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1 Introduction

In this lecture we discuss the consequences for the electronic structure of a crystalline solid if
one or more dimensions of the system size are reduced, reduced to a level where measurable
quantities are modified. This includes the change of the quantization conditions for an electron
wave due to the presence of new boundary conditions which alters the eigenvalue spectrum and
thus the transport and other properties of the solid. This is well-understood in terms of a sin-
gle electron picture. With the reduced dimensions, the symmetries of the system are lowered,
surfaces and interfaces move into the focus of attention and the appearance of new boundary
conditions lead to additional states, called surface states and interface states. Typical for solids
at reduced dimensions is also the reduction of the number of neighboring atoms or the reduction
of the coordination number, respectively. This may request an rearrangement of atoms at the
surface or interface of solids to find a new optimal bonding by lowering the energy. Typical
examples are the surface reconstruction exhibited by many semiconductor surfaces rearranging
their directional bonds or the formation of carbon nanotubes. A reduction of the coordination
number means also that the electrons have less opportunity to hop from site to site and the ki-
netic energy of the electron or the band widthW , respectively, is reduced. Thus, the ratio of the
Coulomb interaction U between the electrons on a given site and the band width, U/W , moves
toward higher Coulomb interactions, and electron correlation becomes more important and the
tendencies towards the appearance of magnetism or a Mott-transition is enhanced. An under-
standing of these phenomena requires a proper treatment of the electron-electron interaction.
Frequently one speaks about one- or two-dimensional solids when the hopping of the electrons
are quasi one- or two-dimensional, although the solid crystallizes in a three-dimensional struc-
ture. Examples are spin-ladder systems, cubrates, or certain molecular crystals. These systems
are out of the scope of this lecture.

1.1 Electrons in a periodic potential: single electron picture

A single electron moving in a periodic potential V (r) = V (r + Rn) provides the foundation of
the electronic structure of a crystalline solid. It is described by the single electron Schrödinger
equation

H0ψkσ(r) =

[
− �

2

2m
∇2 + Vion(r)

]
ψkσ(r) = εkσψkσ(r) , (1)

where ψkσ and εkσ are the Bloch wavefunction and the band energy, respectively, k is the
electron’s lattice momentum, and σ =↑, ↓ is its spin in the Sz direction. Rn and Gm with
Rn · Gm = 2πm · n are the lattice and the reciprocal lattice vectors, respectively. Here we
suppress the band index ν and ignore the spin orbit coupling. According to the Bloch theorem
the eigensolution of the single electron Schrödinger equation can be expressed in the following
general form:

ψk(r) = eikruk(r) with uk(r) = uk(r + Rn) (2)
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where the Bloch factor uk(r) is a periodic function with the same periodicity as the potential.
It tells us that the wavefunction of an electron is not periodic,

ψk(r + Rn) = eikRψk(r) ; (3)

but the charge density |ψk(r)|2 associated with the state k is. The Bloch vectors are taken from
the first Brillouin zone (BZ) and are determined by the boundary condition. It is convenient but
not necessary to introduce periodic boundary conditions. Assuming that the the main region of
the crystal has a form of a parallelepiped with sidesNiai, i ∈ 1, 2, 3 and imposing the condition

ψk(r +Nia) = ψk(r) for all i ∈ 1, 2, 3 (4)

we obtain using Eq. 2 these conditions: exp(iNikai) = 1 (i = 1, 2, 3) from which we conclude
that the Bloch vectors k take up an infinite discrete set of values which are determined from

kai =
2π

Ni

ni with i ∈ 1, 2, 3 , (5)

where each ni is any integer: ni = 0,±1,±2,±3, . . . . For example for a simple cubic lattice
one has for any direction i, ki = 2π

a
ni/Ni. Thus the wave vector k forms a discrete set in

the reciprocal space distributed uniformly within the first BZ. Both the energies εk and the
wavefunction ψk(r) are some continuous function of k (we assume that the main region of
the crystal is macroscopic and the numbers N1, N2 and N3 are large). For Ne electrons, in
the ground state the lowest Ne states are occupied, and the uppermost energy is called Fermi
energy,

max εk = εF . (6)

This equation defines the Fermi surface in k space.

This single electron theory is a very powerful approach in describing the electronic structure
of a solid, but it only holds when the Schrödinger equation for Ne electrons can be reduced
to a set of single particle Schrödinger equations of the type given in Eq. 1, i.e. only if the
Ne-particle Hamiltonian H is a separable sum of single particle Hamiltonians H0. Typically
the interaction between electrons spoils the separability and makes the Ne-particle Hamiltonian
much harder to diagonalize. In many circumstances, much of the Coulomb interaction effects
between the electrons can be incorporated into the single particle part of the Hamiltonian by
modifying the ion potential Vion to an effective potential Veff , where Veff is a functional of the
ground state density n(r). Electrons are then interpreted as quasi-particles with massm∗ instead
the undressed electron mass mo. The most successful theory of this kind is the density function
theory (DFT) which is reviewed by G. Bihlmayer in the lecture A3. If this approximation
does not hold the single-particle picture breaks down and the physics is determined by strongly
correlated electrons, ignored in this lecture, but treated by E. Koch in lecture A4.

2 Confined Electronic States

In electron confining structures, the basic assumption made in Section 1.1 that the inner part
of a solid is macroscopic and that the number of atoms Ni, (i ∈ 1, 2, 3) are arbitrarily large
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Table 1: Comparison of the properties of electrons in a two-dimensional electron gas (2DEG)
with those in bulk Cu.

Metal (Cu) 2DEG (GaAs)

Electron density n = 6 · 1022 cm−3 n = 2 · 1011 cm−2

Fermi wave number kF = (3π2n)1/3 = 1.2 Å−1 kF = (2πn)1/2 = 0.011 Å−1

Fermi wave length λF � 0.52 nm= 5.2 Å λF � 50 nm= 500 Å

Fermi energy EF = 5 eV EF = 7 meV

Excitation energy ΔE ∼ 10−10 eV ΔE = 2 meV

Effective mass m∗
mo

∼ 1 m∗
mo

= 0.067

does not hold any more, requesting new quantization conditions along the reduced dimension.
Since all low energy excitations such electron scattering at impurities, phonons, magnons or
transport processes in general taking place in the vicinity of the Fermi surface where occu-
pied states are excited into unoccupied ones, the confinement of carriers within within zero-
(0-D), one- (1-D), and two-dimensional (2-D) structures becomes important when the spatial
extent of the confining dimension � is of the order of the Fermi wavelength λF = 2π/kF that
depends on the electron density and on the dimensionality. As summarized in Table 2.1, for
metals with high free electron concentrations in the 1022 cm−3 range λF is in the order of
0.5 nm (or 5Å), whereas in moderately doped semiconductors with carrier concentrations in
the 1017 cm−3 range, λF reaches values of about 50 nm. Both length scales are accessible to
modern nanoscience producing wonderful physics by studying the confinement effects.

