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1.1 Introduction

The origin of magnetoelectronics or spintronics can be traced back to two independent exper-

iments carried out in 1988 by Albert Fert [1] in Paris and Peter Grünberg in Jülich [2]. In

these experiments it was found that an electrical current passing through ferromagnetic films

separated by non-magnetic metallic spacer layers is subject to a resistivity which changes un-

expectedly largely (gigantically at those days) with the change of the relative alignment of the

magnetization in these films from ferromagnetic to antiferromagnetic alignment. This observa-

tion was coined the giant-magneto-resistance effect or GMR. Obviously GMR made it possible

to turn the information of a two-state magnetic configuration (parallel or anti-parallel associated

with bit 0 or 1) into an electrical one, or in a more abstract sense, turn spin information into

charge current information. Already 8 years after the discovery, this effect is used for example

in sensors embodied in read heads in hard disks of common PCs.

Soon after this discovery experiments have been carried out in which the non-magnetic metallic

spacer layer was replaced by a non-magnetic insulator. In this set-up spin-polarized electrons

tunnel from one ferromagnetic layer through an insulating barrier film into the second ferro-

magnetic layer, and again a strong dependence of the resistance upon the relative orientation

of the magnetization is found. The effect is called the tunnel magneto-resistance (TMR) and

the set-up is called a magnetic tunnel junction (MTJ). As opposed to the GMR systems, TMR

systems exhibit a large voltage drop across the MTJ and operate with small electrical currents.

Recently nonvolatile magnetic random access memories (MRAM) are made from an array of

MTJs currently for special applications.



Inspired by the many new possibilities of spin-dependent transport properties, a concept of spin-

transistors – semiconductor based transistors in which spin-polarized electrons are injected from

a magnetic source, manipulated and controlled before they are collected at the magnetic drain –

has been put forward by Datta and Das [3]. In these types of devices not only the charge property

of the electron is used but also the fact that the electron has a spin degree of freedom. Connecting

spin-dependent transport with the semiconductor world opened a completely new vista which is

summarized under the term spintronics (often spintronics is also used in a more restrictive sense

of transport, manipulation and control of only coherent spin transport). This new vista is based

on the great functionality, engineerability of the semiconductor material and the scalability of

the devices. Particular to semiconductors is the variability of the electron density by the dopant

concentration, the manipulation and control of the electron density by external gate control

and easy access to light. Therefore, spintronics offers the possibility of transferring information

stored in the electron spin into the charge or light state. Programmable logics or application,

e.g. qubit manipulation or read-out of the qubit state embodied in the electron spin maybe

envisaged in the future.

In order to make this happen we deal with a variety of problems. One of these is the problem of

spin-injection: getting the spin-polarized electrons into the semiconductor valence or conduction

band. Schmidt et al. [4], Rashba, and Fert and Jaffres [5] noticed that the conductivity mismatch

and the mismatch of the mean free spin-flip length between a ferromagnetic metal and a semicon-

ductor reduces the spin-injection of the spin-polarized electrons from a ferromagnetic metal into

the semiconductor to a nearly undetectable level. There are several ways out of this dilemma:

(1) including a tunneling barrier between the semiconductor and the metal, (2) replacing the

ferromagnetic metal by a ferromagnetic half-metallic system (majority states are occupied at

the Fermi energy, EF , minority states show a gap around EF , which adds up to a spin-injected

current with 100% spin polarization), or (3) replace the ferromagnetic metal by a ferromagnetic

semiconductor (if possible with a Curie temperature above the room temperature). Finding

appropriate ferromagnetic half-metallic systems and ferromagnetic semiconductors with a Curie

temperature above the room temperature are currently key issues from the material side. In par-

ticular magnetic semiconductors offer completely new functionalities, as the collective magnetic

state and Curie temperature depend on carrier concentration which is altered easily by the gate

voltage or light. Without a detailed basic physical understanding of the magnetic interactions

in these semiconductors a further development of this field is inconceivable.

For completeness we would like to add that for the manipulation of the injected spin in the

semiconductor the use of the Rashba-effect with an external gate voltage was suggested. This

idea, also conceptionally very nice, may be difficult to realize or may not be applicable, as in real

semiconductors the potential landscape is unknown due to the unknown dopant distribution.

The scientific community welcomes new suggestions to manipulate the spin direction. The

second point we would like to mention is that under certain conditions along with the injection

and accumulation of electron spins at the interface, goes a switching of the collective spin state

[6]. This may in the future lead to a down-scalable fast switch of the magnetization bypassing

the law of induction which requires large volumes difficult to down-scale.

A further interesting aspect of using the spin-degree of freedom for transport (instead of just

the charge degree) is that an electron has spin 1/2 and obeys the symmetry group SU(2). This



bears interesting consequences for the spin-transport of coherent electrons as it can be realized

in nano-scale devices at low temperatures. The key to the interesting transport properties is

the non-commutativity of the SU(2) spin algebra, which breaks the time inversion symmetry.

When a conducting electron in a conductor is scattered by some magnetic object, the electron

wavefunction is multplied by a U(1) phase factor A(n) = α exp (β n · σ), which is generally

spin-dependent and is represented by a 2 × 2 matrix in spin space. Here α and β are complex

numbers, n is a three-component unit vector characterizing the magnetization direction of the

scattering objects, and σ are the Pauli matrices. Due to the non-commutativity of σi, after two

scattering events A(n1) and A(n2), the amplitude depends in general on the sequence of the

scattering events: A(n1)A(n2) 6= A(n2)A(n1). Various features of coherent spin transport arize

from this non-commutativity. Gen Tatara [7] has recently shown that an anomaly in charge

transport arizes after three coherent scattering events. Such events may then open a perspective

for new logical gates. We will not continue further on this point as it will be beyond the subject

of this lecture.

1.2 Basic Considerations

In a perfect, infinite periodic crystal, electrons can travel forever. This is because the electronic

eigenfunctions are Bloch states, Ψk(r), with a definite crystal momentum k and a definite group

velocity

vk =
1

h̄
∇kEk. (1.1)

In equilibrium, of course, there is no net current, since the electrons traveling in one arbitrary

direction are as many as the ones traveling in the opposite one. But if one would create a current

by placing an electron in a previously unoccupied state, this current would keep on forever.

However, in reality there are always deviations from the perfect periodicity. On the one hand,

the crystal ends at some surface or interface; on the other hand, defects or even the thermal

motion of the nuclei result in non-periodicity. Then the Bloch wavefunctions are no longer

the eigenfunctions of the system, but rather evolve into each other as time passes. Under these

circumstances any current cannot be kept constant without a voltage to sustain it, and electrical

resistance appears.

