal candidate to study the dynamics of Weyl points relative to the change in

temperature.

The strength of the exotic transport effects is determined by the location of Weyl
points relative to the Fermi energy, and the separation of the Weyl points. Therefore,
in this thesis, a detailed analysis of the transport and magnetic studies has been
performed, under various conditions, to determine how the Weyl points evolve with

the change in the various parameters.

This work is performed mainly in two parts: First, the magneto-transport properties
of Mn3Ge, with magnetic field applied along the different crystallographic axes, are
studied in detail. Further, the magnetic and transport properties of the Fe doped

Mn3Ge compounds are analyzed. Both the studies are summarized below.

Initially, we performed a detailed study of the transport properties of Mn3Ge with

the magnetic field applied along several crystallographic axes. Magneto-transport



studies were performed to look for the presence of the chiral anomaly. We have ob-
served the positive longitudinal magneto-conductivity (LMC), and planar Hall effect,
particularly, in the cases when the field was applied in the a-b plane. The temperature
and magnetic field dependent transport studies have shown that the positive LMC,
below 1.5 T, is most likely induced by the chiral anomaly effect. The strength of the
chiral anomaly decreases with temperature and almost vanishes near room tempera-
ture. Similar to the chiral anomaly, AHE also decreases significantly up to the room
temperature. This suggest that the location of the Weyl points, relative to the Fermi
surface, varies with the change in the temperature of the sample. Furthermore, the
evolution of the Hall coefficient with temperature shows a change in the dominant
carrier concentration type near 190 K. Change in the nature of high field magneto-
resistance behavior is also observed near 200 K, where metal to semimetal transition
is observed in the resistivity measurement. These observations suggest a topological
electronic phase transition in Mn3sGe, near 200 K, possibly driven by the metal to

semimetal transition of the sample near this temperature.

Weyl points are supposed to be robust in nature because of the 3D topological
protection. Therefore, we have studied the magnetic and transport properties of the
Fe doped Mn3Ge to determine the evolution of the Weyl points with respect to the
impurity and change in the magnetic characteristics of the compound. Furthermore,
since the magnetic symmetry of the crystal lattice plays a fundamental role in the
existence of the Weyl points, single crystal neutron diffraction measurements of the
22% Fe doped Mn3Ge sample were performed to determine the magnetic structure.
Our neutron diffraction data analysis, in combination with the magnetization of the
several Fe doped compounds, has revealed that the Mn3Ge type magnetic structure
persists up to the 26% Fe doped Mn3Ge compounds. Interestingly, AHE and signa-
tures of the chiral anomaly induced effect are also observed in the Fe doped samples,
however, only within the temperature regime where the sample possesses Mn3Ge type
magnetic structure. This signifies that the Weyl points are very likely to exist in the
Fe doped compounds, as long as the magnetic structure of the doped compounds
remains the same as the parent compound. In the case of 22% Fe doped compound,
the AHE vanishes in a temperature regime where the magnetic structure is collinear
antiferromagnetic. This implies that the existence of the Weyl points is intimately
linked with the magnetic symmetry of the compound. We observed that the mag-
nitude of the AHE decreases significantly with Fe doping. The positive longitudinal

magneto-conductance, which is the signature of the chiral anomaly effect, also de-



creases drastically as Fe doping increases. Therefore, it can be concluded that the
location of Weyl points moves farther from the Fermi surface as Fe doping increases.
The weakening of the AHE with Fe doping also suggests that the separation between

the pairs of the Weyl points decreases with an increase in Fe doping.
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1 Introduction and motivation



The fusion between topology - a mathematical concept - with quantum mechan-
ics gives rise to the new phases of materials in condensed matter physics, known as
topological materials. The physics behind the topological materials helps us under-
stand the origin of the underlying exotic transport phenomena. In search of exciting
emergent phenomena with exceptional transport properties, the scientific community
started looking for materials with strong electronic correlation blended with the ro-
bust topology of the electronic bands. The discovery of a large anomalous Hall effect
in a chiral antiferromagnetic system (MngSn) has triggered enormous experimental

and theoretical research in the field of topological materials and spintronics [1, 2].

Weyl semimetals are the special type of topological materials in which the 3D
Dirac points spilt into a pair of Weyl points with opposite chirality because of the
broken time-reversal symmetry, or/and broken space inversion symmetry. The unique
topological electronic bands near the Fermi surface results in a non-vanishing Berry
curvature in the system. In the case of Weyl semimetals, a pair of Weyl points act
as a source and sink of Berry curvature. The topological materials which possess
large Berry curvature in phase space act as if an intrinsic magnetic field is present
inside the system. However, unlike ferromagnetic systems, the magnetic field in phase
space cannot be measured using direct methods like magnetization measurements.
Experimental signatures of the Weyl semimetals include the observation of Fermi arc
surface state, and several exotic transport effects, like chiral anomaly, and anomalous

Hall effect, magneto-optical Kerr effect.

Among all the topological materials, special attention has been given to the non-
collinear antiferromagnetic Weyl semimetals because of several reasons. Most im-
portantly, because the antiferromagnetic Weyl semimetals do not generate a stray
magnetic field (life ferromagnetic materials), still, they give rise to anomalous trans-
port effects due to the presence of the intrinsic magnetic field. Such an intrinsic
magnetic field is generated by the pairs of Weyl points acting as a pair of magnetic

monopoles.

This thesis focuses on the microscopic and macroscopic measurements and analysis
of the parent and Fe doped Mn3Ge compound. Our primary goal is to look for the
evolution of various electrical transport effects (along the different crystallographic
axes) with the change in the magnetic field, temperature, and concentration of Fe
doping. We predict the qualitative nature of the dynamics of the Weyl points. With
the help of detailed analysis, we interpret the change in the location of Weyl points

relative to the Fermi surface and the evolution of the separation between a pair of
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Weyl nodes. The existence of Weyl points in the centrosymmetric systems relies on
broken time-reversal symmetry (TRS) or magnetic symmetry of the system. There-
fore, different neutron diffraction techniques were used to determine the magnetic

structure of the parent and doped sample in all the different magnetic regimes.

QOutline

The details of the scientific background of the research work are discussed in the
chapter 2. In the beginning, the theoretical understanding of topological materials,
the Berry phase has been discussed. After that, the origin of the anomalous Hall
effect is discussed. Subsequently, chiral anomaly and its experimental signatures are
discussed. In the end, the details of the scattering theory are discussed.

The details of the experimental methods and instruments used during our research
work are mentioned in chapter 3. Along with the several in-house measurements,
large-scale facilities have also been used during the research, which is also discussed
in this chapter.

Details of the synthesis of parent and Fe doped powder and single-crystal samples
are described in the chapter 4. The basic characterization of synthesized compounds
is also discussed here.

To look for the chiral anomaly and explore the characteristics of the Weyl point
in chiral antiferromagnets, the magnetic and transport properties of the Mn3Ge are
discussed in the chapter 5. Here, we attempt to analyze the qualitative behavior of
Weyl point and induced chiral anomaly effect with change in temperature, magnetic
field, magnetization, and lattice parameters.

Further, we started our study with Fe-doped Mn3Ge single crystals. Since the
magnetic structure of the doped sample is of primary importance, neutron diffraction
measurements of the Fe doped samples were performed and analysis is discussed in
the chapter 6.

We observed that a large range of Fe doped samples show Mn3Ge type magnetic
structure, which suggests that the Weyl points might exist in the doped samples as
well. With this motivation, we performed a detailed electrical transport measurement
and analysis of Fe doped samples, as mentioned in the chapter 7.

The combined analysis of chapters 5 - 7 gives a qualitative pattern of the dynamics
of Weyl points, which we have summarized in the chapter 8. The prospects of our

research are also discussed in the same chapter.
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2 Scientific background

2.1 Topology

Topology is the branch of mathematics, that deals with patterns of geometrical shapes.
Let’s begin with a simple example: Case I: a circle, square, and triangle are different
in shapes, but they are topologically equivalent as they can be interchanged into one
another just by reshaping. Also, they all have one thing in common- they have just one
hole to pass through, which is invariant. Case II: the shape- ‘O’ cannot be converted
to the shape of ‘oo’ by any means of twisting, folding, or bending. Therefore, ‘O’ and
‘o0’ are topologically different. One of the famous examples of topologically inequiv-
alent shapes is the Mobius strips, shown in Fig 2.1(a, b). Mobius strips are made by
twisting a ribbon and joining them end to end. Fig. 2.1(a, b) show Mébius strips
with one and two twists, respectively. Where, it can be noted that both the strips
cannot be converted into one another by any means without cutting it. Therefore,
Moébius strips are considered as topologically protected. Another famous example of
topological shapes is the knots in a string. Four shapes with a different number of
knots are shown in Fig. 2.1(c-f). All these shapes are topologically protected as they

cannot be into one another without cutting them.

ac o | O ée % f@
Figure 2.1: (Ref. [3, 4]) Mobius strips, made by joining them end to end, after twisting
them one and two times are shown in (a) and (b), respectively. The red

line illustrates a particular surface of the strip. (c-e) Different types of
topologically inequivalent knots.

After generalizing the above examples, it can be said that the shapes which can-
not be converted into each other without cutting, bending, or tearing are known as
topologically inequivalent. However, shapes which can be converted to each other by
cutting, bending, or tearing are known as topologically equivalent. The characteris-
tic of the material which remains the same while twisting, stretching, or bending, is
known as topological invariant quantity. Topological shapes are meant to be robust in
nature. In the Fig. 2.1, the number of twists and knots are the topologically invariant

quantity.
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2.2 Topological materials

Until a few decades back, topological phases were observed in the case of 2D materials,
which give rise to the integer quantum Hall effect. However, it was realized by the
phenomenal work of Haldane (1988) [5] that the topological phases can exist in 3D
materials, which was later verified by the discovery of topological insulators [6, 7].
Topological states are predicted by a mathematical invariant quantity, which, in the
case of topological states, is the integral over the electron wave function. Similar to
the real space knots shown in the Fig. 2.1(e, f), different quantities (like- integral over
the electron wave function in k space) of the topological materials remain topological
invariant, which makes it robust in nature. In another word, it can be said that the
‘invariant quantity’ in topological materials is ‘knotted’ in the k space, as long as the

topology of the electronic bands does not change [4].

Valence and conduction bands show different types of dispersion relations in various
materials. The presence of strong spin orbit coupling (SOC) in 3D materials can lead
to the inversion of valence and conduction bands near the Fermi surface as shown
in the Fig. 2.2(a). The intricate connection between the topology of the bands and
various symmetries like space inversion (SI), and time reversal (TR) can give rise to

various topological states of matter, which we will discuss in detail below.

2.2.1 Topological insulators

In some cases, inverted electronic bands of 3D solids create a band gap inside the bulk,
leading to a non-conducting state in the bulk, as shown in Fig. 2.2(b). However, due
to its topology, they possess metallic or gapless electronic states near the surface of the
material. Such materials with insulting bulk but conducting surface state are known
as topological insulators. Ref. [4] justifies that in the case of topological insulators,
the metallic surface has to exist. The metallic surface state within the insulating bulk
band gap is protected by the time-reversal symmetry. The surface states show linear
dispersion (like Dirac cones), where electron momentum and spin are perpendicularly
interlocked [10, 8]. The topological invariant quantity for topological insulators is
given by Ref. [11]. The examples of Topological insulators are BisSes and family [12],
HgTe [13], Bi,Sb(1_,) [14, 15].
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Figure 2.2: (Ref. [8, 9]) The overlap of conduction and valence bands inverts the elec-
tronic band, which is shown in (a). Weak or absent the spin orbit coupling
(SOC) gives nodal line semimetal shown in (a). Strong SOC may lead to
topological insulator (TT), Weyl semimetal, or Dirac semimetal, which are
shown in (c, d). (d) shows the gapless surface state which is present in
TIs. The orange circle and spins in (e, f) show spin-momentum locked
surface state corresponding to the TI, and Weyl semimetal, respectively.
(g) shows the splitting of the Dirac point, induced by the broken symme-
try, into a pair of Weyl points shows. (h) shows Weyl semimetal of type-I.
(i) Weyl semimetal of type-II, where Weyl cones are tilted towards the z
axis. This modifies Weyl Hamiltonian as: H, = hvp(xk- o + vk, ), where
v, is the tilt parameter [9]. |v|<1 (|y|>1) leads to the type-I (type-IT) Weyl
nodes. In the case of type-II Weyl nodes, the Fermi energy crosses the
lower and upper band as well, giving rise to the electron and hole pockets.

2.2.2 Nodal line semimetal

In some materials, the spin orbit coupling (SOC) is very small or small, leading to the
crossing of the conduction and valence band along a line or circle, as shown in the Fig.
2.2(a) [16]. Material with such band crossing is known as nodal line semimetals (NLS).
[16, 17, 18]. Such a closed loop of nodal lines forms within the 3D Brillouin zone (BZ)
exist when inversion symmetry is present. The nodal line semimetal comes in several
forms, depending on the band structure and underlying symmetry protection. When
time reversal and space inversion symmetry is protected, the nodal line semimetals
are entirely gapless only in the presence of SOC. Closed nodal lines also exist when the
mirror plane is present in non-centrosymmetric materials. CagPy [19], ZrSiS [20], and

their family are the typical examples of such materials. Apart from the closed nodal
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lines, different types of symmetry can lead to the straight nodal lines also, across the
BZ [18]. Being a topological material, the topological invariant quantity in nodal line
semimetals is the winding number (w), defined as: w = [, A-dl. Where, I denotes the

nodal line, and A denotes the Berry connection.

2.2.3 Dirac semimetal

Dirac semimetals are one of the consequences of band inversion in presence of the
strong SOC. In this case, band gaps open near the crossing of the bands throughout
the ring, except at a few points, where the valence and conduction band touches each
other known as Dirac point. 2D Dirac semimetals are easy to visualize compared to
the 3D Dirac semimetals, where energy dispersion is linear along all the three k,, k,, k.
axes. Dirac semimetals are assumed to host Dirac fermions as (low energy) quasipar-
ticle excitations, which give rise to exotic transport phenomena, including metallic
surface states. 2D Dirac semimetals are fragile and topologically unprotected because
they can be gapped simply by introducing the magnetic field, or other perturbations.
On the other hand, 3D Dirac semimetals are stabilized by a crystalline point group
symmetry, and topologically protected by the space inversion and time reversal sym-
metry of the material. The topological Dirac semimetal phase can also be regarded
as an intermediate state between the transition from normal insulators to topological
states [21], as shown in the Fig. 2.3.

A B Topological Dirac Semimetal (TDS)

Regular insulator | Topolog

IEFU N
A

Band inversion

Figure 2.3: (Ref. [21]) Evolution of the band structure from normal insulator to topo-
logical insulator, determined by the strength SOC, which can be achieved
by the doping of the sample [22]. The symbols ‘4’ and ‘-’ denote odd and
even parity of the bands near the point where time-reversal symmetry is
invariant.
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2.2.4 Weyl semimetals

The nodal points of Dirac cones are doubly degenerate, where Weyl points of opposite
chirality coincide. Therefore, often Weyl semimetals are also referred as topological
Dirac semimetals. The doubly degenerate Dirac points are protected by the space
inversion symmetry and time reversal symmetry, Therefore, destruction of at least
one of time reversal or space inversion symmetry lifts the degeneracy, leading to the
emergence of a pair of Dirac points with opposite chirality, as illustrated in the Fig.
2.2(c, g). Such a pair of Dirac points are referred as Weyl points, and the materials
which host Weyl points are known as Weyl semimetals.

