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Abstract 

We have studied the capacitance of the solid/electrolyte interface on Ag(11n) and Au(11n) 

surfaces in KClO4 and HClO4 as function of the electrolyte concentration and the step density. 

We find that the inner layer capacitance (Helmholtz-capacitance) at the potential of (total) 

zero charge is dramatically reduced on stepped surfaces. Standard theories which describe the 

Helmholtz-capacitance by properties of the liquid, a hard wall boundary condition and the 

polarizability of the electron gas at the metal surface fail to describe this behavior. We 

propose that the different polarizability of water bonded to the surface need be taken into 

account and attribute the reduced capacitance at steps to the lower polarizability of water 

molecules bonded to step edges. 
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1. Introduction 

The measurement of the interfacial capacitance is a standard method to characterize the 

solid/electrolyte interface, in particular for metals that are approximate realizations of an 

ideally polarizable electrode such as gold and silver. The total capacitance of an ideally 

polarizable electrode, as it is measured experimentally, appears to consist of two contributions 

in series, the concentration-dependent Gouy-Chapman capacitance of the electrolyte and the 

capacitance of the inner layer at the interface, also known as the compact layer or the 

Helmholtz-layer. By measuring the concentration dependence of the total capacitance the two 

contributions are easily separated, at least at the minimum of the Gouy-Chapman capacitance 

which is at or near potential of zero charge (pzc) [1, 2]. While the capacitance of the liquid 

part of the electrolyte is well understood and easily calculated by solving the Poisson-

Boltzmann equation (Gouy-Chapman Theory [3, 4]) the nature of the Helmholtz-layer and its 

contribution to the capacitance has remained elusive despite substantial research efforts. The 

electrical behavior of the total capacitance as being one of two capacitances in series is 

reproduced by theoretical approaches that take the finite size of the water molecules and ions 

in solution into account. In the simplest approach water and ions are represented as spheres, 

the spheres representing water carry a dipole moment, and the solid is represented by a "hard 

wall" (mean spherical approximation, MSA). The hard wall boundary condition leads to 

oscillations in the probability to find water molecules at a particular distance from the surface 

which causes potential oscillations as function of the distance. The deviation from the smooth 

exponential decay of the potential as calculated with the Gouy-Chapman model gives rise to 

electrical properties which are equivalent to that of a Gouy-Chapman capacitance and a 

concentration independent Helmholtz-capacitance in series. No inner layer with special 

physical and dielectric properties need be invoked. For a review of the early work the reader 

is referred to the lucid review of Schmickler and Henderson [5]. By construction, the MSA 

model as well as various amendments (see e.g. [6] for a recent update) involve only the 

properties of the electrolyte and therefore predict a Helmholtz-capacitance that is independent 

of the type of solid. Schmickler and Henderson have proposed an amendment of the MSA-

model by considering the electronic polarizability of the solid (metal) into account within the 

framework of the jellium model. In the following, the combination of MSA with the jellium 

model is referred to as Schmickler-Henderson theory. The electronic polarizability of the 

solid leads to an increase in the Helmholtz capacitance. Because of the jellium model the 

increase depends (solely) on the electron density [5]. The theory accounts reasonably well for 

the trend to higher Helmholtz-capacitances with increasing electron density [5]. For the two 
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metals silver and gold studied in this paper the Schmickler-Henderson theory would call for 

approximately the same Helmholtz-capacitance, although application of the jellium model to 

these metals is questionable, in particular in the case of gold. By a self-consistent treatment of 

the Poisson-Boltzmann equation and the Schrödinger equation Ibach and Schmickler have 

recently shown that the polarizability of a jellium metal is stronger at steps than on flat 

surfaces [7]. One would therefore expect the Helmholtz-capacitance of stepped surfaces to be 

larger than the Helmholtz-capacitance of flat surfaces. 