The quantum mechanical interpretation of the resistance (and generally of the electronic trans-

port) is a quite complicated task. It is easier when small currents and voltages are involved, in

the so-called linear response regime, when the current I is proportional to the voltage ∆V via

the conductance g:

I = g · ∆V (1.2)

This is the case we will be concerned with here. Basically, one can distinguish two regimes

of electronic transport: the ballistic and the diffusive. The former is relevant when there is

no dissipation of energy within the sample of our study, i.e., when the electron scattering is

elastic and the electron energy is conserved. Then, as the electrons flow through our system, we

can follow the Schrödinger wavefunctions through time with 100% determinism, and calculate
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Fig. 1.1: Setup for the ballistic transport.

the transport coefficients. Low temperatures and well-ordered samples bring us close to this

approach. The latter regime, the one of diffusive transport, is relevant when there is inelastic

scattering (due to thermal events usually), or when our sample is randomly constructed, as in

the case of random alloys where we know the structure only on the average but not in detail,

atom for atom. Then we cannot follow the wavepackets with determinism, but must account for

the uncertainty of the scattering processes by some kind of averaging.

It can be understood that the distinction between the two approaches is also one of length scale.

Thus, even in a fairly well ordered sample at low temperatures, if an electron would travel long

enough it would be scattered in a thermal or other random way. This notion of “long enough”

is quantified by the mean free path and the relaxation time, which is understood as the average

length (or average time) that the electron has to travel before it suffers a random collision.

So, we can work in the ballistic approach when our sample dimension is less or comparable to

the mean free path, and in the diffusive approach in the opposite case. The scale of modern

nanoelectronics devices is so small, that in many cases their basic transport properties can be

understood in the ballistic regime.

The ballistic regime is basically approached in the following way. We assume that our sample

is sandwiched between two perfect infinite leads, as shown in Fig. 1.1. Within the leads, the

eigenfunctions have the form of Bloch waves, but not at the interfaces and in the sample.

Assume that a Bloch state Ψi
k

is incident from the left. In general, this will finally evolve into a

set of transmitted Bloch functions in the right lead, Ψt
k′ , plus a set of reflected Bloch functions

travelling back into the left lead, Ψr
k′′ . Important are the transmission and reflection amplitudes,

tkk′ and rkk′′ characterising this event. The total wavefunction within the leads is then written

as

Ψtot
k

=











Ψi
k

+
∑

k′′ rkk′′Ψr
k′′ in the left lead

∑

k′ tkk′Ψt
k′ in the right lead.

(1.3)

In this equation we said nothing about the wavefunction within the sample. But of course, in

order to find the transmission and reflection amplitudes, one has the difficult task of solving the

Schrödinger equation within the sample and matching the wavefunctions and their derivatives

with the Bloch states left and right. The techniques used for this purpose are beyond the

scope of this text. Now once we have the amplitudes tkk′ , it is straightforward to calculate the

transmission probability through the sample, and use it for the calculation of the conductance.

The transmission probability from the incoming state Ψi
k

to the transmitted Ψt
k

is just

Tkk′ = |tkk′ |2 vk′ z

vk z
. (1.4)



We see that a normalisation term, vk′ z/vk z, is present, involving the z components of the group

velocities for both wavefunctions (z is the direction in which the junction has been grown and in

which we want to measure the current). To understand this necessary term, we must think that

the transmission probability must depend not only on the amplitude of the transmitted wave

in comparison to the incident, but also on how fast this wave is traveling. Thus, this term is a

normalisation of the outgoing flux to the incoming flux. A rigorous proof of this formula involves

the consideration of wavepackets which are taken to the limit of itinerant Bloch states at the end.

We note here that some authors prefer to normalise the Bloch functions not to unit probability

in space, but to unit flux, by the substitution Ψk → Ψk/
√

vk z; then the normalisation term is

contained in the Bloch functions and does not appear expicitly in the transmission probability.

As we know, for low temperatures and low voltage only the electrons at the Fermi level can

contribute to transport, since they are the only ones that can be excited from occupied states

(just below EF ) to unoccupied ones (just above EF ) by the weak perturbing external field. Then

the conductance g can be directly related to the transmission probability Tkk′ for states at EF

via the Landauer formula:

g =
e2

2πh̄

∑

kk′

Tkk′ , with vk z > 0, vk′ z > 0, E(k) = E(k′) = EF . (1.5)

We take the states for which vk z > 0 and the same for vk′ z to distinguish the relevant incoming

and outgoing states.

To understand the Landauer formula, think that the application of a very low voltage ∆V raises

the Fermi level of the left lead by e∆V . At an energy E within this range, the current flowing via

a particular outgoing state k
′ in the right lead is proportional to the group velocity of this state

times the transmission probability of all incoming states into this state: Ik′(E) = evk′ z

∑

k
Tkk′ .

This must be summed up for all outgoing states k
′ and integrated in the energy range from EF

to EF + ∆V , also taking into account the energetic density of outgoing states, nk′
‖
(E):1

I = e

∫ EF +e∆V

EF

∑

k

∑

k′

Tkk′(E)vk′ z(E)nk′
‖
(E) dE (1.6)

Remembering that the density of states is just nk′
‖
(E) = 1/(2πh̄vk′ z(E)), we see that the group

velocity cancels out. If we take then the limit of small ∆V , we arrive at the current-voltage

relation 1.2 with the conductance g given by eq. 1.5.

After the considerations above we can make the link to spin-dependent transport. In many

materials where spin magnetism is present, one can examine the two spin directions seperately,

having spin-up and spin-down Bloch functions as eigenfunctions of the system. Then one has

two different conductance coefficients g, one for each spin direction, and the current becomes

spin dependent. We can imagine the situation as if we had parallel resistances. The aim of spin

electronics is to exploit such materials in order to manipulate the current (or the resistance)

by switching the direction of the magnetic moment in parts of a junction. In this way one

can, for example, create a magnetic switch, using a contact between two materials which has

1Here we have decomposed k into the components (k‖, kz), and chosen kz as the variable to change continuously

with E during the integration, while k‖ := (kx, ky) is kept constant. We can imagine that our sample is large but

finite in the (x, y) directions, so that the k‖’s form a very dense but discrete set, while kz is continuous.



Fig. 1.2: Magnetoresistance as a function of the applied field in Fe/Cr multilayers, after ref. [1].

low resistance when their magnetic moments are aligned in parallel, but high resistance when

they are alligned antiparallel. This is a form of magnetoresistance, though very different in

nature from the one that is connected to the usual Hall effect. We shall examine such systems

in the next sections; in particular, we shall focus on the Giant Magnetoresistance (GMR), the

Tunneling Magnetoresistance (TMR), and also the spin injection.

1.3 Giant Magnetoresistance

As said in the introduction, in 1988, Fert and co-workers [1] and independently Grünberg and co-

workers [2] announced the discovery of the Giant Magnetoresistance (GMR) effect in magnetic

multilayers. This boosted the technology of magnetic storage media and brought new products

in the market, within less than a decade. In this section we shall briefly describe the GMR effect

and its interpretation through quantum-mechanical transport theory.

A magnetic multilayer is a structure of alternating ferromagnetic and nonmagnetic layers, for

example Co/Cu/Co/Cu... Although each ferromagnetic layer has a single magnetisation direc-

tion, alternating magnetic layers can be aligned with their moments parallel (P) or antiparallel

(AP). Suppose now that electrical current passes through the multilayer. It is natural to assume

that the transmission probability of electrons and the resistance will be different in the two cases

(P and AP), since the potential landscape encountered in each case is different. This assumption

was verified by the experiments, which showed a very strong decrease of the resistance when

one swiched from the AP to the P configuration by applying an external magnetic field. This

is the GMR effect. The characteristic quantity is the so-called GMR ratio, meaning the relative

change in conductance (sometimes also defined as its inverse, the relative change in resistance).