2.1 Jellium Model

To study the effect of the extent of the system on the character of the eigenfunctions of the elec-
trons and on the distribution on the energy eigenvalues and thus on the macroscopically mea-
surably properties without going into the specific nature of the localization here, we consider
an electron in the jellium model, where the underlying periodic structure is homogeneously
smeared out and a gas of electrons move in a constant potential which is set to zero without loss
of generality. We consider a system which is of macroscopic in D dimensions and confined in
3 − D dimensions. We model the confinement on the microscopic length scale � by infinitely
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high potential barriers, while in the other directions of macroscopic extent L we use again the
periodic boundary conditions.

In the D macroscopic dimensions the corresponding wavefunction (Eq. 2) reduces to just plane
waves

ψk(r) =
1

LD/2
eikr and εk =

�
2

2m∗k
2 (7)

and the energy eigenvalues change quadratically with the wave vector, whereasD is the number
of macroscopic dimensions of the system with the extentL = N ·a. The k-values are equidistant
and densely spaced due to the macroscopic value of L, k = 2π

L
n with n ∈ Z. Each state k is

occupied twice, once for spin-up and -down. Then, the largest k-vector of length |k| = kF is
determined by the electron density n

n =
Ne

V
=

2

LD

∑
k(k<kF)

1 = 2
1

(2π)D

∫
dDk = 2

1

(2π)D

⎧⎪⎨
⎪⎩

2kF for D = 1

π k2
F for D = 2

4π
3
k3

F for D = 3

. (8)

We can show further that the dimensionality of the electron in the jellium has a strong influence
on the form of the density of states n(ε), a quantity describing the number of states in an energy
interval between ε and ε+dε. Both the dispersion relation εk = �2

2m∗k
2 and the dimension of the

”sphere” enter. We start with density of states in theD-dimensional k-space perD-dimensional
volume element:

ZDd
Dk =

1

LD

(
L

2π

)D

[π]D>1(2k)D−1dk . (9)

The expression [π]D>1 is equal to 1 for D = 1 and π for D > 1. The D-dimensional energy
spectrum is found, when the dependence of the wavevector is replace by the energy depen-
dence via the quadratic dispersion relation and a factor 2 for the degree of spin-degeneracy is
considered,

2ZDd
Dk = 2ZD(k(ε))

dk

dε
dε = nD(ε) dε . (10)

Thus one obtains from the D macroscopic dimensions of the system (with D ≥ 1) a character-
istic energy dependence of the spectrum proportional to ε(D/2)−1:

nD(ε) dε = [π]D>11

2

[
2

√
2m∗

�

]D

ε
D
2
−1 dε ∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ(ε) for D = 0
1√
ε

for D = 1

Θ(ε) for D = 2√
ε for D = 3

. (11)

We observe that the reduced macroscopic dimensionality of the electron jellium has a strong
influence on the form of the density of states. This has important consequences on the electronic
properties of confined structures.

In the 3−D directions the system is of microscopic extent �, so that quantization effects become
important. As said above we model the confinement by infinitely high potential wells. These
potential barriers enforce new boundary conditions for the wave functions. The infinite potential
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well is equivalent to vanishing wave functions at the boundary with standing wave solutions.
For convenience we focus first on quantum films, i.e. D = 2. The boundary condition, e.g.
along x-direction ψ(x = 0) = ψ(x = �) = 0 results then in the eigenfunction

ψm,ky,kz =

√
2

�
sin

(mπ
�
x
) 1

L
ei(kyy+kzz) (12)

with the eigenvalue spectrum

εm,ky,kz = εm + εky,kz where εm =
�

2

2m�

m2π2

�2
and εky,kz =

�
2

2m∗ (k2
y + k2

z) (13)

While the spectrum of εky,kz is quasi continuous because of the macroscopic dimension L,
the spectrum of εm is truly discrete because � is microscopic. (We also assume two different
effective masses m∗ and m�). The wavenumber for the different wavefunctions in x-direction
differ by δk = π/�. This is a large value due to the microscopic value of �. Thus the energy
eigenvalues for different m lie far apart. One obtains e.g. in x-direction discrete energy values
separated by

δEm = Em −Em−1 =
�

2

2m�

π2

�2
(2m− 1) >> kBT . (14)

Strictly speaking, this applies to an infinitely deep potential well. However, we can still use
the same equation as long as Em is in the vicinity of the bottom or the top of a band. For the
quantization to be important, the difference between the levels should be much larger than the
thermal energy kBT . Using this condition, we find, for example, that in GaAs where m�/mo =

0.067, the levels are quantized at room temperature when � = 15 nm. In order to exhibit two-
dimensional behavior there should be only one single level within ±kBT of the Fermi level.
Several levels within the Fermi cut-off would already approach a three-dimensional continuum.
Similarly we can derive the results of 1-D and and 0-D case. For example, the wavefunction of
a one-dimensional wire is then give by:

ψm,n,kz =
2

�
sin

(mπ
�
x
)

sin
(nπ
�
y
) 1√

L
eikzz . (15)

Further results are compiled in Table. 2.1 together with the density of states.

2.2 Quantum-Well States

Quantum-well states – quantized electronic states confined within a thin slab can be prepared
in nature. They are well-known in systems containing semiconductors and insulators such as
the InP-InxGaxAs family. Semiconductor quantum wells support these states near the edges of
the fundamental gap where the band-gap mismatch leads to electron confinement. Such states
play an important role in the operation of many optoelectronic devices (e.g. the “quantum-
well” laser). In general, the question of electron reflection characteristic of the potential well at
which the electron is scattered versus the transmission characteristic of the leakage of electrons
depends on the “electronic mismatch” or the band-structure mismatch of materials. The electron
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Table 2: Extended systems in D = 3, 2, 1, 0 dimensions, illustration of the density of states
n(ε), eigenfunctions ψ(r), ψm,k‖(r), ψm,n,ky(r), and ψm,n,l(r), as well as the expression for the
density of states. The summation runs over the discrete eigenvalue spectra.

BULK QUANTUM QUANTUM QUANTUM

FILM WIRE BOX

n(E)

E

n(E)

E

n(E)

E

n(E)

E

ψk(r) = eikr√
V

= φm(x) ei(kyy+kzz)√
A

= φm(x)φn(y) eikzz√
L

= φm(x)φn(y)χl(z)

ε(k) = εm(k‖) = εm,n(ky) = εm,n,l =
�
2

2m∗ (k2
x + k2

y + k2
z) εm + �

2

2m∗ (k2
x + k2

y) εm + εn + �
2

2m∗k
2
y εm + εn + εl

n(ε) = a(3)
√
ε =

∑
a

(2)
m Θ(ε− εm) =

∑
a

(1)
m,n

1√
ε−εm−εn

=
∑

m,n,l δ(ε− εm,n,l)

dynamics is determined by the energy, the crystal momentum conservation and the symmetry
match of the propagating electrons. Thus, even without an absolute gap, electron confinement
is still possible near the edge of a “relative” gap. An this holds also for metal-on-metal systems
such as Ag(111) on Au(111) [1] or Co on Cu(100) [2] to name two well-known ones.