In this paper we show that expectations from hitherto existing theories fail. The Helmholtz-

capacitance at pzc for Ag(001) is almost a factor of two larger than for Au(001), despite the 

nearly identical electron density. Furthermore, the Helmholtz-capacitances of stepped Ag and 

Au surfaces are dramatically lower than for flat surfaces by as much as 50% for the Ag(117) 

surface. This means that around each step a stripe of 0.2-0.5nm width does not significantly 

contribute to the Helmholtz-capacitance. We argue that the reason for the failure of current 

theories rests in the neglect of the polarizability of water bonded to the metal surface.  

 

2. Experimental 

The experiments were performed on Au(11n) and Ag(11n) single crystals with n = 5, 7, and 

11. These surfaces are vicinal to the (001)-plane, with a miscut angle  along the atomically 

dense [ 011 ]-direction, where n2tan   [8]. The ideal surface cut along the (11n) plane 

consists of equally spaced, monatomic high and parallel steps separated by (001)-oriented 

terraces. The mean distance between steps in the (11n) plane is  

  2/12)2(
2

n
a

L   , (1) 

with a  the distance between densely packed atomic rows along [ 011 ] (for Au(001) 

2884.0a  nm and for Ag(001) 2889.0a  nm). For the Au samples, we used bead-type 

single crystals prepared according to a method developed by Voigtländer et al. [9]. The Ag 

samples were cut by spark erosion from a single crystal rod. The electrodes were oriented by 

diffractometry and polished to the desired orientation to within 0.1°, the limit being 

determined by the mosaic structure of high-quality single crystals. Prior to each experiment, 

the Au single-crystal electrodes were flame-annealed to about 900°C and cooled down to 

room temperature. In the case of Ag, the single crystals were prepared by etching in a KCN-

H2O2 solution, annealed in a H2-flame, and cooled down to room temperature in Ar 
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atmosphere. Afterwards, the samples were transferred to the cell under the protection of a 

droplet of deoxygenated water [10]. As electrolytes, we used suprapure HClO4 (Merck) and 

KClO4 (Merck) twice recrystallized, and Milli-Q water (Millipore, 18.2 M cm−1). The 

contact between the electrode surface and the solution was made by means of the hanging 

meniscus method [10] under potential control. A saturated calomel electrode (SCE) served as 

reference electrode and a platinum foil as counter electrode. For all electrolyte concentrations 

used in this study we immersed the electrodes at 0.3V vs. SCE (Au) and 0.9V vs. SCE 

(Ag). Cyclic voltammetry and capacitance curves were recorded using a Zahner IM5 

impedance potentiostat.  

 Au(100) surfaces are reconstructed when immersed into the electrolyte at electrode 

potentials below pzc (at about 0V vs. SCE for Au). The reconstruction is lifted for positive 

potentials (>0.6V SCE for HClO4 electrolyte [11]). When the potential is swept back below 

the pzc of the unreconstructed surface (~40mV SCE) the unreconstructed surface remains 

metastable for a short, but sufficiently long time to investigate the capacitance of the 

unreconstructed surface. Our data on gold surfaces refer to such measurements.  

 Impedance spectra of (001) and stepped surfaces between 1Hz to 10kHz show a typical 

response of an RC-series equivalent circuit, only at higher frequencies it is possible to see a 

small deviation. We have also performed experiments where we used different frequencies 

(between 2 and 80 Hz) and different amplitudes (between 1 and 20 mV). In all these 

measurements, the capacitance curves exhibit merely minimal frequency dispersions 

indicating that the double layer is almost perfectly described by a RC-equivalent circuit 

diagram, in accordance with observations by Eberhardt et al. [12]. 

 

3. Results 

We have measured the capacitance versus the electrode potential for the (001), (1111), (117), 

and (115) surfaces for the concentrations 5mM, 10mM, 20mM, 30mM, 50mM, and 80mM 

HClO4 (gold) and KClO4 (silver). As example, we show the results for 50mM and 10mM in 

Fig. 1 and 2 for the potential range around pzc. The characteristic minimum of the capacitance 

marks the minimum in the Gouy-Chapman capacitance at zero potential. For the 

concentration range considered here the point of zero potential coincides with the potential of 

zero charge (pzc) within 1mV [6, 13]. We therefore address the minimum of the capacitance 

as pzc henceforth in the paper.  
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The pzc shifts towards the negative on stepped surfaces. As shown in detail in two previous 

publications the shift is proportional to the step density [14, 15]. The shift pzc is owed to the 

dipole moment of step atoms pz [16] 

  
La

pz

||0
pzc 
   (2) 

Here, 0 is the dielectric permeability and  aa||  is the atomic length unit along the steps. 