For example, Fig. 1.2 shows that very high GMR ratio is obtained in Fe/Cr multilayers.2

Two types of geometry are used in GMR experiments: the Current In Plane (CIP) and the Cur-

rent Perpendicular to the Plane (CPP) geometry. In the former case, the current flows parallel

2In reality, Cr is not nonmagnetic but antiferromagnetic; nevertheless the explanation for the GMR effect is

similar.
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Fig. 1.3: Energy bands of Cu and Co in the Γ − X direction.

to the layers, while in the latter it crosses the layers flowing in the perpendicular direction. This

case (CPP) is easier to understand, and in what follows we shall concentrate on it.

Consider an electron traveling in a Co/Cu multilayer, in the direction perpendicular to the

planes. As it encounters the Co/Cu interface, it will have a certain transmission amplitude t

and reflection amplitude r. The values of t and r will depend on the electronic structure on the

two sides of the interface. Since the system is spin-polarised, the electronic structure and the

potential of the two spin directions is different and the spin-up electrons will have different t

and r from the spin-down electrons.

We focus now to the electronic states at EF , which actually carry the current. For the majority

spin, these are very similar for Co and Cu; this is because the magnetic exchange splitting in

Co shifts the majority-spin bands to lower energies, so that finally the majority d band becomes

occupied and the s-band is left alone at EF , just as it is in Cu. On the other hand, the minority-

spin states at EF are very different for Co and Cu, because of the presence of the minority d

states of Co in that region. This can be seen by inspection of the band structure of Co and Cu,

presented in Fig. 1.3. As a result of this, one finds that the majority-spin electons at EF are

transmitted easily through the interface, while the minority-spin ones are rather reflected.

Consider now the Co/Cu multilayer, first in the P configuration. The spin-up electrons have

easy transmission through each subsequent interface, since they are majority electrons in all Co

layers; on the other hand the spin-down electrons are always strongly reflected. But the net

result is a pretty high transmission probability and strong current in total, in the same way

as two parallel resistances allow for a strong current if one of them is low. Now consider the

AP configuration. While spin-up electrons have high transmission through one Co layer, they

suffer strong reflection at the next one, since its moment is reversed and they belong to the

minority-spin there. The analogous happens to spin-down electrons: they can transmit through



Fig. 1.4: Left: The application of an external magnetic field H aligns the moments of the magnetic layers.

In this way the resistance decreases (upper plot), and the total magnetic moment increases (lower plot).

Right: Electron transmission in the Parallel and Antiparallel configurations.

the Co layers where the spin-up electrons are reflected, but suffer reflection at the rest of the

layers. As a result, the resistance for both spin-up and spin-down electrons is high, so that the

combined resistance is also high. The situation is presented schematically in Fig. 1.4 (right).

As a conclusion, if in the absence of an external magnetic field the multilayer is initially in the

AP configuration, with a high resistance, we can lower the resistance by applying a field and

aligning the moment of all magnetic layers in the same direction, as shown in Fig. 1.4 (left).

This is the essence of the GMR effect.

A prerequisite for all this to come true is that the ground state of the multilayer corresponds to

the AP configuration, which then can be brought to the P configuration with an external field.

On the contrary, if the ground state is the P one, it is quite impossible to swich the moment only

in every other magnetic layer. It has been shown that one can construct systems that have an

AP ground state by manipulating the thickness of the nonmagnetic layers. The effect is called

interlayer exchange coupling, and the relevant theory was first given by Bruno [8].

The basics of GMR presented here help in the interpretation of the effect, but a deep understand-

ing includes many other aspects. For one, the role of the defects and chemical interdiffusion at

the layer interfaces has been studied extensively [9] by the use of the Boltzmann, rather than the

Landauer, formula. Also, for the case that the mean free path is smaller than the sample size,

resistor models have been developed [10]. In these models the multilayer is viewed as a series

of resistors, seperately for spin up and spin down. Each resistor represents the reflection at an

interface or the resistance coming from the diffuse scattering in the (imperfect) layer. Finally,

there are cases where the spin-orbit scattering can be strong, which means that the two spin

channels cannot be viewed as separate resistances but rather communicate.

1.4 Tunneling Magnetoresistance

The tunnel effect is a well-known example where the quantum-mechanical nature of electrons

(or other particles) is demonstrated. In short, the wavefunction can penetrate regions where
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Fig. 1.5: The tunnel effect: electrons of energy E can transmit through a potential barrier of height

V0 > E.

the potential is higher than the particle total energy. As a result, a high potential barrier can

be overcome by an incident particle of low energy. A typical example is that of a square one-

dimensional potential step of height V0 and of width d, as shown schematically in Fig. 1.5. The

wavefunction can be written as

Ψ(z) =











eikz + re−ikz z < 0

ae−κz + beκz 0 < z < d

teikz d < z

(1.7)

where k =
√

2mE/h̄2 and κ =
√

2m(V0 − E)/h̄2. The coefficients are easily calculated by

matching the wavefunction and its derivative at z = 0, d, and finally the transmission probability

as a function of the energy E is found to be 3

T = |t|2 =

(

1 +
1

4

(

κ

k
+

k

κ

)2

sinh2(κd)

)−1

. (1.8)

In the limit of an extremely thick or extremely high barrier, i.e., when κd >> 1, the above

expression becomes

T =

(

4kκ

k2 + κ2

)

e−2κd + O(e−4κd). (1.9)

We see that the transmission probability decays exponentially with increasing thickness. The

parameter κ characterising this decay is known as decay parameter (its inverse 1/κ is the decay

length).

The exponential decay of the transmission probability is typical for tunneling. In three dimen-

sions the result is similar. Thus, if we have such a barrier in the z direction, while the motion

is free in x and y directions, we can decouple the motion in z from the motion in x and y. The

wavefunction has then the form

Φ(x, y, z) = ei(kxx+kyy)Ψ(z) (1.10)

and we make the abbreviation k‖ = (kx, ky). Here, Ψ(z) has again the form of eq. (1.7) but with

k = kz and κ and kz dependent on k‖:

κ(k‖) = κ =

√

2m

h̄2 (V0 − E) + k2
‖ , kz =

√

2m

h̄2 E − k2
‖ . (1.11)

3The left and right group velocities are equal to h̄k/m



Then we get a k‖-dependent transmission probability as

T (k‖) =

(

1 +
1

4

(

κ

kz
+

kz

κ

)2

sinh2(κd)

)−1

(1.12)

Since the system is translationally invariant in the x and y directions, k‖ is a constant of motion.

The total transmission probability per unit-cell area is given by an integral over all k‖ vectors

that correspond to a given EF :

Ttot =
Ω

(2π)2

∫

dk‖ T (k‖) (1.13)

with Ω the unit cell area in the x-y directions.

For large thicknesses or high barriers we should look for the minimum in κ(k‖), since the

exponential decay will cause the other states to vanish much faster compared to this one. We

can see easily that the minimum is at k‖ = 0.