In 1928, P. A. M. Dirac led a foundation for the unification of special relativity

with quantum mechanics using the Dirac equation:
(ihy*0, —mc)y =0 (2.1)

Where, 1 = 0 corresponds to the time, and p = (1,2,3) denotes three spatial dimen-
sions. Its solutions predict three relativistic particles namely Majorana, Dirac, and
Weyl fermions. In 1929, Hermann Weyl suggested that the massless Dirac equation

give rise to the Weyl equation:
Y Dyuah =0 (2.2)

Where, v# = (70 4t 42 43) = (I 0, 0, 0.), I, denotes identity matrix. o; (i = z, ¥,
z) denote the " component of the spin matrices. The solution for the Weyl equation
can be determined by using trial wave function of form v = ye ¥T, where x is a two

component spinor. So, the Weyl equation can be further simplified to [23]

100, =Fep-oh, = Hop, (2.3)

Here, p and o denote the electron momentum, and the spin matrices. c is the speed
of light. H, refers to the Weyl Hamiltonian. The above equation suggests that Weyl
Fermions propagate antiparallel or parallel to the electron spin, which determines
the chirality of the Fermions. It is important to notice that the existence of a pair
of Weyl points with opposite chirality, in 3D, is natural, so an odd number of Weyl
nodes cannot exist in a material. To realize Weyl fermions, they have to separate apart
in k space by lifting the double degeneracy of the band at the Dirac points. Double
degeneracy of bands arises when space inversion (SI) and time reversal (TR) symmetry

is present in the system, or the system remains invariant under the combined (SI +

10
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TR) symmetry operation [23]. When only TR symmetry is present, the degeneracy
is lifted because crystal momentum gets reversed. Similarly, when only SI is present
and TR is broken, again the degeneracy is lifted. Therefore, the topological transition
from Dirac to Weyl semimetal is strictly governed by the underlying symmetry of the
material. Under the application of strain, external pressure, magnetic field, or any
other perturbation, the Weyl points move around in the phase space, but cannot be
destroyed. The only way to destroy Weyl points is to annihilate the pair of Weyl
points into each other. Such robustness originates due to the non-trivial topological

protection.

The form of Weyl Hamiltonian (H, = Fcp- o) in condensed matter physics remains
the same as particle physics. However, the velocity of Weyl fermions in solid states is
considered to be Fermi velocity (vr), instead of the velocity of light (¢). Therefore,

Weyl Hamiltonian specific to condensed matter physics can be written as

H. = +hvrk-o (2.4)

2.2.4.1 Topological protection in 3D

In a minimal form, Hamiltonian for 2D (z-y plane) Dirac points can be written as
[24]

+hop(kyoyp + kyoy) (2.5)
After adding a perturbation term along the z axis - uo,, the 2D dispersion relation

becomes

+hoplkyop + kyoy| + po, (2.6)

Which shows a gap in Hamiltonian induced by the perturbation term. Therefore,
additional term along z axis can create a band gap (along z component) in case of

2D Dirac materials.

Now, let us consider the case of 3D Dirac points. Assume that the conduction
and valence band touch at a point kg, within the Brillouin zone (BZ). So, the Weyl

Hamiltonian can be expanded (Taylor series) near the ky as [25]
H, (k) = xhvp(k-ko) - o (2.7)

Where x = + denotes the chirality of the Weyl points. In this case, the Hamiltonian

11
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(a) K, (b) Ei (c) ke

Figure 2.4: (Ref. [26]) The band structure corresponding to the Hamiltonian men-
tioned in Eqn. (2.13).

can be expanded as [24]
xhvp(k - o = [kopoy + koyoy + ko.0]) (2.8)

Now, it is interesting to see that all the dimensions have been used up, so the addition

of no, will only modify it as
xhvp(k - o = [kozoy + koyoy + (kos +1)0:]) (2.9)

It is obvious to note that the features of the H(k) have not been destroyed as long
as the translation symmetry of the crystal persists. If transnational symmetry is
allowed, the addition of a perturbation term only translates the location of the Weyl
point along z component, rather than destroying the gap. It is also worth noting that
the dispersion around ky is still linear (near Weyl point) in all the 3 directions. Usually,
the perturbation in the Hamiltonian can only change kg and vg, which will change
the location and slope of 3D Dirac points instead of opening a gap. Therefore, 3D

Dirac points are regarded as robust in nature because of such topological protection.

2.2.4.2 Location of the Weyl points

The massless Hamiltonian with Dirac point at kg is given as

H =zvpo - (k—ko) (2.10)

12
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Now, if space inversion (SI) symmetry is present in the system,

k—--ko-o

H—H =z+vpo-(-k-ko) =Fvpo - (k+ko) (2.11)

This suggests that the Weyl point at -k has opposite chirality compared to the kg.
Therefore, systems with only broken TR symmetry have at least two Weyl points
separated in the k space. It can be verified by the following model. The two-band
model Hamiltonian for Weyl semimetals, with broken TR symmetry, and persistent
ST symmetry has been predicted (initially) by Ref. [24], which can be given as a 2 x 2

matrix form as

H(k) = —[¢(2 - cos(kyag) — cos(k.ap)) + 2t (cos (kyag) — cos (kyap)) o,  (2.12)
—[2t, sin (kyao)]oy, — [2t,sin (k.ao)]o,

Where, ( is constant, ¢; (i = z,y,z) denote the hopping parameter, k; denote crystal
momentum, ag is the lattice parameter. The band structure corresponding to the
defined #H(k) is shown in the Fig. 2.4. It is easy to find that the (k) vanishes
at k = (£ky,0,0). The H(k) clearly shows that Weyl points exist on the k, axis,
separated by |2k,| from each other. The separation between a pair of Weyl points
varies depending on the extent of the broken time reversal symmetry or the magnitude
of the Zeeman splitting created by the internal magnetic field in the magnetic systems
[23].

In another case, where TR symmetry exists,

k--k,o—--o

H > H' = 2op(-0) - (-k — ko) = 2vpo - (k + ko) (2.13)

Interestingly, in this case, the chirality of the Weyl node at —kg is the same as the
chirality of the Dirac point at kg. Therefore, in this case, to visualize Weyl points,
SI symmetry has to be broken. As mentioned by Ref. [27], in the case of broken SI
symmetry, Dirac points split in energy space, rather than in k space, resulting in the
formation of at least 2 pairs (total 4) of Weyl points. It is important to note that in
both cases of broken symmetry, the Fermi level passes through both the Weyl cones

to the same level. So, there is no current flowing within the opposite Weyl cone in
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TR symm. | SI symm. Consequences Min. Ny
broken broken Weyl nodes exist 2
broken exist Weyl nodes of opposite chirality at kg 2

exist broken | Weyl nodes of same chirality exist at +kg 4
exist exist Weyl points do not exist 0

Table 2.1: Conditions for the existence of Weyl nodes. TR symm. and SI symm.
denote time reversal and space inversion symmetry, respectively. ‘Min.
Ny” implies the minimum number of Weyl point allowed in the given case.

ambient conditions, even if one Weyl cone lies higher than the other.

In summary, broken TR symmetry splits the Dirac nodes in k space, keeping the
energy constant. However, broken SI symmetry splits a Dirac point in energy space,
keeping the momentum constant. The possible location and a minimum number of

Weyl points determined by the protected and broken symmetries are summarized in
Table 2.1.

2.3 Surface states in topological materials

As described by the [4], the topology of material is different outside (vacuum) and
inside (bulk) the material, and this change occurs at the surface of the material.
Therefore, metallic surface states have to exist in all types of topological materials,
either insulators or semimetals. However, it is the nature of the bulk state which
differentiates the Weyl, Dirac semimetals, and topological insulators. Usually, it is not
easy to determine the type of material using transport measurements. Whereas, the
angle resolved photoemission spectroscopy (ARPES) technique can be helpful to probe
the bulk of the material (in the phase space). ARPES measurement works based on
the photoelectric effect. When a photon hits the material surface at a particular angle,
the momentum and energy of the emitted electrons are measured, which provides
information about the energy transferred to the material, which provides information
about the energy dispersion in the material. Increasing the energy of the incident
photon provides the details of the bulk band structure of the sample under the ARPES
study.

It is one of the important features of topological materials that show various types
of open or closed loops on the metal surface in k space. In the case of topological

insulators, metallic surface states show a closed loop as observed as shown in the

14



2.3 Surface states in topological materials

a m
o . o o Y
> o]
X o . @
o Q L ]
kx k){ k)( k){ k)( k){
Trival insulator Critical point Weyl semimetal Critical point Topo. insulator
b c d

0015 | (AR
C 00 —

& 0015 -
047 05 053

z
k, (2n/a) K, | o =3 P
‘ /o . P

k

X

2n/ a)

Figure 2.5: (Ref. [28]) (a) Various surface state corresponding to the mentioned topo-
logical materials formed by a tuning the parameter m. (b) Calculated
Fermi arc surface state of TaAs. (c) Path of the electron when the mag-
netic field is applied to a Weyl semimetal, along the z axis. Straight
arrows show the path of the electron in real space. Filled and open dots
show Weyl points of opposite chirality. Red and blue arcs on the surface
(known as the Fermi arc surface state) demonstrate the path of electron
momentum in k space, forming a closed loop via the bulk of the material.
(d) Surface states corresponding to the topological insulator. Here, it is
clear that the electron does not travel through the bulk, The surface state
forms a constant energy contour.

Fig. 2.5(a). However, a change in the strength of the spin orbit coupling may close
the band gap in the bulk, and the Dirac state is formed (in the bulk). In this case,
also, the closed surface states are observed. However, a bulk state is observed as well,
as shown by two gray dots (diametrically opposite to each other) in the Fig. 2.5(a)
(second last). If the TR symmetry is broken, the bulk Dirac state show splitting and
the circle is split into two arcs. These arc-shaped surface states are known as Fermi
arc surface states. Fig. 2.5(a) demonstrates that Weyl and Dirac semimetallic states
are intermediate stages between topological and trivial insulators.

Fermi arc is considered the unique signature owing specifically to the Weyl semimet-
als. TaAs is an excellent candidate for the Weyl semimetal. Being a non-magnetic

system, the presence of Weyl points very near the Fermi surface makes it a very good
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Figure 2.6: (Ref. [29]) (a) Blue and red points and arrow denote Weyl points of
opposite chirality. The green arc shows the Fermi arc surface state. (b)
Theoretically calculated location of Weyl points and corresponding Fermi
arcs. ', X, M,Y denote various symmetry points in the TaAs crystal. (c)
Experimental determination for Fermi arc surface state (blue circles). (d)
Energy scan of the TaAs, using ARPES, shows linear dispersion, and two
Dirac cones separated symmetrically about k, = 0, suggesting them to be
a pair of Weyl points with opposite chirality.

candidate to observe Fermi arcs. Interestingly, a clear signature of the Fermi arcs has
been observed in the ARPES measurements of the TaAs by Ref. [29], as shown in the
Fig. 2.6. This was the first experimental discovery of a Weyl semimetal (TaAs). Arc
shaped states were observed, which originate from one point and vanishes at another
point, corresponding to the Weyl point of opposite chirality. It was observed by Ref.
[29] that the arc shape disappears as the energy of the incident photon is increased
to look deeper in the energy space. This suggests that the Fermi arc shape exists
only on the surface, verifying it to be a unique surface state observed in the Weyl
semimetals. Along with the Fermi arc, Weyl cones have also been observed in the

energy scan of the ARPES measurement, as shown in the Fig. 2.6(d).

2.4 Berry phase and Berry curvature

According to the adiabatic theorem, if the Hamiltonian of a system changes very
slowly, the system remains in the same (time-dependent) ground state. However, the
phase of the system changes. Such changes in phases can be understood by a few
examples. Let us recall the famous example of an oscillating pendulum whose pivot is
moving very slowly (compared to the average speed of the pendulum) on the surface

of Earth in the same way as mentioned in the Fig. 2.7(a) [30]. As the pendulum
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traverse from pole (P) through Q-R and back to Q, the plane of the oscillation of
the pendulum changes without changing the oscillating frequency. The change in the
plane of oscillation can be considered as a phase change of the pendulum caused by
the slow motion of the pivot. The plane of oscillation changes by © compared to
the starting plane. It is interesting to note that the © is equal to the solid angle
(Q) subtended by the total path as Q = A/R? = [(1/2)(©/27)47wR?]/R? = ©, where
R is the radius of the Earth. So, after a circular path, the pendulum changes its
phase, keeping the frequency constant. Another famous example of adiabatic phase
change is the Foucault pendulum, which goes through a similar adiabatic process. In
contrast to the previous case, the pivot of the oscillating Foucault pendulum remains
at a fixed place (Lattitude position 6y), but the rotation of Earth completes the
cycle after 24 hr, as shown in the Fig. 2.7(b). In this case, the solid angle subtended
= = [sinfdfd¢ = 2m(1-cosby) [30]. So, after every rotation of Earth, the pendulum
changes its plane of rotation by 27(1 - cosfy). Therefore, change in the phase of the

system is natural in the adiabatic process.

Z

( a) Pendulum (b)

Figure 2.7: (Ref. [30])(a) shows the curvature of the earth’s surface and the path of
the pivot of an oscillating pendulum moving from the north pole to the
equator, and then back to the north pole. (b) shows the path of the pivot
moving in a circular path at a constant latitude position (6).

Similar to the real space example, an analogy can be made for quantum systems
also. The quantum state may change the phase if one of the parameters traverses
through a close path. The acquired phase change due to such adiabatic change in the
parameter is known as Berry phase.

Let us assume a Hamiltonian H (kg), constant with time, for a system starting in
eigenstate - |W,,(¢)).

H (ko) [Wa(8)) = Ba [ 0,(2)) (2.14)
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In this case,
() = e (k) (2.15)

However, if the Hamiltonian is changing adiabatically with time, through k(¢), which

can be written as

H(k(1))[¥(1)) = En(k(1)) [T (1)) (2.16)

In this case, the solution for the eigenstate is

W (1)) = 0 [n(k)) (2.17)

8(1) = 1/h f En(k(7))dr - 72 (2.18)

t k(t)
=i [ (n((r)| % n(k(r))dr = [ A1) dk (2.19)
0 k(0)
Where, n(k) is the Bloch wave function defined for an electronic band with wave
vector k. A, (k) is called the Berry connection or Berry potential, and 7, is known
as the Berry phase [31]. In the case of a cyclic process, the system depends on the

closed path. So, in the case of closed contour (C),
= j§ A, (K) - dk (2.20)
C

It is interesting to observe that the Berry curvature depends on the path, irrespective

of the time taken.

The Berry connection mentioned above can be written in compact forms as

A, (k) = =i (n(1)] Vi Jn(K)) (2.21)

A (k) can be regarded as vector potential in electromagnetism. So, a quantity analo-

gous to the magnetic field can be defined as

(k) = Vi x A, () (2.22)

Where, Q,,(k) is knows as the Berry curvature., which act as to the magnetic flux

density in k space. Now, using Stoke’s theorem, and with reference to the Eqns.
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(2.20, 2.22), Berry phase can also be written as

Yo = f 0 (k) - dS (2.23)

Where, dS denote the area enclosed by the contour C.

In the case of Weyl semimetals, Weyl Hamiltonian is given by two bands, symbolized
by ‘+’. The Berry curvature corresponding to the + band with chirality as x can be

given as [26]
k

Qi(k) = X598

(2.24)

In the case of solids, electron momentum is the parameter that determines most of
the properties. The electron Wavefunction can change within the unit cell, leading
to the origin of the Berry phase and Berry curvature in solid matter. The integral of

the Berry curvature is a conserved quantity.

% [ fu)-as-c, (2.25)

Where, C,, is an integer, known as the Chern number (for the n'* electronic band).
The Chern number, which is a topological invariant quantity, determines the local
stability of the Weyl points. It is important to mention that the Chern number is
defined in the case of non-degenerate bands, where an electronic band gap exists.
Therefore, C,, > 0 only if TR symmetry is broken. The easiest way to break TR
symmetry is the application of a magnetic field. Therefore, one of the famous examples
of the presence of Chern number is the quantum Hall effect, where the application of
a strong magnetic field in a 2D system (electron gas), landau level separates, leading

to the quantization of Hall conductivity as:

k. dk
HE _ X Y
Q! _Lf Q. (koo k) ooy

Z

e? e?
] 5 = C 7 (2.26)

The quantity within [...] is an integer, equal to the Chern number (C), quantifying
the non-zero topological edge state within the Landau gap created by the separation
of the bands [32]. Q.(k,, k,) denote z component of the Berry curvature. The quan-
tization of the quantum Hall effect has been verified with the accuracy of 1/107. This
is possible because of the non-trivial topology of the electron wave functions, which

cannot be perturbed easily.
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Figure 2.8: (Ref. [33]) Red and blue Dirac cones in (a) representing Weyl points of
opposite chirality. (b) shows a pair of Weyl fermions in phase space. The
red and blue show the flux of the Berry curvature from one monopole to
another, illustrating the flux of the magnetic field between two monopoles.

2.5 Anomalous transport properties

As stated above, the presence of Berry curvature in solids is equivalent to the magnetic
field in phase space. If the ’band crossing’ host Weyl Fermions, each Weyl point acts as
a sink or source of the Berry curvature, which is equivalent to the magnetic monopole
in real space Fig. 2.8(a). The ‘virtual’ magnetic flux in k space is illustrated in the

Fig. 2.8(b).