Quantum-well states can be well-understood on the basis of the bulk band structure. We ex-
emplify this for Cu(100) films of finite thickness embedded in vacuum. In Fig. 1(left) we find
the band-structure εk of bulk Cu along high-symmetry lines. For a film of finite thickness ori-
ented along the (100) direction the translational symmetry is broken along Γ-X direction, the
k-values along this Δ line are not anymore arbitrarily dense but are quantized according to the
number of layers N in the (100) direction, k⊥ = m

N
π
a

. In good approximation one can derive the
eigenvalue spectrum for the thin films writing εk = εk⊥,k‖, with k‖ ∈ 2DBZ (two-dimensional
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Fig. 1: (left): Bandstructure of fcc Cu, (middle): band structure of a fcc Cu film of 9 ML
thickness in vacuum, (right): respective film of 23 ML thickness.

Brillouin zone). States between Γ-X map onto the Γ̄-point. In the ideal case of a of an iso-
lated film composed of n layers, the finite size of the system imposes a quantization of teh
levels, so that n discrete levels εn(k‖) are created for every two-dimensional vector k‖. The
energy level spectrum changes with the film thickness as calculated for Cu(001) and shown in
Fig. /reffig:Cu100-BS-23ML in analogy with Eq. 14 of an electron in a box. The number of
allowed states increases with the films thickness while there energy separation decreases. The
electronic structure converges to that of bulk Cu with increasing film thickness. At the Fermi
surface 2π/(kBZ − kF ≈ 6 atomic layers. Therefore, when the thickness of the film is increase
by about 6 layers an addition state moves through the Fermi energy.

The term quantum-well states is well chosen. This is shown in a Fig. 2(left) by counting the
number of s electrons in a sphere around an atom across the 23 layers of a Cu film for the three
lowest quantum-well states at the Γ̄ point together with the theoretical solution for a potential
well with infinite walls. The agreement is striking.

With photoemission the electronic structure of the film can be probed as a function of binding
energy, wave vector k‖, spin and film thickness. In practice, the complexity (i.e. roughness, in-
terdiffusion, clustering) of the film growth mode often makes the observation of the quantization
effects difficult or even impossible. However, there are favorable cases in which the film grows
almost perfectly layer by layer, the formation of “quantum-well states” can be directly observed
in the photoemission spectra. As an example Fig. 2(right) shows the photoemission spectra of
thin Cu films epitaxially grown on fcc-Co(100) [2]. In the geometry of this measurement the
photoemission probes the electronic structure of Δ1 symmetry at the wave vector k‖ = Γ̄. The
spectra of the films show several structures derived from the Cu electronic states, with binding
energies varying with film thickness. The quantization effects on these levels is visible in these
spectra up to a thickness of 50 atomic layers. The quantum-well condition is only full-filled for
minority states but not for majority states, therefore the quantum well states are spin-polarized.
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Fig. 2: (left): Number of s electrons in a sphere around an atom across the 23 layers of a
Cu film for the three lowest quantum-well states at the Γ̄ point together with the theoretical
solution for a potential well with infinite walls. (right): Photoemission spectra of ultrathin Cu
films on fcc-Co(100). The shaded spectral structures with bonding energy depending on the film
thickness, derive from the quantization of the energy levels due to electron confinement. They
are observed up to 50 atomic layers, (90Å), thickness [2].

3 Electronic Structure of Surfaces

In Section 2 we discussed the occurrence of electron confinement assuming infinite potential
wells. For most cases this is a simplification. In reality, we deal with finite and gradually
changing potentials either toward a vacuum or an interface of a different material. This leads
to new boundary conditions and surfaces and interfaces induce new electronic states which do
not exist in the bulk crystal. These surface states, interface states or surface resonances1 are
to be discussed here briefly first for the 1-D case. Then we present well-investigated examples
of metal surfaces, of the surface of the semi-metal Bi, whose surface becomes metallic and
of some semi-conductor surfaces. Most metal have delocalized electrons and the generation
of a surface changes very little the atomic positions in the vicinity of the surfaces. Therefore
most metal surface remain structurally ideal surfaces. This is quite different to semiconductor
surfaces, with half-filled directional lone-pair bonds, whose atoms rearrange in order to saturate
these bonds. Surface states of metals are believed to play an important role in catalysis, but also
in surface diffusion, the interaction of atoms across the surface and correlations effects such as

1Surface resonances are states, which have a high probability density at the surface, but couple to bulk states.
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the Kondo effect of magnetic adatoms on nonmagnetic metal surfaces. Semiconductor interface
states can be electronically active and may influence the electrostatics in semiconductor devices.

3.1 Qualitative Discussion in One Dimension

The surface system consists of the two infinitely extended semi-infinite spaces, the vacuum
(−∞ < z < 0) and the bulk crystal (0 ≤ z <∞).

The system is described by the Schrödinger equation:[
− �

2

2m

d2

dz2
+ V (z)

]
ψν(z) = εν ψν(z) . (16)

Before we solve the Schrödinger equation for this system, we recall the solution of the Schrödinger
equation for the two reference systems: bulk crystal and vacuum.

The Bulk Crystal

In the bulk crystal, the effective potential of the electrons is lattice periodic, i.e.

V (z + a) = V (z) , (17)

whereby a is the 1-D lattice constant. The lattice-periodic translation symmetry induces the
Bloch vector k as quantum number. The range of values of k lies within the 1st BZ, and the
eigensolutions to this potential have Bloch symmetrie:

ψkν(z + a) = eikaψkν(z) = eik(z+a)ukν(z) , (18)

whereas ukν(z) is the lattice periodic Bloch factor as introduced in the Introduction, i.e. ukν(z) =

ukν(z + a). εkν is the band structure of the periodic crystal. ν labels the bands. For reasons of
wavefunction normalizability only real values of k (k ∈ R) are allowed.

The Vacuum

Setting the potential V (z) = 0, we obtain for Schrödinger equation in vacuum

− �
2

2m

d2

dz2
φK(z) = εK φK(z) (19)

with the solution

φK(z) =
1√
L
eiKz and εK =

�
2

2m
K2 or K = ±

√
2m

�2
εK . (20)

L is a macroscopic normalization length. If ε ≥ 0, then K is real, if ε < 0, then K takes imag-
inary values. This solution is mathematically possible, must be rejected however for physical
reasons, since this solution is not normalizable, because of the divergence for z → ±∞.
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The Surface

For the surface system one deals with both semi-infinite half-spaces, the vacuum and the bulk.
However, with respect to the periodic bulk system, the boundary conditions for the normaliza-
tion of the wave function change. Now, also solutions with complexQ = K + iΓ or q = k+ iγ

can be induced, which had to be excluded before. We discuss this briefly for energies of bound
electrons ε < 0. Thereby, there are two different possibilities:

1.) Energy ε < 0 is placed within a band2 of the bulk crystal:

φ(z) = AeΓz

ψ(z) = Beikzuk(z) + Ceikzu∗k(z).