Step dipole moments always point outwards with their positive end [17], so that the shift in 

the pzc is always towards the negative. For steps on (001) surfaces of Au and Ag the step 

dipole moments are about 8×10-32 Cm and 5.6×10-32 Cm, respectively [14, 15].  

With increasing step density also the capacitance at pzc shifts downwards. The downshift in 

the capacitance is the more pronounced the larger the concentration and thus the larger the 

total capacitance is. This and the fact that the downshift in the capacitance at pzc is observed 

also for all other electrolytes indicate that the Helmholtz-capacitance at pzc varies with the 

step density: the higher the step density, the lower the Helmholtz-capacitance.  

We now use the concentration dependence of the capacitance to quantify this qualitative 

observation. In complete absence of specific adsorption of ions the Helmholtz capacitance CH 

at pzc is obtained from a Parsons-Zobel-plot of the measured inverse total capacitance 1
tot
C  

vs. the calculated inverse Gouy-Chapman capacitance 1
GCh
C  [12]. The small specific 

adsorption of ClO4
 ions in our case causes a deviation from a straight line in the Parsons-

Zobel-plot, preventing an accurate determination of CH. We can safely exclude roughness as 

the cause for the deviations from linearity in our case (see discussion section). To account for 

the effect of specific adsorption on the electrical properties of the interface it proves useful to 

introduce a capacitance parallel to the diffuse layer capacitance as the derivative of the charge 

per area on the metal caused by specific adsorption Q(spec) with respect to the electrode 

potential  [12], 

  





)spec(Q
Cad . (3) 

The total capacitance is then 

  
GChH

GChH
ad

GChH

adtot CC

CC
C

C

1

C

1
1

CC





 . (4) 

At pzc the Gouy-Chapman capacitance CGCh can be expressed in terms of the concentration as 
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  0GCh C  (5) 

in which  is the inverse of the Debye-length 

  TknZe B002    (6) 

with  the relative dielectric permeability of water, n0 the concentration of ions of one type, Z 

their charge number, kB the Boltzmann-constant and T the temperature. Eqs. 4-6 may be 

written as 

  

H

0

adtot

0 1
CCC




 (7) 

This form offers a systematic way to determine both Cad and CH by plotting the left hand side 

versus  for various assumed values of Cad. For the correct value of Cad a fit through the data 

with a straight line intersects the ordinate exactly at 1. The slope yields the Helmholtz-

capacitance CH. Fig. 3 and 4 display these plots for gold and silver respectively. All data fit 

nicely to the linear plot and yield small values for Cad, indicating that the analysis following 

eq. (7) is meaningful. Further contribution to eq. (7) quadratic in  may arise from nonlocal 

contributions to the dielectric constant of the solvent [18], from a high concentration of ions 

at the interface, or from a change in the effective dielectric constant of the solute [13]. Such 

contributions have been observed, albeit for concentrations 10 times higher than used here 

[19]. They are insignificantly small in the concentration range studied here. The individual 

values for Cad obtained from the fit to a straight line intersecting the ordinate exactly at 1 are 

listed in the figures. For gold surfaces, Cad is identical for surfaces with different step 

densities within the limits of error. Fitting individual values of Cad rather than a mean value 

for all step densities has no significant effect on the Helmholtz capacitances CH. For silver, 

the values for Cad are smaller than for gold in agreement with the lesser specific adsorption of 

ClO4
 on silver [20]. The trend to smaller Cad with higher step density in the case of silver 

indicates an even lesser adsorption of ClO4
 at steps. Also listed in the figures are the 

resulting Helmholtz-capacitances. The results for the Helmholtz-capacitances are summarized 

in Table 1. For both materials, the Helmholtz-capacitance decreases significantly on stepped 

surfaces. For Au(11n) the decrease is linear in the step density within the limits of error 

(Fig. 5). For Ag(11n) surfaces the decrease either saturates or may even pass through a 

minimum at about 54% of the initial value (Fig. 5).  