2.5.1 Anomalous Hall effect

Hall resistance arises when an external magnetic field is applied. However, non-zero
Hall resistivity can be observed even in the absence of a magnetic field. Such type
of Hall resistance is known as the anomalous Hall effect. The factors leading to

anomalous Hall signals can be intrinsic, and extrinsic as well.

2.5.1.1 Extrinsic contribution

Skew scattering: Originated by the asymmetric scattering of electrons due to the
effective spin orbit coupling. This contribution is proportional to the lifetime of the
Bloch electrons. Its contribution dominates only in very pure crystals. In this case,
pirew = giew p2 [34]. Where, p is the normal resistivity of the compound, o$F* denotes
the Hall conductivity due to the skew scattering.

Side jump scattering: This contribution comes as a result of the spin orbit coupling
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between the electrons scattered from the impurities. The electrons are deflected in
the opposite direction as they approach or leave the impurity. This contribution is
independent of the transport lifetime [34].

Magnetization: Anomalous Hall effect can arise in magnetic materials because of
the unequal population of the magnetic domains. Magnetization (M (T, H)) induced
Hall resistivity is proportional to the magnetization of the sample (p¥ (T, H)) o<
M(T,H) [34]. So, if non-zero remanent magnetization is present in the compound, a

corresponding anomalous Hall effect may also be observed.

2.5.1.2 Intrinsic contribution

In the case of 3D materials, the intrinsic anomalous Hall effect UZ.Ij”t due to the Berry

curvature can be formulated [35, 34] using the linear-response theory as:

fnt_—z f i (60 ()00 (8) (2.27)

Where, f(en(k)) is the Fermi-Dirac distribution function. The Berry curvature for
nt* band (2, (k)) is defined as

(1 (1) e H 1)t ()} (1 (1) B, H ()t (1))
(i) =2m ), (En(K) — B (K))?

(2.28)

The transformation of Berry curvature (£2(k)) under time-reversal (T'R) and space-

inversion (S7) symmetry is given by:
TR = Q(-k) = -Q(k) (2.29)

ST = Q(-k) = Q(k) (2.30)

These symmetry properties suggest that the integral over the BZ vanishes if time-
reversal symmetry is present in the material. Therefore, to obtain the non-zero trans-
verse conductivity originating from the non-trivial topology of the systems, the time
reversal symmetry has to be broken. The integral of the Berry curvature can be
calculated over a small gaussian surface around a Weyl point, which gives the Chern
number (C') = £1. Where + and - signifies whether the Weyl point acts as a source
or sink of the Berry curvature.

Since the Weyl points also illustrate magnetic monopoles, the observation of non-

zero Hall resistivity without any external field is expected in the Weyl semimetals
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as well. Considering a simple model of a magnetic Weyl semimetal, with one pair
of Weyl points near the Fermi surface, the magnitude of intrinsic Hall conductivity

(oint) can be determined by the separation of the Weyl points (Aky, ) as [32, 36]

int _ D,
W h 2r

It is intuitive to guess that to achieve large intrinsic Hall conductivity, Weyl points

(2.31)

with opposite chirality have to be largely separated, which can be achieved by time
reversal broken symmetry, or the application of the external magnetic field. In a few
cases, the fictitious magnetic field induced by Berry curvature in Weyl semimetals is
very large (up to 200 T in Mn3Ge [37]) compared to external magnetic field. In that
case, the external magnetic field has negligible effect on the separation of the Weyl

points, and induced intrinsic Hall conductivity.

2.5.2 Chiral anomaly

One of the most intriguing properties of Weyl semimetal is the chiral anomaly effect.
In particle physics, the chiral charge is a conserved quantity. However, in the case
of solid state materials hosting Weyl Fermions, when an external magnetic field is
applied in the direction of the electric field, the chiral charge is not conserved quantum
mechanically, leading to the huge chiral current. This effect of non-conservation of the
chiral current is known as the chiral anomaly effect, also known as Adler-Bell-Jackiw

anomaly [38].

2.5.2.1 Longitudinal magneto-resistance

One of the primary pieces of evidence of the presence of chiral anomaly is a sharp
decrease in magneto-resistance of the sample when the magnetic field is applied par-
allel to the direction of the electric current in the sample. The consequence of the
magnetic field applied parallel to the electric field can be determined in a simple way
using the dispersion relation. The dispersion relation corresponding to chiral Weyl

points can be given as [41, 42]

E, = vp[sign(n)]\/(hk - B)? + 2h|n|eB (2.32)

Where, n =0, +1,£2, ... denote landau level, + correspond to the chirality of the Weyl

cones. It can be noted that the n = 0 Landau level has linear dispersion with a
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Figure 2.9: (Ref. [25]) Origin of the chiral anomaly. The dispersion of the lowest
band is opposite for the Weyl points with + chirality. Top: figures show
the equilibrium of left and right-handed Weyl points in the presence of the
magnetic field and the absence of an electric field. Black and gray dots
represent filled and empty states. Bottom: the same Weyl Fermions under
the application of electric and magnetic field along the same direction,
which results in the displacement of states by dk (o<—E) along the field
direction. This creates an imbalance in the electronic states, leading to
additional conductivity in the material.

slope determined by the chirality of the Weyl node. If the chemical potential is very
small, at a very low temperature (quantum limit), only the lowest landau level will

contribute. So, in this case,
Eo =vp[sign(n)](hk-B) (2.33)

The chiral current density ( j, ) corresponding to zeroth Landau level has been derived

by the Ref. [42], using the semiclassical approach (hk = -cE), as

8jx e3

X - X157 (E-B) (2.34)
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Figure 2.10: (Ref. [39, 40]) Chiral anomaly in Dirac semimetal - NagBi. NasBi be-
comes Weyl semimetal under the application of the external magnetic
field, because of the broken TR symmetry. The Dirac cones split into
Weyl cones in the same direction as the field is applied. When the
magnetic field is applied parallel to the electric current, chiral anomaly-
induced negative magneto-resistance (MR) is observed, as shown in (a),
corresponding to the NasBi Dirac semimetal. Angular MR and planar
Hall effect for the NasBi is shown in (b, c), respectively. Sample contacts
and measurement setup for (b, c¢) are shown in the (b) inset.

This suggests additional current density in the presence of non zero E - B. The
above derivation is performed in the quantum regime limit (n = 0). However, a
chiral anomaly not restricted to the quantum limit, charge pumping between chiral
nodes has been expected to be in the semiclassical regime as well [43, 44]. The above
equation can be further simplified and generalized, after which the field dependence of

longitudinal magneto-conductivity (o;;) in type-I Weyl semimetal is given as [44, 45]:

etr, 5

0i=0p+-—r, 5
AmihA 2

(2.35)
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2.5 Anomalous transport properties

Where, the first term, op, is the Drude conductivity, and the second term is the
longitudinal magneto-conductivity (LMC) contribution due to the chiral anomaly.
T. is the charge relaxation time due to the internode scattering of the electrons.
w1 is defined as the chemical potential relative to the Weyl points. The quadratic
magnetic field dependence of the LMC is valid at a low magnetic field. However,
at a high field (when the cyclotron frequency (w.) is much greater than intravalley
scattering frequency), the field dependence of the LMC saturates [44]. The increase
in conductivity, is experimentally observed in the form of decrease in longitudinal

magneto-resistivity, as shown in the Fig. 2.10(a).

In contrast to the type-I Weyl semimetals, the Weyl points in type-II semimetals,
are tilted towards a particular axis, which gives rise to linear magnetic field depen-
dence of the LMC when measured along the tilt axis [46, 9, 27]. However, the LMC
show quadratic magnetic field dependence (Eqn. 2.35) when it is measured along the

axes, which are away from the tilt axis.

Since negative MR (p(B)) is observed as long as the magnetic field has a component
along the electric current, clear angular dependence has been observed when the
magnetic field is rotated, making an angle () with respect to the electric current
direction [1, 39, 40, 47]. As mentioned by the Refs. [43, 48], the angular dependence
of MR should follow:

X cos? 6

1
UB,0) - p(B,0) = — 2"

(2.36)
Where, x = (p, = py)/pj- It is interesting to note that in case y<<1, the above

equation can be reduced to

2 Y(B.0) - p(B,0) = i(XCOSZ 9) (2.37)

The presence of y in angular MR is the key parameter to distinguish it from the
conventional angular MR dependence. The increase in the magnitude of x led to the
sharp angular dependence of MR originating from the chiral anomaly effect. Angular
narrowing plays an important role to distinguish MR contribution from the magne-
tization originated MR, which may also show Eqn. (2.37) type angular dependence
in the case of magnetic materials [49]. For Weyl or Dirac semimetals, sharp angular
dependence has been observed in some compounds experimentally [37, 50]. However,

Eqn. (2.37) type behavior has also been observed in many Weyl semimetals [47, 40],
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as shown in the Fig. 2.10(b).

2.5.2.2 Planar Hall effect

In addition to the giant negative longitudinal MR, the large planar Hall effect (PHE)
has also been considered as a promising sign of the chiral anomaly effect in Weyl
semimetals [43, 48]. Planar Hall effect is measured when transverse (Hall) voltage
is measured with applied magnetic field within the sample plane. In normal metals,
transverse voltage is expected to be zero as long as magnetic field lies in the sample
plane. However, in Weyl semimetals, non-zero Hall voltage is obtained even when
magnetic field lies in the sample plane. The PHE shows oscillation when magnetic
field is rotated within the sample plane and follows [43]

pPHE =—(p. - p”)sin90089 - (pn;2m) sin 26 (2.38)

Here, as mentioned previously, # denotes the angle between magnetic field and the
electric current direction. It can be noted that the magnitude of PHE is intrinsically
determined by the relative magnitude of the negative longitudinal MR (p; - p.),
which is expected because the PHE is a consequence of the angular dependence of
the (anisotropic) MR [48]. An example of the PHE in Na3Bi (Weyl semiemtal under
magnetic field) is shown in the Fig. 2.10(c).

2.6 Magnetic Weyl semimetals - Mn3; X (X = Sn, Ge)

Most of well known Weyl semimetals where the Fermi arc is observed are non-magnetic
semimetals, where broken SI symmetry play important role in the emergence of Weyl
points. However, it has been predicted that the Hexagonal phase of Mn3Ge and
Mn3Sn compounds with broken TR symmetry exhibit Weyl points [51]. Interestingly,
the location of Weyl points is close to the Fermi surface, which led to the great interest
in these magnetic Weyl semimetals.

Mnz X forms a Hexagonal lattice structure with Mn atoms forming a Kagome-type
lattice, as shown in the Fig. 2.11(a). Both the compounds, MnzGe and Mn3Sn, are
antiferromagnetic below 365 K, and 420 K, respectively, with Mn moments oriented in
an inverse triangular fashion within the a-b plane [52, 53]. The ground state magnetic
structure of Mn3X is chiral in nature. The magnetic chirality can be calculated as

X = 2-[S; xS,], where, ¢ and j spins move clockwise. This suggests that the magnetic
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Figure 2.11: (Ref. [51]) Crystal structure of Mnz X and its symmetry planes are shown
in (a). The mirror reflection in z, y, z planes and time reversal symmetry
can be denoted by M,, M,, M, and T, respectively. Magnetic structure
of Mn3Ge in a-b plane is shown in (b). The symmetry axes are labeled
and shown as dotted lines. The symmetry planes and location of Weyl
points are shown in the 3D lattice structure in (c). The location of Weyl
points and corresponding Fermi arcs are shown in (d).

structure shown in Fig. 2.11(a) has positive chirality because spins rotate counter-
clockwise, as we move in a clockwise direction [54]. The crystal structure, symmetry
planes, and magnetic structure are shown in Fig. 2.11. It can be interpreted from
the Fig. 2.11(a, b), that layered Mn structures can be transformed into each other
by mirror reflection (M), followed by a translation () of the lattice by ¢/2 towards
the z axis. In total, MnsGe lattice possess M, T, M., T,{M,|t — §} symmetries, which
suggest lack of TR symmetry (denoted by T') in y — z plane [51]. Therefore, Mnz X
is allowed to host Weyl points. The presence of Weyl points and Fermi arc in Mn3 X
has been theoretically observed by the Ref. [51], as shown in the Fig. 2.11(d). Inter-
estingly, the Weyl points were observed to be tilted, which predicts a typical type-II
Weyl semimetallic behavior of Mns.X.

The magnetic structure of MnsGe remains the same below Néel temperature (365
K), down to the lowest measured temperature (2 K), which is not the case for MnSn.
Therefore, the Weyl semimetallic nature of Mn3Ge is expected in these large tempera-
ture regimes. This gives us a vast temperature regime to explore the dynamics of Weyl

points. As expected, anomalous Hall effect, anomalous Nernst effect, and anomalous
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magneto-optical Kerr effect have been already observed in Mn3Ge, down to the 2 K
[37, 55, 56, 57]. This strongly suggests the presence of an intrinsic magnetic field orig-
inated by Weyl points in Mn3Ge. However, a clear signature of chiral anomaly has not
been reported yet. Therefore, we have explored the electrical transport properties of
the Mn3Ge (chapter 5) to determine the presence of a chiral anomaly in this magnetic
Weyl semimetal. Further, Fe doped Mn3Ge compounds were also studied to explore
the characteristics of Weyl points with respect to the impurity, magnetization, and

lattice parameters.

2.7 Scattering

Scattering is a process in which a particle or wave deflects from its original path upon
the interaction with matter or any form of potential. In the case of elastic scattering,
the energy of the incident and diffracted wave/particle remains the same. Scattering
methods can be used to determine the microscopic properties of the materials. In
this thesis, elastic scattering methods have been used extensively to determine the

magnetic and structural parameters of the compounds.

2.7.1 Scattering cross section

Scattering experiments in materials can be analyzed in the far-field approximation or
Fraunhofer approximation because the distance between the location of the sample
and detector is much larger compared to the dimension of the sample. Under this ap-
proximation, incident and scattered waves, with wavelength A and )\’ respectively, are
assumed as plane waves propagating along k and k’ directions, respectively. Where,
k and k’ denote incident and scattered wave vector, respectively, as shown in the Fig.

2.12. The difference between scattered and incident wavevector
k'-k=Ak=Q (2.39)

Where, k (= 27ii/)), and k’ (= 27ii//)\') are the incident and diffracted wave vectors,
respectively. In the case of elastic scattering, |k’| = |k|, because A remains unchanged.
The quantity Q is known as the scattering vector.

In a scattering experiment, the intensity distribution is measured as a function of
the scattering wave vector (Q). The strength of the scattered intensity is determined

by the scattering cross section (o) of the scatterer, and the geometry of the experi-
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Figure 2.12: (Ref. [58]) Scattering geometry for the derivation of diffraction cross
section. Here, k,k’ denote the incident and scattered wave vector. ¢
is the arbitrary azimuthal angle corresponding to the scattering cross
section. 26, denotes the scattering angle with respect to the incident
wave vector.

mental setup. Scattering cross section can be determined for an experimental setup
having geometry shown in the Fig. 2.12. Generally, scattering intensity (1(2)) is

determined by the differential cross section, defined as

oo

d_a ~ d?c
a9 J dQdE"

E (2.40)

Where, F is the energy the of the incoming wave. Integrating the differential cross

section over 47 solid angle gives total scattering cross section as

A7

azf(;i—g)dﬁ (2.41)

0

Which is also equal to the total scattering probability within the 47 solid angle.
Interestingly, the o is independent of the energy.
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2.7.2 Basics of diffraction

The interaction between wave and matter is determined by the scattering potential
V(r). The interaction can be described quantum mechanically using the Schrédinger

equation as mentioned in the Refs. [58, 59, 60]

h? L0
Hy = (—%W + V(r)) W =ihet (2.42)

Where, m is the rest mass of the neutrons, in the case of neutron scattering. V =0
outside the sample dimension. The above equation can be solved using the method

of separation of spatial and temporal variables as

Y(r,t) = ((r)eE/h (2.43)

In the case of scattering under the Fraunhofer approximation (source and detector

scattering volume

Figure 2.13: (Ref. [59] ) Scattering geometry for far field condition: |r - r/|~|r|

are far from the sample), the solution for ((r) (at a distance far from the scatterer)
can be written as sum of incoming wave, with wave vector k, (e?*T) and scattered

spherical wave. So
el

- fk<9,¢>] (2.44)

r

C(I‘) N T 4 [

Here, fi(0,¢) denotes the scattering amplitude, which depend on the scattering ge-
ometry and scattering potential V(r). The solution for fix(6,$) can be obtained
approximately using the Green’s function G(r,r’), which is the solution correspond-

ing to the following equation

(%VQ +E) G(r,r')=6(r-1') (2.45)
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. eiklr—r']
G(I‘,I’ ) = m (246)

Where, |r - r'| denote the magnitude of the position of detector from the source, as

shown in the Fig. 2.13. F (:hQ2 f) is the energy of the incident plane wave. Using

Eqns. (2.42, 2.43), the Schrodinger equation can be simplified in terms of {(r) as

A2
(572 + £) ¢ = V(r)ct) (2.47)
2m

which can be solved for any V' (r’) in the form of Lippmann - Schwinger equation

given as
~ 20 [ GV () () 2.48
C(r) » Go(r) + 75 [ Glr,x)V(r')¢(")dr (2.48)

vol.