There are incoming and outgoing crystal states, which are elastically reflected at the surface.
Their amplitudes drop exponentially into the vacuum. The three constants are determined by
two boundary conditions at the surface (z = 0)

(i) φ(0) = ψ(0), and (ii)
dφ

dz
|z=0 =

dψ

dz
|z=0, (21)

and (iii) the normalizability. These three conditions can always be satisfied and therefore there
are solutions for all energies within a band.

2.) Energy ε < 0 is located in a band gap3 of the bulk crystal:

There are no current carrying states, neither in the vacuum nor in the crystal. Therefore, only
solutions are permitted with wavefunctions fading exponentially into the vacuum and bulk,
which are described by means of complex Q and q. Normalizability together with the demand
for a continuous differentiable adjustment of both wave function at the surface leads to an
eigenvalue problem for a bound state, the surface state with the energy εS. The localization
γ(ε) and Γ(ε) is largest in the center of the gap and changes at the band edge continuously into

2permitted eigenvalue spectrum εk.
3No permitted eigenstates. It occurs in semiconductors and insulators but also in metals. With the latters,

however, only within limited areas of the Brillouin zone, so-called partial gaps and pockets.
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φ(z) = AeΓz

ψ(z) = Ceikzeγzu∗k+iγ(z).

the bulk band. Between the lower and the upper edge of the gap the phase of the wave function
changes by π.

3.2 Description in Three Dimensions

Real bulk crystals are three-dimensional, consequently the Bloch vectors k and the Brillouin
zone are three-dimensional vectors and objects, respectively.

The surface breaks in one direction the lattice-periodic translation symmetry, and the three-
dimensional lattice-periodic translation symmetry reduces to two directions parallel to the sur-
face. The unit cell for the atoms is semi-infinite in direction normal to the surface. This leads to a
symmetry reduction of the underlying crystal lattice. For example, cubic crystals with a surface
are described in terms of a tetragonal unit cell. Due to the symmetry lowering, the 3-D Bloch
vector k = (k⊥,k‖) is not a good quantum number anymore, and only the two-dimensional
parallel component k‖ remains a good quantum number.. Thus, the electronic states are just
described by 2-D Bloch vectors k‖ and by 2-D Brillouin zones, also called surface Brillouin
zones (SBZ).

For example, the wavefunction in the vacuum can be expressed in terms of the Bloch represen-
tation,

ψk‖ν(r‖, z) = eik‖r‖uk‖ν(r‖, z). (22)

Due to the 2-D lattice periodicity of the Bloch factors uk‖ν(r‖, z),
uk‖ν(r‖, z) = uk‖ν(r‖ + R‖, z), it is possible to expand uk‖ν(r‖, z) in terms of a 2-D Fourier
series and the wave function in the vacuum can be expressed as

ψk‖ν(r‖, z) =
∑

n

cnk‖νd
n
k‖(z)e

i(k‖+Gn
‖ )r‖ . (23)

exp (iGn
‖ r‖) are the 2-D plane waves parallel to the surface and dn

k‖(z) are the one-dimensional
z-dependent basis function, which describe the decay into the vacuum, and which can be deter-



Electronic structure: Reduced dimensions A5.13

UU X

UU X

L,M L

L,M

Γ

L

X

M,LX

M,L

Γ

X

X
K K 110

001

Γ

W

X

K

U

L
[001]

[100]

[010]

ky

kz

k = [110]
k = [001]

k = [110]x

y
z
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a
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unit cell becomes expanded to a semi-infinite surface cell along the [110] di-
rection, the BZ diminishes to a quasi two-dimensional BZ (broken line) SBZ,
whose top-view is illustrated in the right picture. The irreducible wedge of the
SBZ is formed by the quadrant bound by Γ̄, X̄, M̄, X̄ ′.

mined by solving a 1-D Schrödinger equation in the vacuum[
− �

2

2m

d2

dz2
+ V (z) − εv +

�
2

2m
(k‖ + Gn

‖ )2

]
dn
k‖(εv, z) = 0. (24)

for a laterally averaged potential V (z) for a reference energy εv.

3.3 Metallic Surfaces

An ideal surface is obtained cutting through the crystal by means of an infinite two-dimensional
plane along crystal planes. A first conception of the bandstructure of the semi-infinite space
is obtained by projecting the three-dimensional bandstructure on the two-dimensional surface
Brillouin zone, thus

εkν = ε(k‖,k⊥) ν =: εPBS
k‖ (k⊥ν) . (25)

The resulting bandstructure is also called projected bulk bandstructure, abbreviated as PBS.
This projection is demonstrated in Fig. 3.

By view of Fig. 3 it becomes obvious that in the case of the (110)-surface all states of k⊥ along
Σ (i.e. between Γ and K) contribute to the two-dimensional k|-point Γ̄. Figure Fig. 4 shows
for examples the so evaluated PBS of the GaAs(110) and InP(110) surfaces Band gaps in the
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bulk bandstructure produce also gaps in the PBS. Additionally, so-called pockets arise in certain
k|-directions and for certain k|-values, in which no Bloch waves can exist just as little as in the
gaps. It is obvious that there are different PBS for different surface geometry.
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Fig. 4: Bulk bandstructures of GaAs and InP [3]: The gaps had been adjusted
by shifting the conduction band to match the experimentally determined values
at the Γ-point (GaAs: 1.52 eV, InP: 1.42 eV). The bulk bandstructures (left) are
projected onto surface Brillouin zone (right).

Surface states and -resonances are additional solutions, which cannot be derived from the bulk
bandstructure. For historical reasons one calls the surface states, which can be described well
in the model of free electrons, Shockley states [6], and those, which can be described well
in the model of tightly bound states (tight binding model), Tamm states [7]. For real surface
states, both concepts apply only approximately. Generally the delocalized s- and p-electrons of
metals, d-orbital of lanthanides and actinides are well described by Shockley states, while the
Tamm concept applies to p electrons of some semiconductors, d-orbitals of transition metals
and f -orbitals of actinides. There are surface states at nearly all surfaces.

So far we assumed that at surfaces atomic positions do not change. This is never completely
fulfilled in nature, since the bonding conditions change drastically in the surface due to the
absence of neighboring atoms. The positions of the atoms in a real surface can deviate from the
ideal bulk terminated surface by either a surface relaxation or by a surface reconstruction. In the
case of the relaxation, the surface unit cell agrees with that of the ideally terminated one, but the
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atomic positions are shifted along symmetry conserving degrees of freedom (e.g. the surface-
normal). Symmetry lowering does not take place. In the case of the surface reconstruction an
additional change of the translation symmetry parallel to the surface occurs.