The notion of tunneling just presented has to do with electrons passing through a region where

their energy would be classically insufficient to take them. But this notion is generalised to cases

when the electrons pass through regions where quantum-mechanical electronic states should

normally not exist. For example, a semiconductor or an insulator possess no electronic states

at EF . But when such materials are brought in contact with a metal, the metallic states at EF

can penetrate into the insulator gap for a short distance, decaying exponentially and vanishing

after a few monolayers. These are the so-called metal-induced gap states (MIGS). If one adds

a second metal at the other side of the insulator, one can even have a low transmission, with

a probability which decays exponentially with the insulator thickness. This effect is also called

tunneling, because of the passing of electrons through the “forbidden” insulator region. As

in the free-electron case, the MIGS and the tunneling are characterised by a decay parameter

κ. Mathematically the function κ(k‖) is derived by the analytical continuation of the band

structure for complex k vectors, therefore it is named complex band structure. As we shall see,

in many cases the tunneling properties can be understood by using these ideas.

In 1975 Julliere reported the first results on tunneling magnetoresistance (TMR) [11]. The

experiment was done on a junction made of a Ge semiconducting slab, sandwiched between two

Co ferromagnetic leads. The experiment showed that the resistance depended on whether the

two Co leads had their magnetic moments alligned in a parallel or antiparallel fashion. Although

in both cases the electrons had to tunnel through the Ge slab, giving a high resistance, in the

case of antiparallel alignment the resistance was higher. This was the TMR effect.

In order to interpret these results, Julliere proposed a simple model: he suggested that, for each

spin direction, the tunneling probability and current is proportional to the density of states

(DOS) at EF in the region of the interfaces. For Co the spin-down DOS at EF is higher than

its spin-up counterpart: n↓ > n↑ (by convension, spin-up means majority spin and spin-down

minority spin). If we denote with a prime the DOS at the second interface, then the current in

the parallelly-alligned case is, according to Julliere:

IP ∼ n↑n
′
↑ + n↓n

′
↓. (1.14)



But if we reverse the moment of the second electrode, the spin-up is interchanged there with

spin-down, and the current becomes

IAP ∼ n↑n
′
↓ + n↓n

′
↑. (1.15)

Since n↓ > n↑, the two currents are unequal (IP > IAP ) and magnetoresistance occurs. We

see that the basic argument of Julliere is that, in the parallel case, more electrons can tunnel

through the spin-down channel where there is a high DOS in both leads; while in the antiparallel

case, each channel has low DOS in one of the two interfaces, so the current is reduced. In terms

of the spin polarisation P at EF the magnetoresistance ratio is expressed as

∆g

gP
=

∆I

IP
=

2PP ′

1 + PP ′
, with P =

n↑ − n↓

n↑ + n↓
(1.16)

(and similarly for P ′).

The model of Julliere is attractive due to its simlicity, and in many cases can explain the

experimental trends. In the last decade, since the re-discovery of TMR with much higher ratio by

Miyazaki and Tekuza, and Moodera and co-workers[12], the prospect of applications, particularly

in non-volatile Magnetic Random Access Memosies (MRAMs), fueled the research in this field.

In most experiments, the model of Julliere, or somewhat improved models such as the one of

Sloncewski [14], were employed for the interpretation. However, there have been first-principles

calculations [13] showing that in some cases the model of Julliere must be inapplicable. We turn

our attention to these cases now, offering a simple way to understand the physics involved [15].

If a junction consists of perfectly or almost perfectly ordered materials and interfaces, then

k‖ is conserved during the scattering at the interface, and one must examine the transmission

probability for each k‖ separately. The situation is pretty much analogous to what we saw

earlier for free electrons incident on a square barrier, only that now the band structure must be

taken into account, and k and k‖ refer to Bloch crystal momentum. Since we have a tunneling

current, we should examine the complex band structure of the insulator at EF (which is in the

gap region), and find for which k‖ the decay parameter κ(k‖) takes its minimum value, κmin.

When our junction becomes a little thicker, all other states will decay much faster than this.

For this reason it is not relevant to examine the whole DOS, n↑(EF ) and n↓(EF ), as in Julliere’s

model, but we must concentrate our study to the k‖ for which κ(k‖) = κmin.

If we fix some k‖, then in the case of free electrons the complex band E(κ) in the barrier has

the form of an inverse parabola, given if we solve eq. (1.11) for E. Furthermore, if we insist

in giving a periodic lattice structure to free space and confine our study in the first Brillouine

zone, then for a certain k‖ we get more solutions, because we also have the inverse parabolas

that correspond to (k + G)‖, where G is a vector of the inverse lattice. But in the case of a

real material, the structure is more complicated. For example, in a semiconductor we have a

band gap at the center of the Brilloune zone Γ that opens due to the periodic potential. If

we imagine the strength of this periodic potential varying continuously from zero to its normal

value, then the band gap opens up gradually, by lifting the degeneracy at Γ. In this case, the

two states that were previously degenerate are connected via a complex band, which thus forms

a loop rather than an inverse parabola. The complex band structure consists mainly of such

loops, plus inverse parabolas starting from the positions where they would be in a free electron
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Constant energy surface in (k‖, κ) space for E = EF , showing that κmin indeed appears for k‖ = 0.

system. In order to calculate it, one can use standard band-structure methods, but with the

possibility that the Bloch kz-vector takes also complex values (the energy must always be real).

Then the imaginary part of the kz vector is just the decay parameter κ.

As an example, we present in fig. 1.6 the real and complex band structure of ZnSe along the

kz direction, for k‖ = 0 (the Γ̄-point). At EF , in the middle of the gap, we see more than

one complex bands: one loop connecting the top of the valence band with the bottom of the

conduction band with a real part of kz = 0 in the left pannel, another similar loop (doubly

degenerate) connecting again the valence band with higher bands, plus free-electron-like inverse

parabolas with a real part of kz = 2π/a in the right pannel (a is the lattice constant). Evidently,

the smallest decay parameter is that of the small loop. But we must also scan at other k‖

vectors to see if this is indeed the absolute minimum. This scanning gives us a constant-energy

surface in (k‖, κ) space, the analogoue of the Fermi surface. It is shown in fig. 1.6, right. As

we can see, κmin appears indeed at the Γ̄-point. Although this property is very common among

semiconductors, the case could perhaps be different, especially in an indirect-gap semiconductor

such as Si, if the bottom of the valence band (which is off Γ̄) is close to EF .