Where, (o(r) = e*T is the unscattered plane wave solution. wvol. denotes the in-
tegration to be performed throughout the volume of sample. Using R =r-r'~r
(far field approximation), and Q =k’ -k, the Green’s function can be approximated,
which modifies the Eqn. (2.48) to

~ ikR 2_m eikR ’L'QT’V !/ / d !/ 2 49
C(r) ~ € + h2 47TR € (r )C(r ) r ( ‘ )
incoming vol.
:F(Q)scatt.

Eqn. (2.49) is the final result, which describes the spatial variation of the scattered
wave in the direction of k/. F(Q)scu. is known as the scattering amplitude. The

quantity that is measured during the experiment is intensity (/), which is defined as

2
2m etk

h2 ATR

vol.

UV ()C(r)dr'| = |FIV(D)IP|  (2:50)

1(Q) & 52 = IF(Q)P =

Here, F[V(r)] denotes the Fourier transformation of the scattering potential (V'(r)).
Therefore, it can be concluded that the scattering intensity is the square of the mag-
nitude of Fourier transformation of V' (r). It is important to notice that the phase

(e'*F) is lost in the intensity, which is also known as the phase problem.
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2.7.3 Diffraction in periodic lattice
2.7.3.1 Bragg’s law, Ewald sphere, and Laue condition

When a coherent wave with wavelength A hits on the periodic lattice structure, the
diffracted wave forms constructive interference patterns at a certain grazing angle (6)
determined by the separation of the lattice planes perpendicular to the scattering

vector (Q). The diffraction pattern follows the Bragg’s law
2dhkl sinf = nA (251)

Where, dj; is the separation between two hkl planes, 6 is the grazing angle of the
incident beam as shown in the Fig. 2.14(a). In the case of Hexagonal lattice with

lattice constants a and ¢, the distance between two consecutive planes, djy;, is defined

as: )
4 h2 + hk + k2 1\2
K AV S Ve 2.52
Rkl [\/3 o + (C) ] ( )
@ ’ (b)
:Q o k k
k K
C : i
* (' Es “e b K
ey SN0 d sind dpi
L P ikl 5 d y
d cos B’
™ . e ® ° dcos &

Figure 2.14: Mllustration of the interplanar path difference observed by the incident
wave is shown in different ways in (a, b). k and k’ denote incident and
diffracted wave.

The condition for the diffraction can be approached differently, as shown in the
Fig. 2.14(b), where each atom can be considered a scatterer. In this case, the path
difference created by two scatterers (with distance d) has to be integral multiple of

the A\ to observe a constructive interference. So,

dcosf+dcosf =d-(h-A") = pA (2.53)
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Where, p is an integer. fi and n’ are related with k, k" as k = 2rfi/), k/ = 27’/ \.
For constructive interference, the change in wave vector, k’ - k = Ak = K. Where K
is the periodic reciprocal lattice vector. The condition Ak = K is known as the Laue

condition for the diffraction.

Reciprocal
lattice e

k

Crystal plane 0(0,0,0)

Crystal

Figure 2.15: (Ref. [61]) Ewald construction in reciprocal space for elastic scattering.

In the case of elastic scattering, the scattering vector, Q = K. The scattering vector

(Q) can be defined in real measurable parameters as

47rsin @

: (2.54)

Q[ =

Bragg’s law can be alternatively understood using the Ewald sphere construction
in reciprocal space, as shown in the Fig. 2.15. The Ewald sphere is a hypothetical
spherical surface with a radius of k, which lies on a reciprocal lattice point. In the
case of elastic scattering, k’ (scattered wave vector) lies on the Ewald sphere as well,
because |k’| = |k|. As 6§ varies, the constructive interference forms when k’ also lies on
a different reciprocal lattice vector, as shown in the Fig. 2.15. This can be justified
because if k and k’ lies on the reciprocal lattice point, Ak =k’ —k = K. Where, K is
the distance between two reciprocal lattice points. Therefore, the diffraction peak is
observed at 20 which follows the Laue condition: Ak = K.
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2.7.3.2 Diffraction from (non - magnetic) crystal

The condition for constructive interference can be determined by Bragg’s law as ex-
plained above. However, the scattering intensity depends on the position of the atom,
thermal vibration of atom, and scattering form factor of the atom (fscar.) located at

lattice points. The structure factor (F'(Q)erys.) for a crystal is given as

F(Q)erys. = 3, [1(Q) ¥ 1D (2.55)
’ fscatt

Where 7; is the location of atoms relative to any particular lattice point. The atomic
scattering factor, fscas., is the magnitude of (X-ray or neutron) scattering amplitude
corresponding to an isolated atom. f,..y. is unique to the particular element, and
depends on the source and types of scattering. As we will see below, in the case of X-
ray, nuclear, and magnetic scattering, the fy... is replaced by the atomic form factor
(fa), neutron form factor (or scattering length) (b), and magnetic form factor (f,,),
respectively. The strength of different types of feeuu., changes with |Q| (= @), as
shown in the Fig. 2.16. The term e"i is the Debye - Waller (DW) factor given as

er(TvQ) = €7Q2@ (256)

The DW factor is mainly dependent on the (u(7")), which is defined as the average
displacement of the j** atom, relative to the equilibrium position, due to the thermal
vibrations. It is obvious to infer that with an increase in the temperature, (u?) in-
creases, leading to the smear out the scattered intensity, which appears to be diffused,

far from the Bragg positions.

2.7.4 X-ray scattering

The scattering techniques using the X-ray are widely available, and very sensitive tech-
niques to probe the structural parameters of the crystals. For scattering purposes,
the wavelength of the incident wave should be comparable to the lattice constants.
Therefore, the typical wavelength of X-ray that can be used for crystal diffraction
experiments is order of ~0.1 nm. The corresponding momentum of X-rays is so small
that it scatters from the electron cloud, without interacting with the nucleus. There-
fore, in the case of X-ray scattering, fs.. is replaced by the atomic form factor (f.),

also known as X-ray form factor. f, corresponding to an atom depends on the atomic
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Figure 2.16: (Ref. [58]) Normalized scattering form factor of Cr corresponding to the
different sources of scattering is shown with respect to the change in
scattering vector (or scattering angle (26)).

electron density (p.-(r)) around the nucleus and is defined as

1@ = [ pe ()@ = Flp- (1)) (257)

fa(Q) decreases with an increase in scattering angle (26) as shown in the Fig. 2.16.
It is proportional to the number of electrons, which makes it difficult to differentiate
between atoms with the nearly same number of electrons. Other than this, light
elements are not ‘visible’ for X-ray if a heavy element is present in the crystal.

Since the typically available X-rays flux density is very high (~ 103 photons/(mm?-
sec.)), they provide very high resolution diffraction patterns during the experiments.
X-ray diffraction is preferably used for the determination of the details of nuclear pa-
rameters (like bond angle, bond length, lattice parameters) under various conditions,
like pressure, and temperature.

Also, since the magnetic form factor for X-ray is very small compared to the charged
form factor, the magnetic information of the crystal is, usually, not possible to deter-

mine using normal X-ray diffraction experiments.

2.7.5 Neutron scattering

Neutron scattering is a very sensitive and non-destructive tool to determine the mi-
croscopic nature of the crystals. It has several pros and cons as follows.

Pros: Neutron with wavelength ~0.1 nm has an energy of nearly 100 meV, which
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is large enough to penetrate the electron cloud and interact with the nucleus of the
atom. Therefore, the scattering factor of an element for neutrons depends on the
details of the nuclear structure, so the neutron cross section for atoms varies in a non-
systematic fashion, which can be helpful in several cases. For example, unlike X-rays,
neutron cross sections for Mn and Fe are very different in magnitude. Therefore, Mn
and Fe can be easily differentiated using neutron diffraction experiments, which is
very difficult using X-ray diffraction. Also, the neutrons are spin—% particles, which
makes neutron scattering a strong technique to probe the magnetic information of
the sample. We have used neutron diffraction techniques extensively to resolve the
fraction of Fe and Mn in the doped sample and determine the ground state magnetic
structure of the parent and doped samples.

Cons: The (monochromatic) neutron flux density available for the neutron diffrac-
tion experiments is ~10* neutron/(mm?2-sec.), which is 10° time smaller than X-ray
flux density [59]. Therefore, neutron does not provide high resolution information of
the lattice parameters, compared to X-ray diffraction. Also, because of low flux den-
sity, a large counting time of a large amount of sample is required during the neutron
diffraction experiments.

Neutron scattering involves nuclear and magnetic scattering. Thankfully, both the

contributions can be analyzed, almost, independently.

2.7.5.1 Nuclear scattering

Neutrons are heavy particles, which interact with the nuclei via strong nuclear force.
Therefore, nuclear scattering is the major component of the scattered intensity. Since
the wavelength of neutrons is orders of magnitude larger than the nuclear dimension,
the nuclei can be treated as a point object, leading to the isotropic scattering inde-
pendent of the scattering angle (260), as shown in the Fig. 2.16. Therefore, interaction
potential between neutron and nucleus can be written in form of the Fermi-psueudo-

potential as

9rh2
V(r,r;) = mh

[bj6(r —1;)] (2.58)

n
Where, r is the neutron coordinate, r; is the coordinate of the nucleus, and m,, is
the mass of the neutron. The term b defined above is of phenomenal importance,
describing the extent of interaction between nucleus and neutron and is known as
the neutron scattering length. Since the nucleus is a point like a sphere, its nature is

considered to be isotropic. Therefore, the total cross section can be simply written as
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o = 47wb?. b depends on the nuclear spin parameters, so it can be different for different
isotopes corresponding to the same element. Therefore, neutron diffraction can be a
great tool to probe the different isotopes as well, which is not possible using X-ray
diffraction.

The structure factor remains the same form as mentioned in the Eqn. (2.55).
However, in the case of neutrons, it is neutron scattering length or neutron cross-
section (b) that determines the scattering intensity. Therefore, the structure factor

(Eqn. (2.55)) corresponding to the nuclear scattering can be written as

F(Q)erys. = Y. b;eQri Wi (TQ) (2.59)

J
Where W denotes the Debye-Waller factor as described above. Since b can be
significantly different for different isotopes, it gives rise to the coherent and incoher-
ent scattering. The natural abundance of different isotopes can be very different,
and nuclear spin also orients randomly in the absence of an external magnetic field.
Therefore, while calculating the cross section for the neutron scattering these factors

have to be averaged [58]. The averaged differential cross section can be defined as

do ; ; * iQ-(ri-1.r
70 = (2 bie ¥ e ) = 5 (biby)" el
J J

+N((b-(b))?) (2.60)

[ ——
incoherent

= (b)°

Z eiQ-r
J

coherent

As expected, the first term having phase information is square of the amplitude of
F(Q), without the DW factor. This term is responsible for the interference during
the scattering, therefore known as coherent scattering. The effective scattering length
determining the coherent scattering is the average scattering length of all the isotopes
present in the sample. The second term in the Eqn. (2.60) contains the mean square
scattering length for all the NV atoms present in the sample, without any phase. This
term simply suggests the addition of scattered neutron without any phase informa-
tion. Therefore, it is known as a incoherent scattering contribution. The incoherent
scattering corresponding to each atom is simply added, therefore, it is simply propor-
tional to N (number of atoms), and leads to the isotropic background throughout the
measured range of 26.

During the neutron diffraction, generally, we can neglect the incoherent contribu-
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tion, and focus on the coherent contribution. The differential cross section corre-

sponding to the coherent nuclear scattering is given as

2

do

- ~ (D)2
ds? (0)

nuc.

(2.61)

Z eiQ~r
J

2.7.5.2 Magnetic scattering

Apart from nuclear scattering, magnetic scattering is also very useful in neutron
diffraction experiments. It leads to the determination of the magnetic properties of the
crystal to the atomic level. Since the neutrons have a magnetic moment, it interacts
with unpaired electron spin and carries the information to the scattering pattern.
During the scattering process, the magnetic dipole moment of the neutron interacts
with the magnetic field of the unpaired electron, and orbital angular momentum.
The net magnetic field due to electron (B) is the sum of the magnetic field due to
its spin (Bsyi,), and orbital angular momentum (Bp;q;). The interaction between
magnetic dipole moment of neutron and net magnetic field due to electron is given
as [58]
Un(r) = =(ptn) - By = ~(Ynpino) (2.62)

Where, 1, is the magnetic moment of neutron. =, is the gyromagnetic ratio of neutron

(= -1.913), and o is the spin operator. The quantity py is the nuclear magneton

defined as 52~ = 5.05 x 1027 J/T. The magnetic scattering depends on the magnetic

2myp -

cross section, defined as [58]

do
d

2mh?

2
:( Mn ) (Kol [ty ko, )2 (2.63)

It can be further simplified in the case of elastic scattering. Without loss of the
generality, consider the z axis to be the quantization axis. The net magnetic field in
the sample, B = By, + Boppitar- Since By, is related with the magnetization (M) of
the sample, the above equation can be simplified in terms of the magnetization in k

space (M(Q)), which can be obtained by the Fourier transformation of M(r) as

M(Q) - f M(r)e' @ dr (2.64)

Using the definition of interaction potential (i) defined above, magnetic differential
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2.7 Scattering

Figure 2.17: Illustration of the magnetic scattering where only the magnetization com-
ponent perpendicular to the () is relevant. M, lies in the plane defined
by Q- M;

cross section can be simplified as

1, 2
-5 (ol ML(@)l) ‘ (2.65)

mag. scattering amplitude

do

dQ = (Pynro)2

mag

Where, r( is the Bohr’s radius. k and k’ are wave vectors corresponding to the
incident and scattered neutrons, respectively. Similarly, o, and o/ denote the pro-
jection of spin moment to the quantization axis (z axis) before and after scattering,
respectively. The quantity M, (Q) is the magnetization component perpendicular to

the scattering vector (Fig. 2.17), and defined as

M. (Q) =& xM(Q) x&q (2.66)

Where, €q = ‘—8' It can be noted that the neutrons ‘see’ only the component of the
magnetization perpendicular to the Q. Therefore, only M, (Q) contributes to the
magnetic scattering, as illustrated in the Fig. 2.17.

In the case of d orbital elements, usually, orbital angular momentum (L) is quenched,
so spins remain the sole source of the magnetic scattering contribution, which results
in g = 2. Also, unlike nuclear scattering, magnetic scattering is the result of the inter-
action of neutrons with electron cloud. Therefore, similar to the atomic form factor
in the case of X-ray scattering, the magnetic form factor also plays a fundamental

role in magnetic scattering [58]. The magnetic structure factor is given as

M(Q) = 215 fm(Q) Y, '™ - S; (2.67)
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2 Scientific background

Where, R; denote the position of nucleus of i** atom, S; denote the magnetic spin
for jth atom. f,,(Q) denote the magnetic form factor, which can be defined relative

to the spin density (ps(r)) as

In(Q) = [ pule)ei@ndr = Flp.(v)] (2.68)

Atom

Using Eqns. (2.65, 2.67, 2.68), magnetic differential cross section can be simplified as

2

1o F(Q) 2(8,.) ¥ (2.60)

dQ = (7”7“0)2

mag

Here, (S,,) symbolizes the expectation value of the perpendicular spin moment (S, )
for j* atom. The magnetic scattering is contributed by the unpaired electrons in
the outer shell, in contrast to X-ray scattering where all the electrons contribute.
Therefore, the magnetic form factor decreases with scattering angle (26) much faster,
in comparison with the X-ray form factor, as shown in the Fig. 2.16.