In order to check whether modeling of the specific adsorption with a finite shunting 

capacitance Cad has a significant effect on the Helmholtz-capacitance we have calculated the 
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Helmholtz-capacitance from the slope of the data in plots such as Fig. 3/4 but with Cad set to 

zero. In that case, the analysis of eq. (7) is mathematically, although not technically 

equivalent to the analysis using the Parsons-Zobel-plot. The results are shown in brackets in 

Table 1. The relative reduction in the Helmholtz-capacitance is nearly the same. On the (117) 

surface e.g., the Helmholtz-capacitance of gold is reduced by 18% instead of 22% and by 

44% instead of 48% for silver. The obtained reduction of the Helmholtz-capacitance for 

stepped is therefore not an artifact of our analysis. 

Further support for attributing the reduced capacitance at pzc solely to the Helmholtz-

capacitance stems from the fact that a reduction in the total capacitance at pzc is observed also 

for H2SO4 and HF electrolytes. Fig. 6 shows the total capacitance Ctot at pzc vs. the step 

density on Au(11n) surfaces in 5mM HF, HClO4, and H2SO4 as obtained in [14]. For all three 

electrolytes Ctot decreases slightly with increasing step density. The solid lines in Fig. 6 

represent the capacitances calculated using eq. (4) and the linear decrease in the Helmholtz-

capacitance as obtained in Fig. 5. To fit the total capacitance for the Au(001) surface Cad is set 

to 0, 4 and 16.4 Fcm2 for HF, HClO4 and H2SO4, respectively. The required setting 0ad C  

for the HF-electrolyte is consistent with the understanding that there is no specific adsorption 

of fluor at pzc. The larger Cad for the H2SO4 electrolyte is consistent with the significant 

specific adsorption of SO4
-ions on gold even at pzc [21]. The solid line fits the data for HF 

quite well, supporting the model of a reduced Helmholtz-capacitance at steps. For H2SO4 

electrolyte, the experimentally observed capacitance falls below the calculated line. The 

additional reduction in the capacitance could arise from a reduced specific adsorption of 

sulfate at steps. To illustrate this point we have calculated the reduction in the capacitance 

under the assumption that the relative reduction in Cad has the same dependence on the step 

density as the Helmholtz-capacitance (dashed line in Fig. 6). An alternative possibility is that 

the reduction of the Helmholtz capacitance is stronger with coadsorbed sulfate.  

 

4. Discussion 

4.1 Possible influence of roughness 

Before entering the discussion we briefly pay attention to a possible influence of the 

roughness of stepped surfaces on their Gouy-Chapman capacitance. Rough surfaces may have 

a higher Gouy-Chapman capacitance because their microscopic area is larger than the 

macroscopic area. The ratio of both defines the roughness factor R>1. The roughness factor 

depends on the ratio of the characteristic length of the roughness to the Debye-length. 
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Applied to our problem of stepped surfaces with a step-step distance L, this means that the 

roughness factor R depends on the product L. For dilute electrolytes, L<<1, the surface is 

smooth on the scale of the Debye-length, hence 1R . For 1L , R approaches the ratio of 

the microscopic to macroscopic surface area. For periodic profiles the roughness factor can be 

calculated using the work of Daikhin et al. [22]. From the discussion above we see that the 

lowest Fourier-component of the roughness is of prevailing importance. We may therefore 

describe the profile of a stepped surface as (Fig. 7) 

  )/2sin()4/( Lxhz   (8) 

where h is the step height. The roughness R then becomes [22] 

  





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

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


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


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L
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R
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

 (9) 

The maximum roughness factor is obtained for the highest concentration and the smallest 

distance L and amounts to 1.017. For the smallest concentration R is 1.0003. The effect of the 

correspondingly increased capacitances on the slopes of the linear fits in Fig. 3 and 4, and 

thus on the calculated Helmholtz-capacitances is therefore negligible. We note that this 

calculation also excludes the proposition that the deviation from the straight line in a Parsons-

Zobel plot for single crystal surfaces could be attributed to roughness. 