Many low-index surfaces of metals (e.g. (100), (110) or (111)) typicall do not reconstruct (ex-
ceptions e.g.: Au(111), Ir(100), Ir(110), Au(110), Rh(110)) and relax little. Here the model of
the ideal surface works rather well.

The Cu(111) Surface
            

Fig. 5: The hatched range describes the
projection of the bulk bandstructure of Cu
onto the Cu(111) surface Brillouin zone.
The free electron nature of the sp bands
is evident on the basis of the parabolic
form of the projected band edges in the
upper and lower part of the picture. The
3d-band of Cu are located between 2 eV
to 5 eV below the Fermi energy εF. The
surface states are characterized by bro-
ken lines. The upper surface state is a
sp-band derived Shockley state, the lower
one is a Tamm state, split-off from the 3d-
band of the Cu. Illustration taken from
[5].

The nobel metals crystallize in the fcc crystall structure. There projected bulk band structures
exhibit a large band gap arround the L-point of the fcc Brillouin zone (see Fig. 3). In fact,
nobel metal (111) surfaces have both a Shockley [8] and a Tamm state [9]. Both states have
text-book character and were intensively studied by photoemission and inverse photoemission.
The Shockley state has a parabolic dispersion, and the electrons of this state behave nearly
like free electrons. It is directly located at the Fermi energy and is thereby easily accessible
to spectroscopy with the scanning tunneling microscope (STM) or photoemission. As example
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we show the surface bandstructure of Cu(111). Results for Ag(111) and Au(111) are found for
example in Ref. [10].

Table 3: Summary of experimental results fitted to a parabola after Reinert et al. [11]. The two
parabolas of the Au(111) surface states are centered at ±0.013Å−1.

ε0[meV] m∗/mo kF[Å−1] λF[Å]

Cu 435 ± 1 0.412 0.215 29.2

Ag 63 ± 1 0.397 0.080 78.5

Au 487 ± 1 0.255 0.167/0.192 37.6/32.7

In Table 3 we summarize the maximum binding energy ε0 at (or close to) the Γ̄-point, the
effective mass relative to the electron mass mo, the Fermi wavevector kF and Fermi wavelength
λF of the surface state for the (111) surfaces of the three noble metals. These surface states
became a play ground for studying electron confinement and the consequences for symmetry
lowering at surfaces. For instance, the binding energy of the Ag(111) surface state is smallest.
That implies, that also the PBS has the smallest gap of all three metals. Ag and Au have nearly
the same lattice constant and Ag can be grown on Au and vice versa. Since the PBS of Au
exhibits a larger gap than Ag, there is an energy range of nearly 1 eV where Ag sp states of
Ag films grown on Au(111) bounce against the Au gap and are partially reflected leading to
quantum-well states, the first quantum-well states exhibited in metals, at least to my knowledge
(see Ref. [1]). No quantum-well states will be found for Au films on Ag(111) substrates as
here no gap appears. The surface state will remain in both cases. Depending on the thickness
the latter will continue as an interface state into the substrate. The lateral confinement of this
two-dimensional surface state by artificially made quantum corrals of the size of the wavelength
λF e.g. by atom manipulation or due to the presence of step edges leads to interesting electronic
effects observable with the scanning tunneling microscope.

The W(110) Surface

W(110) is a further very intensively examined surface [23]. W crystallizes in the bcc structure
and the (110) oriented is the most compact one with densely packed centered-rectangular layers.
Fig. 6a shows the band structure from Γ̄ to S̄ of a W(110) slab of finite thickness. Increasing
thickness would fill in more discrete bands into an energy regime which is identified as the PBS.
In addition to these states we identify the surface band (open dots) which is split-off from the
bulk d band and has likewise d character. This surface band cuts the Fermi energy near the zone
boundary. For comparison Fig. 6b shows the two-dimensional Fermi surface of W(110) with
all those states added whose wave function leak out of the surface. Open dots are bulk states,
solid dots are surface states. The fact that the surface band causes the ellipse of surface states at
the S̄-point is to be recognized clearly, just as the surface resonance states around Γ̄.
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S

a) b) c)

Γ

Fig. 6: (a) Surface band structure of W(110) along the line connecting Γ̄ and S̄.
(b) Two-dimensional Fermi surface. (c) Representation of the surface Brillouin
zone with 2 high symmetry points.

The Fe(100) Surface

In Fig. 7 we show the surface bandstructure (more accurately, it was a calculation of a 49-layer
film, whose bandstructure approaches the one of the semi-infinite system quite well) for even-
symmetry states of Fe(100) along the high symmetry line connecting Γ̄ with X̄ . The Fe-surface
is magnetic (surface magnetic moment amounts to 2.8 μB as compared to the bulk magnetic
moment of 2.25 μB); therefore all states are spin-split into two spin directions of Sz, which we
classify here as majority and minority states. Along the high-symmetry line between Γ̄ and X̄
one finds surface state bands, whose energy at the Γ̄ point is around 0.4 eV for the minority
surface state and around −2.0 eV for the majority one. A close look at Fig. 7 reveals that the
surface state band Γ̄–X̄ penetrates at the Γ̄ point into the bulk band and changes its character to a
surface resonance. Obviously, with this d3z2−r2 state at Γ̄ we have a surface state (or resonance)
at hand, whose properties depend on the magnetism, chemical environment, lattice distortion,
the surface morphology, the alloy formation and so on. Thus, the spectroscopic investigation of
this state permits information on the local chemistry as in the the investigations of the systems
Cr, Fe(100) [12], the alloy formation of Cr/Fe(100) [13] or the investigation of one-dimensional
domain boundaries of the two-dimensional surface alloy Fe(100) c(2 × 2) Si [14].
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Fig. 7: Surface bandstructure
of ferromagnetic Fe(100) for
majority- and minority states
with even symmetry along the
high symmetry line Γ̄–X̄ . Sur-
face states are marked by solid
dots, Ref. [12].

The Bi Surfaces

In metals, the formation of a surface may lead to the appearance of a surface state in the gaps
of the projected bulk bandstructure. But normally, these state occupy only a small fraction of
reciprocal space and their contribution to the total density of states is small. Therefore, surface
states will have just a small effect on the overall electronic properties of metals. On the other
hand, surface formation in semiconductors leads to a massive breaking of covalent bonds, and
consequently a fundamental rearrangement of charges. To avoid the excessive formation of
surface states, these surfaces often reconstruct to saturate their dangling bonds. Semimetallic
systems, i.e. substances which have no bandgap but vanishing or almost zero density of states
at the Fermi level form an intermediate class. Bismuth, for example, is a semimetal that shows
large projected bandgaps at the Fermi level for all surfaces. Here, we discuss low-index sur-
faces, that do not reconstruct but show prominent surface states which significantly alter the
electronic properties of these surfaces.