In the case of Neutron diffraction, magnetic and nuclear scattering are present to-
gether. The total intensity of the scattered neutrons is determined by the combination
of to nuclear scattering factor (N(Q)) and magnetic scattering factor (o - M, (Q)).
Therefore single differential cross section corresponding to the elastic neutron scat-

tering can be given as

do

0 =[N (@) +o-ML(Q) (2.70)

neutron

2.7.5.3 Polarized neutron scattering

As mentioned in the Eqn. (2.65), the magnetic scattering cross section is given as

do
s

< |(ol]o - M, (Q)[o)|]

mag

(2.71)

The term o - M, (Q) makes the neutron scattering technique very rich to determine
the precise magnetic structure structure of the sample. Polarized neutron scattering
experiment can be performed using spherical neutron polarimetry technique where
incident and scattered polarization are measured. The magnetization of the sample

changes the incident polarized neutron via the polarization tensor - P. The relation
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2.7 Scattering

between polarization of the scattered neutron beam (P’) and incident polarization
(P) can be given as [62, 63, 64]

P'= PP + P (2.72)

Which can be expanded in components as P/ = P;; P; + P/'. Each term in the Eqn.
(2.72) is defined as,

—Jy./1
P"=|R,,/I
R,../T
(N2 -M?)/I, — oI Iyl Ly
P = Inzl 1y (N? - M?+Ry,)/I, Ry.[1,
—Jny/ L R,./1. (N?2-M?+R,.)/L,

I=M?*+N?+P,J,, + PRy, +P.R,.

I =M>+ N2+ P,J,
I,=M?+N’+ P,R,,
I,=M?+N?+P,R,,.

N%=NN* M? =M, -M;]
R, = 2Re[NMfi];Rij = QRQ[MMML']
Jpi = QIm[NMIZ-]; Jij = QIm[Mu'ij]

Here, P” is the polarization created during the scattering process. I,I.,1,, 1. are
the total and component-wise normalization factors, determined by the scattered
intensity [53]. N and M, denote nuclear structure factor, and perpendicular magnetic
interaction vector, respectively. M,; denote the " component (i = y,z) of M,.
The details of the above formalism can be found in Refs. [62, 63, 64]. During the
spherical neutron polarimetry experiment, polarization analysis of the incident and
scattered polarization can be performed to determine the components of P, which
is eventually connected with the magnetic moments of the sample. Therefore, the
polarization analysis technique can determine the magnetic structure of the sample
with great precision. The details of the spherical neutron polarimetry experiment will

be described in the next chapter.
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3.1 Synthesis of single crystal

Single crystals are synthesized in two main steps. First, the induction melting of the
elements is performed, then specific single crystal growth techniques are used. Both

methods are described below in detail.

3.1.1 Induction melting

Reactants are melted in the cold crucible, which works on the basis of induction
melting, which results in the homogeneous mixing of the elements. After this process,

usually, the polycrystalline phase of the required compound is formed.

Quartz tube

(b) o

Quartz Recipient—-

Inert Atmosphere -+

Shaft—

Figure 3.1: (a) Induction melting device. The sample is sealed into a quartz tube, un-
der a high vacuum. (b) Schematic diagram of induction melting, showing
various components of the instrument. (Taken from Ref. [65])

The reactants are placed in a copper crucible having a cold water supply passing
through it to avoid heating. The sample chamber is closed with a quartz tube under
the Ar gas atmosphere at low pressure (~200 mbar). The quart tube is surrounded
by the hollow copper coils (denoted as ‘HF Inductor’) as shown in the Fig. 3.1. Very
high frequency (a few kHz) AC electric current passes through HF inductor. The
high frequency change in the magnetic field generates Eddy current at the center,
(where elements are kept for melting), leading to the Joule heating and melting of the
elements. The instrument can efficiently melt the Mn, Fe, and Ge within a minute,

which enables homogeneous mixing of all the elements. All the metals nearby the
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3 Experimental methods, instruments, and theory

coil, the copper crucible, and the coil itself are hollow, and cold water runs through

it in order to avoid heating the coil or the copper crucible.

3.1.2 Single crystal growth technique

The fundamental principle behind a successful single crystal growth is - not allowing
any other seed crystal to be formed except at the bottom tip of the crucible. Therefore,
the temperature of the crucible has to be decreased very slowly to maintain thermal
equilibrium and keep the temperature gradient along the crucible length (as shown
in Fig. 3.2(a)) constant. This allows a single crystal to start its formation from the

bottom tip to the top.

thermocouple—> 5:;;_'
(b) ———
B Hot
Furnace wall = @) ‘

R, g
heatingwire = & =
Y g
ampoules == -1 s 8
. c
1 )
R g
Tcontroller . e
Power supply i, , @

melt-sohd

solid - quuid__ interface

interface

". &

Cool ‘
\ / crucible translation

Generated
seed

7
Crucible

Figure 3.2: (Taken from Refs. [66, 67]) (a) Illustration of the vertical gradient method.
Where, the sealed quartz tube is kept in the furnace, having a vertical
temperature gradient such that it is coolest at the bottom and hottest at
the top. The temperature is controlled by the controller. (b) Schematic
diagram of the vertical Bridgeman furnace in which sample (sealed inside
the crucible) is kept under a temperature gradient. The crucible is pulled
down very slowly, leading to the formation of a single crystal starting from
the bottom, which cools first.

In order to synthesize the single crystals, the pre-melted alloy is sealed into the
quartz tube and heated above its melting point in a high temperature furnace. After
this, the primary aim is to start cooling down the crucible in such a way that there
exists a temperature gradient along the crucible. One of the famous and convenient

techniques for single crystal growth, which we also have used, is vertical gradient
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3.1 Synthesis of single crystal

method, which is illustrated in the Fig. 3.2(a). In this process, The sample is kept
in a long crucible (6-7 cm) with a conical bottom tip, and sealed inside a quartz
tube under an Ar gas atmosphere with 200 mbar pressure. The pressure is kept
low at room temperature because it increases when the compound is heated in the
furnace. The design of the furnace is such that it is hotter on the top and cooler
at the bottom. The compound is heated in the furnace beyond its melting point.
Further, the temperature of the furnace is decreased at a very slow rate (usually 0.5
K/hr - 2 K/hr). Since the bottom surface is cooler than other surroundings, the
conical bottom tip of the crucible starts to cool down at first. As soon as the bottom
tip cools below the melting point, the seed crystal is formed there. As time passes,
the temperature of the whole crucible decreases, and the molten compound starts to
cool from the bottom (around the seed crystal) to the top, very slowly, leading to
the synthesis of a single crystal via the process of nucleation. The furnace cooled
very slowly so that the temperature gradient and thermal equilibrium are maintained
throughout the cooling process. Once the whole crucible is cooled below the melting

point, the resultant solid material is formed as a single crystal.

Another famous technique for single crystal growth is the Bridgman—Stockbarger
technique, which is illustrated in the Fig. 3.2(b). The physics behind this method is
the same as the vertical gradient method described above, however, the mechanism is
different. In this process, after the compound is heated beyond its melting point, the
crucible is pulled very slowly (usually, 1-2 mm/hr) from the hot zone. The bottom of
the crucible, usually having a conical shape, starts to cool down first, leading to the
formation of a seed crystal at the bottom tip. Once the whole crucible is pulled out
of the hot zone at a slow enough rate, the molten compound solidifies in a form of a

single crystal, the same as the above.

In case, the cooling of the crucible is faster than a critical rate, or, somehow, the
temperature gradient gets uncontrolled during the cooling process, the crucible won’t
be able to maintain the monotonic thermal gradient, leading to the formation of sev-
eral seed crystals at multiple sites. This results in a multi grain crystal, or single
crystal with < 0.5 mm size, which is not suitable for transport measurements. There-
fore, we have used a very high quality furnace, which can stabilize the temperature
within 0.1 K, and cooled down our sample very slowly (~ 1 K/hr). Using these tech-
niques, we were able to grow large single crystals (1 - 3 mm), which were sufficient

for our various measurements.
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3.2 Inductively coupled plasma - optical emission
spectrometry (ICP-OES) method

After the sample preparation is complete, the chemical analysis of the sample is
performed to determine the ratio of elements present in the sample. The chemical
analysis is performed using the Inductively coupled plasma - optical emission spec-
trometry (ICP-OES) method. The chemical analysis is important because the loss
of any element during the process of synthesis may lead to the presence of unwanted
phases. If some of the elements were found to be lesser than we expect, the extra
amount of that element was added during the next preparation to ensure that the

final chemical composition remains the same as we desired.

| grating

detector

L_"___" = -
Ar inlets
sample
P"mF::'g nebulizer spray
i P chamber
sample Arinlet

Figure 3.3: (Ref. [68]) Various parts of the instrument were used to analyze the
elements of the compound under study, using the ICP-OES method. The
diagram in the inset illustrates optics, which shows how the characteristic
light is filtered out to the detector.

The concentration of elements in a given sample is analyzed using the ICP-OES
method, using an instrument that involves various setups as shown in the Fig. 3.3.
Initially, the sample is dissolved into acid or any other suitable solvent. The dissolved
liquid goes to the nebulizer where it mixes with Ar gas, and further turns into the

aerosol particles in the spray chamber. Further, the particles travel to the plasma
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3.3 X-ray diffraction methods

torch made with the RF (radio frequency) power supply in the presence of Ar gas.
The plasma radiations excite the atoms present in the aerosol particle, which results
in the emission of light with a characteristic wavelength. The components of the
light are separated using the prism, and the wavelength of the light is measured.
Since each element has a characteristic spectroscopic emission, the wavelength of
light can be related to the elements present in the sample. The intensity of the light
is also measured, which gives the concentration of the element. This way, the relative

concentration of all elements can be measured in a given sample.

3.3 X-ray diffraction methods

As mentioned in the previous chapter, X-ray diffraction is a unique technique to
determine the microscopic details of the compound. X-ray sources are widely avail-
able, therefore X-ray diffraction of all the samples was performed before any further
study. Specific X-ray instruments were used to characterize the lattice parameter,
and quality of single crystals, and to determine the crystallographic axes of a sample

piece.

3.3.1 X-ray powder diffraction

X-ray powder diffraction is the most precise technique to determine the lattice pa-
rameters of the compound. It also determines if the sample is synthesized in a single
desired phase, or if any other undesired phase is also present. We have used the Hu-
ber diffractometer with Cu-K, X-ray source (A = 1.5406 A) to collect the diffraction
pattern in transmission geometry. The instrument is equipped with the G670 Guinier
camera, behind the sample platform, which is integrated with an imaging plate de-
tector as shown in the Fig. 3.4. A detailed schematic diagram of the Guinier camera
and underlying geometry is also shown in the Fig. 3.4. A thin layer of powder sample
is prepared within two plastic films and is mounted on the sample holder. The incom-
ing monochromatic X-ray beam diffracts with the sample as illustrated in the Fig.
3.4(a). The basic principle of X-ray diffraction has been already discussed in the last
chapter. The diffracted beams fall on the imaging plate at a specific angle depending
on intra-planar spacing corresponding to the various crystallographic planes present
in the sample. The instrument is equipped with a closed cycle cryostat also, which

can cool down the sample down to 30 K. Using this setup, temperature-dependent X-
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ray diffraction was performed to determine the temperature dependence of the lattice
parameters. The X-ray pattern is stored in terms of scattered intensity vs. angle of
diffraction, which is further analyzed using the FullProf software to characterize the

sample under study.

(a)

Sample
X-ray beam from _ —
monochromator ./_ /

- -
- -
- - ol

Diffacted beam =~-.!
“\. \\\ ‘~‘\ hh"‘"-.

Figure 3.4: (a) shows the Guinier geometry (taken from [69]) which is used in the
powder diffractometer to collect the data. (b) shows an X-ray powder
diffractometer instrument with various components.

3.3.2 Laue diffraction

The Laue diffraction method is used to identify the crystallographic axis of a piece of a
single crystal (bigger than 1 mm). It also determines the quality of the single crystal.

If a sample piece has single grain of the single crystal, the Laue pattern does not
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3.3 X-ray diffraction methods

change when the sample is translated in any direction, while maintaining the same
orientation. The MWL120 Real-Time Back-Reflection Laue Camera works on the

Detector screen

Beam collimator

X-ray
Triple axis goniometer  Tube

Figure 3.5: (Ref. [69]) X-ray Laue camera, and illustration of the single crystal scat-
tering leading to the formation of a Laue pattern.

basis of the reflection geometry. The instrument and working principle are shown in
the Fig. 3.5. In this instrument, a collimated X-ray beam with multiple wavelengths,
with a lower cutoff determined by the voltage applied, falls on the sample which is
mounted on the triple-axis goniometer (Fig. 3.5). The particular orientation of the
crystal selects a wavelength (on the basis of the Laue condition) among the spectrum
and diffracts it backward on the flat area detector screen as shown in the Fig. 3.5. The
flat detector screen is made up of an array of high voltage wires (separated by a very
small distance) inside a chamber having Ar gas inside it. The wires create a uniform
electric field inside the chamber. When X-rays pass through the chamber, it ionizes
the surrounding Ar atoms, and the produced ions-electrons are accelerated across the
chamber due to the present electric field. The ions condense around the nearest wire,
which generates a charge proportional to the amount of ionization of the (detected)
particle. By measuring the pulse generated through all the wires, the location of the
scattered X-ray beam can be determined. 'NorthStar 7’ software is used to control
the instrument. The Laue pattern for any crystal can also be simulated using the

OrientExpress software, which is helpful to determine the orientation of the crystal.
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sag’mp!g camera detector

" X-Ray source.

B i

Figure 3.6: SuperNova (6- circle) single crystal diffractometer which operates on the
transmission geometry. The source of X-ray is Molybdenum (Mo).

3.3.3 Single crystal X-ray diffraction (Supernova)

In order to check the microscopic crystalline nature of the crystals, 6-circle Super-
Nova (Agilent) single crystal diffractometer was used. The instrument can work with
multiple sources, however, we have used Molybdenum (Mo) as the source of X-ray,
having a wavelength, Ay, = 0.709 A. The instrument works in the transmission ge-
ometry, therefore a very small size of a single crystal (~100 micron) with a nearly
spherical shape is used during the experiment. Various components of the instrument
are shown in the Fig. 3.6. The sample is glued to the tip of the goniometer and
further aligned to the center with the help of a high-resolution camera attached near
the sample. The diffracted beam hits the area detector, which can also move around
the sample. 6 degrees of freedom of this instrument allow the scanning of a large

range of scattering vectors (Q).

It is often hard to find the round-shaped sample piece, which leads to the anisotropic
absorption of the X-ray. Therefore, while performing the data analysis using CrysAl-
isPro software, absorption correction is performed depending on the shape of the

crystal.
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3.4 Physical properties measurement system (PPMS)

PPMS is an instrument that provides low and high-temperature range (2 K - 400
K) and high magnetic field (£ 9 T) environment to the sample under study. Along
with that, it also provides various options which can be used to measure the desired
physical properties of the sample. Quantum-Design PPMS DynaCool is also a setup
similar to the PPMS, however, it has a few advanced features not available in the
PPMS. We have extensively used Quantum Design PPMS and DynaCool instruments
to measure the magnetization and resistivity of the sample, using various options

mentioned below.

3.4.1 Magnetization (VSM)

—+Linear motor

= »Sample rod

Amplified — Lockdin _
signal — amplifier Cl_ocdk.mse
winding
sample -
Pickup coils 12 mm Amplitude @ 40Hz
+

e, Anti- clockwise
" winding

Figure 3.7: (Ref. [70]) Ilustration of the working principle of the VSM setup.

The magnetization of the sample can be measured using the vibrating sample mag-
netometer (VSM) installed at the PPMS. It is a very fast and sensitive technique to
measure the DC magnetization of the sample within the accuracy of 7 x 10~7 emu.
As illustrated in the Fig. 3.7, the sample oscillates between two coils at 40 Hz fre-
quency, with an amplitude of 2 mm, which changes the magnetic flux through the
pickup coils. The change in magnetic flux in the coils generates electric potential at

the ends. One end of both the coils is connected, however, the coils are winded in
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opposite directions, so that the voltage induced due to the sample oscillations does

not cancel out. The induced voltage is given by

dodz _

Veoit = ==~ — =
Tz dt

ClAwsin(wt)]m (3.1)
Where, C' = coupling constant, A = oscillation amplitude (usually, 2 mm), and w
is the frequency of the vibrating sample. Once the voltage is measured, using this
relation, magnetic moment (m) of the sample can be calculated.