4.2 Helmholtz-capacitance of steps 

The linear decrease of the Helmholtz-capacitance with the step density for gold surfaces 

points to a local effect of the steps, namely that the Helmholtz-capacitance is reduced in a 

stripe along each step ("dead stripe"). We calculate the width of these stripes in the following. 

On Au(11n) surfaces the Helmholtz-capacitance appears to decrease approximately linear 

with the inverse of the step density. The solid line in Fig. 5 is a fit to  

  1
HH

1
H 1)0(/)(   LlCLC  (10) 

with lH = 0.22nm. In the limit that a stripe alongside each step does not contribute at all to the 

Helmholtz-capacitance lH is the width of that stripe. If the Helmholtz-capacitance is merely 

reduced by a factor 1 , then lH is  

  )1((red)
HH  ll   (11) 
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in which (red)
Hl  is the width of the stripe with the reduced capacitance. The linear decrease of 

the Helmholtz-capacitance with L1 saturates when the stripes with reduced capacitance begin 

to overlap. In terms of (red)
Hl  the Helmholtz-capacitance is then described by 

 

  
 











 






else

)0(if)1(1
)0(/)(

HH
1(red)

H
H

1
H



 CCLl
CLC  (12) 

 

We apply this model to describe the saturation of the reduction on silver surfaces. Fig 5 

instructs us that the factor  should be then 0.54. From the initial slope one obtains 

nm2.1(Ag)(red)
H l . The dashed line in Fig. 5 shows the fit of eq.(12) to the data with these 

numbers for  and (red)
Hl . Assuming that the Helmholtz-capacitance on gold is reduced by the 

same factor  = 0.54 one calculates nm5.0(Au)(red)
H l  from eq. (11). In view of the scarce 

data point in Fig. 5 and their error bars details of his heuristic description are open. In any 

case, the width of the dead stripe is significantly larger on silver. 

4.3 Microscopic models  

According to the mean spherical approximation (MSA) the second term on the right hand side 

of eq. (7) and thus the existence of a concentration independent contribution to the 

capacitance follows from the finite size of ions and water molecules and the dipole moment 

associated with the water molecules in combination with the hard-wall boundary condition of 

the liquid at the solid surface [5]. In terms of the diameters of the ions dI and the solvent 

molecules ds (both considered as spheres) the inverse capacitance is  

  1
elsI

00

1
tot

1

2

11  






 

 CddC





. (13) 

The additional contribution 1
el
C  describes the effect of the electronic polarizability following 

Schmickler and Henderson [5]. The parameter  is obtained from the equation 

   16)1( 42  . (14) 

For water with  = 80 the parameter  is  = 2.65. The first term within the bracket of eq. (13) 

arises from the distance of closest approach of the ions from the hard wall dI/2, the second, 

significantly larger term is a consequence of the oscillating probability to find water 
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molecules at a particular distance z from the surface. This stratification of the water molecules 

and their oscillating orientations cause corresponding oscillations in the potential, resulting in 

a steep potential gradient at the surface that is independent of the ion concentration in the 

electrolyte. The Helmholtz-capacitance is the macroscopic manifestation of that behavior.  

The theory sketched above describes the Helmholtz-capacitance on mercury quite well, and 

also very crudely the overall trend with the electron density [5]. For gold and silver surfaces, 

the Schmickler-Henderson theory would call firstly for a nearly equal Helmholtz-capacitance 

for Au(001) and Ag(001) and secondly for a larger Helmholtz-capacitance for stepped 

surfaces because of the larger electronic polarizability at steps [7]. Obviously, the theory fails 

in both predictions, indicating that an important aspect is missing. We suggest that this aspect 

is the chemical bonding of first-later water molecules to the surface.  

