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1 Introduction

Societal requests for environment prediction and pratectihe durability of chemicals, the
vision of new applications in information technology sushaaitonomous robots, biodiagnos-
tic systems, or faster information processing, as well asathels on the sustainable and ef-
ficient use of resources and energies translate in a hugendeommodeling and simulating
properties, chemical reactions, synthesis and growthgsses of emergent quantum materials
that is based on understanding and is predictive. Modelid stdte materials have a multi-
plicity of novel properties exhibiting for example a rapimggnetic, ferroelectric, supercon-
ducting) phase response to external stimuli such as ligessore, magnetic field or electri-
cal conductivity, so that manifold uses are possible evdaymr can be expected for the fu-
ture. Materials of this sort are often multicomponent systsuch as magnetic tunneljunctions
(e.g. NiMnSBMgO|Co,MnSn), high-temperature superconductors (e.g. HGBeCuw,Os), or
perovskite-type materials with complex magnetic struesur
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Fig. 1. Although the principles of a MOSFET transistor depends @nellectronic properties
of doped Si, the functionality, the heat load, the leakagesot or the clock speed depend on
the quality of interfaces, on the growth and crystallinifittoe oxides, the microstructure of the
strain and many other factors of very different length ssale

The functionality of macroscopic systems of technologred¢vance such as for example a
chip or a central processing unit (CPU) shown in Fig. 1 deperat only on the distribution
of the electrons and their response to external changes oicrastopic scale, but also on
the atomic arrangements, the formation of defects, pratgs, inclusions, clusters, interfaces,
interface roughness, alloying, textures, and other detdithe microstructure taking place on
a mesoscopic scale. Thus, the envisaged functionalityrdispiypically on a large number of
distinct atomic scale processes, their interdependendenanlves a huge number of atoms.
This calls for a multiscale modeling, where correspondimepties and their results need to be



DFT in Practice A7.3

T T T T T T T 1T
100— Exact,
- Cl, DMFT]|

i Q| LED, OMC "degree of quantenmechanics

[ E Density- treating many-electron/particle
glo 3L 8 Functional- problems”
- L g Theory
[}
© _57 Order-N methods
8 10 b (empirical) Tight Binding

— | Debye-Hueckel
°
5 T
€10 - e parameterized
9 | classical

Many-Body Potential
Lo ] | |

A, |
_ _ _ - _ [ [ |
10 10™ 10° 10° 107 10°

time scale (s)

50 . . 1000 500,000
number of inequivalent atom positions

Fig. 2: Left figure: Schematic presentation of the time and leng#iescrelevant for most
material science applications. The elementary molecutac@sses, which rule the behavior of
a system, take place in the so-called "quantum regime” gowey the dynamics of the electrons.
Their interplay are the origin of the functionalities of reatls, which develop over meso- and
macroscopic length and time scales [1]. Right figure: It i$ possible to treat all systems with
an equal degree of quantum mechanics. Few electron systemmeydels extracted to treat the
most relevant interactions of many electrons may be treatddarbitrary accuracy, in general
this is not possible. Using density functional theory (DEIg dynamics of systems with a few
hundreds of atoms and 10-20 ps is possible, while large mtdesystems with electron gaps
between homo- and lumo orbitals of a few thousand atoms miagdied with order-N methods.
The glass formation, amorphization processes or bioldgigatems involving millions of atoms
may be treated with force fields, fitted onto DFT calculations

linked appropriately. For each regime of length and timdesadhe microscopic, mesoscopic
and macroscopic one, a number of methodologies are welllesttad and are being developed.

Particularly interesting is the boundary where the micopst regime meets the mesoscopic
one, i.e. when laws of quantum mechanics governing the they+ekectron problem on the
microscale meets the statistical physics of the many degre&eedom of many atoms and
spins on the mesoscale. Obviously, then model building idesoimportant and essential as
it is basically impossible and not necessary to treat allekgof freedom with with quantum
mechanical accuracy and time scale. On the mesoscale maniyné scale and relevance of
process are determined by activation barriers, involvirag@sses which need to be treated in-
volving many atoms. One typically deals with rare eventsgselthe time between consecutive
events can be orders of magnitude large than the actual gselfit To study this scenario by
model building can mean to find the set of relevant processeshvare then investigated with
microscopic theories, then mapped to classical many-bothnpial describing a classical force
field or a lattice gas model, which is then simulated with aenolar dynamics or an equi-
librium or kinetic Monte Carlo method. The evolution of thesgeem at mesoscopic time scale
may provide than answers whether the original assumptiogl@fant elementary processes are
consistent with the expected results.

The quest for predictive materials science modeling exadutie use of empirical potentials or
fitted force fields on both the microscopic and mesoscopitesdauring the past ten years,
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first-principles calculations based on the density-fuorai theory (DFT) [2] in the local (spin-)
density approximation (LDA) or in the generalized gradigoproximation (GGA) (for a review
see Ref. [3, 4, 5]) emerged as the most powerful frameworks$pond to the demands men-
tioned above on a microscopic level. By first-principlesifdcatin: ab initio), is meant, that the
parameters of the theory are fixed by the basic assumptiarecarations of quantum mechanics
and, for our discussion, density-functional theory. Therahelming success of the density-
functional theory for the description of the ground-stateperties of large material classes
including insulators, semiconductors, semimetals, hrfals, simple metals, transition-metals
and rare-earths in bulk, at surfaces and as nanostructaiessit the unchallenged foundation
of any modern electronic structure theory. The wide appllitg combined with the predictive
power of the approach turned it to the “standard model” inemak science. In principle, the
only input needed for the theory are the atomic numbers otdmstituent atoms of a system,
all other properties follow as a direct consequence of timsithe functional equations.

In practice, the definition has to be modified since one is ywimited to some set of model
systems. These limitations might include system size takrgsructure, neglect of disorder, low
or zero temperature, the time-scale or any number of otlsétiggons on the “phase space” to
probe. While some of these restrictions and limitationdarelensome, the goal of calculations
is not merely to obtain numbers, but rather insight. By facg®n well-defined, but restricted
models, by working on chemical trends rather than on isdlatese studies, by investigating
systems in hypothetical non-equilibrium structures olof@lsimulations in idealized environ-
ments, which may not be realized in experiments, one is abbetvelop different levels of
understanding of the system in question and may hopefldiyleshich aspects of the problem
are important.

A particularly rich arsenal of assets for material desigd tmloring of material properties is
provided when the surface of materials is provided as tetepfar fabrication. Nanostructures
down to the atomic scale made of single atoms or of small naédsccan be manufactured
to form chains and clusters or structures with specific ededt properties by employing the
tip of scanning tunneling microscope (STM) or relying on thstruments of self-assembly.
Nanostructured thin film systems are decisive functionékun electronic devices, sensors and
in biological systems. The existence of particular surtace interface alloys and the complex
interplay between morphological, structural, magnetit @ectronic features in nanostructured
systems stand as examples for a wide field of phenomena wheclargely not understood,
while offering exceptional technological opportuniti¢gtee same time.

The simulation of surfaces provides a good case study fogémeral aspect of modern ma-
terials science. Also here many, may be most, interestirygiphl phenomena take place at
meso- or macroscopic length scales and over times of secorel@&n minutes. For example,
surface reconstructions sometimes evolve over a time gh@ficeconds or even minutes, and
the self-organization of nano-scale structures, such rmasxample quantum dots, also occurs
over macroscopic time#b initio calculations (electronic structure, total energy calcotes as
well as molecular dynamics (MD) simulations) are concemvét length scales of a chemical
bond and with times determined by interatomic force coristand the corresponding atomic
vibrations. To bridge the gap from the atomistic proceseamdcroscopic dimensions is an
important aspect which is covered in this spring school.

In this chapter we aim at discussing the nitty-gritty detailab initio calculations, the interplay
of the choice of the electronic structure methods, the siratmodels, the chemical nature of
the participating elements and the microscopic processgsdstion for the particular example
of surface science. The results of such density functidmebry (DFT) calculations provide
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Fig. 3: Example: structural optimization of Mn and Cu surface atoma Cu(100)c x 2)Mn
surface alloy. Right figure: Schematic representation efghbstitutional surface alloy film of
one monolayer thicknese indicates the Mn atoms) grown as overlayer on a fcc (001) tsates
(o). Left figure: Total energy per Mn atom vs. the buckling rat&on Az,,, of Mn in relative
units with respect to the theoretical interlayer spacingaf, d-, = 1.76 A. The open squares
represent the nonmagnetic and the solid diamonds the feagoetic results. The solid lines
(for Cu atoms fixed at the ideally terminated positidvg., = 0) and dashed line (the top Cu
atom is always at its optimally relaxed position) are therfgtpolynomials. The upper (lower)
inset shows the contour plot of the nonmagnetic (ferromagnital energy with respect to
the buckling of Mn and Cu. The minimum, which determines piienal structure is found in
the inner circle. The contour interval is 1 meV. The energthefnonmagnetic solution at 0%
relaxation was chosen as the origin of the total energy sgaleen from Ref. [6]).

then, for example, detailed input to the kinetic Monte CdH&C) methodh with which one
is able to cope with the issue of crystal growth and the elmiubf meso- and macroscopic
kinetic growth shapes, which may differ significantly fromudibrium shapes as determined
by the minimum of the free energy.

This chapter starts with a quick overview to the Kohn-Shasasmoutlining the general aspects
of the first-principles methodology followed by an introtioa to the relevant choice of the ge-
ometrical models to simulate surfaces, and the choice obgipeopriate electronic structure
method. As an example, two electronic structure methodsnareduced at a greater depth,
which are the full-potential linearized augmented plangev@LAPW)-like methods to solve
the Kohn-Sham equation for a periodic solid and surfaced,tlh@ Korringa, Kohn and Ros-
tocker (KKR) Green-function method as an example of an Gfaeation method to cope with
the surface geometry.