Bi has a rhombohedral structure, that can be imagined to result from a small distortion of two
penetrating face-centered cubic (fcc) lattices along the body-diagonal forming a two-atomic
lattice with a basis vectors (±u,±u,±u) where u is slightly smaller than 1/4. Like in the case
of the Cu(111) surface, the Bi(111) surface thus consists of densely packed hexagonal layers,
which are – in contrast to the fcc lattice – not evenly spaced, but form relatively stable bilayer
structures [15]. The projected bulk-bandstructure of the Bi(111) surface is shown on the left of
Fig. 8. Only at the Γ and M points small Fermi surfaces are formed, originating from the L and
T points of the bulk Brillouin zone (Fig. 8(b)). Along the line KΓM there is a large projected
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Fig. 8: Surface electronic structure of Bi(111) (a,left) and Bi(110) (c,right):
Surface states are marked by red circles, the projected bulk bandstructure is
indicated with black symbols. In the background of the Bi(110) bandstructure,
the experimental angle resolved photoemission spectrum is shown [19]. The
bulk Brillouin zone and its projection on the (110) plane is drawn in (b) [taken
from [16]]. The pockets at the L and T points are magnified images of the
electron and hole pockets, respectively.

bulk bandgap extending throughout the whole Brillouin zone. In this bandgap two states appear,
that change the character of the surface from semiconducting to metallic. As it turns out, these
two states are actually spin-split partners of a single surface state [17]. This spin-splitting can
arise on a nonmagnetic surface due to the Rashba spin-orbit splitting, a relativistic effect which
gets particularly strong for materials with high nuclear number [18]. It is a consequence of
the lowering of symmetry at the surface, in particular the loss of structural inversion symmetry.
Therefore, this spin-orbit splitting should in principle affect all surface states, but actually the
effect is often too small to be observed.

Each Bi atom has three nearest neighbors and quasi-covalent bonds connect these neighbors.
On the (111) surface, no bond-breaking occurs and surface states appear only in certain direc-
tions in the Brillouin zone. On other low-index surfaces, e.g. Bi(110), one of these bonds is
broken and a “surface state band” extending through the full, rectangular Brillouin zone ap-
pears (right of Fig. 8). Again, spin-orbit coupling effects cause a spin-splitting of the surface
state. Despite the fact, that one out of three nearest-neighbor bonds is broken on this surface,
there is no reconstruction observed on Bi(110) [20]. A similar situation is encountered on the
quasihexagonal Bi(100) surface, where again a nearest-neighbor bond is broken and a surface
state extends through the whole Brillouin zone [21].

3.4 Semiconductor Surfaces

The III-V (110) Surface

Example semiconductor surfaces exhibiting surface relaxations are the (110) surfaces of the
III-V compound semiconductors (e.g. GaAs(110) or InP(110)). All show the same structure



A5.20 Stefan Blügel

Fig. 9: Structure model for the surface relaxation of the (110) oriented surface
of III-V compound semiconductors. On the lower surface the unreconstructed
surface is shown. Cations are represented as white, anions as black balls.

model, the so-called bond rotation model. It concerns the relaxation of surface atoms in the
(1 × 1) unit cell which is represented in Fig. 9. The surface anion (e.g. P or As) relaxes out of
the surface into a distorted tetrahedral, sp3–hybridized environment. The surface cation relaxes
towards the bulk into an approximately planar sp2-hybridized environment.

In Fig. 10 the surface band structure of InP(110) is shown as a typical representative of the III-V
semiconductors. The underlying PBS results from bulk calculations. Overlayed are calculations
of a thick finite InP(110) slab (black circles). The surface states can be identified existing in
the pockets of the projected bulk bandstructure (see also Fig. 4). The surface states, which
would lie in the unrelaxed case in the fundamental gap, were pushed by the relaxation to the
valence- and conduction-band edge. Because of the directed bonds of the sp3 hybrids, which
determine the electronic properties of semiconductor surfaces of elemental semiconductors and
III-V compound semiconductors, surface states have special names, which are related with their
directionality.

The Si(7 × 7) Surface

Semiconductor surfaces reconstruct nearly without exception with partially fantastic reconstruc-
tions as for example the Si(111) (7×7) reconstruction, whose structure represented a puzzle over
decades and which reached a final convergence in the structure model by K. Takayanagi [22].
The suggested Dimer-Adatom-Stacking fault model (DAS-model) is shown in Fig. 11. Driving
force for this reconstruction are the surface states, which are located in case of the ideal unre-
constructed surface in the middle of the Si gap. The gap states are localized 3p dangling bond
states. This is energetically an extremely unfavorable situation. By the reconstruction the new
bonds are formed and the bonding changes in such a manner that the surface are shifted by
hybridizing toward the band edges.
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Fig. 10: Surface bandstructure along high symmetry lines of the relaxed
InP(110) surface. The surface bandstructure (circles) is represented together
with the projected bulk bandstructure. In the pockets of the projected bulk
bandstructure exist surface states. Energies are indicated relative to the va-
lence band maximum. Eigenvalues in the conduction band were shifted rigidly
by 0.573 eV, in order to reproduce the experimental band gap of 1.42 eV. The
identified surface states and -resonances are drawn as solid and broken lines,
respectively. “A” indicates always localized states at the anion (P) and “C”
indicates states at the cation (In). (bb) = surface resonance with anion back-
bond characteristics; A5 = localized dangling bond state at the Indium (db), br
= bridge-bond surface state at X̄ ′ point and resonant bridge-bond state; C3 =
dangling bond state at the Phosphorus with pz character.

4 Transition Metals in Reduced Dimensions: Magnetism

Sofar we investigated the consequences of the reduced dimension to the electronic structure of
single states, particularly arround the Fermi energy. A reduction of the dimensions effects also
the electronic structur as a whole. For example a reduction of the coordination number means
also that the electrons have less opportunity to hop from site to site and the kinetic energy of
the electron or the band width W , respectively, is reduced. Thus, the ratio of the Coulomb
interaction U between the electrons on a given site and the band width, U/W , moves toward
higher Coulomb interactions, and electron correlation becomes more important and the tenden-
cies towards the appearance of magnetism or a Mott-transition is enhanced. An understanding
of these phenomena requires a proper treatment of the electron-electron interaction as for exam-
ple included in the various approximation of the density functional theory (DFT) or many-body
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Fig. 11: Top view and side view of the DAS-model of the Si(111) (7× 7) recon-
struction. (a) In the top view the size of the atomic radii refers to the proximity
to the surface. The black points are the atoms of the first and second unrecon-
structed bulk layer. The structure contains (i) 9 dimers of the sub-layer atoms,
(ii) 12 adatoms (fat circles), (iii) a stacking fault in the left triangle (left half) of
the lozenge structure, characterized by the fact that the black points of the bulk
atoms are not visible. (b) The side view shows the projection onto the [101̄]
plane. The size of the atomic radii is a measure for the proximity to this surface
plane, after Takayanagi et al. [22].

appraches of strongly correlated electrons.