Now that we have located κmin at Γ̄, we can proceed to the case study of spin-dependent

tunneling in the model system Fe/ZnSe/Fe (001). We must know what states are incident from

Fe at k‖ = 0, because these will couple to the ZnSe state with κmin. This can be done most

easily by examining the symmetry character of the states. If we examine the band structure

of Fe at Γ̄ along kz (see fig. 1.7) around EF , we see that, for spin-up we have one band of

symmetry ∆1, one of symmetry ∆2′ , and one of symmetry ∆5. The symmetry characterises

the behaviour of the corresponding wavefunctions under rotation around the z-axis (we mean

the fourfold rotation group C4v that preserves the Fe crystal stucture). In particular, ∆1 is the

rotationally invariant state, while the others change sign under some of the rotations. On the

other hand, for spin-down we find no ∆1 band at EF , but only ∆2′ and ∆5. The following table

shows the irreducible representations of the symmetry groups C4v and C2v needed here, and the

compatibility with local angular-momentum orbitals.
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C4v (Fe (001)) C2v (ZnSe (001))

∆1 s, pz, dz2

∆2′ dxy

∆2 dx2−y2

∆5 px, py, dxz, dyz

∆1 s, pz, dxy, dz2

∆2 dx2−y2

∆3+4 (∆5) px, py, dxz, dyz

Next we must examine the symmetry character of the decaying state with κmin in ZnSe. We

find that it is of symmetry ∆1 (rotationally invariant). We conclude then that the incident

spin-up ∆1 state of Fe can couple to this ∆1 state of ZnSe and tunnel through, while the rest

of the majority states, plus all the minority states, are incompatible with the κmin-state.
4 As

a consequence of the above, we realise that the spin-up current can tunnel best though the ∆1

state, while the minority current decays much faster, since the minority incoming states couple

to other ZnSe decaying states with larger decay parameter.

Having established that in the parallel moment configuration the spin-up states conduct much

better than the minority, we examine the antiparallel configuration by reversing the moment

(and the spin directions) in the second lead. As before, only spin-up wavefunctions will be able

to reach the second lead. But there they will confront bands of incompatible wrong symmetry

(∆2′ and ∆5), because the two spin directions are reversed. As a result they cannot couple to

outgoing wavefunctions, and they are blocked at the second interface. Thus the transmission

probability, and by the Landauer formula the conductance, is much lower than in the parallel

case, and the TMR effect presents itself. In fact, Ref. [13] shows a large TMR ratio for these

junctions, close to the ideal 100%.

These considerations and results ar completely at odds with the Julliere model. There, only

the DOS and the spin polarisation at EF in the vicinity of the interface play a role. Here, the

4To be more exact, the symmetry of ZnSe is reduced compared to Fe, and it follows the C2v group around

the z axis. Therefore its ∆1 symmetry is also compatible with the ∆2′ symmetry of Fe. But the coupling there

is really very weak, because the Fe ∆2′ states consist locally of dxy orbitals and these are very locallised and

directed in-plane.
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manipulated within the semiconductor and detected by the right ferromagnetic lead.

detailed band structure is taken into account. Actually the two approaches are valid in different

regimes. Julliere’s model works well in the case of rough interfaces or amorphous barriers, where

one should really average over all incident states by some method. Then we can imagine that

the symmetry and other details of the incoming state is of no importance, since it will suffer

random diffuse scattering at the interface. On the other hand, the second approach is valid in

the ballistic regime, when we have completely ordered structures.

In the present day, most applications of TMR use alumina (Al2O3) as a tunneling barrier,

which is amorphous; also, no special care is taken for a clean interface. Therefore Julliere’s

model is applicable. On the other hand, many experiments continue to be oriented towards the

construction of clean, ordered stuctures, where the ballistic approach is applicable. As we have

seen, one advantage of succeeding in creating such structures would be an extremely high TMR

ratio.

1.5 Spin Injection

In 1990, Datta and Das [3] proposed a spin-filter transistor where a spin-polarized current could

be created, manipulated and detected. For details we refer the reader to the original publication,

but in short, we can say that the device (shown here schematically in Fig. 1.8) would consist of

two ferromagnetic leads sandwiching a semiconductor region. The semiconductor part should be

constructed in such a way (by doping or other techniques) that the Fermi level would be slightly

within the conduction band. Under a small bias voltage in such a structure, spin-polarised

current could be injected from the ferromagnetic lead into the semiconductor. Then this spin

current could be manipulated, i.e., its magnetisation direction could be rotetated willingly by

utilising the Rashba spin-orbit effect via an applied field (the strength of the field would de-

termine the degree of rotation). Finally it would be detected by a second ferromagnetic lead,

and the conductance should depend on the degree of rotation; for example, if no rotation was

performed one would expect a high conductance, while if the magnetisation axis was reversed,

a very low conductance. Thus a continously varying magnetoresistance ratio could be achieved,

depending on the strength of the external field. As a model the conception was ideal, but many

difficulties had (and still have) to be overcome before is could be realised.

It seems that the bottleneck is the success in injecting a spin-polarised current from the fer-
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romagnet (FM) into the semiconductor (SC), the so-called spin injection. Many experimental

trials have been unsuccessful, and a theoretical model that could explain the failure was pro-

posed by Schmidt and co-workers [4]. The idea is presented in Fig. 1.9 (left). In short, although

there is a difference between the resistance of the spin-up and spin-down channel, the resistivity

of the semiconductor itself is so large that it drowns every other effect. The only possibility to

measure some effect would be that either the current is initially almost 100% spin-polarised, as

would be the case in a half-metallic lead, or that the interface resistance is so large and different

for the two spin directions that it dominates the effect (as shown in Fig. 1.9, right).

This solution was pointed out by Rashba, and Fert and Jaffres [5], who proposed that one should

include a tunneling barrier between the ferromagnet and the semiconductor. Such a barrier

would present the desired high resistance and also spin-selectivity as in the TMR junctions.

In fact, there exists a natural way to obtain such a barrier: it is the Schottky barrier5 at the

ferromagnet/semiconductor contact, the height and thickness of which can be manipulated by

appropriate doping and interface engineering. Spin injection experiments including tunneling

have indeed been successful [16].

The problem pointed out by Schmidt et al. [4] manifests itself in the diffusive regime, when

the resistivity of the semiconductor is very high. However, if one would work in the ballistic

regime, with a defect-free semiconductor, then the scattering at the interface itself would be the

main source of resistance without even the need of a tunnel barrier. If one could then achieve

spin-selective interface scattering, e.g. high transmission for spin up and high reflection for spin

down electrons, spin injection would be possible [17, 18]. That such an option exists in principle

has been shown by ab initio calculations [19–21]. Here we shall describe briefly the ideas and

conclusions of this approach.

The systems under study here are Fe/SC(001) junctions, where SC stands for ZnSe and GaAs.

The lattice mismatch between Fe and the SC is less than 2%, making a coherent growth of the

two materials possible. In fact, the lattice constant of Fe is practically half the one of the SC,

so that one has just to consider a double-sized Fe unit cell. Having this in mind, we can assume

in-plane periodicity, so that k‖ is conserved during scattering.

We consider thermal injection, that is, injection of electrons at EF directly into the SC conduc-

tion band. This is of course only possible if the conduction band minimum Ec is lower than

5We remind the reader that the Schottky barrier is a region near the metal-SC interface, extending into the

SC, where no free charges are present even if such charges exist within the SC due to doping.



EF . In reality this can be achieved via a gate voltage, by n-doping, or by formation of a quan-

tum well. Here we emulate such a situation by rigidly shifting the SC potential from the third

monolayer (ML) and on, until Ec falls slightly under EF ; we use EF − Ec up to 100meV which

is related to typical carrier concentrations in similar experimental situations [17], and then we

vary Ec to find the conductance as a function of the gate voltage shift.