2 Kohn-Sham Approach in a Nutshell

2.1 Total Energy and Force

In the density-functional theory, the total eneg}{ R }, {+;}] of a system of interacting atoms
and electrons is a functional of the atomic positi¢is} and the electron density(r). The
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electron density can be expressed in terma/obccupied single-particle orbitals (r):

Z | ilr) 2, (1)

Z OCC

wherei labels the states. If the total energy functiohg{R }, {¢;}] is minimized with respect
to the electronic degrees of freeddm; }, we recover the Born-Oppenheimer surfdgéR }]:

P{R}] = min B{R}, {¢}], (2)

on which the atoms move. The derivative ®f{ R}| with respect to the atomic positidR*
gives the forcd*,

P = — Vg, O[{R}] 3

exerted on the atom, which ties electronic structure to structural optimiaatand molecular
dynamics calculations. The energy functional is divided several terms:

E[{R}, {¥i}] = Ban[{vi}] + Eu[{vi}] + Exc[{¥i}] + Eext[{R}, {¢i}] + Eion[{R}],  (4)

whereE,;, is the kinetic energy of non-interacting electrofs; is the Hartree energy, i.e. the
classical Coulomb energy of the electrons, dfd is the exchange-correlation energy which
contains terms coming from the Pauli principle (exchandge)hdrom correlations due to the
repulsive Coulombic electron-electron interaction armhfrthe contribution to the kinetic en-
ergy of interacting electrons [4]. E.g. In the local densipproximation®,.[n] is written in the
form Ex.[n] = [drn(r)ex(n(r)). Then, E., is the interaction energy of the electrons with
the ions, e g. descrlbed by thér potential as in all-electron methods or by pseudo-potkntia
andE;, is the classical Coulomb energy of the ions.

2.2 The Kohn-Sham Equations

The single-particle wavefunctiong(r) are obtained by minimization of the total energy with
respect to the wavefunctions subject to the normalizatostaint

/ dr | () 2= 1. 5)

This leads to the Kohn-Sham equations[7], an eigenvaluel@mofor the eigenfunctions;(r)
and the eigenvalues:

H [n] i[n] = &i[n] ¥i[n], (6)

where all quantities depend on the electron densitccording to the form of the total energy
Eq.(4), the Hamiltonian// is a sum of corresponding terms and the eigenvalue problem is
written in the form:

(To + Vit + Vs + Vie) 1i(r) = &; ti(r) (7)
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In the real space representation the individual terms a&réallowing:

2
kinetic energy: Ty, = — 277’— A, (8)

m

. e? 7+
external-potential Vi ({R},r) =) TR (9)
m

Hartree potential AVi(r) = 4me’n(r) (10)
xc-potential (LDA): Vee(r) = 5n5(r) /dr n(r) exc(n(r)) (11)

In a pseudo-potential approath. is replaced for each atomby a pseudo-potentié;gs. The
termsV[n] andV,.[n] are local potentials and explicitly density dependent. SThiie Hamil-
tonian H[n] and the wavefunctions;(|n], r) are also dependent on the electron densii).
Together with the expression Eq.(1) a self-consistenclpro to obtain the charge density
n(r) is established, which is solved iteratively until the ingeinsity (used to define the po-
tential terms in the Hamiltonian) is equal to the output dgnsithin the required accuracy.
The number of self-consistency iteratiaNg., is considerably reduced applying Quasi-Newton
methods [8].

The external potential,,.[{R}] depends explicitly on the positiof®} of all atoms, which
change at certain steps to optimize the atomic structureenydime-step of a molecular dy-
namics algorithm. Thus, the Hamiltonid@h[{R}] and the wavefunctions;({R}, ) are also
dependent on the atomic positiofR}. After the self-consistency condition for the electron
density has been fulfilled, the atom positions are moved bylecnlar static or molecular dy-
namics time-step,R(¢)} — {R(t + At)}. Thus, forNyp molecular time steps the eigenvalue
problem has to be solvedlyp Vi, times. These arguments suggest a particular loop structure
of a typical first-principles method and a particular seqaehow the different elements are
calculated. This is summarized in Fig. 4.

Typical codes use LDA exchange correlation potentials aedges of Hedin and Lundqvist[9]
or Vosko, Wilk, and Nusair[10], or GGA functionals of Perdetval. [11, 12] are given as
analytical expressions of the density and their derivatinecase of the GGA.

2.3 Magnetism

If magnetism occurs, the ground state has a broken symmmadrtha ground-state energy is de-
scribed by functionals which depend on the vector-magattia densitym(r) as an additional
field to the ordinary charge densityr), discussed so far. An additional temgo - B,.(r)
appears in the Kohn-Sham equations Eq.(7), wheye= 2;{}0 is the Bohr magnetor3,.. is
the magnetic xc-field an electron experiences, amare the Pauli spinors. Thus, calculating
magnetic systems, one works in a two-dimensional spinespad the basis function’s, carry
an additional spin labet = +1. The Hamiltonian is & x 2 matrix in spin-space and is now
hermitian and not symmetric. Complex magnetic structuvesi frequently the symmetry of
the problem and more states have to be calculated or a mugpdr lxaction of the BZ (cf.
Sect.2.6) has to be sampled, respectively, pushing the watignal effort to the limits of mod-
ern supercomputers. In case of collinear magnetism, ex@-fderri-, or antiferromagnetism,
o - B, reducestw ; - B, the Hamiltonian is diagonal in spin space, the magnetiratensity
m, is then given by spin-up and -down densities,(r) = n;(r) — n(r), and the effort of a
magnetic calculation is just twice that of a nonmagnetic dngjeneral, the magnetic moment
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atom positions: {R}
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Fig. 4. Right: Typical loop structure of a first-principles code kdson density functional
theory as applied solid state materials. Left: Schematiw-#bbart for self-consistent density-
functional calculations e.g. as realized by a FLAPW caltiola

M = [drm(r) is a vector quantity, and the search of the magnetic streatan be done
dynamically bearing similarities to the dynamical struetoptimization combining molecular
dynamics and simulated annealing. Therefore, everythardyia this chapter on structural op-
timization applies to both, the atomic and the magneticcétine. Throughout the paper, the
spin label is dropped for convenience. More informationtmtteatment of magnetism can be
found in the chapter A.5 “Magnetism in Density Functionak®ly” by G. Bihimayer.

2.4 The Eigenvalue Problem

In all-electron methods eigenvalue problem Eq.(7) is sbfeg all occupied statesbut typi-
cally subject to different boundary conditions. As shownesuaatically in Fig. 5 we distinguish
core electrons from valence electrons. The former haveeiggrgies which are at least a couple
of Rydbergs below the Fermi energy, the potential they e&pee is to an excellent approx-
imation spherically symmetry and the wavefunctions haveverlap to neighboring atoms.
The eigenvalue problem of these states are solved applygngdundary conditions of isolated
atoms, which is numerically tackled by a shooting methodeMze electrons in a crystalline
solid form electron bands and the eigenvalue problem oflisegcsubject to the Bloch bound-
ary conditions. The eigenstate is classified by the bandindend a three-dimensional Bloch
vectork within the first Brillouin zone,{ € {kr}). Some materials contain chemical elements
with states (e.gbp states ofd f elements or Wp states of early transition metals) intermedi-
ate between band and core states and those are coined gernstates. These are high-lying
and extended core states and particular care has to be takbriotreatment since their treat-
ment as core states can cause significant errors in totajyerfierce and phonon calculations.
According to the different treatment of the electrons, weamepose the charge density in the
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Fig. 5: Schematic representation of the energy position of valeserai-core and core electrons
in periodic potential.

valence, semi-core and core densities
n(r) - nval(r) + nsc(r) + ncorc(T>7 (12)

the latter being spherically symmetric. The charge desssdre calculated according to Eq.(1).
Wavefunctions and energies of core states give access wfing quantities such as isomer
shifts, hyperfine fields and electric field gradient as weltlzsmical shifts of core levels.

There are many possible ways to solve the Kohn-Sham eqsdtorvalence electrons. Fre-
quently, a variational method is chosen by which a wavefonaty, (r) of Bloch vectork and
band index is sought as a linear combination of basis functippgk, r)

N
Y (r) =Y (K, T) (13)
n=1

satisfying the Bloch boundary conditions;, are the expansion coefficients of the wavefunc-
tion (coefficient vector), andV is the number of basis functions taken into account. By this
expansion, the eigenvalue problem

ﬁ¢ky(r) = 5ku¢ky(r) (14)
is translated in into an algebraic eigenvalue problem ofedision/NV
(H(k) — ex,S(k))ck, =0 vk € BZ (15)

for the coefficient vector} , corresponding to the eigenvalugs. The Hamilton//™™ (k) and

overlap matricess™" (k) are hermitian or real symmetric, depending on the point sgtnym
of the atomic structure. If the basis functions are orthaway i.e. (¢, |0.,) = 6™, as for

example in case of simple planewaves, then the overlapxatdefined as

5 (k) = / o (0, g (K, )P (16)

becomes diagonak™™ (k) = 6™, and the generalized eigenvalue problem Eq.(15) becomes
of standard type2 is the volume of the unit cell.
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In general, the general eigenvalue problem is reduced taralatd one using the Cholesky
decomposition. It can be shown (e.g. Stoer [13]), that amsniiean and positive definite matrix
can be decomposed into a matrix product of a lower triangwitr only positive diagonal
elements matrix and its transposed. Clearly, the overlapixrsatisfies these conditions and
can be writter = LL'". Therefore, Eq.(15) becomes

HCZ' = €iLLtTCi, (17)
multiplying from the left withL.—! and introducing a unit matrix we finally find
Px; = g:x;, (18)

after we have? defined a® = L~'H(L~!)" andx; = L'"c;. Thus, the generalized eigenvalue
problem has been reduced to a simple one. The eigenvegtoas be obtained by the back-
transformationg; = (L") x;.