As an example we explore this phenomenon here for the magnetism in transition-metals in
reduced dimensions and start with observation that nearly all 30 isolated transition-metal atoms
have local magnetic spin moments. The largest possible d moments occur at the center of each
series, i.e. 5 μB for Cr and Mn in the 3d series and the physics is well described by Hund’s first
rule: the spins of all d electrons are aligned in parallel up to a maximum value of Sz = 5/2.
On the other hand, it is well-known that only 5 of 30 transition metals remain magnetic in their
bulk crystalline phase: Co and Ni are ferromagnetic, Cr is antiferromagnetic, and Mn and Fe
are ferromagnetic or antiferromagnetic depending on their crystal structure (cf. Fig. 12).
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Low-dimensional transition-metals should fall in between these two extremes. Magnetic ma-
terial may be envisaged, which is nonmagnetic as bulk metal but magnetic as nanostructure.
Although these arguments do apply, charge transfer, lift of degeneracies, structural, morpho-
logical or thermodynamical changes mire the interpolation. We focus here on the role of the
band narrowing of transition-metal d bands due to the reduction of the dimensionality and its
consequences for the magnetism.

4.1 Role of Coordination Number

The occurrence of ferromagnetism can be studied on the basis of the Stoner criterion:

I n(εF) > 1 . (26)

The Stoner criterion is an instability condition which expresses the competition between the
exchange interaction in terms of the exchange integral I which drives the system into ferromag-
netism for large I and the kinetic energy in terms of the nonmagnetic density of states (DOS)
n(εF) at the Fermi energy εF. The kinetic energy rises if the system becomes magnetic, the
more the wider the band width or the lower the density of states, respectively. A big exchange
integral and a large nonmagnetic DOS at the Fermi energy favors ferromagnetism. As explained
in more detail in the lecture of G. Bihlmayer, When ferromagnetism occurs, the double degen-
eracy of the energy bands εk is lifted, majority states εk↑ and minority states εk↓ are rigidly
shifted in energy by the exchange splitting IM , where M is the value of the local magnetic
moment,

εk↑ = εk − 1

2
IM and εk↓ = εk +

1

2
IM . (27)

The rigid band shift is a good model if the shift is small as in case of bulk ferromagnets. De-
viations can be found for thin films or wires, as the magnetic moments and thus the exchange
splitting is large.

The exchange integral I is an intra-atomic, element specific quantity, and in simplest approx-
imation independent of the local environment, the structure and the site of a given atom, e.g.
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surface atom or bulk atom. According to Gunnarsson [24] and Janak [25] a global trend

I3d > I4d > I5d (28)

was found for the exchange integrals of the 3d, 4d, and 5d transition-metal series.

Focusing on the d electrons as relevant electrons for itinerant magnetism, the DOS depends on
both the coordination numberNnn and the hopping matrix elements hd between the d electrons.
This can be understood as follows: The energy integral

∫
W
n�(ε) dε = 2� + 1 over the band

width, W , of the local DOS of angular momentum quantum number �(= 2) is normalized to
2�+ 1 states. Thus, in simplest approximation possible (e.g. rectangular shaped DOS), one can
assume that the local DOS scales inversely proportional to the band width, W ,

n(EF) ∼ 1

W
. (29)

At the atomic limit the band width converges to zero, the Stoner criterion is always fulfilled
and moments in accordance with Hund’s first rule will be found. In general the DOS consists
of contributions from electrons in s, p, d, and f states. For transition metals by far the largest
contribution comes from the d electrons, and the d–d hybridization determines the shape of the
density of states. Therefore, in the following discussion we restrict ourselves to d electrons and
write

n(EF) ≈ nd(EF) ∼ 1

Wd

. (30)

The average local band width Wd(Ri) for an atom i at position Ri can be estimated in a near-
est neighbor tight-binding model, applicable for the itinerant but tightly bound d electrons of
transition-metal atoms, to be

Wd ≈ Wd (Ri) = 2
√
Nnn(Ri) hd(Rnn) . (31)

According to equation (31) the band width depends on two quantities: (a) the hopping matrix
element hd of the d electrons and (b) the number of nearest neighbor atoms or coordination
number Nnn.

(a) The hopping matrix element depends on the overlap of the d wavefunctions. It decreases
with increasing lattice constant or distance Rnn to the nearest neighbor atom and for a given
lattice constant it increases with the extension of the wavefunction or, equivalently, the number
of nodes. In Fig. 13 the band widths of 3d, 4d, and 5d bulk transition-metals are schematically
shown, together with the band widths of rare earths and actinides. In line with the arguments
of increasing number of nodes from 3d to 5d wavefunctions a clear “macro trend” between the
transition-metal series is visible summarized as follows:

h3d < h4d < h5d =⇒ W3d < W4d < W5d =⇒ n3d > n4d > n5d (32)

Within each transition-metal series there exists in additional a “micro trend”: due to the incom-
plete screening of the Coulomb potential of the nucleus by the d electrons, the d wavefunctions
at the beginning of the transition-metal series are more extended than at the end of the series,
thus the hopping matrix element at the beginning of the series is larger than at the end, with the
well-known consequences for the band width W and the DOS n(EF).
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Fig. 13: Schematic illustration of the band width W of the transition-metals
together with rare earths (4f ) and actinides (5f ), all in the bulk phase. The
5f electrons of the early actinides and the 3d electrons of transition-metals
from the middle to the end of the 3d series (Cr to Ni) show itinerant magnetism,
while the magnetism of the late actinides and the rare earths is best described as
localized magnetism, and their magnetic properties can in good approximation
be explained in terms of Hund’s rule.

(b) The smaller the coordination number Nnn the smaller the d–d hybridization and the smaller
is the band width. Let’s consider for example the coordination number of an atom in the environ-
ment of a fcc crystal (Nfcc = 12), of an atom in the (001)–surface of the fcc crystal (N(001) = 8),
located in a two-dimensional (001) monolayer film (NML = 4) and of an atom in a monoatomic
chain (Nchain = 2), keeping the nearest neighbor distance fixed (Rnn = constant) and keeping
the bonding strength fixed (hd = constant). Under these circumstances, one obtains for the
ratio of the band widths

Wd
chain : Wd

ML : W
(001)
d : W fcc

d = 0.41 : 0.58 : 0.82 : 1 ,

or the local DOS

nchain
d : nML

d : n
(001)
d : nfcc

d = 2.45 : 1.73 : 1.22 : 1 . (33)

Thus, the reduction of the coordination number leads to less d–d hybridization, consequently
to band narrowing, and in low-dimensional structures the tendency towards magnetism is con-
siderably boosted. A nice manifastation of these arguments is reported for the size and shape
dependence of the local

The reduction of the coordination number is hence responsible for the fact that the magnetism is
enhanced at surfaces as compared to bulk, and the magnetism of ultrathin films should be larger
than at surfaces. Accordingly, one can expect, that transition-metals, which are nonmagnetic as
bulk metals, may become magnetic at surfaces or as ultra-thin films. The arguments put forward
here for the increased ferromagnetism in reduced dimensions can be carried over directly to the
increased antiferromagnetic susceptibility. The magnetic properties are expected to depend also
on the surface or film orientation, because along with a change of the surface orientation goes a
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Fig. 14: Local density of states of bulk bcc-Fe with experimental lattice constant
a0 = 2.87 Å and a magnetic moment of 2.24 μB/atom (left), a Fe monolayer on
Ag(100) (middle) with lattice constant of a = 4.09 Å and a magnetic Fe moment
of 3.01 μB , a Fe monowire [26] (right) with a magnetic moment of 3.4 μB/atom
and a lattice constant of 2.91 Å.