In Fig. 1.7 we show the energy bands of Fe, ZnSe, and GaAs along the kz-direction, for k‖ :=

(kx, ky) = 0, i.e. for normal incidence on the (001) interface. As the energy Ec is lowered, the

injection will start at the threshold Ec = EF , at which there will be available states to carry

the current deep into the SC bulk. Close to Ec, the Fermi sphere of the SC is very small, due

to the almost parabolic dispersion relation; for this reason only electron states with k‖ almost

zero will be transmitted. Therefore we shall base our discussion on what happens exactly at

k‖ = 0 and argue that because of continuity the results will be similar for k‖ ' 0. We have also

compared the results at k‖ = 0 with integrated results over the whole surface Brillouin zone,

and our results for the spin current polarisation remained unchanged within a few percent.

We can argue directly that the spin injection is largely determined by the symmetries of the

band structures. For k‖ = 0, the irreducible representation of the incoming Fe state must

be compatible with the one of the outgoing SC state, if there is to be any transmission from

the former to the latter. Now we can do a symmetry analysis, just as in the case of TMR

earlier. In both GaAs and ZnSe, the conduction band along the ∆-direction belongs to the

irreducible representation ∆1 of C2v, which consists locally of s, pz, dz2 , and dxy-like states,6

and is invariant under all point group operations of C2v around the z-axis. One must see which

Fe bands are compatible with this representation. In the majority-spin direction, in the energy

range of interest Fe has only one band, which belongs to the irreducible representation ∆1 of

C4v, consisting locally of s, pz, and dz2 orbitals, and which is compatible with the SC ∆1 of

C2v. On the other hand for the minority spin Fe states this ∆1 band starts much higher, at the

energy denoted as Γ12 in Fig. 1.7, due to the exchange splitting and the s-d hybridisation gap

of Fe. Up to there, there exist bands belonging to the irreducible representations ∆5, ∆2, and

∆2′ of C4v. The last one has dxy character and can couple to the SC conduction band, while the

rest are incompatible because they have the wrong symmetry (they consist mainly of dxy and px

and py orbitals) and are orthogonal to the SC states. As we shall see from the results later on,

even this ∆2′ -state couples only weakly to the SC conduction band, presumably because it is

more localised than the ∆1 Fe band which contains the extended s and pz orbitals. As a result,

although Fe has a higher density of states in the minority spin band than in the majority, most

of the candidate conductance channels are blocked for symmetry reasons and the majority-spin

states prevail. The situation is expected to change above the energy level Γ12 where the Fe

minority ∆1-state comes into play.

In Fig. 1.10 (left) we see the spin-resolved conductance in the case of thermal injection in

Fe/ZnSe(001) and Fe/GaAs(001), for both SC terminations in each system, as a function of

EF − Ec. Evidently, the majority-spin conductance is orders of magnitude higher than the

minority spin conductance; the latter had to be magnified by the inset number in each case.

This leads to an extremely high spin polarisation. The reason is, again, the extremely poor

6The d-states in question are not inherent to the SC atoms, but rather describe the distortion of the s-p states

by the neighbours in the tetrahedral positions, if one uses the language of local orbitals.
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Fig. 1.10: Left: Thermal injection in Fe/ZnSe(001) without an intermediate tunneling barrier, for k‖ = 0.

Both SC terminations are shown. The full lines represent the majority-spin conductance, and the dashed

lines the minority one. The minority spin conductance is orders of magnitude lower than its majority

counterpart and has been magnified by the inset factor each time in order to be viewable. Right: Thermal

injection in Fe/ZnSe(001), with a simulated intermediate Schottky tunneling barrier, at k‖ = 0. In the

upper panel the current polarisation is shown as a function of the barrier thickness, and in the lower

panel the majority and minority conductance is shown. Both SC terminations are considered: the full

lines represent the Zn termination, while the dashed lines represent the Se termination. The minority

spin conductance is again orders of magnitude lower than its majority counterpart; note the logarithmic

scale of the conductance. The results are similar for the Fe/GaAs system.

coupling of the Fe minority spin dx2−y2 -like ∆2′ state to the SC conduction band states, as

opposed to the majority ∆1 state.

The conductance as a function of energy behaves as g ∝
√

EF − Ec; this is understandable since

the transmission probability is always proportional to the group velocity of the outgoing states.

As a trivial example, one can consider the one known from elementary quantum mechanics,

where an incoming free electron in one dimension with energy E = h̄2k2/2m (and velocity h̄k/m)

encounters an infinitely long potential step of height V0 < E; if the outgoing wavenumber is

then k′ =
√

2m(E − V0)/h̄, the transmission probability is 4kk ′/(k+k′)2 ∝
√

E − V0 for k′ → 0.

The tails of the conductance below EF − Ec = 0 in Fig. 1.10 are due to a small but nonzero

imaginary part in the energy, necessary for numerical reasons.

Next we simulate the effect of a Schottky barrier; to this end we perform the shift of the SC

potential (to bring Ec < EF ) not abruptly after two ML, but gradually over a thickness of

N monolayers. This would represent an N -monolayer-thick Schottky barrier, through which

the electrons would have to tunnel before reaching the SC conduction band. This tunneling

procedure is also spin-selective with a mechanism similar to the one encountered in epitaxial

magnetic tunnel junctions [13, 15]. The evanescent states within the barrier, determined by

the complex band structure of the SC, have different coupling properties with the incoming Fe

states: the majority-spin electrons are able to couple well to the states of ∆1 symmetry which



show the slowest decay, in contrast to the minority spin electrons. Thus such a barrier promotes

also a majority-spin selection in the transmitted current.

In Fig. 1.10 (right), the conductance for both spins is demonstrated as a function of barrier

thickness, together with the resulting spin polarisation, at k‖ = 0. Evidently the conductance

decays exponentially, with a decay parameter that is characteristic of the evanescent states within

the barrier. The junctions are still highly spin-polarising. However, in the case of Zn termination

in Fe/ZnSe increasing the barrier thickness seems to reduce the current spin polarisation. This

effect can be explained by the existence of interface resonances, as metal-induced gap states,

in the Fe/SC(001) system among the minority spin states. These resonance states are of ∆1

symmetry and therefore the minority Fe ∆2′ states as well as the semiconductor ∆1 states can

couple to them. Such resonances strongly enhance the electron tunneling, and can even be the

main channels of conductance. This requires, however, that the resonance energy of the interface

states lies very close to the Fermi level, which is not the case for the considered systems. For

large thicknesses there is of course a saturation of the polarisation, since these resonances decay

exponentially as well. Finally we note that calculations of the k‖-resolved densities of states

have verified our suspicion for the existence of the above-mentioned interface resonances.

We must stress that the origin of the very high spin polarisation of the current here, as well as

in the TMR Fe/ZnSe/Fe (001) junction, is basically the symmetry of the incident wavefunctions

and of the SC conduction band. Thus we can speak of symmetry enforced spin polarisation of

the current. This means that other interfaces, such as the (111) or (110), cannot show as strong

an effect, as one can easily see by inspection of the symmetry properties of those bands. Also,

strong interface disorder can kill the effect, since the various incoming channels will be mixed

at the interface [21]. Therefore good quality interfaces are required.