The choice of the most efficient numerical algorithm to sdbep(15) depends on the number
of basis functionsV and the numbed/ of statesv taken into account. IfM//N >~ 0.1,
direct numerical diagonalization schemes are employadexXample parallelized eigenvalue
solver taken from th&calL APACK library package. IfM/N <~ 0.1 or if N is too large to
fit the eigenvalue problem into the memory of a computer tigeraialue problem is solved
iteratively. Any iterative solution of an eigenvalue prefnl can be divided into two parts: (i)

n,[m]

the determination of the iterative improvement of the statetorc, ;" at iteration stepn by
multiplying the Hamiltonian with the state vector to obténe update:ﬁ’[mﬂ}:

v

A" =S H (), (19)

and (ii) the orthonormalization of the wave functions
Sttt = 5, (20)

v
n

(iif) Frequently, each iteration step is accompanied byraalisub-space diagonalization of a
dimension proportional td/, on which Hamiltonian/ is projected. If the multiplication of
H - c can be made fast by expressing the Hamiltonian in terms adidymoducts or convolu-
tions as in norm-conserving or ultra-soft pseudo-poté&ntidanimizing thereby the number of
multiplications, iterative methods become particulardfamal.

2.5 The CPU Time Requirement

The number of basis function$ is determined by the required precisifrof a calculation and
by the volume of the unit cell or the number of atoms in the unit céll, respectively. The
precisionP is controlled by the finest real-space resolution the basistions can resolve. For
three-dimensional unit cell¥ scales asv o« P3. In general, the tripleXy, M, N), the number
of k-vectors in the BZ used, the numbgf of statesy considered, and the number of basis
functions N are determined by the required precision of the calculagiod by the volume
of the unit cell. These parameters determine the CPU-tindena@mory requirements of the
calculations. Keeping the loop-structure in mind exhitite Fig. 4, typically the calculational
CPU time scales as

N3 direct diagonalization

P N * Niter - IV, i i i i i
CPU o Nup - Niter - N { Mitee(MNIn N + NM?) iterative diagonalization

(21)



DFT in Practice A7.11

R.60

R20
200
1801
1604
1404
12041
1004
804
60
40
204

._
)
S
»
©
=3

T T T T — T T T — T T T T T
ferromagnetic  Fe(100) ferromagnetic  Fe(110) ] ferromagnetic ~ Fe(110)

nal

2.85

T T T T
ferromagnetic ~ Fe(100)

o
1

»

=3

©

& 2,55

—1004

7

—2001

IS
=3
=}

—-3004 2.50

o
@
J3

—400

Magnetic Moment (u,B)
Magnetic Moment

I
@
=
=)

2.45

g
@
&>

Total Energy (meV/Fe-atom)
Total Energy (meV/Fe—atom)

|
=)
=}
=]

=700

T T T T 1 T T T T 0 T T T T T T
60 80 100 120 140 160 60 80 100 120 140 160 0 10 20 30 40 50 60 70

— T T T T T

Npw 0 10 20 30 40 50 60 70
Number of Basis Functions per Atom Number of Basis Functions per Atom ( atom Number of k-points N b . int
umber of k—points

Fig. 6: Test of convergence carried out by the FLAPW method of (ateaiotal energy and
magnetic moment as function (i) of the number of the LAPWslbasctions (see two left figures)
for a 7 layer Fe(100) film and (ii) number of speclalpoints in the IBZ (see two right figures)
for an 11 layer Fe(110) film. The calculations of (i) were gad out for therkm-parameters
rkm = 7.5, 8.0, 8.5, 9.0, 9.5, 10.0 corresponding taV = 67, 80, 96, 114, 137, 158 basis
functions.

where M, gives the number of eigenvalue iterations. This gives jugtoss estimate as for
iterative methods based on the Car-Parrinello idea whédfre@esistency iterations and eigen-
value iterations can be combined to directly minimize tetargy functionalVyip - Niter - Miter
depends on many details. The scaling relation for precisoating is:

the number ok-points: N, o P (22)
the number of basis function: N « P3, (23)

whereP is the precision controlling thie-point summation, e.g. of the force, the total energy or
the electron density. Assuming that the volufhef the unit cell is proportional to the number
of atoms/V 4, the scaling relation for volume scaling is:

the number ok-points: N, o 1/Nag, (24)
the number of states M o< Ny, (25)
the number of basis functions: N o< Ny, (26)

From these considerations it is argued to develop elecsinicture methods (cf. Sect. 3) with
efficient basis sets to reduce their numbérto develop algorithms to accelerate the conver-
gence (cf. Sect. 2.7) and to employ an efficiksoint integration scheme (cf. Sect. 2.6).

2.6 Brillouin-Zone Integration and Fermi Energy

The calculation of the electron density, total energy, éooc stress tensor for infinite periodic
solids require the integration of functions over the Builo zone that depend on the Bloch
vector and the energy band. These integrations stretchomelythe occupied part of the band,
i.e. over the region of the Brillouin zone where the band gyer (k) (v is the band index) is
lower than the Fermi energy. Hence, the integrals are ofdira f

1
Vs /B ) SRk A, (27)

Vvﬁu(k)<EF
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wheref is the function to be integrated, e fj= 1 for the total number of electrong,= ¢ for
the eigenvalue sum and so on. Numerically, these integigtice performed on a discrete mesh
in the Brillouin zone. In fact the effort of the BZ integratids in practice significantly reduced
by employing the point group symmetry, where the integrat®reduced to the irreducible
wedge of the BZ (IBZ). There are different methods, that aanded to perform the integration,
e.g. the special points method [14, 15] and the tetrahedmrethad [16, 17, 18]. The special
points method is a method to integrate smoothly varyinggoieifunctions otk. The function
to be integrated has to be calculated at a set of specialgpwirthe IBZ, each of which is
assigned a weight. Thus, the BZ integration is transformtma sum over a set &fpoints. At
eachk-point a sharp energy cut-off is introduced to include ohlyse state in the summation
whose energy is below the Fermi energy. Thus, the integealerne:

é/}gz Yo oak PE— Y > Lk wk) (28)

ev(k)<Ep kelBZ v,e, (k)<Ep

Alternatively, this integration can be viewed as an intégraover the whole Brillouin zone,
where the function to be integrated is given by a product efftmction f with a step func-
tion that cuts out the region of the Brillouin zone, where llaad energy is above the Fermi
energy. Clearly, the resulting function does not satisg/ ¢bndition of being smoothly vary-
ing. Therefore, the special k-points method does not cgaveery quickly, and rather many
k-points are needed to obtain accurate results. On the b#met this method is simple to im-
plement, because the weights depend onlk@md the band energy (via the step function) at
each k-point. Another problem arises from this “sharp”eliéintiation between occupied and
empty bands (parts of bands). Let’s consider a band thatrysclese to the Fermi energy at
a certain k-point. During the iterations the energy of trasdb might rise above or drop below
the Fermi energy. This leads to sudden changes in the charggity] which can slow down or
even prevent the convergence of the density. These suddeges are clearly a result of the
discretization in momentum space. To avoid this problem stiarp edges of the step function
are smoothened, e.g. by introducing a so-called temperataadening in the context of a the
Fermi function(e(c=#r)/ksT 4 1)~1 rather than the step function. The temperafliter energy
Tkp are an additional external parameters adjusted to obtaibhdhkt convergence.

2.7 Achieving Self-Consistency

According to Sect. 2.2 the Kohn-Sham equation Eq.(7) ared®ahger-like independent-particle
equations which must be solved subject to the conditiorthieegffective potential fiel#l.q (r) =
Vext(r) + Vi (r) + Vic(r) and the density fiele(r) are consistent. The electron density(r)
that minimizes the energy functional is a fix-point of the piag

n'(r) = F{n(r)}. (29)
i.e. it solves
F{no(r)} =0, with F{n(r)} = F{n(r)} — n(r). (30)

(The same can be formulated for the potential.) Typicallg, density is expanded into a large
set of basis functions. Thus, in actual calculations, thergd density is a coefficient vector
of dimensionNg ~ 8 = N (N defined as in Eqg.(13) and Eq.(30) constitutes a systemipf
nonlinear equations, which can be solved by iteration:

n™(r) = F{n™(r)}. (31)
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2 Convergence Behaviour of the Different Mixing Methods
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Fig. 7: Comparison of the convergence of charge density calculayetifferent methods for a
non-magnetic bcc Fe crystal using the FLAPW method. Calicuia are carried out for mixing
parametera = 0.04. + corresponds to simple mixing, and different Quasi-Newtethiods: «
Broyden’s 1st method, Broyden’s 2nd method, generalized Anderson method. The distance
of the residual vector vs. number of iterations is plottechislmgarithmically [19].

A starting density.(”)(r) can be constructed by a superposition of atomic densitiestraight
mapping as is suggested in Eq.(31) is in general divergestiv€gence can be achieved if the
output density?’{n"™(r) } is mixed with the input density™ (r).