Table 4: Coordination number Nnn, interlayer distance d, point symmetry S, and packing
density ρ (fraction of the area of the surface unit cell, covered by atoms with an atom radius of
touching bulk atoms) for a fcc lattice. Only the 3 low-index surfaces, (001), (011), and (111),
are considered. a is the lattice parameter of the simple cubic unit cell.

Nnn S d/a ρ

(111) 9 C3v 0.5774 0.9068

(001) 8 C4v 0.5000 0.7854

(011) 7 C2v 0.3536 0.5554

change of the coordination numberNnn (cf. Table 4) as well as a change of the nearest neighbor
distance R‖ between the surface atoms and R⊥ between the surface atoms and the atoms in the
next layer. For a fcc lattice, the (111) surface is the most densely packed one, and we expect
for it the smallest enhancement of the magnetic moments. Among the three low-index surfaces,
with the orientation (001), (011), and (111), the (011) surface leads to the most open surface.
For the latter we expect the largest magnetic moments. At surfaces or ultrathin films of bcc
lattice type the trend should be exactly the opposite. The most densely packed surface is the
(011) surface for which we expected the smallest enhancements of the magnetic moments. The
(111) surface is the most open one. This surface is already close to a stepped one.

The implication of the coordination number, discussed so far is the most important aspect in the
magnetism of low dimensional systems.
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Fig. 15: Local magnetic moments as calculated for ferromagnetic (left figure) 3d-metal mono-
layers on Ag(100) [27] (dots), Pd(100) [28] (squares), and Cu(001) [29] (triangles), and (right
figure) 3d, 4d [30], and 5d [31] monolayers on Ag(001) (dots) and Ag(111) [32] (triangles).

4.2 Low-Dimensional Magnets

The transition-metal monolayers on noble-metal substrates are the classical systems exhibit-
ing two-dimensional (2D) magnetism. Because of the reduced coordination number of nearest
neighbor transition-metal atoms in a monolayer film, the d-band width in two-dimensions is
considerably smaller and correspondingly the local density of states (LDOS) at the Fermi en-
ergy EF is considerably larger than in the bulk situation. Thus, magnetism should occur for a
much wider variety of transition-metal elements. Following this line of argument it is clear that
the strength of the d–d hybridization between monolayer and substrate is an additional param-
eter which controls the d-band width of the monolayer. For instance, large band-gap material,
e.g. MgO(100), as substrate allows the formation of two-dimensional monolayer bands within
the band gap of the substrate material. In this case the impact on the magnetization of the
monolayer due to the substrate is expected to be small. The same is true for noble-metal sub-
strates, which have d bands well below the Fermi energy. The width of the monolayer d band
is not significantly broadened by the monolayer-substrate d–d interaction, and magnetism is
restricted to the monolayer. Increasing the d–d hybridization by choosing appropriate nonmag-
netic transition-metal substrates, e.g. Pd(100) or W(110), will lead to a considerable broadening
of the monolayer bands and introduce a significant spin-polarization of the substrate until we
have changed from the two-dimensional limit to the semi-infinite regime. Choosing a magnetic
substrate an additional complexity arises due to the competition of the magnetic coupling in the
monolayer and between monolayer and substrate.

A systematic investigation of the magnetism of all possible 3d, 4d, and 5d transition-metals
monolayers on Ag(001) are collected in Figure 15. One finds that all 3d-metal monolayers
(Ti, V, Cr, Mn, Fe, Co, Ni) on Ag(001) substrate show ferromagnetic solutions. Tc, Ru, and
Rh are ferromagnetic among the 4d-metals, and Os and Ir are ferromagnetic among the 5d-
metals on Ag(001). The local magnetic moments are partly very large, not only for the 3d
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Fig. 16: Local density of states (LDOS) of ferromagnetic 3d-metal monolayers on Ag(100).
The Fermi energy defines the origin of the energy scale, separating occupied (at negative ener-
gies) from unoccupied states (at positive energies). Majority (minority) states are indicated by
positive (negative) values of LDOS.

monolayers, but surprisingly also for the 4d and 5d ones. In the 3d series the overall trend
of the local moments follows Hund’s first rule. The largest local moment of about 4 μB was
found for Mn and from Mn to Ni the magnetic moment decreases in steps of 1 μB. The latter
is a consequence of the strong ferromagnetism in these monolayers. The magnetic moments of
Ti, V, and Cr monolayers show a pronounced dependence on the substrate: Ti is magnetic on
Ag, but nonmagnetic on Pd; the magnetic moment of V is reduced by more than 1.5 μB when
changing the substrate from Ag to Pd; and for Cr the magnetic moment changes from 3.8 μB

as an adlayer on Ag or Pd to zero as an adlayer on Cu. Although not as dramatic, the reduction
is also visible for Mn. We attribute the drastic reductions of the monolayer moments to the
reduction of the lattice constants in the sequence Ag to Pd to Cu.

When comparing the results of the local moments between 3d, 4d, and 5d monolayers on
Ag(001) an interesting trend is observed: The element with the largest magnetic moment among
each transition metal series is shifted from Mn to Ru (isoelectronic to Fe) and at last to Ir (iso-
electronic to Co), respectively. Following these trends we do not expect ferromagnetism for
any other 4d or 5d metal on noble metal (001) substrates, and indeed Mo and Re remained
nonmagnetic. The overall picture of monolayers on Ag and Au is the same, but the different
substrate interactions cause Tc and Os on Au to be nonmagnetic and lead to a slightly larger
moment for Rh. Pd and Pt are predicted to be nonmagnetic. With the exception of Ru, for which
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a rather small magnetic moment of 0.2μB was calculated, no monolayer magnetism was found
for 4d metals on Pd(100). Investigations [33] including the spin-orbit interaction have shown
that the spin-orbit interactions reduces significantly the magnetic spin moment of the 5d-metal
monolayers and depending on the interlayer relaxation the spin moment might be suppressed.

Conclusions

I presented a simple introduction to the field of electronic structure at reduced dimensions.
Few things had been said, many topics were left out such as the Rashba physics of electrons
in structure asymetric environments, the electronic structure of fullerenes, carbon nanotubes,
graphene, molecular magnets etc.
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