Finally we note the possibility to use other materials for spin injection, such as half-metals or

diluted magnetic semiconductors; such experiments are in the center of interest at the present

day.

1.6 Diluted Magnetic Semiconductors

It has been attempted to make use of not only the charge but also the spin degree of freedom in

modern semiconductor electronics for information processing [22, 23]. This new developing field

is called spintronics. In order to establish spintronics as a practical technology, it is indispens-

able to fabricate a new material, because currently used materials in conventional electronics are

usually non-magnetic and only charges are controllable. In order to introduce magnetic proper-

ties into semiconductors, diluted magnetic semiconductors (DMS) were proposed and fabricated.

Actually, the discovery of the ferromagnetism in (In, Mn)As [24] and (Ga, Mn)As [25] promoted

DMS to be fundamental elements for spintronics because of a compatibility with semiconductors

used in present electronics. However, their Curie temperatures TC, e.g., 110 K for (Ga, Mn)As

[26], are not high enough for real applications. Therefore, many experiments were performed

to search for DMS with room-temperature ferromagnetism and recently high TC-values were

reported for several systems ((Ga, Mn)N [27–29], (Ga, Cr)N [30] and (Zn, Cr)Te [31]).

The ferromagnetism in DMS has been investigated theoretically either by a model Hamiltonian



[32–34] or by ab initio methods [35–39]. Despite of their basic differences, both methods gave

similar predictions for the ferromagnetism. Nevertheless, no consensus has been reached about

the origin of the ferromagnetism. In fact, Dietl et al. proposed Zener’s p-d exchange interaction

to describe the magnetism [32, 33]. This model predicts room-temperature ferromagnetism in

(Ga, Mn)N [32, 33] and explained many physical properties of (Ga, Mn)As successfully, as is

shown by MacDonald et al. [34]. On the other hand, Akai pointed out by first-principles

calculations that Zener’s double exchange mechanism is responsible for the ferromagnetism in

(In, Mn)As [35]. Similar arguments were also given by Sato et al. [36, 37], who predicted high

TC-values for (Ga, Mn)N, (Ga, Cr)N and (Ga, Cr)As. Thus, despite the fact that ferromagnetism

of DMS is one of the most important topics in spin-electronics, this is still a controversial issue.

In this lecture, we show that both mechanisms are important for understanding ferromagnetism

in DMS. We calculate the electronic structure of (Ga, Mn)X, where X refers to N, P, As or Sb,

and estimate their TC’s from first-principles within the mean field approximation. We discuss

the relation between the electronic structure and the dominant exchange mechanism and show

that the two mechanisms lead to very different concentration dependences of TC.

The electronic structures of DMS are calculated based on the local spin density approximation

(LSDA). In DMS, Mn impurities are introduced randomly into cation sites of the host semicon-

ductor. The substitutional disorder in DMS is described by using the Korringa-Kohn-Rostoker

coherent-potential-approximation (KKR-CPA). In the CPA, configuration-averaged properties

of alloys are calculated within a sigle-site approximation. By this method, it is also possible to

take magnetic disorder into account. For example, we can simulate the disordered local moment

(DLM) state by considering a multi-component alloy consisting of Mn↑, Mn↓ and host atoms

at the cation site, where up and down arrows indicate the direction of the local moment of

the Mn. It is known that this approach gives a good description of the paramagnetic state

of ferromagnetic (FM) materials above TC. Therefore, to discuss the magnetism of DMS, the

total energies (TE) of both the FM state, described as (Ga1−x, Mn↑
x)X, and the DLM state,

described as (Ga1−x, Mn↑
x/2, Mn↓

x/2)X, are calculated and in particular the energy difference

∆E = TE(DLM state) − TE(FM state) is estimated. Throughout the present calculations, we

used the KKR-CPA package (MACHIKANEYAMA2000) developed by Akai [40]. Local lattice

distortions due to Mn impurities are neglected and the experimental lattice constants of host

semiconductors are used in the calculations [41]. Relativistic effects are considered in the scalar

relativistic approximation.

Since the LSDA describes only the ground state properties, we need an additional procedure to

estimate TC. To describe the magnetic properties at finite temperatures we use the Heisenberg

model, which can be written as H = −Σi6=jJij
~Si

~Sj, where ~Si is the spin at site i and Jij is the

exchange coupling constant between sites i and j. We can calculate the total energy difference

∆EH in this Heisenberg model within the mean field approximation as ∆EH = S2c2Σn6=0Jn0,

where c is the concentration of the magnetic ions and n sums over all sites of the cation sublat-

tice. This ∆EH can be directly identified with the energy difference ∆E calculated from first

principles, since the CPA represents also a mean field theory. On the other hand, within the

mean field theory of the Heisenberg model we can estimate TC by using the Brillouin function

expression, known as the molecular field theory, leading to kBTC = 2
3S2cΣn6=0Jn0, where kB is

Boltzmann constant. The result kBTC = 2
3∆E/c allows to evaluate TC from first principles.
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Fig. 1.11 shows the Curie temperatures of (Ga, Mn)N, (Ga, Mn)P, (Ga, Mn)As and (Ga, Mn)Sb

calculated in the mean field approximation from the total energies. For example, TC is calculated

as 260 K for 5% Mn-doped GaAs, which is much higher than the experimental value of 110 K

[26]. However, when comparing with experiment one has to remember that the mean field

approximation usually somewhat overestimates the Curie temperature of ferromagnets, which

is in our case presumably not a large effect due to the long range nature of the interaction.

Moreover, due to compensation effects the effective Mn concentration is not well known. In

the present calculation the neutral charge state of Mn is considered. In case of (Ga, Mn)N,

we have a maximum TC of approximately 350 K, which seems to be inconsistent with recent

experimental TC of 940 K [27]. The ferromagnetism in (Ga, Mn)P [42] and (Ga, Mn)Sb [43]

were also observed experimentally.

For low concentrations, the TC’s of (Ga, Mn)N, (Ga, Mn)P and (Ga, Mn)As scale roughly

proportional to the square root of the Mn concentration. This behavior is also observed in

Cr-doped III-V DMS [37]. In contrast to this, the TC of (Ga, Mn)Sb shows an almost linear

concentration dependence. As a whole, we find clear chemical trends in the concentration

dependences. In (Ga, Mn)N, TC goes up very sharply and reaches a maximum value of 350

K at approximately 5 % of Mn, then goes down. In (Ga, Mn)P, TC increases sharply up to a

saturated value of about 300 K. In (Ga, Mn)As, TC shows similar dependences to (Ga, Mn)P, but

TC increases more moderately for low concentrations and still increases for high concentrations.

Finally, TC of (Ga, Mn)Sb shows a linear dependence with nearly no curvature. As a result,

the concentration dependence shows in the sequence (Ga, Mn)N → (Ga, Mn)Sb a dramatic

transition from a
√

c dependence to a linear behavior.