The simplest and slowest of such mixing schemes is the $edcaimple mixing”, which
converges only linearly. The density for the next iterateoonstructed as a linear combination
of n(™ and F{n™} according to:

n(m+1) _ (1 . a)n(m) + aF{nm} — n(m) + af{n(m)}, (32)

whereq is the so-called mixing parameter. If it is chosen small ggthe iteration converges
and is very stable. However, for the type of systems one ésested ing is very small, requir-
ing many hundreds of iterations. In spin-polarized caltorfe different mixing parameters can
be used for the charge and the magnetization density. WYstiad spin mixing parameter can
be chosen far larger than the parameter for the charge gensit

In the Newton-Raphson method, the functiod®{n} is linearized around the approximate
solutionn(™.

Fin)  F) + T o), i) = TR

(33)
In actual calculations the Jacobighis a Nq x Ng matrix. Similar to the well-known Newton
method to find zeros of one-dimensional functions, the npgr@imation tong, n(™+, is
determined from the requirement, that the linearized fonel in Eq.(33) vanishes at™ ).
Thus,n(™+1) is given by:

pm+) — (m) [j{n(m)}]_lf{n(m)}. (34)
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In opposite to the simple mixing, the Newton-Raphson mettmw/erges quadratically. The
major drawback of this method is the difficulty to evaluate dlacobian. Even if the functional
F{n} were known, the evaluation would be cumbersome due to therens size of7{n}.

In addition, the Jacobian has to be inverted where the anwfudlculation scales with cube
of the dimension. A further problem is that the convergeracbus is rather small so that the
method can only be usedif™ is already very close ta.

The development of the Quasi-Newton methods made it pessileixploit the advantages of the
Newton-Raphson method, i.e. to make use of the informakiahis contained in the Jacobian,
for problems where the Jacobian cannot be calculated oetermination is too demanding.
Rather than computing the Jacobian each iteration, an gippate Jacobian is set up and im-
proved iteration by iteration. From the linearization®{n»} in Eq.(33) we find the following
condition for the Jacobian, which is usually called Quasiabn condition:

Antm) = [g] 7 AFe) (35)

An™ — pm) _ 1) AFOM _ FLp0my _ Fpme)y

Quasi-Newton methods converge super-linearly and havegarlaonvergence radius than the
Newton-Raphson method. Since the Jacobian is build uptideray iteration, the “history”

of the previous iterations is memorized jh, whereas the Jacobian of the Newton-Raphson
method depends only on the previous iteration. In this s#ms@&lewton-Raphson method is
self-corrective [53], it “forgets” inadequately chosenreations. The Quasi-Newton methods
sometimes need to be restarted, if the iteration converggsstowly. This can happen if
the starting density is very far from, or when physical or numerical parameters that affect
the calculations are changed during the iteration. Eq.(R®)s not determine the Jacobian
uniquely, instead Eq.(35) constitutes a systenvVgfequations fod\fg2 unknowns. The various
Quasi-Newton schemes differ by the ansatz how the new irdbomis used to build the inverse
Jacobian. The quality of the convergence is measured byishende of the residual vector:

doomy = [|F{nY[| = ||F{n™} = nl™]]. (36)

3 The Electronic Structure Methods

The quest to solve the Kohn-Sham equation (7) efficientlypfmodic solids, solids with sur-
faces and interfaces, clusters and molecules has lead tdeaspectrum of very successful
and efficient electronic structure methods. Treating tsolalusters or molecules, methods
based on localized orbitals are frequently selected goargihn hand with the chemical in-
tuition of a system in question. Considering methods apple to periodic solids, frequently
algorithms are chosen where the Bloch boundary conditionbeaincluded in the basis set.
Guiding principles to develop electronic structure methark obtained by having a closer look
at the mathematical nature of the Schrodinger-like Kohass equation Eq.(7) with the kinetic
energy operatoA and thel/r singularity at the nucleus with the simultaneous necegsity
calculate the xc-potentiadf..[n|(r) and the Hartree potentidd[n](r).

The planewave basis is obviously a very good choice, as theeplave is diagonal to the
Laplace operatoA appearing in both the the kinetic energy operator and in thesBn equa-
tion to calculate the Hartree potential (cf. Eq.(8)), andddunction expanded in planewaves,
its power is also completely expressible by a planewaveresipa. This property is needed for
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— all electrons, full-potential — real-space grid
A ) ) planewaves (PW)
full-relativistic — — all electrons, spherical potential " (Ab-initio MD)
scalar-relativistic —| — pseudopotential (valence electrons) | hon-linear methods
non-relativistic — — jellium approximation (structureless) — APW:

augmented PW

— KKR-GF

— linearized methods

[-A+V{R}LK) +V,(r) ] L|ka(r) = Ekv lleV(r) — LAPW:

linearized APW

— ASW

non-periodic—j — local density approximation (LDA) — LMTO
periodic— I— generalized gradienten app. (GGA) ) o

linear combination
symmetrized — — non-spinpolarized — of atomic orbitales

(LCAO)

real-space— — spinpolarized, vector-spin density
— tight-binding
— LDA+U, OEP
— Gauss-O

— hybrid functionals
— Slater type-O

— current functionals

“— numerical O

Fig. 8: Very rough and schematic overview of electronic structuethmds indicating a rich
spectrum of methods developed for different purposesicgtiains, geometries and symmetries,
chemical elements and materials requiring different apprations.

calculating the charge density from the wave function. Tluséng a planewave basis set the
calculation of the kinetic energy, charge density and thitriela potential are obtained by simple
algebraic expressions. The calculation of thgr) best performed if the charge density is ex-
pressed in real-space. The discrete fast Fourier tranatam(FFT) provides a fast algorithm
to communicate between both spaces. However, planewaiedss do not converge at the
presence of thé/r singularity. Thus, planewave basis-sets can only be usgetioontext of a
pseudopotential approximation to the true potential whieed /r potential has been replaced
by an appropriate smooth potential (For details see ché&p8eof K. Schroeder: Car-Parrinello
Molecular Dynamics and Reaction Kinetics).

All-electron methods have to cope with thér singularity. Since this singularity cannot be
dealt with variationally, one typically works here with mf&unctions, which are the numerical
solution of (—A + Vg — Ej)p = 0 of the effective (spherical) potential containing the-
singularity, computed in a sphere around the atom at a ginergg parametek;. These basis
functions treat the singularity exactly. The matching a$ twavefunction in such a sphere to
the rest of the crystal outside the sphere divides the afitein methods with regard to the
eigenvalue dependence of the basis set into two groups: dileear methods as for example
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the Korringa, Kohn and Rostocker (KKR) method and the APWhoef and the linear methods
, of which the most commonly used are the linear muffin-tinitattmethod (LMTO) [20]
(see also chapter A.12 of E. Pavarini: Building Model Haarilans for Strongly Correlated
Materials), the augmented spherical [21] and the APW-basbdmes, e.g. FLAPW method.
The choice of the electronic structure method for surfacense application, depends on the
chemical elements involved, the symmetry of the system apeéilds on the physical and chem-
ical questions to be answered, and as such also on the reg@@metrical model to treat a sur-
face. Surfaces provide open structures and a correct tegatrhthe shape of the charge density,
the one-electron potential is required. This is offered dalled full-potential methods such
as the PP-PW, PAW, FLAPW, FPLMTO and KKR methods.initio molecular dynamics and
transition-state calculations are most efficiently cadted by PP-PW and PAW method. All-
electron methods on the other hand offer a precise treatofiédtand4 f electrons, magnetism
is included rigorously, correlation beyond the local-dgnapproximation enters naturally in
those methods and nuclear quantities [22] e.g. isomer, $lyifierfine field, electric field gradi-
ent (EFG), and core level shift are calculated routinelyth&tend a couple of methods proved
powerful to cope with the various demands of surface cheynastd physics.

4 Surface Models

Considering the expense of the calculation and physicddlenoin mind, one of the most cru-
cial steps in computational science is the creation of eglegeometric models. Many, but by
no means all phenomena in surface science are relativety-snge in nature. This makes it
possible to choose geometric models which are small encudle tractable to today’s elec-
tronic structure methods yet still large enough to be plaflsieneaningful. Systems containing
of the order of 100 transition-metal atoms or 300 hundredsamiluctor elements of group lll,
IV, V per unit cell can be treated on a first-principles levéhtoday’s programs and computer
hardware, of course depending on details of the systemsastigm. A particular choice de-
pends on the physical and chemical questions to be answarddach geometric model has
its strengths and limitations. In the following, we will disss the most common geometric
models for electronic structure calculations of surfacdsKig. 9) and outline their range of
applicability.

Conceptually the most satisfying surface geometry is thasemi-infinite solid. This geometry
can be used fro the simple jellium model of surfaces. In thieije model, the positive charge
of the atomic nuclei is simply represented by a uniform canispositive background inside the
solid and zero outside an appropriately chosen surfaceepl&ffectively, the system is thus
reduced to a one-dimensional problem and the distributidheoelectrons are then calculated
using DFT.