The bonding of water molecules to surfaces has been subject of intense, often controversial 

debate. Presently most authors have converged on a picture that involves an H-bonded 

network of water molecules ("bilayer model" [23, 24]) bonded to the metal surface via the 

oxygen lone pair electron. For a general review the reader is referred to the extensive review 

of Henderson [25] and to the recent comprehensive discussion of the theory by Meng et al. 

[26]. As already proposed in 1980 [23] hydrogen atoms that are not engaged in the H-bonding 

to neighboring molecules may either point towards or away from the surface (H-up and H-

down configurations) (Fig. 8a). Both configurations coexist on Platinum [23] at low 

temperatures and have nearly equal energy with slightly higher adsorption energy for the H-

down configuration on Pd surfaces [26]. As the binding energy amounts to 0.5eV per water 

molecule the equilibrium vapor pressure at 300K is about 0.01bar [2]. Under ultra-high 

vacuum conditions, the structures are therefore stable only at lower temperatures ( K150T ) 

[27, 28]. However in contact with liquid water at 1bar pressure a key element of the structure 

namely the bonding of the first layer water molecule to the metal on-top sites either via the 

oxygen lone-pair bond or a hydrogen bond should survive at 300K (with considerable 

fluctuations). This notion is corroborated by ab-initio molecular dynamical calculations of 

Izvekov and Voth [29]. The authors find that on uncharged Ag(111) surfaces water molecules 

are bonded to the on-top sites of silver atoms at a rather well defined distance of 0.215 nm. 

Neither the limited simulation time (1ps) nor the size of the unit cell allowed a build-up of 

periodic bilayer structures. Ab-initio molecular dynamics simulations of Sugino et al. on 

Pt(111) surfaces confirmed that water bonds via hydrogen bonds to Pt atoms for negatively 

charged surfaces [30]. Periodic structures or stable H-bonds between adsorbed water 

molecules were likewise not found in the limited space-time frame. The existence of bilayer 
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structures on surfaces in contact with liquid water remains questionable therefore. The two 

configurations of first-layer water molecules, one bonded via the oxygen atom, the other via 

the hydrogen atom lead to different oxygen/surface distances. Such potential dependent bond 

distances have been found in the hitherto only experimental in-situ X-ray diffraction study by 

Toney et al. [31]. Unfortunately, the unacceptably high oxygen concentrations found in this 

study cast a shadow of doubt on this experiment. Nevertheless, the experimental 

oxygen/surface distances and their dependence on the surface charge agree nicely with 

theoretical calculations of the structure of water bilayers on palladium surfaces [32]. In 

summary, one may conclude that first layer water molecules are bonded to the metal surface 

atoms. The bonding is either via a hydrogen bond or, at positive potentials, via the oxygen 

lone-pair bond. The potential where the (presumably gradual) transition occurs depends on 

the electrode material. The Helmholtz-capacitance of flat surfaces should therefore reflect the 

electrical polarizability of water thus bound to the surface and is not describable as being 

merely a property of liquid water at a solid boundary as in the Schmickler-Henderson theory. 

The limitations of the Schmickler-Henderson theory are also manifest in the arrangement of 

oxygen atoms predicted by that theory. The Schmickler-Henderson theory produces a 

stratified arrangement of oxygen atoms [5] which, however, differs substantially in detail 

from experiment and total energy calculations that take the water/surface bond into account. 

We therefore conclude that the large difference in the Helmholtz-capacitances of Au(100) and 

Ag(100) are presumably due to differences in the polarizability of first-layer water molecules 

to these surfaces. Theoretical studies which compare Ag(100) and Au(100) are not available 

at present. 

Concerning the properties of the first-layer water at steps there is ample experimental and 

theoretical evidence for significant difference to flat surfaces. In 1996, M. Morgenstern et al. 

showed that on Pt(111) water bonds to the upper edge of steps in "quasi one-dimensional 

chains" with a higher binding energy than on flat surfaces [27]. Similar observations on 

Au(100) were recently reported by K. Morgenstern [28]. Inspired by the early experiments, 

Meng et al. have investigated theoretically chain-like structures of water monomers at A-steps 