In order to discuss the origin of the ferromagnetism, we show in Fig. 1.12 the total density of

states (DOS) and local density of d-states at a Mn site in the FM state. In III-V compounds,
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Fig. 1.12: Total density of states per unit cell (solid lines) and local density of d-states at Mn site (dotted

lines) in (a) (Ga, Mn)N, (b) (Ga, Mn)P, (c) (Ga, Mn)As and (d) (Ga, Mn)Sb in the ferromagnetic state

for 5% Mn. In (d), the arrows indicate the relative shift of the p- and d-states due to hybridization.

the host valence band originates from anion p-states. Therefore, the DOS reflects the increase

of the atomic p level in the series N → Sb, resulting in the gradual change of relative position

of Mn d-states with respect to the host valence band. In case of (Ga, Mn)N, the host valence

band is lower in energy than the Mn d-states and clear impurity bands appear in the band

gap. The Fermi level (EF) is located in the t2 impurity band, being induced by the majority

d-states of Mn. Since the minority d-states are much higher in energy, (Ga, Mn)N shows a

half-metallic behavior. On the other hand, in case of (Ga, Mn)Sb, the majority d-states of Mn

are located deep in the host valence band and the local DOS at EF agrees well with the host

DOS. Thus in (Ga, Mn)Sb the majority d-states are localized representing a d5 configuration,

and the hole states above EF consist of host valence states. The DOS is no longer half-metallic.

This is presumably an LDA-error since in the LDA the band gap of GaSb vanishes. (Ga, Mn)P

and (Ga, Mn)As are apparently intermediate cases. Their local DOS still show small peaks

around the EF, slightly larger in GaP than in GaAs. However, the gap states are almost merged

into valence bands showing rather broad resonances (Fig. 1.12-(b) and (c)). Both systems are

half-metallic and the total magnetic moment per Mn atom is just 4 µB as in (Ga, Mn)N.

The chemical trends seen in the DOS allow to explain the drastic differences in the concentration

dependence of TC. Here we will concentrate on the extreme cases, (Ga, Mn)N and (Ga, Mn)Sb.

The electronic structure of (Ga, Mn)N is characterised by the sharp e impurity band and the

broader t2 impurity band. Of the 7 valence electrons of Mn, three are accommodated in the

valence band, two in the majority e band and the remaining two in the threefold degenerate t2

band, so that the Fermi energy falls in the upper part of this band, leaving one state per Mn

empty. With increasing concentration the impurity bands broaden, and it is just the broadening

of the partially filled t2 band which stabilized the ferromagnetism. This is the double exchange

interaction in DMS [35, 44]. The energy gain due to double exchange is proportional to the band
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Fig. 1.13: The width (W ) and its square (W 2) of the impurity t2-band of (Ga, Mn)N as a function of

Mn concentration. The inset shows the local density of Mn gap-states.

width (W ), being defined as the deviations of the energy eigenvalues E from the mean value Ē,

i.e., W 2 = 〈(E − Ē)2〉 = Σm6=0|H0m|2. The last step follows from a tight-binding description

and H0m is the hopping integral between the sites 0 and m. The impurity band is formed due

to the hopping of electrons between Mn atoms. Suppose a certain configuration of Mn atoms

in GaN, with one of them at site 0. In this configuration, H0m has a finite value, say t0m, if

another Mn atom sits at site m, otherwise H0m = 0. In the CPA, we make a configurational

average over all sites m 6= 0. The probability to find a Mn atom at site m is given by c, the

atomic concentration of Mn. Thus the configurational average gives: 〈W 2〉conf. = cΣm6=0|t0m|2.
Therefore the effective band width W is proportional to

√
c [45]. This is in fact found in our

KKR-CPA calculations, as is shown in Fig. 1.13. Here the effective quantities W and W 2 of the

t2 impurity band of (Ga, Mn)N are plotted as a function of the Mn concentration. The linear

behavior of W 2 proofs the
√

c-scaling of W , in agreement the above arguments.

Now we discuss the stability of the FM state with respect to the DLM state. In the latter

configuration, half of Mn neighbors have moments parallel to the Mn moment at site 0. Therefore

the energy gain due to double exchange is always by a factor of 1/
√

2 ∼ 0.71 smaller than the one

of the FM state. The other half of the Mn neighbors, being anti-parallel aligned, gain energy by

the super-exchange interaction [35, 44]. For each spin direction, the majority d-states of the one

Mn and the minority d-states of the other one hybridize covalently, i.e., the majority states at

one site are pushed down, in this way stabilizing the anti-ferromagnetic alignment, if the Fermi

level lies between the two peaks or coincides with one of them. This super-exchange interaction

is expected to scale with the concentration c/2 of anti-aligned Mn-pairs. Therefore for small

concentrations always the double exchange interaction wins due to the
√

c behavior and stabilizes

the ferromagnetism. This explain the behavior of TC for (Ga, Mn)N shown in Fig. 1.11. The

decrease at large concentrations can be explained by a rather strong super exchange interaction

in this system, favoring the DLM state. However, if the t2-impurity band is full or completely

empty, as it is e.g. the case for (Ga, Fe)N or (Zn, Mn)Te, the double exchange interaction



vanishes and the super-exchange interaction stabilizes the DLM state. This is confirmed by our

calculations giving negative ∆ε or TC values scaling linearly with c.

For (Ga, Mn)Sb, the other extreme case, the majority d-states can be regarded as localized and

holes exist in the majority valence band of GaSb. This behavior is well described by Zener’s p-d

exchange model used by Dietl et al. [32, 33] and MacDonald et al. [34]. As in the discussion of

Kanamori [44], in the FM state the hybridization between the Mn d levels and the Sb p-states

pushes the lower levels down and the higher levels up, as is indicated for both spin directions

by the arrows in Fig. 1.12-(d). As a result, holes appear in the majority host band, so that

the GaSb host becomes polarized with a moment anti-parallel to the local Mn moment. This

moment is close to 1 µB, since the system is nearly half-metallic. By configurational averaging,

a homogeneous host polarization of cµB is obtained, which favors the ferromagnetic coupling of

the Mn moments, by an energy proportional to the host polarization, scaling linearly with c.

In the DLM state the average host polarization vanishes, so that this state is unfavorable. In

conclusion, ferromagnetism is stabilized and TC increases linearly with c.

In (Ga, Mn)P and (Ga, Mn)As, the impurity bands fuse with the host valence bands and the

lower Mn d-states are not yet fully localized. In this sense, these systems are intermediate cases

being influenced by both mechanisms, so that one might expect a superposition of
√

c and a

linear c-dependence. This is in line with Fig. 1.11, indicating that (Ga, Mn)As shows a weaker√
c and a somewhat stronger c dependence than (Ga, Mn)P.

In this lecture, we have discussed the origin of the ferromagnetism in DMS based on ab initio

calculations for Mn-doped III-V compounds. We find that double exchange dominates if impurity

bands in the gap are formed and that then TC increases proportional to
√

c, where c is the Mn

concentration. A typical example for this is (Ga, Mn)N. On the other hand, the p-d exchange

mechanism dominates, if the d-states of the impurity are nearly localized, as it is the case for

(Ga, Mn)Sb, and then a linear c-dependence of TC is obtained. (Ga, Mn)P and in particular

(Ga, Mn)As are intermediate cases. Actually, (Ga, Mn)As is on the border between the two

mechanisms, and the results depend sensitively on the position of Mn d-states.
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