The use of a semi-infinite solid is much more difficult if a fthree-dimensional solution of
the DFT problem is attempted. However, it is reasonable sarae that any material becomes
bulk-like at a certain distance away from the surface. Amgrane does not know that distance,
but the electronic screening length is a good measure. &hists to about 10 layers underneath
the surface for transition metals and semiconductors aadtdét® layers for sp-metals such as
Al, Bi or Pb. In the top layers or the so-called "surface rejjdhe electronic wave functions
are then chosen to match the bulk states inside the solidaisfiysthe vacuum boundary con-
ditions above the surface. Green function techniques ad, dsr example, in the Korringa,
Kohn and Rostocker (KKR) or in the Full-Potential Lineadz&ugmented (FLAPW) Green
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semi-infinite solid repeated slab single slab cluster

or thin film
jellium PP-PW, PAW FLAPW Localized Orbital
layer KKR FLAPW Localized Orbital methods (numerical,
Green functions FPLMTO methods STO's, Gaussians)
LMTO

Fig. 9: Geometric models for practical surface calculations. Tleemetry of a semi-infinite
solid is mainly used for jellium calculations and methodgkaying Green functions and match-
ing techniques. Standard band structure methods usingitiensional periodicity can be
directly applied to a repeated slab geometry. These stahdagthods include the pseudo-
potential plane-wave methods (PP-PW), the projector audeteplane wave method (PAW),
the full-potential linearized augmented planewave (FLARWeéthod, the full-potential lin-
earized muffin-tin orbital (FPLMTO) and the LMTO method. MuW&PU time can be saved
using the single slab geometry, which treats the semi-tefsurface on both sides of the slab
accurately. The FLAPW method has been implemented forngkesilab geometry, which also
can be used with localized orbital methods. The cluster g&gms amenable for localized
orbital methods with numerical functions, Slater type talsi (STO’s) or Gaussian as basis set,
as used for molecular quantum chemical calculations [23].

function methods [24, 25], which provide the necessary eratitical apparatus to accomplish
this matching procedure [26].

A simple, but effective geometric surface model is the régmbalab geometry (cf. Fig. 9) calcu-
lations of surfaces (cf. Fig. 9). Thin films consisting of abh0 to 20 layers are repeated in the
direction perpendicular to the surface. The slabs are chibéek enough to approach bulk-like
behavior near the center of each slab and the spacing is lalgnenough so that any artifi-
cial interactions across the vacuum region between thes slaminimized. About 10 to 28
are usually sufficient to fulfill the requirement. For sucheometry, any three-dimensional
electronic structure method able to treat open structuaasbe used. The most common ap-
proaches for three-dimensional electronic structurewtations are the pseudopotential plane
wave (PP-PW) method, the full-potential linearized augteeémplanewave (FLAPW) method,
and the full-potential linearized muffin-tin orbital (FPLW) method. Practical applications
of these approaches are limited by the number of atoms inhilee-timensional supercell.
Thus, a compromise needs to be found between slab thiclspess between the slabs, and the
computational effort.
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One way to overcome at least one of these limitations is tleeofisa single-slab geometry
(cf. Fig. 9). The slab still has to be thick enough to achiewtk{like behavior in its interior,
but the correct vacuum boundary conditions of the semidtefivacuum on both sides of the
slab are full-filled. Besides the more accurate descrippicthe vacuum, the surface state and
the workfunction, to computational effort may be reduce®®o of the effort required in an
supercell approach of a repeated slab model.

Finally, surface can be modeled by finite clusters. This @@gm has been widely used for
the investigation of chemisorption, since it allows thelaggpion of standard quantum chem-
istry programs. While reasonable structural informatioaohsas adsorption geometries can be
obtained with relatively small clusters consisting of 1020r atoms, much larger clusters of
preferably well over 100 atoms are required to achievebldigesults for sensitive quantities
such as adsorption energies or the distinction betweeerdift adsorption sites with similar en-
ergy. However, even for large clusters, termination effecin have unpredictable side effects.

5 APW-like Concepts to solve the Kohn-Sham Equations

In this section, we introduce step-by-step the full-patrinearized augmented planewave
(FLAPW) method [27, 28], to solve the density-functionaliatjons for a crystalline solid and
with emphasis for an ultrathin film (a review is given by D. ihdgh [29]). The method orig-
inates from the APW method proposed by Slater [30, 31, 32]JeaGprogress of the APW
methodology was achieved as the concept of linear meth@J2[B 34, 35, 36], was intro-
duced by Andersen and first applied by Koelling and Arbmangiaimodel potential within the
muffin-tin approximation. The linearized APW (LAPW) methagtonciled the linear-algebra
formulation of the variational problem with the convergemeoperties of the original formula-
tion and allowed a straight forward extension of the metloati¢ treatment of crystal potentials
of general shape. The treatment of the potential and chagsity without shape approxima-
tion [37, 38] and the implementation of the total energy [8}o the development of FLAPW
bulk [27, 38, 39, 40, 41, 42, 43, 44] film codes [27, 44, 45, 46)was during this time that
the power and accuracy of the method were demonstrated twtheunity, largely through a
series of calculations of surface and adsorbate electstnictures (for a review see Wimmer
et al.[47]). These and other demonstrations established the PLARthod as the method of
choice for accurate electronic structure calculationsfbroad spectrum of applications.
Constant conceptual and technical developments and refimsmuch as the proposal and im-
plementation of the scalar-relativistic approximatioRE [48], the spin-orbit interaction by
second variation [50], and the possibility to calculate&x [51, 52] acting on the ions to carry
out structure optimizations, quasi-Newton methods [53]dcelerate the self-consistency itera-
tions, the iterative diagonalization techniques [54, 54, e proposal of a new efficient basis
sets, the LAPW+LO [57] and APW+lo [58] basis, in which the ABA&is is amended by local
orbitals (lo), the extension of the method to non-collineegnetism [59], to the wire geome-
try [60], to calculations of the quasiparticle self-enengyhe GW approximation [61], and the
recent formulation and application of the scattering peabin semi-infinite crystals [24, 25, 26]
has made APW-like methods, and for our discussion the FLARtWad, a robust, versatile and
flexible method, at reasonable computational expenseatt al-electron method, that means,
one works with a true crystal potential, which divergesl as at the nucleus, as opposed to
the pseudo-potential (for a review see Ref. [62, 63]), inchtthe singularity is removed. The
method and the breadth of applications has benefited froratbe growth of available com-
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Fig. 10: Left figure: Volume of unit cell partitioned into muffin-tipleres of two different types
of atoms and the interstitial region . Right figure: Actualfsmnsistent effective potential as
obtained from an FLAPW calculation.

puting power and parallelization strategies.

5.1 The APW Concept

There are many possible ways to solve the Kohn-Sham egsatiBrequently, a variational
method is chosen by which a wavefunctigg, (r) of Bloch vectork and band index is sought
as a linear combination of basis functiop&) satisfying the Bloch boundary conditions. The
most straightforward choice would be to expand the wavdfandnto planewaves or Fourier
series, respectively,

Uk,v) = Z cgyexp[i(k + G)rl. (37)

‘k"rG‘SKmax

Here G are all reciprocal lattice vectors up to the largest valug<gf,, and cﬁu are varia-
tional coefficients. The planewave basis set has some iatcativantages: Planewaves are
orthogonal, they are diagonal in momentum space and theemmggitation of planewave based
methods is rather straightforward due to their simplicithie credit goes to Slater [30] having
realized that owing to the singularity of the crystal potairdat the nucleus, electron wavefunc-
tions are varying very quickly near it, the planewave expansvould converge very slowly,
large wavevectorsK,.x) would be needed to represent the wavefunctions accuyateigh
makes the set-up and diagonalization of the Hamiltoniamixiatterms of planewaves imprac-
ticable if not impossible. Even with the modern computediaare, the planewaves are used
only in the context of pseudopotential which allow an actidescription of the wavefunctions
between the atoms, but avoid the fast oscillations neardhe d'hus, less basis functions are
needed.

In the APW method the space is partitioned into spheres mhgt each atom site, the so-called
muffin-tins (MTs), and into the remaining interstitial regi(cf. Fig. 10). The MT spheres do
not overlap and they are typically chosen such that theylynéar allow for structural relax-
ations) fill the maximal possible space. Inside the mufins;tithe potential is approximated
to be spherically symmetric, and in many implementatiomsititerstitial potential is set con-
stant. The restrictions to the potential are commonly dadleape-approximations. Noting that
planewaves solve the Schrodinger equation in a constaental, Slater suggested to replace
the Bessel functiong (Kr) in the Rayleigh decomposition of the planewave inside theesp
by radial functionsu; (K, r), which match the Bessel functions in value at the sphereusadi
Ryt and whose product with the spherical harmoniigét) are the solutions in a spherical
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potential. It is this procedure what is understood by thentaugmentation. Thus, the single
wavefunctions)y , (r) are expressed as trial functions

() = Y & eclkr) (38)

‘G“rk‘SKmax
in terms of the APW basis functions:

ekt G)r interstitial region
pallor) =457 06 (1w, (7| B) Y, (+)  muffin-tin (39)

lm

The positionr inside the sphereslocated at* (cf. Fig. 10) is given with respect to the center
of each spherel abbreviates the quantum numbéeandm andu; is the regular solution of the
radial Schrodinger equation

{ h? 02 h? I(l+1)
___+_
2m

2m, Or?

+V(r)— E} ru(r) =0 (40)

7“2
to the energy parametés;. Here,V (r) is the spherical component of the potentiglr). The
coefficients

JiI(KR)
ul(R“) ’

aC (k) = a" (k + G) = 4m exp(ikT")i'Y; (K) K=k+G (41)
are determined from the requirement, that the wavefunstame continuous at the boundary
of the muffin-tin spheres in order for the kinetic energy tovssl-defined. The variational
coefficientsc® uniquely determine the wavefunction in the interstitiajica.