Using the ACMS-II setup installed over the DynaCool, the AC susceptibility of
the sample can be determined by applying the AC magnetic field. In AC measure-
ment, the magnetic field oscillates with a high frequency. The sample, which remains
stationary, generates a magnetic moment in response to the AC magnetic field. This
helps in the study of the magnetization dynamics of the sample. The relation between

AC susceptibility (yac = %) and induced AC magnetization (Mac) is given as

Mac = xac(Hacsin(2t)); xac =V (X')? + (X")? (3.2)

Where, x’ and x” denote real and imaginary part, respectively, of the yac. € is
frequency of the magnetic field. yac gives information about the relaxation time of

the magnetic sample.

3.4.2 Electrical transport measurements

Electrical transport measurements of the samples were performed using the resistivity
and electrical transport options available in the PPMS and DynaCool, respectively.
Different types of resistivity puck were chosen depending on the required measure-
ment, as shown in the Fig. 3.8. 4-probe contacts were used to determine the electrical
resistivity or Hall resistivity of the sample. Fig. 3.8(b) shows the contacts correspond-
ing to the Hall resistivity, and longitudinal resistivity measurements, simultaneously.
The direction of the magnetic field is fixed inside the PPMS. However, the sample can
be installed in different orientations relative to the external magnetic field. For rota-
tional measurements, the rotator option (3.8(c)) can also be used in the PPMS setup
to measure the planar Hall resistivity and anisotropies in the magneto-resistivity.

To avoid any extrinsic effects due to an inhomogeneous electric field, cuboid-shaped
long (1 mm -2.5 mm), and thin (0.1 mm - 0.25 mm) samples were prepared for all the

electrical transport measurements. Since the sample we used for the measurements is
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3.5 High magnetic field measurements at HZDR Dresden

Figure 3.8: (a) shows the sample contact made on the resistivity puck, which is used
in the PPMS for resistivity measurements. (b) shows the Hall and longi-
tudinal resistivity contacts. The electric current along the length of the
sample (I.). For longitudinal resistivity, the voltage is measured along
the direction of the current, denoted as V+. However, Hall voltage con-
tacts (shown as V=) are made in the transverse direction, to measure the
transverse resistivity. Usually, Hall resistivity and longitudinal resistivity
are measured separately, except in a few cases when necessary. (c) shows
the rotator option available in the ppms, which can rotate the sample with
respect to the external magnetic field.

semi-metallic, low amplitude of electric current (5 mA - 10 mA) in AC (15 - 20 Hz)
or DC current was applied in the I+ terminal of the sample as shown in the (3.8(b)).
Most often, AC current was preferred during the resistivity as it gives a more precise
and intrinsic value of the sample resistance. For Hall and longitudinal and resistivity,
the voltage was measured along longitudinal (V+) and transverse (Vg+) directions,
respectively. Each measurement was recorded with 2-3 seconds of waiting time. While
performing the rotational measurements, the sample platform was rotated very slowly
at the speed of ~0.7°/s.

3.5 High magnetic field measurements at HZDR

Dresden

High field magneto-resistivity and Hall resistivity measurements were performed at
Hochfeld-Magnetlabor, Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The facility
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Figure 3.9:
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(Taken and modified from Ref. [71, 72]) (a) Time-dependent magnitude
of the various pulsed magnetic fields. Magnets A, and D correspond to
the 8.5 MJ and 1.5 MJ, respectively, which lie within the 24 mm bore
region. Magnet B has a double coil with 9.5 MJ energy, leading to 91.4 T
of the maximum magnetic field, for short time, in a 16 mm bore. Magnets
C and E correspond to the 1 MJ and 43 MJ energy, respectively, in the
20 mm and 40 mm bore regime. (b) Experimental setup for the high field
resistivity measurements. (c) Illustration of the various components of

the high field resistivity setup.



3.5 High magnetic field measurements at HZDR Dresden

provides a high magnetic field (up to 90 T') along with a low temperature environment

using the He cryostat setup.

The generation of a high magnetic field works on the basic principle of electromag-

netic induction defined as
dd ~ AdB(t)

oK — =
dt dt

Where V;,,4 is the induced voltage. The magnetic field is produced inside an inductor

when current flows through it. The magnetic energy corresponding to a high field
greater than 40 T is too high and risky to store safely for a long time. Therefore,
to achieve a high magnetic field (>40 T), it is generated in a pulsed form for less
than 0.15 seconds to avoid heating and melting of the coil. At HZDR, the process
begins with the capacitors bank having the capacity to store ~50 Mega Joule (MJ) of
energy, and can generate a maximum power of ~5 GW. The capacitors are charged
using a high voltage (25 kV) electric current, and ~50 MJ of energy is stored. The
pulsed magnetic field is generated in a different chamber, which is separated from the
capacitor bank, where a pick-up coil with a particular bore diameter is placed inside
a liquid nitrogen tank below 77 K to cool it down and keep the Ohmic resistance
low. When the capacitor is discharged through the pickup coil, the current in the
coil increases, which generates the magnetic field at the core of the coil. The time
constant of the capacitor bank is kept small, so that the magnetic pulse dies, usually,
within 0.15 seconds (s). The maximum magnitude of the magnetic field generated
due to discharging of the capacitor also depends on the time constant of the capacitor.

Lower the time constant, the higher the magnetic field which will be generated.

Before starting the high field measurement, 4 probe contacts were made on the
sample under study, and inserted 1.5 m deep, within the bore of the pick-up coil, as
illustrated in the Fig. 3.9(c). All the electrical wiring and materials used during the
measurement are made from special materials to minimize the eddy current. Most
often, we performed measurements using the magnet A, where 8.5 MJ of capacitor
energy is discharged through the pickup coil with a 24 mm bore diameter, to produce
71 T of the maximum magnetic field. When the capacitor is discharged through the
pickup coil, the electric flux increases in the coil, leading to an increase in the magnetic
field. The magnetic field reaches a maximum within 40 ms, then starts to decrease
with current exponentially, and vanishes nearly after 150 ms. The voltage signal
from the sample is amplified and measured using YOKOGAWA (DL850 ScopeCoder)

oscilloscope, which collects nearly 10% voltage points per second. After every pulse,
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Figure 3.10: (a) Different parts of the D23 instrument (modified from Ref. [73]). (b)
Few parts of the HeiDi instrument are shown (modified from Ref. [74]).
(c) The illustration of scattering geometry corresponding to both the
instruments.
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3.6 Single crystal neutron scattering facilities

with the 62 T highest magnetic field, the coil heats due to the enormous energy
released due to the Ohmic resistance of the coil. Therefore, a minimum of 3 hrs of
waiting time is required between two magnetic pulses with a 62 T magnetic field. For
lower energy discharge, the waiting time is also lower. The temperature inside the

bore (sample chamber) also rises by 5-10 K.

3.6 Single crystal neutron scattering facilities

As mentioned in the previous chapter, neutron diffraction can reveal the microscopic
details of the sample. We have employed neutron diffraction techniques using the
single crystals for two main reasons: (i) to determine the ground state magnetic
structure of the parent and doped samples. (ii) to find out the occupancy of Mn, Fe,

and Ge at various lattice sites.

3.6.1 HEiDi (FRM-II, Garching, Germany) and D23 (ILL,

Grenoble, France)

Unpolarized neutron diffraction of the samples was performed using the HEiDi in-
strument available at FRM - II, Garching, Germany, and the D23 instrument at
ILL, France. The working principle of both instruments is almost the same. Both
instruments provide a powerful and versatile technique to determine the magnetic
structure of the single crystal under measurement. HEiDi and D23 instruments are
4-circle and 2-circle diffractometers, respectively. For the experiment, the monochro-
matic wavelength is selected from the achromatic (or white) neutron beam, using a
suitable monochromator. During our experiment with HEiDi, Cu(220) monochroma-
tor was used to select the neutron beam with 0.87 A wavelength. Whereas Cu(200)

monochromator was used in D23, ILL to select a wavelength of 1.27 A.

Before starting the measurement, the single crystal with a roughly known ori-
entation of the crystallographic axes is mounted on the platform. Afterward, the
sample is centered, and the lattice parameters and crystal symmetry information
(pre-determined using X-ray diffraction) is provided to the instrument, which enables
the instrument to calibrate and find the location of various (h & ) planes. Since the
sample holder, detector, and other movable parts have limitations for their movement,

reflections only up to a certain scattering angle can be collected. The range of scat-
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tering angles depends on the possible axes available for rotation, and the wavelength

of the neutron beam used for the experiment.

3.6.2 Spherical neutron polarimetry using CRYOPAD (D3), ILL,

France

As described in the previous chapter, polarized neutrons can provide the microscopic
details of the magnetic structure of the sample with more accuracy and less ambigu-
ity, when compared to unpolarized neutron diffraction. However, it is a difficult task
to perform such an experiment because any stray magnetic field can depolarize the
neutrons, leading to the wrong information. The efficient way to perform a general-
ized polarization experiment is to keep everything (sample, polarized incident beam,
and diffracted polarized neutron) within a superconducting shield, which makes the
interior free of any magnetic field due to the Meissner effect. Such a superconducting
shield is known as Meissner superconducting shield. The experiment can be performed
using the CRYOgenic Polarization Analysis Device (CRYOPAD), installed at the D3
setup (Fig. 3.11(c)), ILL, France. The CRYOPAD device enhances the capability
of the instrument to perform the polarization analysis of the incident and diffracted
neutron beam [75]. As mentioned in the previous chapter (section 2.7.5.3), scattered
and incident polarization is related to the magnetic structure of the sample. There-
fore, the precise magnetic structure can be calculated by analyzing the polarization
matrix elements.

The diffraction geometry for SNP measurement is illustrated in the Fig. 3.11(a).
Various components of the CRYOPAD instrument and their usage is mentioned in
the Fig. 3.11(b). During the experiment, the sample is oriented with a particular
crystallographic axis in the vertical position, referred as the z axis. The scattering
vector (Q), which is perpendicular to the z, is referred as z axis. Once z and z is
defined, y is chosen perpendicular to z, z axes both, to complete z, y, z directions
as a Cartesian coordinate system. The initial polarization of the incident beam is
0.935. CusMnAl monochromator is used to select a monochromatic neutron beam
with 0.832 A wavelength. Before starting the experiment, our sample was cooled
down, below room temperature (300 K), under the application of 1 T magnetic field
along the b axis of the crystal. Since the sample was installed with the ¢ axis, and
b axis along the vertical direction, horizontal and vertical magnetic field setups were

used to apply magnetic field along the b axis in both cases. The field cooling of the
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3.6 Single crystal neutron scattering facilities

sample populates most of the magnetic domains along a particular axis.

The path of the incident neutron beam is fixed by the D3 instrument. The incident
beam nutator polarizes the beam in a plane which is perpendicular to the beam
direction. The polarization of the incident beam changes as it scatters from the
magnetic moment present in the sample. All three components of the diffracted
beam are measured using the nutator of the diffracted beam. This experiment is
repeated for three different axes (z,y, z) of incident polarization, and in each case, all
the three polarization components (z,vy, z) of the diffracted beam is measured. One
set of an experiment for a particular (hkl) plane of the sample gives 3 x 3 polarization

matrix elements (P), which can be written as

sz ny sz
P=1Py Py Py
Pzz sz Pzz

Where, for any given term P;;, 7 denotes the incident polarization and j denotes the
measured polarization component after the diffraction. The polarization matrix P is
the normalized version of the P’ (scattered polarization). So, the relation between P,

P (incident polarization) and P’ is given (on the basis of section 2.7.5.3) as

/ " Pz Pz + P!
P = <5) = <E> ,ln COIIlpOIlGIltS: PZ] = <M> (34>
|P| Dom |P| Dom |P| Dom

Where, (...)DO

domains. The meaning of various terms is given in the section 2.7.5.3. Since the

- defines that the polarization is averaged over all the possible magnetic

polarization of the scattered beam depends on the direction of the magnetic moments
present in the sample, a set of polarization matrix P, corresponding to the different
planes, are experimentally determined., and analyzed using the MAG2POL software
[78]. Before the analysis, different possible magnetic models are selected, using the
representation analysis corresponding to the observed propagation vector (k), and
magnetization of the sample. All the models are fitted using the MAG2PoOL, and
the best fitted model is chosen to be the correct magnetic structure of the sample.
We have exploited the polarization analysis technique to determine the ground state
magnetic structure of the doped sample, which was not possible solely based on
unpolarized single-crystal neutron diffraction. The specific details of the experiment

will be discussed in the chapter 6.
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Figure 3.11:

60

(c)

3He detector
D3

Incident Beam
nutator

| “beam stop

horizontal
rotation platform

(a) Scattering geometry for the spherical neutron polarimetry measure-
ment. P, P;/ denote i*" component (i = x,y,2) of the polarization of
incident and diffracted beam, respectively. Q is the scattering vector,
which defines the z axis. (b) Pictorial representation of the different
components of the CRYOPAD instrument (modified from Ref. [76]).
1: Incident beam nutator (magnetic path containing longitudinal static
guide field). 2: Outer superconducting shield (Niobium) 3: Precession
coil (rotates the incident beam polarization around a horizontal axis per-
pendicular to the incident beam). 4: Precession coil for diffracted beam
(aligns the chosen polarization component to the axis of the diffracted
beam). 5: Inner superconducting shield (protects magnetic field due to
precession coils, and maintains a zero-field environment in the sample
chamber). 6: Nutator of the diffracted beam (c) A picture of the CRY-
OPAD setup installed with the D3 setup. A few parts are also shown
(taken from [77]).
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4 Synthesis and characterization of Hexagonal - [Mn_q)Fey[3.5Ge

4.1 Sample preparation

With reference to the Mn-Ge binary phase diagram (Fig. 4.1), it can be guessed
that Mn3Ge phase has to be synthesized as Mng,,Ge;_,, where o » 0.03 - 0.11 [79].
Mns,,Gei_, can also be written as Mns,sGe, with 6 = 0.1 — 0.5. It has been well
established using neutron diffraction measurements that the excess Mn occupies Ge
site [52, 80]. We also observed in the neutron diffraction analysis that the Ge sites
are being occupied by the excess Mn atoms. The details of the neutron diffraction
analysis will be discussed in the chapters (5, 6). It is also important to note from the
binary phase diagram that the Mns,sGe forms in hexagonal (¢) and tetragonal (e;)
phases, which remain stable above and below 630 °C, respectively.

In order to study the evolution of Fe doping in Weyl semimetal Mn3Ge, we syn-
thesized [Mn(i_n)Feq]s.5Ge single crystal (SC). Several Fe doped samples were syn-
thesized as mentioned in Table 4.1. Starting from 26% Fe doping, the samples show
magnetization completely different from the parent sample, which suggests a vanish-
ing Mn3Ge type magnetic structure. Since we are interested in the compounds with
Mn3Ge type magnetic structure, only one sample was synthesized beyond a = 0.26,
to estimate the evolution of magnetism with Fe doping.

High quality hexagonal - [Mn(l,a)Fea]gJ,gGe compounds with different o (mentioned
in the Table 4.1) were synthesized using the vertical temperature gradient method
mentioned in the chapter 3. First of all, stoichiometric amounts of the high purity Mn,
Fe, and Ge elements (>99.99%) were mixed and melted using the induction melting
method mentioned in the last chapter. Further, the alloy was crushed and sealed into
the quartz tube under Argon atmosphere under 300 mbar pressure. The sealed tube
was kept in the furnace and heated to 1000 °C, followed by slow cooling (1 °C/hr)
down to 850 °C. Further, the quartz tube was quenched into the water so that the

compound retains the high temperature hexagonal phase.