(displaying a (100) microfacet) on Pt(111) [26]. The most stable chain consists of a zigzag 

chain of H-bonded, essentially flat-lying water monomers with the second hydrogen atom of 

the monomer pointing alternately inwards and outwards of the step (Fig. 8b). According to 

Meng et al. the oxygen lone-pair bond energy is significantly larger at steps (0.45eV at steps 

vs. 0.29eV on terraces). Furthermore, unlike water in the bilayer configuration each water 

molecule and not every second one forms an oxygen lone-pair bond with the substrate. In 
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agreement with the stronger oxygen-metal bonding the mean distance of the oxygen atoms to 

the surface is smaller than for bilayer oxygen atoms. The lower coordination of the water 

molecules at steps with respect to their H-bonds is thereby compensated, so that the total 

binding energy per molecule for water on terraces and at step in their respective structures is 

about the same. 

We note from Fig. 8b that the inward-pointing H-atoms are not oriented in a direction suitable 

for H-bonding to water on terraces (Fig. 8a). These H-atoms can therefore not engage in H-

bonding to water on terraces. Experimental result support this notion: Upon exposure to small 

doses, water adsorbs on Au(100) firstly at steps in the form of thin stripes (width < 1.0nm [27, 

28] ). Upon further exposure however, water does not continue to grow from the decorated 

steps. Instead, further adsorbed water nucleates on terraces [28]. This clearly shows that water 

at steps cannot engage in H-bonding. We therefore conclude that experimental and theoretical 

evidence support the proposition that water at steps is bonded in the form of the zigzag 

chains, not only on platinum but also on Au(100), and presumably on other surfaces. As in the 

case of flat surfaces it is not known whether the chain structure of water at steps is preserved 

when in contact with liquid water at 300 K. We can however safely conclude that the oxygen 

lone-pair bonding survives at 300 K since it does on terraces and the bond energy is nearly 

twice as large at steps.  

Contrary to water on terraces, water at steps does not feature H-in and H-out configurations in 

relative concentrations which depend on the surface charge (electric field). Furthermore, all 

water molecules form rigid oxygen lone-pair bonds with the surface, contrary to water in the 

bilayer configuration where every second water molecule is bonded only via the highly 

flexible H-bond. The polarizability of water bonded to steps should therefore be significantly 

less than for water bonded to terrace atoms. We therefore identify the experimentally found 

dead stripes with the specific form of water at steps. The width of the chain-structure which is 

of the order of 0.3 nm (Fig. 8b) matches the width of the dead stripe on Au(100). The larger 

width found for Ag(100) indicate that other, broader structures may be involved on Ag(100). 

Presently, neither experimental nor theoretical intelligence regarding the structure of water at 

steps is available for that surface. 

 

5. Conclusions 

The Helmholtz-capacitance of stepped Au(11n) and Ag(11n) surfaces is significantly lower 

than the Helmholtz-capacitance of flat Au(001) and Ag(001) surfaces. On gold vicinal 
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surfaces the reduction in the capacitance is roughly proportional to the step density, whereas 

on silver surfaces the reduction appears to saturate at higher step densities. This result is at 

variance with currently available theories. We ascribe the lower capacitance to the stronger 

bonding of water molecules to step sites, their different structure there, and the ensued lower 

polarizability; an effect not included in present theoretical treatments of the Helmholtz-

capacitance. 
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Tables 

Table 1: Helmholtz-capacitances for Au(001) and Ag(001) vicinals as obtained from Fig. 1 

and Fig. 2. The values in brackets are without taking the capacitance due to the small specific 

adsorption into account (Cad = 0). 

 

 

 

 

 

 

 

Surface (001) (1111) (117) (115) 
Step density 

L1/nm1 
0 0.624 0.969 1.33 

CH(Au)/Fcm-2 

with Cad  0 

78.53 
(70.1) 

71.52 
(65.6) 

61.33 
(57.6) 

54.33 
(51.8) 

CH(Ag)/Fcm-2 

with Cad  0 

1457 
(127) 

94.61 
(87.5) 

75.12 
(71.4) 

81.12 
(79.1) 
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Figure Captions 

 

Fig. 1: Capacitance of Au(001), Au(1111), Au(117), and Au(115) for (a) 50mM HClO4 and 

(b) 10mM HClO4. The minima mark the potential of zero charge (pzc). Electrode potentials  

are with reference to the saturated calomel electrode (SCE). 