If £ were kept fixed, used only as a parameter during the constnuaitthe basis, the Hamilto-
nian could be set up in terms of this basis. This would leadstaadard secular equation for the
band energies where for a givkrpoint in the Brillouin zone (BZ) a set of band energigésare
determined. Unfortunately, it turns out, that the APW baliss not offer enough variational
freedom ifE is kept fixed. An accurate description can only be achievéieiienergies are set
to the corresponding band energi€g,. In this case the Hamiltonian matri depends not
only onk, H(k), but also on&y ,,, H(Ex , ), and the latter can no longer be determined by a sim-
ple diagonalization. Since thg’s depend then on the band energies, the solution of thearecul
eguation becomes a nonlinear problem, which is computatyomuch more demanding than a
secular problem. One way of solving this problem is to fix thergy £ and scan ovek to find

a solution, i.e. find one band at the time, instead of diagoingl a matrix to find all the bands
at a givenk. Thus, in Slater’'s formulation of the methddenters as an additional non-linear
variational parameter varying the shape of the functignsll the optimal shape is found for
the band energieBy , one has looked for. There are several other limitations ectaal to the
APW method. One is rather obvious, whefR) in Eq.(41) becomes zero at the MT boundary,
the radial function and the planewave becomes decoupledyrkias the asymptote problem.
Others are beyond the scope of the chapter. Further infamabout the APW method can be
found in the book by Loucks [32], which also reprints seveally papers including Slater’s
original publication [30].

There is one remaining point. Please notice that the APW odleinoduces per construction
principle wavefunctions with a discontinuity in the slopetl@e muffin-tin boundary. Due to
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Fig. 11: Square of the LAPW basisfunction generated@oe= 0 andk at the origin [-point)
(left) and boundaryNI-point) (right) of the Brillouin zone of a 3-layer thin film 6u(100). The
cuts are taken in th¢110} plane. The basisfunctions are optimally suited to represestates
of Cu (left) anddp states (right).

these discontinuous first derivatives the secular equatitre APW basis

> ((peH - ewlpe) + (pc| Tslea))eg, =0 (42)
G/

contains a second term due to the matrix eleménts- V2|¢) of the kinetic energy operatdt
commonly defined a§ = —V?, which is replaced byV+|V), leading then via Green'’s the-

orem to the appearance of additional surface integfals [ ¢* [(g—lﬁ)_ - (g—iﬁ)J dS, where
+(—) indicates just outside and inside the muffin-tin sphere. mhgix elements of's are pro-

portional to the difference of the logarithmic derivatiyesm the functiorw,;, D(w|E) = Zigg ,
and that of an empty sphere(j,|E) = j.fgg, taken at the sphere boundary. The logarithmic

derivatives are related to the phase shifts in scatteriegtev Thus, the second term in Eq.(42)
can be interpreted describing the scattering of a planea@weéng from the crystal at the sphere
of the atoms. It is well-known that the logarithmic derivas and the phase shifts are energy
dependent quantities, which explains the explicit enepetidence of the APW Hamiltonian
in particular, and all nonlinear electronic structure noelhin general.

5.2 The LAPW Basisfunctions

To avoid the problems connected with the APW method resuftiom the energy dependence
of the Hamiltonian, in the middle of the seventies lineadir@ethods were invented by Ander-
sen [20] and Koelling and Arbman [34]. Based on an idea pregdy Marcus [36], the basis
functionsw; in the muffin-tins were supplemented by their energy derieat:;, but both,;
andu,;, are now evaluated at a fixed enerffy The original energy dependence of the radial
basis-function is thereby replaced by the Taylor series:

w(E) =w(E) + (E = E)u(E) + ... (43)
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terminated after the linear term. In this way, the wavefioms are affected by an error which
is quadratic in the deviation of the eigenvallidrom the energy parametés;, the error in the
eigenvalues enter only to fourth order [34]. With this esien, the explicit form of the basis
functions is now:

exp(i(k + G)r) interstitial
> i (aly S (k)ul(r) + bf‘rf(k)uﬁ‘(r))}ﬁm(f'“) muffin-tin p.

)
m

wg<k>=:{ (44)

Examples of LAPW basisfunctions are shown in Fig. 11. Thaesbf the coefficients < (k)
andb/% (k) are determined to ensure continuity in value and derivatiibe basis functions
across the muffin-tin boundary. Thereby, also the surfategials [ * (g—ﬁ) dS which were
encountered in the APW method disappear. In this way, theggrependence of the Hamilto-
nian is removed, simplifying the eigenvalue problem, Eg)(10 a standard problem of linear
algebra. Instead of working with, and«; several LAPW implementations follow the ASW
idea, working only withu; but for two different energy parametefis and £]. As we see below
working with «; and;, is rather elegant.

If ng denotes the spherical Hamiltonian in Eq.(40)can be determined from the energy
derivative of this equation &f;:

orl = Bl + ). (45)

The normalization of the radial functions is usually choblesx *

RM
/ 7’2u§‘2dr =1 (46)
0

and the energy derivatives,, are orthogonal to the radial functions, i.e.
RM
/ r2ul'i) dr =0 47)
0

a relation, which will simplify the calculation of the elemts of the Hamilton matrix.
Stimulated by the idea of the LAPW basis set, one may ask toawepthe basis set by match-
ing only the 1st derivative continuously, but also highemgsives working with higher energy
derivatives ofu;. This approach has actually been followed by Takeda andef{®4] usingn
energy parameters to match the wavefunction continuoilistize (n — 1)st derivative. How-
ever, it turned out that such wavefunctions are variatignadry stiff and the convergence of
the results with respect of the number of basis functionatiser slow. This can be understood
by following this procedure up to the extreme were the wawvetion matches to all derivatives.
Then we know, the; must be the Bessel functigin or the planewave, respectively. We have
already argued before that this requires an infinite numbplamewave to describe the wave-
function at thel /r singularity. Thus, it is a great merit of the LAPW basis seatthe basis set
is linear, but nearly as efficient as the APW method. The spé&ednvergence with respect to
the number of basisfunctions can even be improved by thedattion of local orbitals.

Yn the many LAPW-codes, the electrons in the muffin-tin aeatied in the scalar-relativistic approxima-
tion [49]. This means that a two-component wavefunctiorsisdiand the normalization conditions are modified
accordingly. For the continuity conditions, only the “largpmponent” of the radial function is taken into account.
To keep the formalism as simple as possible, in the followegwill discuss only the non-relativistic case.
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Fig. 12: Schematic drawing of the logarithmic derlvatlvlé—) for [ = 0 as function of the
energy. The asymptotes indicate where the nodes of thewmvmin pass through the muffin-
tin radius. They separate the branches labeled2s and3s.

The energiedy, are chosen to minimize the linearization errors, i.e. indéeter of gravity of
thel-like bands. It should be noticed here, that the choice oktlergy parameter in a certain
sense also determines the nodal structure of the wavedtmaibasis function, where thie= 1
energy parameter is chosen to descritxg-dike wavefunction in a certain muffin-tin, will not
be suitable to describe3 or als state. The energy parameter is then said to be within the
2s branch (cf. Fig. 12). The flexibility of the basis functionajfurse also depends on the size
of the muffin-tin radius R, so that with the choice of a small&in some cases two branches
can be forced to “collapse” to a single branch [65]. On theeptiand, a smaller flexibility
allows to separate core- from valence states in a calculafibus, in a typical calculation only
high-lying valence states are calculated (8sg3p, 3d), while very localized states (e.gs, 2s,

2p) are excluded from the calculation. These states are tleatett in a separate, atomic like,
calculation using thé = 0 part of the muffin-tin potential.

As a final point, we will address the question how laftgdould be in a realistic calculation.
Since the: andb coefficients in Eq.(44) should ensure continuity acrossrith#in-tin boundary,
the plane-wave cutoff ., and thel cutoff, /.., are normally chosen to match: A planewave
with wavevectorG,,.x (given in inverse atomic units) has,,../m nodes per atomic unit. A
spherical harmonic with = [, has2l,,., nodes along a great circle on the muffin-tin sphere,
i e. there aré,,.. /(7 R) nodes per atomic unit. Therefore, a reasonable choice afutodfs is
lmax = RGrax, typically [,,., = 8 is chosen.

5.3 The FLAPW-Method in Film Geometry for Surfaces and Thin Flms

Today, the physics of surfaces and films is an field of maj@&régt and investigation. However,
surfaces are difficult to treat, because they break thelttamsal symmetry, i.e. there is only the
2-dimensional symmetry parallel to the surface left to kegis reduce the problem, and a semi-
infinite problem is left perpendicular to the surface. In approach surfaces are approximated
by thin films, typically 10-15 atomic layers thick. Obviousthis approximation, which is
called the thin-slab approximation, can only yield gooditissf the interaction between the two
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Vacuum -

Vacuum unit cell

Fig. 13: The unit cell in film calculations contain two semi-infiniecuum regions.

surfaces of the film is week enough, so that each of them shwyzroperties of the surfaces of
an ideal semi-infinite crystal. In the case of film calculai@pace is divided into three distinct
regions, the muffin-tins, the interstitial and the vacuumioe (cf. Fig. 13). The interstitial
region now stretches from D/2 to D/2 in z-direction, which is defined to be the direction
perpendicular to the film. The representation of the wawefans inside the muffin-tin spheres
remains exactly the same as in the bulk case. Since the petyamlong the z-direction is lost,
the unit cell extends principally from-oco to oo in z-direction. Still the wavefunctions can
be expanded in terms of planewaves. However, the wavegegarpendicular to the film are
not defined in terms oD, but in terms ofD, which is chosen larger thah to gain greater
variational freedom. Therefore, the planewaves have the fo

| | | ,
paa, (K r) = Gk Gz with Gy = %7 (48)

whereG andk are the 2-dimensional wave- and Bloch vectoyss the parallel component of
r andG | is the wavevector perpendicular to the film. The basis famstin the vacuum region
are constructed in the same spirit as the functions in thématiis. They consist of planewaves
parallel to the film, and a z-dependent functiag) (k|, z), which solves the corresponding one-
dimensional Schrodinger equation Eq.(49), plus its gndegivativeug (k| 2).