4.2 Sample characterization

4.2.1 Chemical analysis

Once the sample is ready, chemical analysis of the compounds was performed using
the ICP-OES method. The results of the chemical analysis are mentioned in the

second column of Table 4.1. The measured doping concentration was observed to be

62



4.2 Sample characterization

(a) Weight Percent Germanium
0 10 20 30 40 50 60 70 80 90 100
1400 e eba e e e e ——— ok T + T ey
¢ m Mn, ,Ce
124645°C & /(6Mn) L e P
1200 x m Mn,Gey -
113815°C H- 1154° X = MnaCe
110045°C 1 3.3% 1 = MngGey
".
100049 -
018°C 938.3°C
L ; ¢
i 796
L 8004 i e -
2 rzvsse H € 80 W (I PO . 720°C :
o 880°C I 890°C : ro—0 TO—OU u7
T W
E« 6001 \ 560°C u
1
[ Y "7"‘:‘:
e 1o i
oo 420°CH | @
4004} 1 1 ~ i :
o ) i[5 (et
1 H 1 1 [T -1 !
1 i I i
\ 1 [ " -
oo ] " :
004 1 i i o
H ' R 1]
' ' T i
H \ R 1]
1 \ ' n
H H R 1
1 \ ! ] n
) I " L
o ""'l"'l"l"""l"' T & T AR | T T T T
0 10 20 950, 30 40 50 60 70 80 90 100
Mn Atomic Percent Germaniuin Ge
(b) Weight Percent Germanium
0 10 20 30 40 50 60 70 80 90 100
ITUU 1 T 1 . L - I T 1 r 1 1 1 T 1 - AL T "
1538°C]
1500 -
] ;
1394°C]
1300 ] 2
4
O ] L
L] ] -
b 1100 i
3 ]
- 4
< 4 [}
o : ! 938.3°C
o 9Leec] ! ag
g 900 ] ' /__
{ J ==
& [ 838°C
o t—, L
P s
o4 € 1 1] s
N :
' [
: | -
] ! b1 AV Ge)—
5003 | a ('_) & ol ( -
RN AL &
: v s007c o |9 ]
: H [ 3
] 1] [
300 ; A : v . ; . L
0 10 20 250, 30 40 50 60 70 80 90 100
Fe Atomic Percent Germanium Ge

Figure 4.1: (a) Binary phase diagram of Mn - Ge[79]. (b) Binary phase diagram of
Fe - Ge [81]. In both cases, ¢ and ¢; phases (encircled by red) denote
hexagonal and tetragonal phases.

63



4 Synthesis and characterization of Hexagonal - [Mn_q)Fey[3.5Ge

close to the stoichiometry of the elements we started with.

Table 4.1: Stoichimetry of the compound taken before preparation is mentioned in
the first column as ‘Starting stoich.. After the synthesis, the stoichiometry
of the compounds determined by the chemical analysis is mentioned in the
second column as ‘Final stoich.. 14% and 26% Fe doped samples were very
small in amount, so chemical analysis could not be performed (mentioned
as ‘Not done’). The samples are symbolized or mentioned in the following
chapters as mentioned in the third column (‘Referred as’). The sample
type is mentioned in the fourth column. SC and poly denote the single
crystal and polycrystalline nature of the sample, respectively.

’ Starting stoich. \ Final stoich. \ Referred as \ SC/poly ‘
Mn; 05Ge Mnj 19(5)Ge Mn;;Ge (S1) SC
Mnjs 15Ge Mnj 20(5)Ge Mnj32Ge (S2) SC
Mn;s 5Ge Mnj 55(5)Ge Mnj3 5Ge (S3) SC

(Mn0_97FeO,03)3_2Ge (MH0.96(1)F60.04(1))3.25Ge (MH0.96F60.04)3.2G6 SC
(Mno.goFeo.10)3.2Ge (MH0.90(1)F60.10(1))3.18Ge (MH.90F€0.10)3.2G€ SC
(Mn0.86F60.14>3.2Ge Not done (MHO.86F€0.14)3~2G€ SC
(Mn0.82F60.18)3.2Ge (MH0.83(1)F€0.17(1))3.25Ge (MH0.82F60.18)3.2G€ SC
( ) ( )
( ) (
( )

Mng 77Feq 23)3.2Ge (MH0.79(1)F€0.21(1))3.2Ge Mng 7sFeq 22)3.2Ge SC
Mng 74Feg 26)3.2Ge Not done Mnyg 74Feq.26)3.2Ge poly
Mnyg 7oFeg.30)3.2Ge (MH0.68(1)F60.32(1))3.2G6 (Mng 7Feg3)32Ge poly

4.2.2 X-ray powder diffraction

X-ray powder diffraction (XRD) of all the samples was performed using the Huber
X-ray diffractometer instrument mentioned in the last chapter. A powder sample of
the single-crystal compounds was prepared by crushing a few pieces the crystals. The
XRD pattern of the samples (used for the transport measurements) is shown in the
Fig. 4.3. The data was analyzed using the FullProf software, and the goodness of
the fitting parameter (y?) corresponding to the fitting is mentioned in each plot. The
powder diffraction pattern in all the cases has been fitted with P63/mmc space group
(no. 194) symmetry. In the case of parent and 4% Fe doped samples, small peaks
corresponding to the tetragonal-Mn3zGe (space group symmetry 74/mmm) phase were
also observed. A small amount of tetragonal impurity (low temperature) phase is
inevitable in the case of Mn3Ge samples, as reported by Refs. [37, 80]. The amount
of tetragonal phase is less than 5% in each case. For higher doping (10%, 18%, 22%),
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Atoms x Y z | Wyckoft site
Mn/Fe | 0.833 | 0.666 | 1/4 6h
Ge | 1/3 | 2/3 |1/4 2¢
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Figure 4.2: The table on the top shows the position of atoms corresponding to
space group P63/mmec. The figure below shows nuclear structure of
(Mn(1-q)Fe,)3Ge in two different orientations.

no impurity peak was observed. In the case of 30% Fe doped samples, a pair of (small)
impurity peaks were observed, which does not match the tetragonal phase. However,
these impurity peaks were not observed in the case of 60% Fe doping. It can be
observed in the Fig. 4.3 that the (200), (002), and (201) peaks shift towards higher
20 with an increase in Fe doping, suggesting a decrease in the lattice parameters. The
obtained lattice parameters are shown in the Fig. 4.4, where it is obvious to observe
that the lattice parameters and volume decrease, almost linearly, with an increase
in Fe doping. Such linear behavior justifies the validity of Vegard’s law in Fe doped
Mn3Ge compounds. The hexagonal lattice structure corresponding to the space group

P63/mmc symmetry is shown in Fig. 4.2.

4.2.3 Laue diffraction and SC X-ray diffraction

Unlike Mn3Sn, Mn3Ge single crystals do not possess cleavage in a-b plane, which
makes it difficult to guess the type (poly/SC) of the crystal. To determine the quality
of the crystals, Laue diffraction of each sample was performed. Laue diffraction cor-
responding to the Mn3Ge, along the three different axes, is shown in Fig. 4.5. Similar
hexagonal Laue peaks were observed for all the samples up to 22% Fe doping. For
a > 0.26, the crystals showed very low intensity and scattered Laue peaks, suggesting
the bad quality of the single crystal. Therefore samples with, a > 0.26 were treated
as polycrystalline. Also, no anisotropy in magnetization was observed, which implies

its polycrystalline nature.
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Figure 4.3: (a - f) X-ray powder diffraction of (Mn;_,Fe,)32Ge. ‘Hex.” and ‘Tet.’ refer
to the hexagonal and tetragonal phases of the compound, respectively. x?
denotes the goodness of the fitting parameter.
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Figure 4.4: Change in the a and c¢ lattice parameters of Hexagonal - (Mn;_,Fe,)32Ge
with increase in Fe doping fraction («) in place of Mn. Inset: change in
lattice volume with «a.

Figure 4.5: Laue diffraction of MnzGe with P63/mmc symmetry. (a-c) denote Laue
pattern when X-ray beam parallel to z [2110], y [0110], z [0001] axes,
respectively.

Since Mn3Ge and (Mng 7sFeq 22)3.2Ge samples were used for the single crystal neu-
tron diffraction, single crystal X-ray diffraction of both the samples was performed,
using the 6-circle SuperNova single crystal diffractometer, to determine the micro-
scopic nature of the crystals. Diffraction patterns corresponding to both samples are
shown in the Fig. 4.6. High intensity diffraction spots in the (hk0) plane confirm the

high quality of the single crystal with a hexagonal lattice structure, as expected.
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Figure 4.6: SC-XRD corresponding to the (hk0) and (hOl) planes for Mn3zGe and
(Mnyq.78yFe.22)32Ge with P63/mmc symmetry.
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5 Magneto-resistance, and electronic transition in MnsGe Weyl semimetal

5.1 Introduction

Topological materials are an extensive topic of research over the last decade because
of the observed exotic transport properties. Among them, Wey semimetals stand out
because of the large anomalous transport properties, owing to the non-zero Berry
curvature [1, 28, 55, 82, 83, 84]. As described in the chapter 2, the emergence of Weyl
points results from the broken time reversal or/and space inversion symmetry. Such
type of symmetry requirement is fulfilled by the Hexagonal-Mnz X family of materials
(X = Sn, Ge, Ga) [85, 86, 87, 88]. Despite this, the signature of the presence of
Weyl points has been observed in the X = Sn, Ge only [55, 1, 37]. Hexagonal MngX
possess inverse triangular in-plane antiferromagnetism (AFM) [85, 86], along with
small ferromagnetic (FM) canting within the plane, which helps in the easy rotation
of the Mn spin triangle. Such magnetic features of MnszX helps in controlling the
chirality of the spin triangle, and lead to the easy rotation of the Mn moments within
the plane. Therefore, the anomalous Hall effect (AHE) easily switches its sign within
200 Oersted (Oe) [37] of the applied magnetic field, which results in significantly
smaller energy dissipation compared to the FM systems. Therefore, Mn3 X type Weyl

semimetals can be very useful for efficient spintronic devices.

Among the Mn3 X family, Mn3Ge shows a large anomalous Hall effect below the Néel
temperature (7x) of 365 K, down to the 2 K. Other than this, anomalous magneto-
optic Kerr effect, anomalous Nernst effect has also been observed in the same tem-
perature regime [56, 57]. However, a clear sign of the chiral anomaly effect has not

been established yet.
Since Mn3Ge has already been predicted to host Weyl points [51], we have mea-

sured magneto-resistance (MR) of the Mn3Ge to observe the chiral anomaly-induced
effects. The observation of AHE in a large temperature range makes it a suitable can-
didate to explore the temperature dependent dynamics of the Weyl points. We have
analyzed the longitudinal MR, angular MR, and planar Hall effect below 365 K (Néel
temperature), down to the 4 K, along different crystallographic axes using the single
crystal- MnzGe. Our analysis shows a few signatures of the chiral anomaly induced
effects, which nearly vanishes up to room temperature. In the case of B|z, beyond
1.5 T, the chiral anomaly is suppressed and electrical transport effects are dominated
by the metallic and semimetallic nature of the compound. The carrier concentration
of the compound changes at 190 K, which is near the same temperature where resis-

tivity and high field MR changes sign. These features suggest an electronic transition
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in the sample near 200 K. Since the lattice parameter show anomaly near 230 K, the

electronic transition is likely to be driven by the lattice parameter of the sample.

5.2 Experimental details

Synthesis and characterization of multiple Mn3Ge have sample has already been de-
scribed in the chapter 4. We have used single crystal Mns;Ge (S1), Mns»Ge (S2),
Mns5Ge (S3) samples to perform all the experiments. Mostly, S1 and S2 samples
were used for the electrical transport measurements because of having similar Mn
concentrations as reported by Refs. ([55, 37, 56, 80, 89]).

Neutron diffraction of the S3 sample was performed at FRM II, Garching, using
the HEiDi instrument. The technical details of the instrument are mentioned in the
chapter 3. The electrical transport measurements were performed using the PPMS
and DynaCool setup mentioned in the chapter 3. The measurements were performed
along the x,y, z axes, which is defined along the [2110], [0110], and [0001] crystallo-
graphic directions, respectively, as mentioned in the Fig. 4.2 (chapter 4).

5.3 Magnetization

The temperature dependent magnetization (M-T') and magnetic field dependent mag-
netization (M-H) of all the Mn3Ge samples were measured. Since S1 and S3 have
significantly different composition of Mn, M-T, M-H corresponding to these com-
pounds are compared in the Fig. 5.1 and Fig. 5.2, respectively. The M-T data shows
that the Ty of the Mn3Ge is near 365 K, which is the same as the reported by the Refs.
[55, 37]. M-T data shows small ferromagnetic (FM) behavior below Ty, which comes
from the small in-plane canting of the Mn moments. The M-H data along the z axis
also show residual magnetization at zero fields, and it increases almost linearly as the
field is increased. The M-H data along the z axis show almost linear behavior. These
observations suggest that the Mn moment form AFM structure within the z-y (or a-b
plane), along with small FM canting within the plane. The magnitude of FM canting
is 20(2) mup/f.u. when the field is applied along the z axis. The residual moment
along z axis is below 5 mug/f.u.. Above Ty, M-H shows paramagnetic nature of the

samples.
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Figure 5.1: Magnetization of the S2 and S3 samples, denoted by d = 0.2 and § = 0.5,
respectively. The direction of the applied magnetic is mentioned in the
plot. The measurement was performed in field cooling (FC) condition
under 100 Oe of the applied magnetic field.
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Figure 5.2: Field dependent magnetization of the S2 and S3 samples along various
axes mentioned in each plot.
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Figure 5.3: Longitudinal resistivity of the Mn3Ge corresponding to S2 and S3 samples,
which are denoted by ¢ = 0.2 and ¢ = 0.5, respectively.

5.4 Electrical transport measurements

Electrical transport measurements of the Mn3Ge were performed using the PPMS
and DynaCool setups. Initially, the zero-field longitudinal resistivity of the samples
was measured with varying temperatures. The resistivity of the S2 and S3 samples
along various axes are compared in the Fig. 5.3. The nature of the resistivity remains
very similar for S2 and S3 samples, however, the resistivity of the S3 sample is larger
compared to the S2, which is expected because of a larger amount of excess Mn in S3
compared to the S2 sample. Along the z, y axis, the Mn3zGe shows metallic behavior
below 200 K and semimetallic/half metallic behavior above this temperature. For
convenience, we will assume our sample to be semimetallic above 200 K. However, it
is important to mention that the spin-resolve density of state (DOS) calculations are
required to determine whether the sample is half-metallic or semimetallic above 200
K. In contrast to the x axis, resistivity along the z axis remains metallic in below T},
down to the 2 K, as shown in the Fig. 5.3. The behavior of resistivity of our sample
is similar to the Refs. [55, 37].

5.4.1 Longitudinal magneto-resistance

Longitudinal magneto-resistance (LMR) of Mn3Ge was measured along the different
axes. In this scenario, the MR of the compound is measured with the magnetic

field applied along the direction of the electric field. Most of the measurements were
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Figure 5.4: (a) shows LMR along the z axis, corresponding to the MnsGe. Here,
Ap=p(B)-p(0). At high field (B > 5 T), the data is fitted with ppnign 5] =
a(B/po), and fitting is denoted as ‘Fit”. I, II, and III denote three different
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field regimes where the nature of LMR is different.

(b) Temperature

dependence of « (high field slope) corresponding to different samples. (c),
and (d) show LMC along the z axis, for S2 and S3 samples, respectively.
Here, Aoy; = 0;i(B)—04(0). In the case of S2 and S3 samples, LMC below
0.8 T and 0.4 T, respectively, is fitted with opiow B] = cu2B. The evolution
of ¢, with temperature is shown in (d) inset.



5.4 Electrical transport measurements

performed using the S2 sample. However, several measurements were repeated for the
S1 and S3 samples as well to check the reproducibility of the data. The nature of all
the measurements remains very similar for all three samples. The typical dimensions
of the samples used are- length:breadth:thickness = (1.5 - 2.1 mm):(0.4 - 0.5 mm):(0.1
- 0.3 mm).
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Figure 5.5: LMR corresponding to the S1 sample. Here, ‘Center’ and ‘Side’ denote
the voltage measured at the center and side of the sample as shown in the
picture. 0°, and 5° denote the mutual angle between the magnetic field
and electric current.

The nature of the LMR remained consistent for all the samples when the magnetic
field is applied above 0.05 T. The MR (100x %) of all the samples remains
within 1% along all the axes and temperature regimes, therefore, careful analysis is
required to interpret their origin. Since anomalous Hall resistivity near zero fields is
nearly 10 times larger than MR, large Hall contributions were observed during the
MR measurements. Therefore, most of the collected MR data was symmetrized to
obtain the true nature of the MR. As shown in the Fig. 5.6, the LMR along z, y
remains very similar at all the temperatures, and most of the analysis is focused on
the LMR along the z axis. LMR along the z axis was also measured, which shows
significantly different behavior compared with the LMR along the z axis.