 

Fig. 2: Capacitance of Ag(001), Ag(1111), Ag(117), and Ag(115) for (a) 50mM KClO4 and 

(b) 10mM KClO4. The minima mark the potential of zero charge (pzc). 

 

Fig. 3: Plots of )/( adtot0 CC   vs.  for Au(hkl) following eq. (7). The slope is 

proportional to the inverse of the Helmholtz-capacitance CH (see insert). The values of Cad 

representing the capacitance at pzc, describing the change in the surface charge with applied 

voltage due to specific adsorbates, are fitted so that the least square fit straight lines pass 

through 1 at  = 0. 

 

Fig. 4: Plots of )/( adtot0 CC   vs.  for Ag(hkl) following eq. (7). The slope is proportional 

to the inverse of the Helmholtz-capacitance CH (see insert). The values of Cad representing the 

capacitance at pzc, describing the change in the surface charge with applied voltage due to 

specific adsorbates, are fitted so that the least square fit straight lines pass through 1 at  = 0. 

Cad is much smaller than for gold surfaces in agreement with the understanding of a lesser 

specific adsorption of ClO4
 on silver. 

 

Fig. 5: The decrease of the Helmholtz-capacitance with the inverse of the mean distance 

between the steps. For Au(11n) surfaces the decrease is linear within the limits of error 

(squares). This suggests within a stripe along each step the Helmholtz-capacitance is reduced 

("dead stripes"). For Ag(11n) surfaces the Helmholtz-capacitance saturates for higher step 

densities or may even pass through a minimum. Saturation is explained by assuming that the 

dead stripes overlap for step densities beyond -11 nm8.0L . 
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Fig. 6: Comparison of capacitances at pzc on Au(11n) surfaces in 5mM H2SO4, HClO4, and 

HF. For all three electrolytes the capacitance decreases with increasing step density. The solid 

lines are calculated assuming the same decrease in the Helmholtz-capacitance as for HClO4 

with Cad chosen as 0, 4, and 16.4Fcm2. The dashed line is with the assumption that also the 

capacitance describing the specific adsorption Cad decreases with increasing step density in 

the same way as the Helmholtz-capacitance (capacitances taken from [14]). 

 

Fig. 7: Surface profile used to calculate the effect of the roughness of stepped surfaces on the 

Gouy-Chapman capacitance. The figure shows a [115] surface. 

 

Fig. 8: (a) Low temperature structure of water in the first monolayer. The model was 

originally proposed by Ibach and Lehwald in 1980 based on spectroscopic evidence for all 

three forms of hydrogen [23]. Nevertheless it is now universally attributed to Doering and 

Madey [24]. On flat surfaces, water forms a bilayer in which every second water molecule 

bonded to the surface via the oxygen lone pair while the other water molecule interconnects 

those water molecules via hydrogen-bonding. Hydrogen atoms not engaged in H-bonding 

may either point upwards or downwards towards the metal; the latter case is indicated by a 

dashed circle. Recent theoretical studies show that ordered phases with hydrogen in the up 

and down configuration have nearly the same energy albeit with different distances for of the 

oxygen atom from the surface. At room temperature and in the presence of ambient water the 

bonding to the metal surface survives with a mixture of up- and down-configuration 

depending on the surface charge. The bilayer structure may not exist in contact with liquid 

water at 300 K. 

 

(b) A zigzag chain of water molecules at the upper step edge as proposed by Meng et al. [26]. 

The binding energy per water molecule is about the same as for water on terraces [26, 27]. 

The hydrogen atoms pointing inward and outward of the step do not engage in hydrogen 

bonding to water molecules adsorbed on terraces [28]. Unlike the bilayer structure on terraces 

the chain structure does not offer the possibility for electric field-induced changes in the 

orientation of the molecules. The polarizability is therefore much lower causing the lower 

Helmholtz-capacitance at steps. 
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