2m 922

2 2 2
{ O Vi(2) = Buse + zh—m(q + k|)2} ug, (kj, ) =0 (49)
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E,.. is the vacuum energy parameter avifz) is the planar averaged part of the vacuum
potential. As in the case of; in the muffin-tins, the functionig (k, z) is calculated from

a Schrodinger-like equation, which can be obtained byvaegiEq.(49) with respect to the
energy.

h? 9? h? 5 .
_—7 + ‘/O(Z) — Eyae + %(GH + k||) UGH (kﬂv Z) = UGH (kH7 Z) (50)
The resulting basis functions have the form

(Zetell (kH, I‘) = {CLG”GL (kH)uG” (kH, Z) + bc;,”(;l (k”)fLGH (k”, Z)} e (G tky)r) (51)

The coefficientsug ¢, (k) andbe ¢, (k) are determined in exactly the same way as it is
done for the muffin-tins by requiring that the functions asatinuous and differentiable at the
vacuum boundary. It should be mentioned, that the vacuum hasctions offer less variational
freedom than the basis set in the interstitial region doéss dan be seen by noting that there
are only two functionsyg, andug, times the corresponding planar planewave, to be matched
to all planewaves of the interstitial region with the sa@g But there are generally far more
than two different= 's, i.e the number of basis functions in the vacuum regiongsicantly
smaller than in the interstitial region. However, this canifaproved rather easily. In Eq.(49)
only one energy parametér,,. is used. Instead one can used a whole series of parani&ters
to cover an energy region. A possible choice of the energgmaters could b&!, = E¢L =
Eioe— %Gi, which leads correspondingly &, dependent basis functiong: ¢, (k|, z). For
more details see Ref. [67]. In general, however, the presgptoximations is accurate, the
energy spectrum of the electrons in the vacuum region islstnalto the work-function.

Finally we would like to summarize the basis set used forfilimcalculation with the FLAPW
method.

( G” +kH)

el T giGLz interstitial

{CLGHGL (kH)uGH (kH’ Z)

#ey0a (k1) = +ha . (ky)ua (K, z)} Gtk vacuum (2)

D af® (Kuy(r) YL (®) + b5 (k)i (r) YL (F) MT#

This expansion has been suggested by H. Krakauer, M. Paktand A. J. Freeman [45].

The expansion of the charge densityand the potential is very similar to expansion of the
wavefunction. In the interstitial-region the two quamgtiare expanded into three-dimensional
planewaves, inside the muffin-tins they are representeglgrscal harmonics and radial func-
tions, which are stored on an exponential mesh and in theuvacthey are expanded into two-
dimensional planewave and z-depended functions. Of cptimseharge density and the poten-
tial posses the lattice symmetry. Therefore, the exparnistorplanewaves is more general than
necessary. The planewaves can be replaced by symmetraregiyaves, the so called stdrd’

for the interstitial region and the two-dimensional st@#$ (r) for the vacuum region. Thus,
the charge density and potential is expanded in the form:

. ns®3P(r) r € interstitial region
n(r) =< > ns(2)®*P(r) r € vacuum (53)
S nt(r)K,(8) reMTH
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and the Hamiltonian and overlap matrix consists now of tihee@s: the interstitial, muffin-tin
sphere and the vacuum contribution, paying tribute thasfiaee is now partitioned in three
regions

H=H;+Hyr+Hy and S=S;+Syur+ Sy. (54)

n,(2)®2P contain important information for the analysis and intetption of STM topography
and spectroscopy results on the basis of the Tersoff-Hamaodel [68] as worked out by
Heinzeet al.[69].

6 The Green function method of Korringa, Kohn and Ros-
toker

The multiple-scattering method of Korringa, Kohn and R&stdKKR) for the calculation of
the electronic structure of materials was introduced in718y Korringa [73] and in 1954 by
Kohn and Rostoker [74]. In order to solve the Schrodingeragign, the scattering properties
of each scattering center (atom) are determined in a firpt a&tel described by a scattering
matrix, while the multiple-scattering by all atoms in thétitze is determined in a second step
by demanding that the incident wave at each center is the $uhemutgoing waves from
all other centers. In this way, a separation between thenpateand geometric properties is
achieved.

A further significant development of the KKR scheme came wiewvas reformulated as a
KKR Green function method [75, 76]. By separating the sirgjte scattering problem from the
multiple-scattering effects, the method is able to prodteecrystal Green function efficiently
by relating it to the Green function of free space via the Dysquation. In a second step the
crystal Green function can be used as a reference in orderi¢alate the Green function of
an impurity in the crystal [77], again via a Dyson equatiomisTway of solving the impurity
problem is extremely efficient, avoiding the constructidinoge supercells which are needed
in wavefunction methods.

The development o$creenedor tight-binding KKR was a further breakthrough for the nu-
merical efficiency of the method [78]. Via a transformatidntlee reference system remote
lattice sites are decoupled, and the principal layer tegheallows the calculation time to scale
linearly with the number of atoms. This is especially uséfullayered systems (surfaces, in-
terfaces, multilayers) and allows the study of, e.g., Iat@r exchange coupling or ballistic
transport through junctions.

A short list of successful applications of the KKR method &ectronic structure of solids,
combined with density-functional theory, includes bulkter&als [80], surfaces [81], interfaces
and tunnel junctions [82], and impurities in bulk and on aaefs [83]. Spectroscopic proper-
ties [84] and transport properties [79, 85] have also beasiest! within this method. The KKR
scheme can incorporate the Dirac equation, whenevenvistatieffects become important [86]
and was also applied to treat non-collinear magnetism [87].

6.1 Green Function Method

In density functional calculations the solution of the KeBham equations for the single par-
ticle wave functionsp,(r) and the corresponding eigenvalugs the single particle energies,
represents the central problem. Thus most of electronictsire calculations follow this route,
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i.e. calculating eigenfunctions, and eigenvalues,. However, the calculation ap, ande,
can be avoided, if instead the single particle Green fundii¢, r’; £) of the Kohn-Sham equa-
tion is determined, since this quantity contains all th@infation about the ground state. In
particular the charge density and the local density of sted@ be directly calculated from the
Green function, which is the solution of the Schrodingaratpn for an energy.’ with a source
at positionr’:

(=2 + V()= E)G(r,r;E)=—6(r —r1") , (55)

with atomic unitsh?/2m = 1 used. Using the spectral representation for the (retarGeen
function

G(r,r"; E +ie) = ZEH€_ ") (56)

it is easy to show that the charge density) can be directly expressed by an energy integral
over the imaginary part of the Green function:

2 [(Fr
) =2 Z [tha (1) _——/ dEImG(r,r; E) (57)

E(¥<EF

This relation directly allows calculation of the charge siénfrom the imaginary part of the
Green function, which can be interpreted as the local dewgistates at the position The
local density of states of a particular atom in a volumés obtained by integrating over this
volume

ny(F) = 2 / dr Im G(r,r; E) (58)
T Jv

In this way the evaluation of the wave-functiang(r) can be avoided. Due to the strong energy-
dependent structure of the density of states, the evatluatithe energy integral is usually very
cumbersome and typically abol® energy points are needed in an accurate evaluation of this
integral.
The numerical effort can be strongly decreased, if the aicalyproperties of the Green function
G(z) for complex energies = F + iI" are used. Sinc€(z) is analytical in the whole complex
energy plane, the energy integral can be transformed intentoar integral in the complex
energy plane
2 Er
n(r) = ——1Im dzG(r,r; 2) (59)
m Egp

where the contour starts at an enefgy below the bottom of the valence bands, goes into the
complex plane and comes back to the real axis at the Fernli IBugce for complex energies
all structures of the Green function are broadened by thgimaay partl’, the contour integral
can be accurately evaluated using rather few energy paymisally 20-30, leading to a large
saving of computer time. In this way Green function methadsampetitive to diagonalization
methods. Additional advantages occur for systems with twdhree-dimensional symmetry,
since as a result of the energy broadeningkhimtegration over the Brillouin zone requires for
complex energies much leks-points. In the evaluation of the contour integral, specak
is necessary for the piece of the path close“tg since here the full structure @f(E) on
the real axis reappears. Therefore the energy mesh shottanieeincreasingly denser when
approaching?r.
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The integration over a complex energy contour can also bended to finite temperatures by
using the analytical properties of the Fermi-Dirac disttibn. Here the essential point is that
the contour close t& is replaced by a sum over Matsubara energjes Ep +im(2j — 1)kT,
j=1,2,.... Then only complex energies are needed, since the energyghosest taF - has
still an imaginary part ofrkT". This is of particular advantage, when a discret®esh is used,
like e.g. in the special points method.