Current-jetting effect: As mentioned by the Refs. [40], a sample with large anisotropic
MR, and high mobility can lead to the current jetting effect, which may result in the
negative LMR if the four-probe wires are not aligned properly. Such phenomena are

very prominent in the samples with large MR. To check for the presence of the current
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Figure 5.6: MR of Mn3Ge (S2) at 4 K and 300 K in various combinations of the
current and magnetic field as mentioned in the plot.

jetting effect in our sample, we measured the voltage using the different contacts on
the sample piece, as shown in the Fig. 5.5(inset). The LMR was measured with tilting
of the magnetic field as well. As clearly shown in Fig. 5.5, a negligible difference in
LMR was observed in all the cases. Therefore, the effect of the current jetting effect
is negligible in Mn3Ge. This is expected because unlike the samples mentioned by
Ref. [40], the resistivity of Mn3Ge is of the same order of magnitude along all the
axes, and the mobility of Mn3Ge is also very low compared to the samples measured
by the [40]. Also, the nature of LMR remains the same for different sample pieces.
These observations suggest that the observed LMR has an intrinsic origin.

It is important to mention that magnetization of both the S2 and S3 samples are
linear with the magnetic field, however, the LMR shows a drastic change in behavior
near 1.5 T. This suggests that the observed non-monotonic LMR is not driven by the

magnetization of the sample.

5.4.1.1 LMR along the x or y axis

When LMR is measured along the z axis, it shows non-monotonic behavior up to
9 T, as shown in the Fig. 5.4(a). Initially, the LMR increases up to 0.05 T, at all
temperatures. We refer this field regime as region I (shown in Fig. 5.4(a)). Such an
increase in LMR was not observed along y and z axis. In the field regime of 0.05 T -
1.5 T (for the S2 sample), referred as region II, the LMR along the z axis decreases
with an increase in the magnetic field. Such a decrease in LMR was observed in all

the samples, along all the axes. In the case of the S2 and S3 samples, negative LMR
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starts to suppress near 1.5 T and 0.8 T respectively, and eventually, LMR starts to
increase again at a higher magnetic field, which is referred as region III (Fig. 5.4(a)).
Since region II and region III show similar natures for all three samples, their origin

has to be intrinsic, which we will discuss below in detail.

LMR in region I: In the case of I|B|z, LMR in the region I increases, possi-
bly, due to the weak antilocalization effect (WAL), which is very common in Weyl
semimetals. For S1, S2, S3 samples, the magnitude LMR below 0.05 T is < 0.05u£2-cm,
~0.3 pfd-cm and ~0.6 pf2-cm, respectively. Such an increase in magnitude with excess
Mn concentration is expected in the case of WAL because of the higher impurity

scattering for higher excess Mn concentration.

LMR in region II: LMR in region II shows a sharp decrease for all three sam-
ples. We have compared the LMR in region II in the form of longitudinal magneto-
conductivity (LMC). The relation between LMC (o,,) and LMR (p,.) can be written
as: 04z = 1/(pzz). LMC corresponding to S2 and S3 sample is shown in the Fig. 5.4(c,
d). In both the cases of S2 and S3, LMC increase with field up to 1.5 T and 0.8 T,
respectively, and we are referring to this field regime as region II. The LMC in region
IT can be fitted linearly with ofiow B] & cuw2B, Where ¢, is the fitting parameter. Since
the effect of the current jetting is negligible in our samples, the positive LMC might
be driven by the magnetization of the sample or the chiral anomaly effect. We will

discuss both possibilities below.

Magnetization: The temperature dependence of c,9, corresponding to both the
samples, shown in inset of Fig. 5.4(d). It shows a monotonic decrease with an
increase in temperature, unlike magnetization which remains almost constant up to
200 K (Fig. 5.1). The magnitude of LMC for S3 is nearly one-third compared to the
S2 sample. However, the magnetization of S2 and S3 and samples remains almost the
same in magnitude. These observations strongly suggest that the observed negative

LMR in our sample does not originate from the tiny magnetization of the sample.

Chiral anomaly effect: Linear increase of LMC is expected in the case of the
type-II Weyl semimetals if LMC is measured along the tilt axis of the Weyl points
(90, 82, 27, 46]. Since Mn3Ge has been predicted to be the type-II Weyl semimetal,
similar to the MngSn [51], the linear increase in LMC in region II suggests its origin
to be the chiral anomaly effect. The temperature dependence of ¢,» (shown in Fig.
5.4(d)), corresponds to both the samples showing a monotonic decrease with an in-
crease in temperature, which is expected as the chiral anomaly weakens at a higher

temperature. A similar observation can be made in the case of Mn3Sn as well [82].
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Furthermore, the magnitude of LMC for S3 is nearly one-third of the LMC corre-
sponding to the S2 sample. An increase in Mn concentration increases the chemical
potential (1) of Mn3Ge [90]. Since LMC due to the chiral anomaly is proportional to
the ;%’ a drastic decrease in LMC magnitude, for the S3 sample, can be justified as a
consequence of the chiral anomaly effect [45, 91, 50]. A similar observation has been
made in the case of Mn3Sn also [82]. These observations suggest the positive LMC in
region II is very likely driven by the chiral anomaly effect, similar to the MnzSn [82].
However, further theoretical justification is required to justify the role of the chiral

anomaly effect in the observed LMR.
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Figure 5.7: (a-c) High magnetic field LMR and transverse MR (TMR) for with current

measured along the y axis, and field applied along the z and y axis for
LMR and TMR measurement.

LMR in region III: It can be seen in the Fig. 5.4(a), that the LMR at a high field
increases linearly with the magnetic field, which is not expected in the case of Weyl
semimetals. This suggests that the chiral anomaly in this compound gets suppressed
beyond 1.5 T. At high field, the LMR data in Fig. 5.4(a) can be easily fitted with
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a (prhigh ] * (B/po)). The quantity- o determines the slope of the LMR beyond 5
T. The nature of « corresponding to various measurements using different samples
is shown in the Fig. 5.4(b). It can be observed that the « corresponding to LMR
along z or y axis is positive at low temperature, which is the opposite of what has
been observed in the case of MnzSn [82, 90]. It was also observed that the nature of
high « or high field LMR changes near 165 K in all the cases. Sometimes, an external
magnetic field can induce a band-gap in the Dirac points [92], which can change
the behavior of MR. However, anomalous Hall has been observed up to 9 T, which
suggests that the Weyl points in the Mn3Ge compound remain stable. Therefore,
change in LMR near 1.5 is not originated from field-induced electronic transition, as

it happens in the case of TaAs [93].
It can be seen from the Fig. 5.3 that the Mn3Ge is metallic below 200 K, and non-

metallic above this temperature. We assume that the sample is semimetallic above 200
K. However, spin-resolved DOS calculations are required to confirm its true nature.
Negative and positive MR has been observed in the case of half-metallic/ semimetallic
and metallic samples, respectively. Their nature depends on the 3d spin density of
states [49, 94, 95, 96, 97, 98, 99, 100]. In our case, the high field LMR slope () is
negative and positive above and below 165 K, respectively (Figs. 5.4(a, b)). At low
temperatures, even though LMR is positive at high field, chiral anomaly contribution
(leading to the negative LMR) is present here as well. Therefore, the competition
between two contributions with opposite behavior leads to the change in the sign the
a lower than expected, which is 200 K. Moreover, the sample shows semimetallic and
metallic behavior above and below 200 K, respectively (Fig. 5.3). Since the nature
of high field, MR and resistivity changes near the same temperature, the origin of
high field LMR along the z axis is driven by the semimetallic and metallic nature of
Mn3Ge, above and below ~200 K, respectively.

High field MR: We have also measured very high field (60 T) LMR and transverse
MR (TMR) of the sample, along the y axis, using the pulsed magnetic field instrument
mentioned in the chapter 3. The behavior of LMR along the z axis and y axis are
same, as shown in the Fig. 5.6(a). Therefore, MR along the z and y axis can be
considered as equivalent. It is important to mention that the high pulsed magnetic
field setup is not as sensitive as the DynaCool instrument, which was used to measure
MR up to 9 T. Therefore, the negative LMR region below 5 T is not observable during
the pulsed magnetic field measurement. It can be seen in the Fig. 5.7 that the LMR
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at 4 K and 80 K increases up to 60 T, similar to what we have observed between 1.5
T to 9 T (Fig. 5.4)(a). A change in the slope of LMR and TMR has been observed
near 20 T (4 K, 80 K), whose origin is not yet clear. At 300 K, only LMR was
measured, and negative to positive change in MR was observed. Here, the negative
MR is possibly due to the semimetallic nature of the sample, and positive LMR at a
higher field is due to the trivial MR which is known to be increasing for any system

because of the Lorentz force.
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Figure 5.8: (a) LMC along the z axis. The data at high field (B >3 T) is fitted (fit)
with ag + a; B2, where ay and a; are the fitting parameters. (b, ¢) LMC
corresponding to the S2 and S3 samples, with the magnetic field applied
along the z axis.

5.4.1.2 LMC along the z axis

LMC along the z axis also show sharp increase in the same field regime, as shown
in the Fig. 5.8, similar to the Ref. [90]. However, LMC along the z axis remains
increasing up to 9 T. The low field linear increase is possibly due to the magnetic

domain effect because it takes a definite field strength to align the domain population
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along the magnetic field [90]. The domain effect may be present, at low field, in the
case of LMC along the z axis as well, which leads to the enhanced observation of
the positive LMC, compared to positive LMC contribution solely due to the chiral
anomaly effect. At high field (B >3 T), the LMC along the z axis follows B? magnetic
field dependence at the 4 K (Fig. 5.8(a)). As mentioned in the last section, the tilt of
the Weyl points is likely towards the z axis, therefore, B> magnetic field dependence
of the LMC along z axis is expected in the case of chiral anomaly effect [9]. As shown
in the Fig. 5.8, the B? field dependence weakens, significantly, as the temperature is
increased to 25 K. The LMC decreases with temperature, and almost vanished near
100 K. These observations are expected in the case of chiral anomaly effect, as it
weakens significantly with an increase in temperature, due to the occupancy of the
higher Landau levels. The magnitude of LMC corresponding to the S3 sample (higher
Mn concentration) is nearly five times smaller than LMC for the S2 sample (lower
Mn concentration), similar to the LMC along the z axis. As mentioned previously,
LMC due to the chiral anomaly is proportional to the ;%’ which leads to a significant
decrease in the LMC magnitude if chemical potential increases (due to an increase
in Mn concentration for S3 sample) Therefore, the significantly small magnitude of
LMC for S3 sample, compared to the S2 sample, suggest the origin of LMC along the

z axis to be the chiral anomaly effect.
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Figure 5.9: (a-c) MR corresponding to the I|| B||z; B rotated from z to z axis. The
experimental setup is illustrated in (c).

5.4.2 Angular magneto-resistance

Angle (6) dependent MR (IMR) of Mn3Ge (S2) was measured along different axes
while rotating the sample in various possible planes. The nature of MR can be
guessed from Fig. 5.6, where it is clear that the nature of §MR, defined as = p, - py,

should be positive in most of the cases, and the same has been observed during the
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Figure 5.10: (a-f) denote §MR corresponding for I|| B||z; B rotated from z to the z
axis. The experimental setup is illustrated in (c). (f) Inset: {MR at 370
K, which is above the Ty.

OMR measurements as well. The measurements were performed while rotating the
sample in z-z and z-y planes. We will discuss both cases below.

First of all, the {MR was measured in the z-z plane, with current applied along
the z and z axis. As observed in Figs. (5.9, 5.10), positive {MR is present in the
case of B|I||z; B rotation from z to x, and B|I||z; B rotation from x to z. In the
former case, the MR increases with the magnetic field, however, it remains nearly
the same in magnitude at 4 K and 300 K. In contrast to this, MR behaves non-
monotonically with temperature and field in the latter case when MR is measured
with current applied along the x axis. Different MR behavior within the sample plane
suggests that the MR within z-z plane does not originate from the chiral anomaly
effect. Furthermore, LMC along the z axis almost vanishes beyond 100 K, in contrast
with MR which remains significantly large up to room temperature. Therefore, it is
certain that the {MR in z-z does not result from the chiral anomaly effect. Such a
different behavior {MR within the z-z plane, could be observed due to the magnetic
anisotropy within this plane.

Further, {MR was measured in the z-y plane. The measurements were done for
B||I||ly; B rotated from y to x, and B|/I||z; B rotated from x to y, as shown in the
Fig. 5.11 and Fig 5.12(a-f). It can be observed that the behavior of {MR in z-y plane
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Figure 5.11: (a~c) denote dMR corresponding to the I|| B||y; B rotated from y to the
z axis. The experimental setup is illustrated in (a).

remains almost the same when the current is applied along the z axis and the y axis.
Therefore, /MR in this plane may arise from the chiral anomaly effect, which solely

depends on the angle between the magnetic field and the electric current direction.

We have analyzed the MR for B||I||z; B rotation from x to y measurement in
detail. In this case, positive MR is observed in all the cases. The evolution of
magnitude of /MR with temperature is shown in the Fig. 5.12(g). The magnitude
of MR, at 9 T, increases with an increase in temperature up to 200 K and starts
to decrease further. However, in the case of chiral anomaly, 6MR is expected to
decrease as a — bT™ [101], where a, b are fitting parameters. In contrast to 9 T,
OMR at 1 T decreases monotonically with temperature, and m = 2.3(2) was obtained,
which is slightly higher than other Weyl semimetals, as obtained by the Ref. [101].
These observations suggest that the 6MR only at 1 T possibly originates from the
chiral anomaly effect, which is justified because LMR along the z axis, below 1.5 T,

originates from the chiral anomaly effect.

Field dependence of the magnitude of MR is shown in Fig. 5.12(h). 6MR at 4 K
increases with field up to 1.5 T and decreases at higher field. In contrast to this, MR
at 300 K increases linearly up to 9 T. These observations, in combination with LMR
along the z axis, suggesting that the MR, at 4 K, is induced by the chiral anomaly
effect up to 1.5 T only. MR at 300 K is larger than 4 K. However, the chiral anomaly
effect is very weak at room temperature compared to the 4 K. This suggests that the
OMR at 300 K does not originate from the chiral anomaly effect. Furthermore, the
non-monotonic field dependent behavior of AMR at different temperatures suggests

that MR does not originate from the magnetization of the sample.
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axis, for Mn3zGe (S2) sample. (g, h) show temperature and magnetic
field dependence of {MR oscillations. Ap,, = p(Omae.) —p(0), where 0,4
means # at which the maximum magnitude of oscillation is observed.

84



5.4 Electrical transport measurements

5.4.3 Analysis of high field /MR

As explained by the Refs. [99, 102], the difference in up and down the spin density of
states (DOS) can lead to the negative or positive nature of the éMR. The same has
been observed by Refs. [49, 100]. We will denote the component of {MR, induced by
the unequal spin DOS, as MR,. Since Mn3Ge is metallic below 200 K, MR, should
show negative (p,<p|) behavior below 200 K. Whereas, chiral anomaly induced MR
(MR#,,) show positive §MR (p,>py) [46, 91, 43]. On the basis of the temperature and
field dependent #MR, it can be argued that at low temperature (at 4 K), MR, and
OMR, compete with each other, such that MRA,;,, MR, dominate below and above
1.5 T, respectively. Therefore, {MR increase up to 1.5 T and decreases beyond this
field (Fig. 5.12(h)). The observed MR is the resultant of the MRO,;, and MRy, and
both are opposite below 200 K. Therefore, an increase in /MR magnitude, at 9 T, up
to 200 K, is possible, if the strength of MR, and {MR, decreases with increase in
temperature at different rates (Fig. 5.12(g)).

For T' > 200 K, the sample show semimetallic behavior. Therefore, MR, should
be positive, similar to the behavior of chiral anomaly induced {MR. Also, the chiral
anomaly is significantly weak at high temperatures. Therefore, the linear (field depen-
dent) increase in the magnitude of {MR (at 300 K) originates from the semimetallic

nature of the sample.

5.4.4 Anomalous Hall effect

Hall resistivity of different samples was measured with the magnetic field applied along
the different axes, as shown in the Fig. 5.13(a-d). We will denote Hall resistivity as
pij, where 4, j implies the axes along which current and voltage are measured while
applying the magnetic field normal to both axes. The residual Hall resistivity at B =0
is known as anomalous Hall resistivity (AHR). AHR can be measure by the high field
Hall resistivity data (linear) fitting, as shown in the Fig. 5.13(a) (denoted as pZ,).
Large AHR was observed in the case of B||(z, y). Beyond 1 T, linear field dependence
is observed in all the Hall resistivity measurements as shown in the Fig. 5.13.

AHR can be observed as