The real problem is the evaluation of the Green function fier gystem of interest. Since we
want to avoid evaluation of all eigenvalues and wave functiong,, we rather calculate the

Green functior? ) )

" E+ie—-H E+ie—H,—V (60)
of a system with Hamiltonia#/ = H, + V to the Green functiot’, = {F + ic — H,} ' of a
reference system, which is analytically known or easy touwdate. TherG(E) can be obtained

from the Dyson equation

G(E)

1

G(E) = GO(E) + GO(E) VG(E) =G, m

(61)

(A): G, (B): G
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Fig. 14: (A) is a schematic view of a host system prototype showingfaghesurface charac-
terized by collinear magnetism while (B) is a schematic \oéa system characterized by two
perturbations: first by the presence of an impurity sittingthe surface layer and second by
taking into account noncollinear magnetism. The extensidhe perturbation is delimited by
a pink color.
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For instance, for a bulk crystal one starts with the free egaeen functiorG,(H, = —9?),
such thatl” is the sum of the potentials of all atoms. For the surface &fapction, G, is
identified with the bulk Green function, such thatis the difference between the potentials at
the surface and in the bulk. Analogously for a cluster of actet on a surface one starts again
with the surface Green functidai, (Fig.14), such that” represents the change of the ad-cluster
potential with respect to the surface potential includimg perturbation of the potentials of the
neighboring host atoms. Most important is, that the peddnotential” is well localized near
the impurities, while the perturbed wavefunctions are aoalized and accurately described by
the Dyson equation.
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Such impurity problems are often described by an 'Ersatagy’, e.g. an impurity in a rel-
atively small cluster of atoms or by a supercell geometnhwitperiodic array of impurities.
In these cases the boundary conditions for the wave fureaoe changed violently, since e.g.
for a cluster all wave functions are restricted to the sizthefcluster. Therefore the introduc-
tion of the host Green functiofi, solves the so-called "embedding problem”, since it colyect
describes the embedding of the impurity in the infinite stefaystem.

6.2 KKR representation of the Green function

As mentioned earlier, in the method of Korringa, Kohn andtBker (KKR) [75] the Schrodinger
equation is solved by multiple scattering theory, desnghthe propagation of a wave in the
solid as a repetition of single scattering events at thewifit atoms. Thus first the single scat-
tering event of the wave at the potential of the differengratoms» is calculated, described
by the single site "t-matrix?,,, and then the multiple scattering at the given arrangenfeheo
atoms in the crystal. The resulting equations show a bedhggparation between potential and
structural properties, which are typical for the KKR methda the following we summarize
the most important results.

In the KKR-Green function method one divides the whole spate non—overlapping and
space—filling cells centered at positioR (similar to Fig. 10). In each cell the electrons are
scattered by potentials’, which in this section are assumed to be spherically symonand
centered aR™. By introducing cell-centered coordinates the Green fonat:(r + R, 1’ +
R™'; E) can then be expanded in each cell as a functianasfdr’ into spherical harmonics:

GR,+1,Ry +15E) = —iVEY R}(r; E)H}(rs; E)Spm
L

+ > Ri(r; E)Gi1.(E)RY (v E) (62)

Lr

Herer andr’ are restricted to the cellsandn’ andr_ andr.. denote the one of the two vectors
r andr’ which has the smaller or larger absolute value. Hi¢r; F') and H}(r; E) are the
product of spherical harmonics and radial eigenfunctiorteé central potential(r):

Ri(r; E) = R} (r; E) YL(7), (63)
Hi(r; E) = HJ'(r; E) YL(7). (64)

Here R? (r, E) is the regular solution which varies at the origin/dsand which represents
the solution for an incoming spherical Bessel functjpin/Er)Yz(7), while H} is the corre-
sponding irregular solution varying agr'*! at the origin and being identical with the spherical
Hankel functior, (v/Er) outside the range of the potential. Both radial functiomscamnected

by the Wronskian relation, which guarantees that the firsh i@ Eq.(62) represents the exact
Green function for the single potentiell(r) in free space. Since this term satisfies already the
source condition-6(r — r’) for the Green function of Eq.(55), the second term is souree f
and contains in the double angular momentum expansion belsegular solution&? and R7,.

By construction, the expression (62) for the Green funcsiatisfies in each cell the general
solution of the Schrodinger equation (55) for the Greercfiom, while the matrixG3%,(E), the
so-calledstructural Green functiondescribes the connection of the solutions in the different
cells and thus contains all the information about the midtggattering problem, which is in this
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way reduced to the solution of an algebraic problem. Ther deparation between the single—
site properties, described by the radial solutiétjgr) and H}(r) and the multiple scattering
properties as described by the matii¥?,, is the main advantage of the KKR method.

In principle, the structural Green function matti%™,(E) can be determined by matching the
solutions of the neighboring cells at the cell boundarieswever at the cell boundaries the
angular momentum expansion converges rather slowly, $gthaumably a largg,., cut-off
would be needed. The more elegant and at the same time maierdfivay consists in using
the power of multiple scattering theory, where the Greerction is basically only needed in
the inner region of the cell, where the potential is stromgthat thel—convergence represents
no problem. As shown by Beeby and others [75], the structarakn function matrix can be
determined from the corresponding matyii free space by the Dyson equation

T (E) = gip(E) + Y giin(E) i (E) Gl (E) (65)

n// LH

where thet-matrix ¢} for the potentiab™(r) is given by

R

t'(E) = / rdr ji(VEr) v (r) R (r; E) (66)
0

The derivation of this equation is lengthy and straightfamy so that we refer for this to the

literature cited above. An elementary derivation, valgbdior the full-potential case, has been

given by Zeller [88].

In practice, the host structural Green functions are firktutated ink-space using matrix in-

version; a subsequent Fourier transform gives us the pealesquantities. We write, then,

Gru(k E) =Y Gy (E) e "R (67)

n/

(which, due to translational symmetry, is independentpf The algebraic Dyson equation
Eq.(65) becomes

Gru(& E) = gp(k E) + > gror(k; B) ty(E) Gy (k; E) (68)
I
(the t-matrix is independent of, again due to translational symmetry). Herg, are the
reference structural green function of the original sysbefore perturbing it by the surface.
This original system can be for example free space. ThetstaldGreen functiong:;;, and
gL, and thet-matrix t;, are considered as matrices/irand L/, and (68) is solved by matrix
inversion after a cutoff at some= [,,., for which thet-matrix becomes negligible (usually
lmax = 3 Or 4 suffices). The result is
° 1

' () — - /BZ BB (R =R {(1 ~g(k; E)t(E))

-1

Bl ) (69
Lr'

where the integral is over the Brillouin zone voluiig;. For the calculation of the charge

density or of the density of states, only the on-site term »n’, G}, (E), is needed.

Here, thet-matrix t(£) depends on the atom-typeand on angular-momentum indexes (it is

site-diagonal(t)!" = 7 6,,,). The structure constanggk; £) are considered as a matrices in

both (L, L’) and(u, i), and thus the computational effort for the matrix inversizereases as

O(N3). A considerable speed-up can be achieved for large systgumsiihg the concept of the

screening transformation.
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6.3 Two-dimensional systems: finite-thickness slabs and anfinite crys-
tals

The extension of the KKR method to the treatment of layeresdesys, such as surfaces and
interfaces, is straightforward, and most efficient withie screened KKR formalism, where
O(N) scaling can be achieved (whekeis the number of layers).

When treating a layered system, a surface-adapted geoimetsed, in the sense that the two-
dimensional periodicity of the atomic layers parallel te gurface (or interface) is exploited
while the direction perpendicular to these layers is trbai® if these were different atoms in
a unit cell. The Fourier transforms are done now within the-timensional surface Brillouin
zone (SBZ), and the corresponding integration is ovekagih the SBZ. Thus, we have

G (B) = o [ e e
Aspz Jspy
, 1, pi!
X [(1 — Gk E)At(E)) ' G (k”;E)LLI. (70)

where nowR™ are in-plane position vectors of the two-dimensional Biavlattice, whiley*
are vectors connecting atomic positions in different laydggy, is the area of the SBZ.

In the case of surfaces, the vacuum is described by empsy siEaning that the lattice structure
is continued into the vacuum but no nuclei are positionedethén this way, the vacuum po-
tential and charge density are calculated within the mightgzattering formalism on the same
footing as the bulk. In practice, three or four monolayersafuum sites are enough for the
calculation of the electronic structure; Eq.(70) can beaftiafter that.

Depending on the problem, one can choose to use a slab ofthirdkmess in order to represent
a surface or interface, or one can choose to take half-iafioundary conditions. In the latter
case, and starting from a “boundary” layer, the crystal isticmed by periodically repeating
the potential of this boundary layer to all subsequent kaygr to infinity. One is then faced
with a problem of inverting an infinite matrix, which due tcetbcreening transformation has
a tridiagonal form, in order to find the Green function in tlegion of interest. This is done
efficiently by the decimation technique [89]. which is based iterative inversion of matrices
of doubled size at each step. In this way the number of layaishnare included in the Green
function grows exponentially with the number of steps, dralimit of the half-infinite crystal
is rapidly achieved.

Once the structural Green functi&i‘iﬁ”’,(E) of the ideal crystal is known (e.g. surface), the
Green functionG7, (E) for the crystal with impurity can be evaluated by a modifiedsBy
equation

nn' - § Znn! n' ~m''n' n n n
LL' — LL + GLL" Atl// L"L y Atl — tl - tl (71)

n//L//

where At} is the difference] — 2? between the-matrices in the perturbed and in the ideal
lattice. Since this difference, determined by the pertiioibeof the potential, is restricted to the
vicinity of the impurity, the Green function in this subspatan be easily determined in real
space by matrix inversion. The rank of the matrices to bertedds given by the number; of
perturbed potentials times the numi§gr.,. + 1) of angular momenta used. Hekg,, is the
maximum angular momentum used in the calculations,/g.g.= 3.

For a single impurity it is often sufficient to neglect the tpelation of the neighboring host
atoms and to take into account in Eq.(71) only the pertupbatiue to the impurity potential
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into account. This so-called single site approximatioregia quite reasonable description of
the electronic structure of the impurity and is the essémigredient of the coherent poten-
tial approximation for random alloys. For a more accuratgcdption the perturbations of the
neighbors have to be included. The size of the perturbataturally increases, if impurity pairs,
trimers or larger clusters of impurities are included. Ohewd finally add that the structural

Green functionG?7, describes the correct embedding in the local environmehméréfore the

calculation of G, represents the high entrance fee one has to pay in Greeridiuatcula-
tions.
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